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We thank the reviewer for the valuable comments and suggestions, which we consider very impor-
tant and help us to sharpen and improve the manuscript. Here our response to each comment.

This paper presents methods for performing load validation by reconstructing the wind field
upstream of a waked wind turbine using nacelle lidar measurements. The load validation methods
are simulated using the dynamic wake meandering (DWM) model and aeroelastic simulations, and
compared to the performance of the standard IEC recommended DWM method for load validation.
The paper is a nice extension of previous work by the authors ”Aeroelastic load validation in wake
conditions using nacelle mounted lidar measurements,” where the authors use wind parameters
based on lidar measurements in wake conditions to evaluate the accuracy of load validation as part
of a field experiment.

The paper is well written and clearly organized. Furthermore, the topic is relevant given the
interest in using nacelle lidars for applications such as power performance and load validation in the
wind industry. By investigating the proposed load validation methods in a controlled simulation en-
vironment, the authors are able to isolate the impact of the wind field reconstruction methodology,
without worrying about aeroelastic model uncertainties. Although there are no major issues with
the paper, there are several smaller comments that I believe should be addressed by the authors.

First, more motivation for the proposed lidar-based load validation methods should be pre-
sented. For example, if the goal is to achieve load prediction biases that are the same as the
baseline method but with lower statistical uncertainty, how will this improve the wind turbine
design process? And can you discuss current problems with the IEC-recommended approaches for
load validation in wake conditions?

We added two paragraphs describing both the current limitations of the IEC-recommended ap-
proaches for load validation in wakes and how nacelle lidar-based procedures can tackle these issues.
Further, we discuss the benefits of developing lidar-based power and load validation procedures in
general.

Comments:
1. Title: Instead of ”using field reconstruction techniques,” which is somewhat vague, consider
”using wind field reconstruction techniques”

This is now corrected.

2. Pg. 2, ln. 34: ”the 10-min statistical properties (mean and variance) of the simulated
ambient and operational conditions are set to match the measured ambient wind statistics”: This
doesn’t quite make sense. How can the simulated ”operational” conditions be set to match mea-
sured ”ambient” conditions. Wouldn’t you only need to match the ambient conditions?

This has been corrected, it is only the ‘ambient’ wind conditions that should be matched.

3. Pg. 2, ln 45: ”: : :which increases the amount of validation data.” This could use a little
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more explanation (contrast this to a fixed met tower where only a small sector is valid).

We added more explanations to further clarify this.

4. Pg. 2, ln. 49: ”The recent work of Conti et al. (2020) demonstrated that lidar-based load
validation procedure in wakes should account for a model of the wake deficit and its dynamics.”
Since this paper builds on the work of Conti et al. 2020, please discuss this work in a little more
detail, especially why it was concluded that lidar-based load validation in wakes should include a
wake model.

We have added a paragraph discussing the main findings from the previous work.

5. Pg. 3, ln. 83: ”through a field reconstruction technique”: ”wind field?” Or ”wake field?”

‘Wake field reconstruction technique’ has been added.

6. Pg. 4, ln. 98: ”large number of simulations” How many?

We added that we use 18 turbulence field realizations for each 10-min statistic of the inflow
wind. Further, we specify that more details on the load validation analysis can be found in Sect. 4.2.

7. Pg. 4, ln. 101: ”The mean bias of load predictions... is of the same order of that obtained
with the baseline”. Please be more specific about how close the lidar-based simulations should be
to the baseline. ”Of the same order” is a subjective criteria and makes it hard to tell if the new
methods are successful.

We replaced ”Of the same order” with ”equal to”.

8. Pg. 4, ln. 111: ”the IEC recommends, i.e., the Mann uniform shear spectral tensor model...”
This is one model that is recommended. There is also the Kaimal spectral model, etc.

The Kaimal spectral model has been added.

9. Eq. 1: the symbol ”i” is used twice, for the spatial location as well as to indicate imaginary
numbers. Can you choose unique symbols?

We now use i for index and i for the imaginary numbers.

10. Eq. 2: Should the bold ”k” argument on the left hand side be ”k1”?

This has been corrected.

11. Section 3.2: Can you explain more about the tools you are using to implement DWM? In
other words, is DWM a software tool that you are using (if so, a reference would be appreciated)?
Or is it a model described in the literature that you are implementing yourselves?

We have added more details and rephrased the whole subsection to better describe the assump-
tions of the DWM model. We also provide a reference of the numerical scheme of the DWM model
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used to derive the quasi-steady velocity deficit in the paper.

12. Fig. 1: What wind speed is used for the middle plot?

We have removed this plot and replaced with a different figure, where we now define the inflow
wind conditions.

13. Pg. 6, ln. 157: ”The latter increases the uncertainty of the procedure.” It is unclear what
”the latter” refers to here.

We have now specified that in the text.

14. Pg. 6, ln. 166: ”while the spatial resolution in the longitudinal axis depends on the simu-
lated wind speed.” Then what is the temporal resolution of the wind field?

The turbulence fields used in aeroelastic simulations (and in the DWM model) are basically a
vector field, where each point in the field represents the local speed of the flow. In the generation
of these fields we use the Taylor’s assumption of frozen turbulence. Therefore, the large turbu-
lence structures does not really change with time but are simply transported with the mean wind
speed of the ambient wind field. As we run simulations with different ambient wind speeds, but
the dimension of the turbulence box is fixed in the longitudinal axis to 8192 ‘points’, the spatial
resolution is function of dx = (UambTsim)/8192, where Tsim is the simulation time in seconds (e.g.,
600 s for a 10-min simulation).

15. Pg. 7, ln. 171: ”continuous-wake” − > ”continuous-wave”

This has been corrected.

16. Pg. 7, ln. 181: Can you provide a reference for the 4-beam Leosphere lidar?

This sentence has been removed together with the whole paragraph about the various type of
nacelle lidars in the literature. For reference, the 4-beam Leosphere is advertised on the Leosphere’s
website.

17. Pg. 8, ln. 185: ”7-beam lidar can potentially increase the accuracy of reconstructed wind
fields.” Increase the accuracy compared to what?

This sentence has been removed together with the whole paragraph about the various type of
nacelle lidars in the literature.

18. Pg. 8, ln. 193-194: There is also a 4-beam Windar CW lidar, and the grid configuration
pattern is based on the SWE pulsed lidar. Can you explain why you classified these scan patterns
as pulsed and CW, respectively? Furthermore, since you are only modeling a single measurement
range, it is unclear how you model CW and pulsed lidars any differently in you simulations. Can
you explain this further? Lastly, you are giving up additional measurement points (and therefore
potentially wind field reconstruction accuracy) by only using a single range for the pulsed lidars.
Why didn’t you use multiple range gates?
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We have removed the paragraph describing the currently available nacelle lidars. The previous
classification between CW and PL lidar was only made to reference the existing type of nacelle-
lidars. Still, it did not influence the simulation results, as we mainly simulate the probe volume
effects by a pre-defined weighting function. The reason for using a single range is conditional on the
fact that we use DWM model-based fields as target fields. Indeed, the DWM model predicts quasi-
steady wake deficits, which are computed according to a specified downstream distance. These
deficits are meandered transversely, advected in stream-wise direction with the mean wind speed
using Taylor’s assumption, and superimposed on random turbulence field realizations (we have now
described that in detail in Sect. 3.2). As the DWM model does not simulate turbulence evolution,
we cannot simulate multiple range gates. This analysis would be suitable using an LES-based wake
field. Another aspect to consider when using multiple ranges is that the wake recovers and expands
with farther downstream distances; therefore, the wake field characteristics observed further up-
stream of the rotor may be considerably different from those approaching the turbine rotor.

19. Pg. 8, ln. 199: ”A preview distance of 0.7 D is assumed.” In addition to the lidar mea-
surement accuracy arguments, there seems to be an interesting dilemma when measuring the wake
deficits upstream of a turbine. On one hand, I imagine you would want to measure close to the
turbine to capture the true wake velocity deficit at the rotor plane. On the other hand, measuring
too close will introduce induction zone effects. Can you discuss how you approached this issue?

We did not investigate this dilemma in detail in this work mainly because we use the DWM
model-based fields as the target. As the DWM model does not include turbulence evolution and
induction effects, we cannot investigate in detail what is an optimized preview distance for char-
acterizing the inflow wind. In the work of [1], it is shown that an optimum preview distance for
free-stream conditions varies between 0.4 – 1.3 D according to specific lidar pattern and the specific
wind field characteristics to be estimated. Here, we adopt a fixed preview distance of 0.7D, as we
want to measure close to the rotor for the two reasons described in the text (i.e., reducing errors
due to turbulence evolution and considering that lidar’s probe volume typical increases for farther
distances as for a continuous wave system). We have now added a few lines to discuss this.

20. Pg. 8, ln. 204: ”A probe volume with an extension of 30 m in the LOS direction is assumed”
Can you provide some references for how you chose 30 m for pulsed and CW lidars? Furthermore,
how is the probe volume extension defined? For example, the std. dev. of Gaussian weighting
function?

We have added that the probe volume length is here defined as the standard deviation of the
Gaussian weighting function, and added references. The probe volume length of 30 m does not
identify a specific lidar system, but it is an estimate that is comparable with the current CW lidar
technology measuring at distances beyond 120 m [2]. Further, we conduct a sensitivity analysis
by varying the probe volume lengths in Sect. 4.3.2, to analyze how these lengths influence the
accuracy in power and load predictions.

21. Pg. 9, ln. 218: ”obtained by simply scaling an isotropic turbulence field...” Can you clarify
if the scaling depends on the radial location from the wake center, as shown in Fig. 1?

We have rephrased this sentence and provided a better description of the DWM model, includ-
ing the wake-added turbulence formulation.

4



22. Pg. 9, ln. 221: How might the ambient wind conditions be measured in practice?

This is explained just a few lines below; see ln. 230. Ideally, from a met mast installed at the
site or a nacelle lidar measuring the inflow wind.

23. Pg. 10, ln. 226: What do you mean by ‘The u-velocity fluctuations are recovered from the
target wake fields?’

We have rephrased to: ‘Only the u-velocity fluctuations are reconstructed from the target wake
fields.’

24. Pg. 11, ln. 256: ”By denoting: : : as the constrained turbulence field that incorporates
lidar measurements: : :” It seems that in Eq. 9, u

′
CS,B,i represents the turbulent fluctuations with

the mean ambient wind profile removed. Do you first remove the mean ambient wind speeds from
the lidar measurements before they are used to generate the constrained turbulence field?

That’s correct. We have now described this step in the procedure.

25. Eq. 10: I’m confused about how Kdef,lidar is defined. From Fig. 1, Kdef is presented as a
scaling factor applied to the ambient wind field (= 1, when wake losses are not present). But here,
it appears to be defined as the normalized deficit (= 0, when wake losses are not present). Can you
clarify this and make sure the definitions of Kdef are consistent?

That’s correct, we now define Kdef as the normalized deficit (= 0, when wake losses are not
present) and keep this definition consistently.

26. Eq. 10: Since the left hand side of this equation is being fit to the Gaussian function,
they are not actually ”equal.” It would make more sense to present this equation as a minimization
objective function (e.g., based on the difference between the measured deficit and the Gaussian
model) Also, should Uamb(z) have the mean operator applied to it, like in Eq. 9?

We have corrected the equation accordingly, and provided a minimization objective function
instead.

27. Eqs. 10 and 11: The explanation of Eq. 11 is confusing. In your final method are you
using the Gaussian fit from Eq. 10 as part of Eq. 11, or does Eq. 11 entirely replace Eq. 10? It
would help to present both equations as minimization problems, so it’s easy to see where the lidar
measurements are being used and what exactly is being fit to the Gaussian profile.

We have corrected Equations 10 and 11 and provided a better description of the procedure.

28. Section 4.1: In addition to the analyses presented, a nice way to quantify the accuracy of the
reconstructed wind fields could be to compare the RMSE of the rotor average wind speed ueff as
well as the best-fit linear horizontal and vertical shear coefficient time series between the target and
reconstructed wind fields. These variables should play a large role in determining the turbine loads.

We agree that it could also be an option. However, the analysis presented in Sect. 4.1 should
provide sufficient information for evaluating how different lidar scanning configurations, comple-
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mented with the proposed wake field reconstruction techniques, perform. Further, we assess three
wake field-related indicators (Ueff , ρ2E , σ2u) in the load validation analysis in Sect. 4.2, which should
explain to a large extent, the observed deviations in power and load predictions.

29. Pg. 12, ln. 308: ”run at the downstream distance of 5 D” Please be more specific. The
turbine of interest is located 5 D downstream of the upstream turbine?

This has been corrected.

30. Fig. 7: On the left plot showing Ueff/Uamb, can you explain why the ratio converges to 0.93
at high wind speeds? As wind speed increases, the turbine thrust should keep decreasing causing
wake losses to continue to decrease, so I would expect the ratio to approach 1.

It does not converge to 1 because although the trust coefficient decreases for higher wind speeds,
the ambient turbulence is relatively low, and therefore the wake field does not fully recover at a
distance of 5D, which is the one analyzed in this study. The ratio Ueff/Uamb will converge to 1 for
higher ambient turbulence or farther downstream distances due to the increased turbulence mixing.
We have now described that in the paper.

31. Pg. 18, ln. 440: ”In addition, improved estimates of both ρ2E and σ2u are seen in Fig. 10c,d.”
There seem to be improvements at low wind speeds, but slightly worse performance at high wind
speeds. Can you comment on this in the paper?

We have now discussed this result in the paper.

32. Figs. 10 and 11: I would suggest full captions.

The full captions have been added.

33. Pg. 20, ln. 463: ”focus the analysis on the SL, Grid, and Grid* configurations” These
might be the most promising scan patterns, but also not the most likely, given currently avail-
able commercial lidar technology. It would be interesting to analyze the time series for one of the
commercially-available lidar scenarios as well.

We opted to show only the most promising results, as the currently available commercial lidar
technology (i.e., the 4P, 7P, and the Cone patterns) will introduce significant biases in the power
and load predictions, as one can see from results in Figs. 8, 9, 10, and 11. This figure intends to
show that provided a sufficient number of wind measurements taken upwind of the rotor, both the
CS - and WDS -approach can reconstruct power and load time series that are highly correlated with
the target observations. These results explain why we obtain lower statistical uncertaintyXR values.

34. Pg. 21, ln. 469: ”It should be noted that the structural resonance occurring at low wind
speeds, which excites the tower can potentially affect the correlation results.” Can you discuss why
this resonance appears? Could it be removed by improving the controller tuning?

It appears because of the structural design of the DTU 10 MW, which is a reference (theoretical)
turbine model. At low wind speeds (thus low RPM), the 3P rotational frequency (0.3–0.48 Hz)
excites the eigenfrequency of the tower (≈ 0.25 Hz). Considering that the wake induces unbalanced
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load distribution on the rotor, which in turn amplifies the rotor harmonics (1P, 2P, and 3P), this
results in structural resonance. Besides that, we also observe that the bending moment of the tower
bottom for large turbines is highly driven by the 3P frequency, as also shown in Fig. 13 (where
the imprint of the turbulence wind is almost non-existence). Some internal work at DTU has been
conducted to reduce the resonance, and the controller utilized in this work should be optimized
to reduce resonance effects, which are still present and amplified under wake conditions. Future
studies that evaluate these lidar-based reconstruction approaches can be conducted with different
wind turbine designs that do not experience these resonances.

35. Pg. 22, ln. 481: Usually magnitude-squared coherence is written as γ2 = abs(Sx, y)2/(Sx ∗
Sy). Therefore, I would expect your definition to be γ = abs(Sx, y)/sqrt(Sx ∗ Sy). Is this correct?

This has been corrected as γ2 = |S(ỹ, ŷ)(f)|2/(S(ỹ)(f)S(ŷ)(f))

36. Fig. 14: On the left plot, why is the baseline coherence so high at low frequencies (above
the noise floor)?

This follows as the MxBR signal (blade root flapwise bending moment) is driven by both the
wake meandering frequency and most importantly by the 1P rotational frequency (both are rela-
tively low frequency signals as shown in Fig. 14). As the target and baseline simulations operates
at similar 10-min average RPM (the ambient wind speed is the same), the 1P peak does not vary
significantly between the Power Spectral Density of the target and the baseline MxBR loads. So
we can see a non-zero coherence at low frequency, which is still lower than 0.3.

37. Pg. 25, ln. 538: As mentioned earlier, the ”need for reducing the statistical load prediction
uncertainty” in wake conditions could be motivated more clearly in the paper. More discussion or
references talking about the need for improved methods would strengthen the message of the paper.

We have now addressed this point in the introduction, and delete this paragraph in the discus-
sion section.

38. Pg. 26, ln. 562: You say that the lidar-based predicted load statistics are comparable to
the results from the baseline DWM method (∆R between 0.97 - 1.01). However, from Figs. 9 and
11, it seems more accurate to say that ∆R is between 0.92/0.94 and 1.01. Is 0.94 still an acceptable
difference?

We have removed this paragraph from the discussions, as we discuss those results in the appro-
priate section (see Sect. 4.2). But, it is correct that ∆R is between 0.92/0.94 and 1.01, depending
on the load component, probe volume size and the adopted wake field reconstruction techniques.

39. Pg. 27, ln. 610: Similarly, the range of ∆R with the lidar-based method is more like 0.94-
1.01 instead of 0.97-1.01. When saying that this is comparable with the baseline method, please
be more specific about what ”comparable” means.

We have rephrased the conclusions accordingly.

40. Pg. 27, ln. 615: In addition to these lidar parameters, the load prediction accuracy is
sensitive to the turbulence intensity as well.
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This has been added.

41. Pg. 28, ln. 628: ”largest energy content at higher frequencies (> 3P, 0.3 Hz).” From the
plots, the largest energy content is at very low frequencies and right at 3P, but > 3P does not
contain as much energy content.

This has been corrected to ”largest energy content at higher frequencies up to 3P (0.3 Hz).”
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