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The authors response is shown in red

We thank the reviewer for the valuable comments and suggestions, which we consider very impor-
tant and help us to sharpen and improve the manuscript. Here our response to each comment.

This manuscript proposes two methods for evaluating rotor loads under wake conditions. The
work is primarily based on synthetic data generated through Mann’s model and imposing modeled
wake velocity deficits for different incoming wind speed and turbulence intensity:

I struggled to read through the entire manuscript and complete my review due to the cum-
bersome writing, lack of rigor of some statements and, sometimes, excessive technical details and
jargons making more difficult the text comprehension. These are my main comments:

• In my opinion, this manuscript requires a major rewriting to sharpen its focus, remove jar-
gons, and increase rigor in the description of the work.

A substantial update of the manuscript is carried out to clarify and sharpen the explanations.
Further, an improved motivation of the study, a better description of the load validation pro-
cedure, and an improved description of the assumptions of the DWM model are provided to
increase rigor in the description of the work.

• Many statements are not precise or incorrect, which makes the presentation of the work very
cumbersome.

The cumbersome statements highlighted by the reviewer have been improved or removed.

• This work uses a statistical approach to inject lidar data (here only simulated) in an existing
velocity field through a technique proposed by the same authors in Dimitrov and Natarajan
(2017). As shown in Figs. 4 and 12, this can produce reasonable characteristics of variance
and spectra; however, it is far to be considered a data-assimilation technique (see more com-
ments below). Maybe this method can be useful for wind energy applications, but it is highly
below current standards for the turbulence/fluid mechanics community.

The scope of the work (which has now been updated in the manuscript) is to verify that in-
corporating nacelle lidars measurements in the wake field reconstruction methods improve the
accuracy of power and load predictions when compared to wake field reconstruction methods
that are based on engineering wake models alone (e.g., the DWM model). The introduction
section now motivates in detail the need for this study. From the improved manuscript, it
should be now clear that the scope of this study is not to outperform data-assimilation tech-
niques developed in the turbulence/fluid mechanics community, but to propose and demon-
strate lidar-based techniques that are suitable and practical for engineering purposes such as
power and load assessments under wake conditions at a given site, which require hundreds to
thousands of aeroelastic simulations.
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Comments:
1. The abstract should be sharpened to clarify the contribution of this manuscript and highlight
the results achieved. There are too many details that result to be confusing without reading first
the text in detail, see e.g., the “target observations”, the baseline, etc.

The abstract has been sharpened by clarifying the main contributions and leaving details of the
work outside.

2. L20, “The wake-induced velocity deficit and its spatial displacement. . . ”, just call it mean-
dering.

This has been corrected.

3. L28, “For the purpose of load validation, the IEC 61400-1 standard (IEC, 2019) recommends
engineering wake models, which ensures low computational effort and an acceptable level of accu-
racy.” This sentence can be rephrased. It sounds in contradiction with the previous paragraph.
Maybe you can say that detailed predictions of wake-generated turbulence can be achieved with
LES; however, the required computational cost makes engineering wake models a practical alter-
native.

The sentence has been rephrased by emphasizing that as current state-of-the-art, LES can simu-
late wake flow fields accurately; however, they are still impractical in a design or site-specific power
load assessment analysis.

4. L29, spell out DWM the first time in the text, even though you already mentioned it in the
abstract.

This is now done.

5. L 54, “wake deficit characteristics and their motions”: the motion of the wake deficit char-
acteristics has no sense to me. Please clarify what you are trying to explain.

The sentence in L54 is unclear and has been corrected as: ‘The second approach reconstructs
wake deficit characteristics including wake meandering by fitting...’

6. L56-59. Again, the description of the work is very confusing. If I am not mistaken, you
compare the load predictions obtained with the two proposed models against those obtained by in-
jecting to the aeroelastic code more classical predictions obtained through the DWM model. Then,
at L62 it is stated “the load prediction obtained using lidar-reconstructed wake flow fields is as
accurate or superior than that obtained with the DWM model”. How can you get better accu-
racy of your benchmark dataset? At the very best, you can match those data with your new models.

We have replaced that sentence with ‘The main objective of this study is to verify that nacelle-
mounted lidar measurements incorporated into wake field reconstruction methods improve the
accuracy of power and load predictions when compared to wake field reconstruction using engineer-
ing wake models alone.’

The sharpened introduction section clarifies better the limitations of the IEC-recommended
engineering wake models for load calculations, and how lidar-based wake field reconstruction tech-
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niques can potentially tackle these limitations.
We have also improved Section 2 ‘Problem formulation’, which provides a better description

of the load validation procedure and how lidar-based wake field reconstruction methods can po-
tentially outperform the DWM model by reducing the statistical uncertainty in power and load
predictions. So, at very best the lidar-based wake field reconstruction approaches can fulfill the
Criteria I and II described in Ln 101-104.

7. L60, “two sets of independent turbulence seed realizations”, the meaning of this is not clear.

We have replaced the wording ‘seed’ with ‘turbulence field’. A stochastic turbulence field gen-
erated with the Mann turbulence model or the Kaimal model (both are recommended in the IEC
61400-1 standard) is defined as a zero-mean homogeneous Gaussian turbulence field. Two random
turbulence field realizations will produce two zero-mean homogeneous turbulence fields that are
Gaussian, independent and uncorrelated (the realization of one turbulence field does not affect the
probability distribution of the other).

8. L80-82. I disagree that you can quantify the statistical uncertainty of a turbulent process
only by comparing two simulations. Furthermore, differences between the two simulations can be
ascribed to both turbulence and wake meandering. How did you quantify the statistical distribution
of your samples? How do you define the error between the two simulations? What statistical tests
did you use to quantify the uncertainty?

The purpose of Section 2 ‘Problem formulation’ is to formulate the load validation procedure
and criteria used along the study. The exact details with regards to the questions: ‘How did you
quantify the statistical distribution of your samples? How do you define the error between the
two simulations? What statistical tests did you use to quantify the uncertainty?’ are defined and
described in detail in ‘Sect. 4.2 Load validation’. We provide a short description in here to answer
the reviewer’s comments:

We run a load validation analysis following the guidelines of the IEC 61400-13, which consists of
applying a one-to-one comparison between predicted and measured (in our case target) power and
load statistics (on a 10-min basis). This one-to-one load validation procedure is typically conducted
in the design phase of a wind turbine to verify that the aeroelastic model predict loads accurately
(see also IEC61400-13). Here, we extend this one-to-one load validation procedure under wake con-
ditions in order to evaluate whether lidar-reconstructed wake fields, which are input to aeroelastic
simulations, can predict power and loads accurately (e.g., with respect to the target results).

The IEC 61400-1 standard recommends using either the Mann model or the Kaimal model for
generating random turbulence field realizations for aeroelastic simulations. Since these turbulence
fields are stochastic, the resulting power and load predictions are affected by statistical uncertainty
(e.g., load scatter). To overcome this issue, the IEC 61400-1 standard recommends performing
aeroelastic simulations with at least 6 random turbulence field realizations for each 10-min real-
ization of the inflow wind conditions, so to compute a more representative value of the loads. As
described in Sect. 4.2, we use 18 turbulence field realizations (a factor of 3 higher than the recom-
mendations of the IEC standard) for each 10-min realization of the inflow wind and quantify the
statistical uncertainty in power and load predictions accordingly.

For example, given a wind speed of 6 m/s and TIamb = 6%, we generate 18 random turbulence
field realizations that are input to the DWM model, run 18 aeroelastic simulations, and calculate
the corresponding 18 values of the power and load statistics. We denote as bias the ratio between
the simulated and targeted statistic for a single realization, and compute the uncertainty estimates
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on the statistical distribution of this bias variable over multiple realizations. Therefore, we calculate
the mean bias (∆R out of 18 simulations) and the standard deviation from all the 18 biases (XR).
In our study, the statistical uncertainty in power and load predictions presented in Figures 10 and
12 are computed out of 162 simulations and not only by comparing two simulations.

We agree that this procedure does not describe all the statistical uncertainty of a turbulent
process; however, this is not our goal. The goal is to describe the statistical uncertainty due to the
differences between the simulated and targeted power and load predictions inherent to traditional
load validation procedures (i.e., the realization-to-realization uncertainty).

‘Differences between the two simulations can be ascribed to both turbulence and wake mean-
dering’. This is correct, and we have discussed this point in the introduction (Ln 34–40). Indeed,
this study’s primary purpose is to verify that incorporating nacelle lidar measurements in the wake
field reconstruction methods improves the accuracy and decrease the uncertainty in wake field rep-
resentations (and consequently that of power and load fluctuations). How? As one can reduce the
statistical uncertainty occurring due to the stochastic nature of the turbulence fields and the wake
meandering time series (among others) that are inherent to conventional engineering wake models
(such as the DWM model).

‘How did you quantify the statistical distribution of your samples?’ See Ln 372. According to
the IEC recommendations at least 6 random turbulence field realizations should be used to account
for statistical uncertainty in power and load predictions; here we use 18 turbulence field realizations
to ensure we can accurately estimate the statistical uncertainty.

‘How do you define the error between the two simulations?’ See Ln. 351-356 and the whole
Sect. 4.2, i.e., using ∆R and XR indicators.

‘What statistical tests did you use to quantify the uncertainty?’ See answers to comment nr.
10 below.

9. L83-84, “we use a virtual lidar simulator that scans the target wake fields, and, through a
field reconstruction technique, incorporates these samples in a random turbulence seed from set
B”. This is quite an obscure description of your research! What field reconstruction technique?
How do you incorporate samples from one simulation in the other one?

This sentence belongs to a section (Sect. 2 ‘Problem formulation’) that explains what field
reconstruction techniques are used in the study. We have corrected the sentence with ‘and through
our proposed wake field reconstruction techniques,...’. The proposed approaches are explained few
lines below (Ln. 90-95) as well as in the abstract (Ln. 1-6) and introduction (Ln. 51-56). Further,
Sects. 3.4.1 and 3.4.2. describe how we incorporate lidar samples into the wake field reconstruction
methods.

10. L 103, The statistical uncertainty (i.e., standard deviation of the bias) ? I have never seen
this definition of uncertainty. Provide references, if any.

We have rephrased it with ‘The statistical uncertainty (here defined as the standard deviation
computed from all biases (Dimitrov et al. (2017) and Conti et al. (2020)) ...’. We show an illus-
trative example in Fig. 1 and then provide a detailed description.

Our study defines two uncertainty indicators to assess the power and load predictions accuracy:
∆R and XR (see also Fig. 1-right), which are defined mathematically in Sect. ‘4.2 Load valida-
tion’ Ln. 350-352 together with a detailed description of the performed aeroelastic simulations.
Indeed, for each 10-min realization of the inflow wind conditions (e.g., given a wind speed of 6 m/s
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Figure 1: Left: Probability distribution function (PDF) of the mean power productions
(Powermean) obtained from 100 aeroelastic simulations (thus 100 random turbulence field real-
izations) with an inflow wind speed of 6 m/s and TIamb = 6%. Right: The Powermean results are
normalized with respect to the target results. The mean and standard deviation values (i.e., µ and
σ that corresponds to ∆R and XR when normalized with the target results) are reported in the
figure.

and TIamb=6%), we run aeroelastic simulations with 18 random turbulence field realizations, and
quantify the mean bias between predicted and target load statistics (∆R), and a measure of the
standard deviation of these biases (out of 18 values) that is XR (i.e., the load’s scatter dispersion).

Since the standard deviation is typically used as a measure of uncertainty in model predictions,
here we use XR that is mathematically defined as the standard deviation of the bias. (Figure 1
should clarify this, and we show results from 100 simulations for illustrative purpose only).

We use ∆R and XR as we aim to verify the load validation criteria described in ‘Sect. 2 Problem
formulation’: (I) evaluating that lidar-reconstructed wake field provides unbiased power and load
predictions. (II) verifying that the statistical uncertainty (which is here quantified using XR that
is the standard deviation of the biases computed out of all the simulations) is lower when using
lidar-based wake fields than conventional DWM model-based fields.

11. L 117, “wave vector with the wavenumbers in” at least remove wave.

This has been removed.

12. Sect 3.2 is a single paragraph with 20 lines, a great exercise for diving apnea training!

This section has been divided into smaller paragraphs. Further, we have rephrased the text to
clarify the underlying flow modeling assumptions of the DWM model.

13. L144-L148 and Fig. 1. You are presenting the results of simulations without providing
any sort of basic description or references. For instance, how did you get the Ct of the turbine as
a function of incoming wind speed, what incoming velocity did you use for the simulations with
different turbulence intensity? What spatial resolution do you have in your data?
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We agree that this figure lacks essential information. This figure’s purpose was to provide a
qualitative illustration of how the wake deficit recovers for increasing ambient turbulence and wind
speeds. As we improved the description of the DWM model in Sect. 3.2, we have also replaced this
figure.

14. Eq. 4, How did you select the standard deviation of the Gaussian weighting function? Why
did you choose a Gaussian function to simulate the spatial averaging? Can you provide references?
More realistic functions have been proposed in the past, see e.g., work by Mann.

The weighting function of a continuous-wake lidar is often approximated by a Lorentzian form
[1]. However, the Gaussian weighting approximation may also be used [2, 3]. Dimitrov et al.
(2019) [3] quantified a difference in the u-velocity variance of less than 3% when using a Gaussian
weighting function compared to the Lorentzian form.

For the data sets used in the present study, the difference between using a Gaussian and a
Lorentzian weighting function was negligible. Figure 2 shows a comparison between the Gaussian-
and Lorentzian-like weighting functions. As shown, using a Gaussian function has negligible effects
when reconstructing the U -velocity component (longitudinal velocity component that is the primary
driver to power and load predictions). The procedure to derive the U -velocity component is provided
below.
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Figure 2: Lidar’s weighting functions (i.e., Lorentzian and Gaussian shape). D denotes the rotor
diameter of the DTU 10 MW wind turbine, Zr is the probe volume length defined as the standard
deviation of the Gaussian function or as the half-width-half-maximum for the Lorentzian function.
U defines the reconstructed velocity component accounting for the weighting function as described
in the text below. An estimate of the resulting U velocity is provided in the plot accounting for
both the Lorentzian and Gaussian weighting functions.

The procedure to derive the U -velocity component: as the lidar simulator scans numerical wind
fields, the sampled data points are discrete, and therefore the velocity estimates represent the
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weighted sum of a distribution of velocity measurements along the line-of-sight (vlos) as:

ṽlos =

∑np

i=1 ϕ(si)vlos(si)∑np

i=1 ϕ(si)
, (1)

where np indicates the number of discrete points along the measurement volume. The weighting
function (ϕ(si)) is approximated by a Gaussian function. The line-of-sight velocity is then expressed
as function of the wind speed components and the geometrical angle (φ, θ), where φ is the elevation
and θ the azimuth angle:

ṽlos(φ, θ) = u cosφ cos θ + v cosφ sin θ + w sinφ. (2)

Yet the wind field at a given location cannot be fully characterized using a single lidar, instead
a retrieval assumption is required to characterize the longitudinal velocity component, which is
the major driver to power and load calculations. Considering that u � v, w, the measured radial
wind speed is typically presumed to be due to the u component alone with v=w=0. Thus Eq. (2)
becomes:

ṽlos(φ, θ) = U cos(φ) cos(θ). (3)

Equation (3) allows the virtual lidar simulator to reconstruct the horizontal wind velocity at
each individual scanned point within the scanning configuration.

15. L156, this sentence “The u-velocity is computed from the projection of VLOS,eq onto the
longitudinal axis, i.e., the v- and w-velocity components are neglected in the field reconstruction”
is not correct unless you mention the constraints used in the angle difference between the velocity
vector and the LOS vector. I guess we all agree that if the LOS vector is perpendicular to u, the
LOS velocity is zero, but u is not.

This is correct; however, the maximum opening angles relative to the scanning configurations
analyzed in this work reach a maximum of 35◦. Further, for large opening angles (e.g., larger than
≈ 25◦), the lidar is actually measuring an area that is outside of the rotor area. Thus, the uncer-
tainty introduced by the flow assumptions (v and w=0) is marginal, and it is anyway discussed as
one of the sources of uncertainty that affect the accuracy in power and load predictions.

16. L 164, “8192×32×32 (x,y,z)” What is the corresponding spatial domain with respect to the
used reference frame?

As described in Ln. 165: ‘A spatial resolution of 6.5 m is used for the grid in the rotor plane,
which leads to a turbulence box with dimension 208 m × 208 m in both lateral and vertical direc-
tions (y, z).’.

Note that the turbulence fields used in aeroelastic simulations (and in the DWM model) are
vector fields, where each grid point represents the local speed of the flow. In the generation of these
fields, we use Taylor’s assumption of frozen turbulence. Therefore, the large turbulence structures
do not really change with time but are simply transported with the mean wind speed of the ambient
wind field. As we run simulations with different ambient wind speeds, but the dimension of the
turbulence box is fixed in the longitudinal axis to 8192 ‘points’, the spatial resolution is function
of dx = (UambTsim)/8192, where Tsim is the simulation time in seconds (e.g., 600 s for a 10-min
simulation). We have added this to the paper.
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17. L 166, “These dimensions ensure an adequate turbulence field for a 10 min wind field sim-
ulation over a large rotor” How did you assess this statement through the simulation data? Please
add these details.

A turbulence field with 32x32 points is considered sufficient because the field is internally down-
sampled to approximately 15 points per blade when running the Blade Element Momentum (BEM)
code in the HAWC2 software [4]. Larger turbulence boxes can be used, but they will not affect the
result’s accuracy but only increase the storage required to generate larger turbulence boxes. As we
generate over 1000 simulations, we opted to keep the computational and storage requirements low
without compromising the results’ accuracy.

We also added a reference to Dimitrov and Natarajan (2017), who used the DTU 10 MW for
load validation analysis and found these dimensions to be suitable for load calculations.

18. L 171, maybe continuous wave (CW).

This has been corrected.

19. L 170-188. This review of different lidars is not needed because this work is mainly numer-
ical. Please remove this part and only describe the scanning strategy considered.

This part has been removed.

20. L 196, what is a scan radius? Please define it.

We added a definition as: ‘we use scan radii (defined as the radius between hub height and the
location of the scanned points)...’

21. In Eq. 5 and 6, I guess you need to add time as an independent variable.

The DWM model assumes Taylor’s frozen turbulence hypothesis; therefore, the wind field is
described by the spatial vector solely. We have added a line in the text to describe this. Further,
‘Sect. 3.2 Dynamic Wake Meandering model’ has been improved to describe better the DWM
model’s assumptions.

22. L 219, “in Eq. (19) in Madsen et al. (2010)” I suggest to add this equation in the manuscript.

This has been added

23. L 223, The meaning of point 2 is unclear.

We have slightly rephrased point 2 as: ‘The lidar-based wake fields are reconstructed by incor-
porating lidar observations (e.g., in the form of constraints or lidar-fitted velocity deficits) into a
zero-mean, homogeneous, and random Gaussian turbulence field generated by the Mann spectral
tensor model.’

We state this assumption as the lidar-based wake field reconstruction methods are similar to the
wake field reconstruction methods inherent in engineering wake models. Indeed, the wake features
are either pre-computed using a physical-based model (e.g., the DWM model) or fitted through
lidar data (e.g., the CS and WDS algorithms of the present work). Successively, these lidar-based
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or physical-based wake features are superposed on stochastic homogeneous turbulence fields gen-
erated by the Mann model. By doing so, we keep the computational time as that for engineering
wake models; thus, the lidar-based techniques are practical for power and load validation analyses,
which require many aeroelastic simulations.

As described in a previous comment (see 13.), we have now rephrased ‘Sect. 3.2 Dynamic Wake
Meandering model’ to emphasize the underlying assumptions of the DWM model, so Point 2 be-
comes more evident to the reader.

24. L 224, What velocity fluctuations with reference to Eq. 5?

If this comment refers to what velocity fluctuations are reconstructed by the lidar-based wind
field reconstruction procedures, then Sect. 3.4.1 and 3.4.2 should clarify this. We have also added
an equation that relates the LOS velocity to the u-velocity component.

25. L 226. Can you please define what are these turbulence seeds for set A and set B. To the
best of my knowledge, turbulence seed is not mentioned in any turbulence book.

We agree that ‘seed’ is not appropriate here. We have replaced the term ‘seed’ with ‘turbulence
field realization’ throughout the whole paper. The seed method is used to initialize the random
number generator to create a random turbulence field realization from the Mann turbulence model.

26. L 245 “that maintains the covariance and coherence properties of the unconstrained field
g̃(r) What about fulfilling the Navier-Stokes equations? Is this a real turbulent flow or only a col-
lection of random numbers? Looking at Eqs. 7 and 8, I guess this is true for a random timeseries.
However, you cannot call these signals “turbulence”. Other constraints and more sophisticated
data-assimilation techniques should be considered to generate a turbulence field (see e.g., P. Bauw-
eraerts, J. Meyers, J. Fluid Mech., Reconstruction of turbulent flow fields from lidar measurements
using large-eddy simulation, 906, A17, 2020).

The Mann model is used in this work because it describes the atmospheric-turbulence velocity
spectra for different surface, wind, and atmospheric-stability conditions (see i.a., [5, 6]). Further, the
Mann model is recommended in the IEC 61400-1 and -3 standards for modeling three-dimensional
turbulence fields required as input to aeroelastic simulations, and is widely used in load validation
analysis (see i.a., [3, 7])

We agree that more sophisticated data-assimilation techniques exist (e.g., the work of P. Bauw-
eraerts, J. Meyers, J. Fluid Mech., Reconstruction of turbulent flow fields from lidar measurements
using large-eddy simulation, 906, A17, 2020). We have cited and discussed it in this paper’s discus-
sion section (Ln. 545-551). However, these high-fidelity techniques are yet not practical for power
and load assessments that require many aeroelastic simulations (i.e., hundreds to thousands).

We have also sharpened the work scope to clarify that we are not aiming at outperforming
LES-based data-assimilation techniques but providing a practical alternative to engineering wake
model-based power and load assessment procedures commonly used in the wind energy industry
today.

27. There might be an inconsistency between Eq. 10 and Eq. 11., i.e., Ulidar = UWDS? Fur-
thermore, Eq. 11, states that Kdef,lidar is not only the imposed velocity deficit kdef, WDS with a
random perturbation added u’B. If that the case, then Eq. 11 is trivial and a simpler description
can be provided.
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This has been corrected and a simpler description is now provided.

28. L 298, “explained variance”? This might be only acceptable as jargon among lab mates not
for a scientific publication.

The explained variance is actually used as a statistical term, e.g. [Achen, C. (1982) Interpreting
and Using Regression, Sage Publications] [8]. In its classical use it is defined as the proportion of
the variance in the dependent variables which can be accounted for by a mathematical model. For
a regression model this is equivalent to the coefficient of determination (the square of the Pearson’s
correlation coefficient). Since in this work we use the definition in the broader sense, we prefer to
retain the term explained variance. We have rephrased this in the text, so to clarify that we did
not self-defined it.

29. L 373, what does is the list 8, 7, 7, 6,6,6 ,,,etc mean?

The list indicates the corresponding turbulence intensity values for each analyzed wind speed
ranging from 6 to 22 m/s with a 2 m/s step. We have rephrased the text so it is clearer.
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