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Abstract. This study proposes two methodologies for improving the accuracy of wind turbine load assessment under wake con-

ditions by combining nacelle-mounted lidar measurements with wake wind field reconstruction techniques. The first approach

consists of incorporating wind measurements of the wake flow field, obtained from nacelle lidars, into random, homogeneous

Gaussian turbulence fields generated using the Mann spectral tensor model. The second approach imposes wake deficit time-

series, which are derived by fitting a bivariate Gaussian shape function on lidar observations of the wake field, on the Mann5

turbulence fields. The two approaches are numerically evaluated using a virtual lidar simulator, which scans the wake flow

fields generated with the Dynamic Wake Meandering (DWM) model, i.e., the target fields. The lidar-reconstructed wake fields

are then input to aeroelastic simulations of the DTU 10 MW wind turbine for carrying out the load validation analysis. The

power and load time-series, predicted with lidar-reconstructed fields, exhibit a high correlation with the corresponding target

simulations; thus, reducing the statistical uncertainty (realization-to-realization) inherent to engineering wake models such as10

the DWM model. We quantify a reduction in power and loads’ statistical uncertainty by a factor between 1.2 and 5, depending

on the wind turbine component, when using lidar-reconstructed fields compared to the DWM model results. Finally, we show

that the amount of lidar-scanned points in the inflow and the size of the lidar probe volume are critical aspects for the accuracy

of the reconstructed wake fields, power, and load predictions.
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1 Introduction

Wind turbines operating under wake conditions experience higher loading and lower power productions than those operating

under wake-free conditions (Barthelmie et al., 2009; Larsen et al., 2013). The wake-induced velocity deficit and its meandering

are critical aspects in both loads and power analyses (Madsen et al., 2010; Doubrawa et al., 2017). The former reduces the inflow

wind speed and causes unbalanced aerodynamic load distribution at the rotor, which in turn induces high load cycle amplitudes20

in the whole wind turbine structure (Lee et al., 2012). The latter is the main source of wake added turbulence (Madsen et al.,

2010), affecting wind turbine responses and inducing high fatigue damage (Larsen et al., 2013). Moreover, small turbulence
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eddies that result from the breakdown of the tip vortices can cause small fatigue load cycles (Madsen et al., 2005). Thus,

aeroelastic analysis of wind turbines operating under wake conditions requires detailed modeling of the wake flow fields.

To date, detailed predictions of wake-generated turbulence can be achieved with large eddy simulation (LES); however,25

the computational cost is prohibitive when large number of simulations are required. This makes engineering wake models a

practical alternative for certain applications. For design load evaluation, the IEC 61400-1 standard (IEC, 2019) recommends

the Dynamic Wake Meandering (DWM) model, among other low-order engineering wake models.

The DWM model considers wakes to act as passive tracers displaced in the lateral and vertical directions by the large eddies

of the atmospheric flow (Madsen et al., 2010). The wake field is modelled as a ‘cascade’ of quasi-steady velocity deficits30

emitted by the source turbine that meander through a pre-calculated stochastic meandering path and that are advected in the

stream-wise direction adopting Taylor’s hypothesis of frozen turbulence. These wake deficit time series are superposed on

random three-dimensional turbulence fields serving as input for aeroelastic simulations (Larsen et al., 2008; Madsen et al.,

2010).

The wake flow features simulated by the DWM model are conditional on both the ambient conditions, which can be measured35

from a local meteorological mast, and the operational conditions of the upstream wind turbines. In order to carry out load

simulations, the 10-min statistical properties (mean and variance) of the simulated ambient inflow are set to match the measured

ambient wind statistics (Dimitrov and Natarajan, 2017).

There are three primary sources of uncertainty intrinsic of engineering wake models that affect the accuracy in power and

load predictions, which we here denote as the measurement, modeling and statistical uncertainty. The measurement uncertainty40

includes deviations between the measured quantity of interest (e.g., the ambient wind field’s characteristics or the power and

load data) and their actual true values.

The modeling uncertainty originates from the simplistic flow modeling assumptions adopted to describe wake flow fields.

This type of uncertainty can partly be reduced by improving the wake model (e.g., by adding further physical effects) (Keck

et al., 2015) or by calibrating model parameters using measurements (Larsen et al., 2013; Reinwardt et al., 2020). Calibrating45

the DWM model with site-specific observations improves the accuracy in power and load estimates; however, such calibrations

do not hold at other sites (Madsen et al., 2010; Keck et al., 2012; Larsen et al., 2013; Reinwardt et al., 2020). As a result, DWM

model-based power and load assessments might be highly uncertain at a given site unless high spatial and temporal resolution

measurements of the wake are available for model calibration.

The statistical uncertainty derives from the traditional method of performing aeroelastic simulations, for which the numerical50

wind fields are set to match the statistical properties (mean and variance) of the observed wind field on a 10-min basis. Since

the numerical turbulence field and the wake meandering are stochastic processes, the instantaneous velocities of the simulated

wake wind field and the resulting load prediction time-series are uncorrelated with the observations. This can lead to simulation

errors (Zwick and Muskulus, 2015) and introduces high statistical uncertainty on power and load predictions (Dimitrov and

Natarajan, 2017; Pedersen et al., 2019). Further, to accurately reconstruct wake meandering time series, it is essential to ensure55

accurate power and load predictions in a load validation analysis.
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Alternative load verification procedures are being explored to potentially reduce the statistical and modelling uncertainty

of engineering wake models and replace measurements from masts with those from Doppler lidars (Dimitrov et al., 2019;

Reinwardt et al., 2020; Conti et al., 2020). Lidars can provide high spatial and temporal resolution inflow observations and

extend (and eventually replace) traditional point-like measurements such as those from cup and sonic anemometers. Further,60

as modern wind turbines have considerably increased in size, reaching rotor diameters of the order of 150–200 m, accurate

measurements of the inflow wind field for aeroelastic calculations require multi-point and multi-height wind measurements

within the entire rotor plane.

In particular, nacelle-mounted lidars have the advantage of being aligned with the rotor, which increases the amount of

validation data in contrast to a fixed mast where only a small wind direction sector is valid. The feasibility of nacelle-mounted65

lidar observations has been demonstrated for wake characterization (Trujillo et al., 2011; Fuertes et al., 2018; Herges and

Keyantuo, 2019; Reinwardt et al., 2020), lidar-assisted control (Schlipf et al., 2013; Simley et al., 2013, 2018), and power and

load analysis in free-stream conditions (Wagner et al., 2014; Dimitrov et al., 2019).

The recent work of Conti et al. (2020) proposed a lidar-based load validation procedure under wake conditions that describes

wake flow fields by means of time-averaged wind field characteristics estimated using nacelle lidar measurements. Although the70

quantified uncertainty in lidar-based power and load predictions was found comparable to estimates from IEC-recommended

practices that uses the DWM model (Conti et al., 2020), the authors stated that lidar-based load validation procedures in wakes

should account for a model of the wake deficit and its meandering dynamics to predict power and load accurately.

Overall, developing lidar-based power and load validation procedures under wakes can improve monitoring wind turbine

performance (Tautz-Weinert and Watson, 2017; Schreiber et al., 2020), reduce uncertainty in load predictions and lifetime75

estimations (Rommel et al., 2020), enhance power curve testing in wind farms (Lydia et al., 2014; Wagner et al., 2015), and

develop wind turbine and wind farm control strategies (Bossanyi et al., 2014; Simley et al., 2018).

The present work proposes two alternative approaches for wind turbine load validation under wake conditions using nacelle-

mounted lidar measurements combined with wake wind field reconstruction techniques. The first approach builds on the work

of Dimitrov and Natarajan (2017), which incorporates multiple lidar retrievals in a turbulence field generated using the Mann80

spectral model (Mann, 1994) through a constrained Gaussian field algorithm. Incorporating nacelle-lidar measurements as

constraints into turbulence fields can circumvent the DWM model’s assumption to consider wakes as passive tracers (Madsen

et al., 2010), while reconstructing the actual observed inflow at a high spatial and temporal resolution.

The second approach reconstructs wake deficit characteristics including wake meandering by fitting a bivariate Gaussian

shape function on lidar retrievals and superimposes these deficits on a random realization of the Mann turbulence field. This85

approach intends to minimize errors in wake deficit representations and introduce the observed wake meandering path directly

in the simulations. Both lidar-based wake field reconstruction techniques can potentially decrease the modeling and statistical

uncertainty inherent to the DWM model, thus predicting accurate power productions and loads.

We evaluate these lidar-based wake field reconstruction techniques on a tailored-designed numerical framework that simu-

lates a nacelle-mounted lidar scanning the synthetic wake fields generated with the DWM model. The main objective of this90
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study is to verify that nacelle-mounted lidar measurements incorporated into wake field reconstruction methods improve the

accuracy of power and load predictions when compared to wake field reconstruction using engineering wake models alone.

The work is structured as follows. In Sect. 2, we briefly formulate the load validation procedure. Section 3 introduces the

methodology including the Mann spectral tensor model (Sect. 3.1) and the DWM model (Sect. 3.2). Section 3.3 describes the

virtual lidar simulator and the analyzed scanning configurations. The wake field reconstruction techniques are formulated in95

Sect. 3.4. The results are provided in Sect. 4, including the uncertainty analysis of the lidar-reconstructed fields in Sect. 4.1, a

detailed analysis of the load validation results in Sect. 4.2, and the sensitivities of the lidar specifications, e.g., probe volume

size and sampling frequency, and those related to the atmospheric inflow conditions on the load predictions accuracy in Sect.

4.3. The last two sections are dedicated to the discussion of the findings and the conclusions from the study.

2 Problem formulation100

The design load cases (DLCs) and load verification procedure for wind turbines operating in wakes are described in the IEC

standards (IEC, 2015, 2019). The present work covers the analysis of fatigue loads of wind turbines operating in wakes (see

IEC 61400-1, DLC1.2). We apply the one-to-one load validation procedure of the IEC 61400-13 (IEC, 2015), which consists

of comparing simulated and targeted (e.g., measured) load statistics to assess the accuracy of aeroelastic simulations. As we

carry out the load validation analysis numerically, we define a tailored-designed load validation procedure, inspired by the105

approach of Dimitrov and Natarajan (2017) and illustrated in Fig. 1. The DTU 10 MW wind turbine (Bak et al., 2013) is used

as reference in this study.

Figure 1. An illustration of the numerical framework utilized to reconstruct wake fields through the DWM model and our proposed lidar-

based wake field reconstruction techniques (i.e., the constrained simulations CS and the wake deficit simulations WDS). Further, this frame-

work allows quantifying the uncertainty in power and load predictions resulting from aeroelastic simulations with the DWM model-based

and lidar-based wake fields. More details can be found in the text.
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We use two sets of random turbulence field realizations, which we denote as set A and set B. These turbulence fields are

generated using the model by Mann (1994); thus, they are defined as zero-mean, homogeneous, uniform-variance Gaussian

random fields. We simulate DWM model-based wake fields using turbulence realizations from set A, which we denote as the110

target fields (see the black rectangular box in Fig. 1).

In contrast, the DWM model-based wake fields using turbulence field realizations from set B are denoted as the baseline (see

the blue rectangular box in Fig. 1). Since the turbulence fields from set A and set B have the same turbulence characteristics, as

they are generated using the same Mann parameters but are statistically independent (i.e., the resulting wind fields time series

are uncorrelated), we expect that the outcomes of load simulations with set A and set B will have the same statistical properties115

but will not be correlated (Dimitrov and Natarajan, 2017).

Hence, the result of a one-to-one comparison of load statistics between the baseline and the target simulations is a direct

measure of the statistical uncertainty (i.e., load scatter) that originates from both the random Mann-based turbulence realiza-

tions and the stochastic meandering process inherent to the DWM model. In a traditional load validation analysis, the target

loads will be the measured loads, whereas the baseline loads will be the loads resulting from aeroelastic simulations using120

turbulence fields with the same properties as the measured inflow conditions (IEC, 2015).

To evaluate the lidar-based approaches, we use a virtual lidar simulator that scans the target wake fields, and, through our

proposed wake field reconstruction technique, incorporates these samples in a random turbulence field realization from set B

(see Fig. 1). This numerical approach intends to imitate what we would eventually do when nacelle lidar measurements within

wakes are available for load predictions.125

Further, by incorporating lidar retrievals in the wind field reconstruction technique, we expect to reduce the amount of

statistical uncertainty as the load time series resulting from this approach will have greater similarity with the load time series

based on the target turbulence fields. Therefore, this procedure allows us to quantify the uncertainty of load predictions that

results from lidar-reconstructed wake fields (see the red elements in Fig. 1) against the target, and at the same time, to compare

the associated statistical uncertainty with that of the baseline. To summarize, the following load simulation cases are defined:130

– Target: DWM model-based wake fields imposed on random turbulence field realizations from set A.

– Baseline: DWM model-based wake fields imposed on random turbulence field realizations from set B.

– Constrained simulations (CS): lidar-reconstructed wake fields, where lidar virtual measurements of the target fields are

incorporated as constraints to random turbulence field realizations from set B.

– Wake deficit simulations (WDS): lidar-reconstructed wake fields, where lidar virtual measurements of the target fields135

are fitted to a wake deficit shape function to compute wake deficits, which are then superimposed to random turbulence

field realizations from set B.

The load validation comprises a large number of simulations (we use eighteen random turbulence field realizations for each

individual 10-min statistic of the inflow wind), to quantify the statistical uncertainty of power and load predictions under inflow

conditions measured at a site. More details on the load validation analysis are provided in Sect. 4.2. Eventually, we quantify the140
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load uncertainties of the baseline, CS- and WDS-methods by comparison to the loads of the target simulations, and we define

two main criteria to evaluate the proposed approaches:

I The mean bias of all load predictions obtained with the lidar-reconstructed CS- and WDS-simulations is equal to that

obtained with the baseline.

II The statistical uncertainty (here defined as the standard deviation computed from all biases (Dimitrov and Natarajan,145

2017; Conti et al., 2020)) derived with the lidar-reconstructed CS- and WDS-simulations is lower than that obtained with

the baseline.

Provided that these criteria are satisfied, the proposed lidar-based wake field reconstruction techniques will produce (I) power

and load predictions in wakes that are statistically unbiased compared to the DWM model results, and (II) a reduced statistical

uncertainty in power and load predictions compared to the DWM model results, which is achieved by reconstructing wake150

fields with stronger similarities to the actual inflow.

3 Methodology

3.1 Mann turbulence spectral model

The time-domain aeroelastic simulations require input of a three-dimensional turbulence field that mimics atmospheric tur-

bulence (Dimitrov et al., 2017). For this purpose, the IEC 61400-1 recommends, i.a., the Mann uniform shear spectral tensor155

model (Mann, 1994) or the Kaimal model (Kaimal et al., 1972). The turbulence spectral properties of a three-dimensional

homogeneous wind field are described by the spectral velocity tensor Φij(k) (Kristensen et al., 1989):

Φij(k) =
1

(2π)3

∫
Rij(r)exp(ik · r)dr, (1)

which is the Fourier transform of the covariance tensor Rij(r), r = (x,y,z) is the spatial separation vector defined in a right-

handed coordinate system such that the longitudinal component of the wind field (u) is in the x direction, y and z are the160

directions of the transverse components (i.e., the v- and w-velocity components), and k = (k1,k2,k3) is the vector with the

wavenumbers in the (x,y,z) directions.

The model by Mann (1994) (hereafter referred to as the Mann model), assumes neutral atmospheric conditions and defines

the spectral tensor as function of three input parameters: αkε2/3, which is a product of the spectral Kolmogorov constant αk

and the turbulent energy dissipation rate ε, Γ is a parameter describing the anisotropy of the turbulence, and L is a length scale165

proportional to the size of turbulence eddies. From the spectral tensor, the cross-spectra between two points located in a y–z

plane and separated by a distance (∆y,∆z) are calculated numerically by:

χij(k1,∆y,∆z) =

∫ ∫
Φij(k,αkε

2/3,L,Γ)exp(ik2∆y + ik3∆z)dk2dk3. (2)
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Further, by inverse Fourier-transforming the cross spectrum χij , we can derive the auto- and cross-correlation structure of the

turbulence field (Dimitrov and Natarajan, 2017), as:170

Rij(∆x,∆y,∆z)∝
∫
χij(k1,∆y,∆z)exp(ik1∆x)dk1. (3)

3.2 Dynamic Wake Meandering model

The DWM model is an engineering wake model that simulates wind field time series and includes three components: a quasi-

steady velocity deficit, the wake-added turbulence, and the wake meandering (Madsen et al., 2010). Figure 2 illustrates these

wake features components qualitatively.175

The DWM model assumes wakes as passive tracers displaced in the lateral and vertical directions by the large eddies

in the atmospheric flow. Further, the quasi-steady wake deficits are advected in the stream-wise direction adopting Taylor’s

assumption of frozen turbulence (Madsen et al., 2010). This set of assumptions allows decoupling the wake deficit and wake-

added turbulence components from the wake meandering model (Larsen et al., 2007). Hence, the three components of the

DWM model are computed separately and subsequently superposed on random homogeneous turbulence field realizations (e.g.,180

generated using the Mann model) to produce three-dimensional wake field time series that are input to aeroelastic simulations

(Larsen et al., 2013; Keck et al., 2014).
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Figure 2. Qualitative representation of the three wake components predicted by the DWM model, including an axisymmetric quasi-steady

velocity deficit, which is defined as the local wind speed U divided by the ambient wind speed Ūamb (left), a wake-added turbulence scaling

factor, kmt (middle), and the meandering of the quasi-steady wake deficit superposed on a random homogeneous turbulence field realization

(right). The red marker identifies the wake center position and the red solid line the wake center’s trajectory in the longitudinal x- and

lateral y-coordinate. The wake also meanders in the vertical direction (not shown). The wake features are computed for an ambient inflow

characterized by Ūamb= 6 m/s and a turbulence intensity of TIamb=8%.

The velocity deficit definition is based on the work of Ainslie (1986, 1988), who applied a thin shear-layer approximation of

the Navier–Stokes equations and a simple eddy viscosity formulation. The wake deficit expansion and recovery downstream of

the generating turbine is driven by the turbulent mixing occurring due to the ambient turbulence and the turbulence generated185

by the wake shear field itself (Madsen et al., 2010; Keck et al., 2014, 2015). For a given wind turbine aerodynamic rotor
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design, a 10-min average inflow wind speed (Ūamb), and ambient turbulence intensity (TIamb), the DWM model calculates

a two-dimensional quasi-steady velocity deficit defined in the meandering frame of reference (MFoR), which is a coordinate

system with origin in the center of symmetry of the deficit, as shown in Fig. 2-left. Here, we use the numerical scheme of the

standalone DWM model (Liew et al., 2020; Larsen et al., 2020) to compute the quasi-steady velocity deficit.190

The wake-added turbulence originating from the breakdown of tip vortices and from the shear of the velocity deficit is

accounted for by a semi-empirical turbulence scaling factor (Madsen et al., 2010) as:

kmt(y,z) =| 1−Udef (y,z) | km1 +

∣∣∣∣∂Udef (y,z)

∂y∂z

∣∣∣∣km2, (4)

where Udef is the axisymmetric velocity deficit in the MFoR (see also Fig. 2-left), and km1 and km2 are calibration constants

(Madsen et al., 2010). The two-dimensional spatial distribution of kmt is shown in Fig. 2-middle. As wake turbulence is both195

highly isotropic and characterized by a reduced turbulence length scale compared that of the ambient turbulence (Madsen et al.,

2005), kmt of Eq. (4) scales the residual field of a Mann-generated turbulence field assuming isotropic turbulence, i.e., Γ = 0,

and a small turbulence length scale (L≈ 10–25% of the ambient turbulence length scale) (Madsen et al., 2010).

The wake meandering is assumed to be governed by the atmospheric turbulent structures of the order of two rotor diameters

(D) or larger (Madsen et al., 2010). This assumption was verified using lidar observations of wakes (Bingöl et al., 2010;200

Trujillo et al., 2011). Thus, the simulated wake meandering time series is obtained by low-pass filtering atmospheric turbulence

fluctuations (i.e., v- and w-velocity components measured from a local mast or lidar, or alternatively simulated by the Mann

model) by a cut-off frequency fcut,off = Ūamb/(2D), which excludes contributions from smaller eddies to the meandering

dynamics (Larsen et al., 2008).

As a result, the wake field simulated by the DWM model can be seen as a ‘cascade’ of quasi-steady velocity deficits that205

meander in the lateral and vertical directions and are advected downstream by the mean wind speed of the inflow using

Taylor’s assumption. These wake features are superposed on stochastic homogeneous turbulence field realizations to generate

wake fields time-series that are then input to aeroelastic simulations (see Fig. 2-right).

Mathematically, a three-dimensional synthetic wake flow field compliant with the DWM model formulation can be defined

by a linear superposition of the ambient wind field and two inhomogeneous turbulence terms as:210

UDWM(x,y,z) = Ūamb(z) +u′i,Kdef
(x,y,z) +u′j,Kturb

(x,y,z), (5)

where Ūamb(z) is the ambient wind speed including the atmospheric vertical wind shear profile, u′iKdef
(x,y,z) is a residual

turbulence field with imposed wake deficits that follow the meandering path, and u′j,Kturb
is a second turbulence field modelling

wake-added turbulence effects. Adopting Taylor’s assumption, the wake field can be described by the spatial vector solely; thus,

the time variable is disregarded in Eq. (5). The subscripts i, j indicate two random and uncorrelated turbulence field realizations.215

The u′i,Kdef
field is computed as:

u′i,Kdef
(x,y,z) = Ūamb(z)Kdef (x,y,z) +u′i(x,y,z)− Ūamb(z), (6)

where Kdef (x,y,z) denotes the DWM model-based wake deficit time-series including a pre-computed stochastic meandering

path, and u′i is a random homogeneous turbulence field realization from the Mann model with the same Mann parameters as
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those of the ambient wind field. Note that Kdef (x,y,z) assumes values equal to unity when wake losses are not present. The220

Mann parameters, αkε2/3, L, and Γ, are derived, e.g., from fitting the free-stream observed turbulence velocity spectra with

the Mann model with the use of pre-computed look-up-tables (Peña et al., 2017). The wind field formulation of Eqs. (5) and

(6) is consistent with the domain of wind fields typically input to aeroelastic simulations (Larsen and Hansen, 2007). Finally,

u′j,Kturb
is obtained as:

u′j,Kturb
(x,y,z) = u′j(x,y,z)Kmt(x,y,z), (7)225

where Kmt(x,y,z) denotes a time-series of turbulence’s scaling factors computed from Eq. (4) including a pre-computed

stochastic meandering path, u′j is a random homogeneous turbulence field with Γ=0 and L= 10% of the ambient turbulence

length scale (Madsen et al., 2010).

3.3 Lidar simulator

We use the lidar simulator developed within the ViConDAR open-source numerical framework to virtually replicate lidar230

measurements (https://github.com/SWE-UniStuttgart/ViConDAR), (Pettas et al., 2020). The lidar simulator derives the line-

of-sight (LOS) velocities at each scanning location by transforming the u-, v- and w-velocity components of the synthetic

turbulence field into a LOS coordinate system. To simulate the probe volume of the lidars, a Gaussian weighting function

W (F,r) is imposed along the LOS coordinate r and centered at the focal distance F :

VLOS,eq =

∫
VLOS(r)W (F,r)dr. (8)235

The u-velocity is computed from the projection of VLOS,eq onto the longitudinal axis, i.e., the v- and w-velocity components

are neglected in the field reconstruction (Schlipf et al., 2013; Simley et al., 2013). This assumption leads to:

ulidar =
VLOS,eq

cosφcosθ
, (9)

where φ is the elevation and θ the azimuth angle of the scanning pattern (Peña et al., 2017). Neglecting the v- and w-velocity

components introduces uncertainty in the wind field reconstruction. However, the opening angles (φ,θ) relative to the scanning240

configurations of our work reach a maximum of 35◦ (see Sect. 3.3.1); thus, the introduced errors by Eq. (9) are marginal

(Simley et al., 2013).

Other sources of uncertainty in the radial velocity estimation inherent to lidars, e.g., from the optics and internal signal

processing, are accounted for by adding a Gaussian white noise. Here we add noise at a level that results in a signal-to-noise

ratio of −20 dB as in Pettas et al. (2020). We do not investigate the sensitivity of the noise level in the present work.245

The lidar simulator can mimic any arbitrary scanning pattern and includes a time-lag between each lidar-sampled measure-

ment to resemble the scanning frequency (see Fig. 3). In the present study, the virtual lidar data are computed from the synthetic

wake flow fields generated using the DWM model. These wind fields are time series of the u-, v- and w-velocity components

defined over a turbulence box with a grid size of 8192×32×32 (x×y× z). A spatial resolution of 6.5 m is used for the grid in

the rotor plane, which leads to a turbulence box with dimension 208 m × 208 m in both lateral and vertical directions (y× z).250
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The spatial resolution dx in the x-axis depends on the simulated ambient wind speed at hub height, dx= (ŪambTsim)/8192,

where Tsim is the simulation time in seconds. These dimensions ensure an adequate turbulence field for a 10-min wind field

simulation over a large rotor and a space-time resolution such that the probe volume effects can be captured by the virtual lidar

(Dimitrov et al., 2017; Pettas et al., 2020).
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Figure 3. An illustration of the virtual lidar simulator setup run for 175 s with simulated time lag. The wind turbine is sketched by the black

solid lines, the nacelle-mounted lidar is represented by a blue squared marker measuring upfront the turbine. The trajectory of the scanning

beam is shown by discrete red dots.

3.3.1 Lidar scanning strategies255

To evaluate currently available lidars’ ability to perform wake characterization, we select a few standard scanning configura-

tions and use them to perform load validation within wakes. These are a 4-beam lidar (4P) (Held and Mann, 2019a, b), an

extended configuration with 7 beams, six arranged at the corner of a hexagon and a central beam (7P) (Pettas et al., 2020), the

conical scanning lidar (Cone) (Medley et al., 2014; Borraccino et al., 2017; Peña et al., 2017), the SpinnerLidar (SL) (Peña

et al., 2019; Herges and Keyantuo, 2019; Doubrawa et al., 2019), and a general grid pattern (Grid) covering the full turbulence260

box (see Fig. 4).

A time lag between each sampling beam is simulated, and all the patterns are assumed to measure at the same single range.

Although we do not optimize the scanning patterns, we use scan radii (defined as the radius between hub height and the location

of the scanned points) of about 70–80% of the rotor radius to estimate wind field characteristics based on previous recommen-

dations (Dimitrov and Natarajan, 2017; Simley et al., 2018). Thus, we define the 4P, 7P, and Cone patterns accordingly as265

shown in Fig. 4. The SL trajectory is scaled to cover the full rotor area, and the positions over the plane of measurement are

separated by 29 m in both vertical and transverse directions for the Grid pattern.
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A preview distance of 0.7D is assumed. Note that increasing the preview distance reduces the errors caused by the cross-

contamination effects of the v- and w-components and reduces the induction effects, but raises errors due to the wind evolution

(Simley et al., 2012). These effects are not investigated in detail in this work, as we use DWM model-based wake fields as270

target, which do not include induction effects nor turbulence evolution as the Taylor’s assumption is applied.

We assume a 2-s scan-period for all the simulated configurations, which refers to the time required for a beam to complete

the full pattern. Given the finite resolution of the synthetic turbulence boxes (i.e., 6.5 m in both lateral and vertical directions),

the Cone and SL scanned locations are binned within the box grid, as reported in Table 1.

A probe volume with an extension of 30 m in the LOS direction is assumed for all the analyzed patterns (Peña et al., 2015).275

Here, we define the probe volume’s length as the standard deviation of the Gaussian weighting function for convenience.

Alternatively, the weighting function can be defined by a Lorentzian form (Mann et al., 2010); however, the differences in

the reconstructed wind velocity arising from a Gaussian- or Lorentzian-like weighting function are marginal (Dimitrov et al.,

2019). Further, we also define an additional case (Grid*) that neglects probe volume averaging effects (see Table 1).
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Figure 4. Selected lidar scanning patterns for the load analysis. The red markers indicate the scanned locations and the black dots in the

background define the spatial resolution of the turbulence box. The rotor diameter is shown in a black solid line.

3.4 Wake field reconstruction techniques280

By defining the DWM model-based wake flow fields as the target fields, the underlying assumptions on which we define the

lidar-based wake field reconstruction techniques are:

1. The ambient wind conditions are known, including Ūamb(z), the atmospheric turbulence intensity (TIamb), and the

atmospheric stability conditions (here implicitly prescribed through the Mann parameters: αkε2/3,L,Γ).
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Table 1. Technical properties of the simulated lidar scanning configurations. Note that the Cone and SL measurements are binned according

to the spatial resolution of the synthetic turbulence fields, thus leading to a reduction of the simulated scanning positions.

Scanning
configuration

Measurements /
scan (binned) [-]

Sampling
frequency [Hz]

Scan
period [s]

Measurements /
10-min [-]

Probe volume
size [m]

4P 4 2 2 1200 30

7P 7 3.5 2 2100 30

Cone 100 (30) 50 2 9000 30

SpinneLidar (SL) 400 (93) 200 2 27900 30

Grid 49 25 2 14700 30

Grid* 49 25 2 14700 0

2. The lidar-based wake fields are reconstructed by incorporating lidar observations (e.g., in the form of constraints or285

lidar-fitted velocity deficits) into a zero-mean, homogeneous, and random Gaussian turbulence field generated by the

Mann spectral tensor model.

3. The induction effects on lidar measurements are neglected and the Taylor’s frozen turbulence hypothesis is assumed.

4. Only the u-velocity fluctuations are reconstructed from the target wake fields.

The corresponding random turbulence field realizations from set A and set B have similar spectral properties; however, these290

fields only describe the turbulence structures of the ambient wind field. The lidar measurements of the wake field, combined

with the wake field reconstruction approach, should recover the whole information regarding the wake characteristics, including

velocity deficits, wake-added turbulence, and meandering in lateral and vertical directions. Further, the first assumption is no

longer needed if a second instrument is deployed at the site measuring the ambient conditions, for example, using a mast or a

nacelle-mounted lidar (Borraccino et al., 2017; Peña et al., 2017).295

The second and third assumptions are inherent in the modelling approach and limitations of the DWM model and other

analytical wake models; however, in this study, the wake characteristics are extracted directly from the lidar observations rather

than a physical-based deficit formulation. Eventually, wind turbine responses are mainly affected by the mean wind speed in

the longitudinal direction (u-velocity) and its variance (Dimitrov et al., 2018), while the effects of the v- and w-turbulence are

generally marginal (Dimitrov and Natarajan, 2017).300

3.4.1 Constrained Gaussian field simulations

The algorithm for applying constraints on a zero-mean, homogeneous, and isotropic Gaussian random field was developed

in Hoffman and Ribak (1991), and extended to Mann-generated turbulence fields for aeroelastic simulations in Nielsen et al.

(2003) and Dimitrov and Natarajan (2017). The algorithm uses a set of constraints that are here derived from a virtual lidar

simulator and an unconstrained random turbulence realization generated with the Mann spectral tensor model.305
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Following the notation in Dimitrov and Natarajan (2017), we denote g̃(rrr), where rrr = (x,y,z) is the spatial separation vector,

an unconstrained random turbulence realization. The spectral property of g̃(rrr) at each discrete lateral and vertical separation of

the turbulence box can be computed from the Mann model in Eq. (2), given a set of parameters (αkε2/3,L,Γ). We denote a set

of constraints as HHH = {hi(rrr) = ci, i, ...,M}, where each constraint is a measured time series for a particular spatial location

rrr and M is the total number of constraints. Note that the constraints are defined as a residual wind field; thus, we remove the310

mean ambient wind speeds from the lidar measurements of Eq. (9), i.e., ci = ulidar− Ūamb, which are the values that are input

to the algorithm.

The objective of the algorithm is to define a turbulence field g(rrr), subjected to the constraints in HHH that maintains the

covariance and coherence properties of the unconstrained field g̃(rrr). As demonstrated in Dimitrov and Natarajan (2017), the

unknown points of the field can be defined by maximizing their conditional probability distribution on the constraint set HHH .315

Thus, we define the residual field ξ(rrr) = g(rrr)− g̃(rrr), which is the difference between the constrained and unconstrained fields.

This residual field is also a random Gaussian field, where its values at the constraint locations are known ξ(ririri) = ci− g̃(rrr). The

values of the residual field at unknown locations can be derived as:

ξ̄(r) = 〈ξ(r)|H〉= ζ(r)Z−1(H − g̃(rrr)), (10)

where 〈.〉 denotes ensemble averaging, ζζζ(r) is a vector of cross-correlations between the constraints and the field, and Z320

is the symmetric correlation matrix of the constraints set. Both ζζζ(r) and Z can be computed from Eq. (3). Eventually, any

constrained realization can be written as a sum of the unconstrained field and the mean of the residual field as:

g(r) = g̃(r) + ζ(r)Z−1(HHH − g̃r(r)). (11)

By denoting u′CS,B,i = g(rrr), as the constrained turbulence field that incorporates lidar measurements into a random turbu-

lence realization i from set B (see Fig. 1), we can derive the reconstructed wake flow field to be input in aeroelastic simulations325

as:

UCS(x,y,z) = Ūamb(z) +u′CS,B,i(x,y,z). (12)

Note that the accuracy of the reconstructed wind field will depend on the fidelity and accuracy of the nacelle lidar measure-

ments used to characterize the wake field.

3.4.2 Wake deficit superposition simulations330

The wake deficit superposition (WDS) approach assumes that velocity deficits can be described by a bivariate Gaussian shape

function, which is fitted based on lidar measurements of the target wake flow field. Several studies have demonstrated the

viability and robustness of the Gaussian curve fitting to track wake deficit displacements in the far-wake region (Trujillo et al.,

2011; Reinwardt et al., 2020).

In our study, the wake shape function not only tracks the wake meandering, but it is used to quantify the depth and width335

of the wake at each quasi-instantaneous scan performed by the lidar. Traditionally, the normalized velocity deficit is defined as
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the difference between the ambient wind speed and that inside the wake as:

Udef (x,y,z) =
Ūamb(z)−ulidar(x,y,z)

Ūamb(z)
, (13)

where Ūamb(z) is assumed to be known and the lidar measurements in the wake (ulidar) are sampled by the lidar simulator

using Eq. (9). Following the procedure of Trujillo et al. (2011), a bivariate Gaussian shape is used to describe the velocity340

deficit flow field as:

Kdef,Gau(y,z) =
A

2πσwyσwz
exp

[
−1

2

(
(yi−µy)2

σ2
wy

+
(zi−µz)2

σ2
wz

)]
, (14)

where (µy,µz) define the wake center location, (σwy,σwz) are width parameters of the wake profile in the y and z directions,

respectively, (yi,zi) denote the spatial location of the LOS andA is a scaling parameter dictating the depth of the wake. A least

squares method is applied to fit the measured wind speed deficits from Eq. (13) to the bivariate Gaussian function in Eq. (14).345

The optimal wake deficit parameters (µy,µz,σwy,σwz,A) are obtained for each completed scanning period (i.e., ∼ 2 s as

described in Table 1), resulting in approximately 300 lidar-reconstructed deficits within a 10-min period. Finally, these lidar-

fitted wake deficits are superimposed on a random homogeneous turbulence field realization from set B, as shown in Fig.

1.

A preliminary analysis showed that wide turbulence boxes (208 m × 208 m) can present large turbulence structures within,350

i.e., broad regions across the box characterized by low wind speeds, whose sizes can alter the depth and width properties of the

lidar-fitted wake deficits in Eq. (14). As a result, the wake properties of the reconstructed field can considerably deviate from

the actual imposed wake characteristics.

To compensate for these deviations and considering that the DWM model-based wake fields can be defined as a linear

summation of the ambient wind field Ūamb scaled by the wake deficit function Kdef , and a random homogeneous turbulence355

realization term u′i, as reported in Eq. (6), we reformulate the least squares minimization problem as:

Γdef =
∑
mn

[
Udef (ym,zn)−

Ūamb− (Ūamb(z)(1−Kdef,Gau(ym,zn|µy,µz,σwy,σwz,A)) +u′B,i(y,z))

Ūamb(z)

]2
, (15)

where subscripts (m,n) indicate data points within the scanning configuration, the second term in the right-hand side defines

the velocity deficit as in Eq. (13), in which the reconstructed wake field is defined as Ūamb(1−Kdef,Gau) +u′B,i and u′B,i
is the random homogeneous turbulence realization from set B. Note that when wake losses are present, (1−Kdef,Gau) will360

reduce the ambient wind speed, as expected. As the sampling frequency of the lidar is lower than the sampling frequency of

the synthetic wind field, we interpolate the fitted wake characteristics at each scan to the whole turbulence field by applying a

nearest-neighbor interpolation scheme. Finally, the reconstructed wake field input to aeroelastic simulations is defined by:

UWDS(x,y,z) = Ūamb(z)(1−Kdef,Gau(x,y,z)) +u′B,i(x,y,z), (16)

where Kdef,Gau(x,y,z) is fitted using Eq. (15) for each completed scan by the nacelle lidar.365
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4 Results

The results are divided into three parts. First, we assess the accuracy of lidar-reconstructed wake fields against target fields in

Sect. 4.1. Second, we carry out the load validation analysis in Sect. 4.2, and separately present the load prediction uncertainty of

the CS-approach in Sect. 4.2.2 and that of the WDS-approach in Sect. 4.2.3. A detailed analysis of the predicted load time-series

and load spectral properties is conducted in Sects. 4.2.4 and 4.2.5. Finally, we evaluate the sensitivities of both atmospheric370

turbulence conditions and the selected lidar technical specifications on the load prediction accuracy in Sect. 4.3.

4.1 Uncertainty of reconstructed wake fields

In this section, we evaluate the accuracy of the lidar-reconstructed fields against the target fields. At first, we assess the

accuracy of the reconstructed u-velocity time-series across the turbulence box, by computing the root mean square error,

RMSE =
√

1/n
∑n
i (ỹi− ŷi)2/ȳi, between the lidar-reconstructed (ỹ) and target velocity (ŷ), where n = 8192 is the grid size375

of the box in the longitudinal direction, normalized over the mean target velocity (ȳi) at each grid point of the turbulence box.

The normalized RMSE indicates if the lidar-reconstructed fields are unbiased compared to the target fields (see Fig. 5-top row).

Further, we compute the explained variance ratio across the turbulence box ρ2E = (cov(ỹ, ŷ)/σỹσŷ)2 (i.e., the square of

the Pearson’s correlation coefficient (Achen, 1982)), which defines the proportion of the variance in the inflow field that is

transferred to the unconstrained turbulence field by imposing the constraints (Dimitrov and Natarajan, 2017). As the target and380

lidar-reconstructed fields are based on two sets of random uncorrelated turbulence field realizations (see sets A and B in Fig.

1), ρ2E ∼ 0 is expected across the box, if no lidar information was included. Contrarily, ρ2E = 1 indicates that the reconstructed

time-series is fully-correlated with the target, thus the two fields match completely.

Figure 5 also shows the spatial distribution of ρ2E derived from the CS- and WDS-reconstructed fields, with the 7P, Cone, and

Grid configurations (see Table 1 for specifications). For this particular analysis, the turbine of interest is located 5D downstream385

of the upstream turbine, where D = 179 m is the diameter of the DTU 10 MW turbine, and ambient conditions characterized

by Uamb = 6 m/s and TIamb = 8 %. The inflow wind profile is defined by a power-law model with a shear exponent of 0.2.

As shown in Fig. 5, the locations of the imposed constraints are characterized by the lowest RMSE and highest ρ2E . This

effect is more pronounced for the CS results, as the algorithm imposes the actual observations directly in the synthetic field. The

RMSE would tend to zero, if the length of probe volume is neglected, the lidar’s sampling frequency corresponds to the sam-390

pling frequency of the wind field, and cross-contamination effects are compensated. The RMSE increases (and ρ2E decreases)

for spatial regions that are farther from the lidar’s beams. This occurs due to the covariance structure of the unconstrained

turbulence field, for which the unknown points are nearly uncorrelated with the imposed constraints.

The errors introduced by the WDS-fields are partly a consequence of an inaccurate estimation of the wake deficit characteris-

tics (i.e., due to the limited spatial scanning configuration) and the small-scale turbulence structures contained in the turbulence395

box. Finally, the results in Fig. 5 confirm that the amount of scanned positions by the lidar has a significant impact on the recon-

structed fields’ accuracy affecting both the mean and variance of the reconstructed u-velocity component. Therefore, patterns
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that cover a larger region of the rotor lead to more accurate field representations (Dimitrov and Natarajan, 2017; Pettas et al.,

2020).
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Figure 5. Spatial distribution of the error inherent to the CS- and WDS-reconstructed fields for selected scanning configurations. The top row

refers to the RMSE normalized over the target velocity at each grid point. The bottom row refers to the explained variance ratio. The red

markers identify the centers of the lidar beam sampling volumes. The wind turbine rotor is shown in blue.

In Fig. 6, we compare the lidar-reconstructed u-velocity time-series extracted at hub height, using the Grid pattern, with the400

target observations derived at the same location. The target wake field is simulated with Uamb = 6 m/s and TIamb = 8%. The

time-series of the virtual lidar measurements is also shown. We find that both field reconstruction approaches can predict the

reduced wind speed within the wake region and recover the details of the wind speed fluctuations of the target field. However,

uncertainty is introduced due to the limited lidar sampling frequency, the probe volume length (here assumed to be 30 m),

and the adopted field reconstructing techniques. The results in Fig. 6 demonstrate that incorporating lidar data directly in the405

reconstructed field (i.e., the CS-approach) leads to reproducing more accurate fields compared to the WDS-approach.

In addition, we compute the power spectral density (PSD) of the above analyzed time series of u-velocity fluctuations for a

10-min simulation and compare them in Fig. 7. We observe that the PSD of the reconstructed fields is comparable to that of the

target for frequencies up to ≈ 1 Hz, while the energy spectral content at higher frequencies is attenuated. According to Larsen

et al. (2008), the dominant frequency of the wake meandering is defined as fcut,off = Uamb/(2D) = 0.016 Hz (∼ 62 s period)410

for Uamb = 6 m/s. As the lidar completes a full-scan in 2 s, the large-scale wake meandering dynamics are well-captured.

Further, as the wake meandering is the main source of wake added turbulence (i.e., u-component variance), the energy spectral

content in the low-frequency range is recovered, as shown in Fig. 7.

The enhanced turbulent energy content of the target field within the high-frequency range (> 1 Hz) originates from the

small-scale wake added turbulence (Madsen et al., 2010; Chamorro et al., 2012). These effects are not fully recovered in the415

reconstructed fields, mainly due to the lidar probe volume and limited sampling frequency.
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Figure 6. Comparison between the target u-velocity time-series at hub height (grey solid line) and the reconstructed field based on the

CS-approach (left) and WDS (right) extracted at hub height. The lidar data are shown in red. The target simulations are run with Uamb = 6

m/s and TIamb = 8%.
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Figure 7. Comparisons of the power spectra density (PSD) of the target u-velocity component measured at hub height with predictions

obtained by the CS-field (left) and the WDS-field (right). The dominant frequency of the wake meandering fcut,off ≈ 0.016 Hz, the rotational

frequency of the rotor and its harmonics (1P ≈ 0.1 Hz and 3P ≈ 0.3 Hz), and the Nyquist frequency of the lidar (≈ 0.25 Hz) are shown (see

text for more details).

4.2 Load validation

The DTU 10 MW reference wind turbine is used for the load validation analysis (Bak et al., 2013). The load simulations

are carried out using the aeroelastic code HAWC2 (Larsen and Hansen, 2007) and inflow wind conditions measured from
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an offshore site, as described in Sect. 4.2.1. Note that we run the analysis based on offshore wind conditions, which are420

characterized by low turbulence; thus, wake effects are more prominent.

This work evaluates the load prediction accuracy at the main wind turbine structures, such as blades, shaft, and tower.

Therefore, we neglect the modelling of the offshore substructures and foundations, and we use the onshore model of the DTU

10 MW.

Following the load validation procedure illustrated in Fig. 1, we quantify the uncertainty in power and load predictions425

resulting from the baseline, CS and WDS simulations against results obtained with the target fields. The CS and WDS simula-

tions are evaluated for the selected lidar configurations of Fig. 4, i.e., the 4P, 7P, Cone, SL, Grid and Grid* patterns with the

parameters provided in Table 1. Two uncertainty indicators are defined to verify the load validation criteria I and II of Sect. 2:

– Bias: ∆R = E(ỹ)/E(ŷ),

– Uncertainty: XR =
√
〈(ỹ/ŷ−E(ỹ)/E(ŷ))2〉,430

where the symbol E(.) denotes the mean value and 〈.〉 the ensemble average, ŷ is the quantity of interest (i.e., power or load

statistics) derived from the target simulations, and ỹ corresponds to that produced by the reconstructed fields. We evaluate ∆R

and XR on the resulting 10-min power and load statistics and provide results in Sect. 4.2.2 for the CS-fields, and in Sect. 4.2.3

for the WDS-fields.

The analyzed wind turbine responses include mean power production levels (Powermean), and fatigue loads. We use the435

rainflow counting algorithm to compute the 1-Hz damage equivalent fatigue loads with a Wöhler exponent of m = 12 for

blades and m = 4 for steel structures as tower and shaft. Thus, we compute fatigue loads at the blade root flapwise and

edgewise moments MxBRDEL,MyBRDEL, tower-bottom fore-aft and side-side MxTBDEL,MyTBDEL, the torsional loads at

the tower top (also referred to as yaw moment) MzTTDEL and torsional loads at the drivetrain MzShDEL.

Furthermore, we quantify the accuracy of the reconstructed wake fields based on estimates of the rotor-effective wind speed440

(Ueff ), defined as the weighted sum of the u-velocity measured across the rotor area, the explained variance ratio ρ2E , and the

u-velocity variance σ2
u computed from the reconstructed turbulence fields. Finally, a load time-series and spectral analysis is

conducted in Sects. 4.2.4 and 4.2.5.

4.2.1 Site conditions

Load simulations are carried out using site-specific observations collected from the FINO1 meteorological mast installed at the445

German offshore wind farm Alpha Ventus. The wind farm is situated in the North Sea and about 45 km north of the island of

Borkum (Kretschmer et al., 2019). Data were collected over a period of three years from 2011 to 2014, and their details can be

found in Kretschmer et al. (2019).

In the present work, we only use wind speeds and turbulence intensities measured under near-neutral conditions from a 90-m

sonic anemometer installed at the mast. We extract 10-min average turbulence values binned for wind speeds ranging between450

6 and 22 m/s; using wind speed bins with 2 m/s we obtain nine bins with turbulence intensities of 8, 7, 7, 6, 6, 6, 6, 5, and 5%.

These are the statistics of the ambient wind field that we use as inputs for the load validation analysis.
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For each 10-min sample of the inflow wind, we use 18 turbulence field realizations (the IEC 61400-1 recommends at least 6

realizations), leading to 162 aeroelastic simulations for each analyzed scanning configuration. Simulations with ambient wind

speeds below 6 m/s are disregarded, as the wind speed approaching the rotor drops below the turbine’s cut-in threshold due to455

wake deficit effects, and the turbine shuts down.

Note that the recorded turbulence estimates at Alpha Ventus are considerably lower (approximately a factor of 3) than values

recommended by the low turbulence IEC-class C. Here, we perform the load validation analysis on more realistic turbulence

estimates characterizing offshore sites, since IEC-class C conditions would significantly attenuate the wake-induced effects, as

higher ambient turbulence leads to a faster recovery of the wake deficit.460

We use standard IEC-recommended turbulence parameters for the Mann model (i.e., L = 29.4 m and Γ = 3.9 (IEC, 2019)),

whereas αkε2/3 is tuned to obtain the target ambient turbulence levels of each simulation. The inflow is described by a power-

law with fixed shear exponent of α = 0.2, as recommended in the IEC standard. The spacing between the analyzed and upstream

turbines is fixed at 5 D.

The target wake field characteristics as function of the ambient wind speed, which result from the 162 simulations, are shown465

in Fig. 8. The wake considerably reduces the inflow wind speed approaching the rotor (i.e., Ueff ) by ≈ 35%, compared to the

ambient wind speed (see Fig. 8-(a)). This effect decreases for higher winds (> 14 m/s) due to the low thrust coefficients of the

turbine; however, the wake deficit does not fully recover at high wind speeds, as we simulate relatively low ambient turbulence

levels and the spacing between the turbines is short (i.e., 5 D).

Turbulence levels within the wake region are nearly doubled at low wind speeds compared to the ambient conditions, as470

shown in Fig. 8-(b). Further, the wake meandering amplitudes, here computed as the standard deviation of the wake center

displacements in the transverse directions normalized with the rotor diameter (σµy
/D and σµz

/D), are also shown in Fig. 8-

(c),(d). As expected, larger wake displacements occur in the lateral than in the vertical directions (Keck et al., 2014; Machefaux

et al., 2016).
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Figure 8. Scatter plots of the 10-min wake field characteristics resulting from the 162 simulations used as target in the load analysis. The

parameter TIwake,hh refers to the turbulence intensity measured at hub height in the wake; σµy/D is a measure of the amplitude of wake

meandering in the lateral direction and σµz/D refers to the vertical displacement of the wake.
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4.2.2 Load uncertainty of constrained Gaussian wake field simulations475

The uncertainties (∆R and XR) of load predictions obtained with the CS-fields as a function of the ambient wind speed are

shown in Fig. 9. We find that the biases largely vary depending on the simulated scanning pattern and analyzed load sensor.

First, we observe that the patterns with fewer ‘points’ (i.e., 4P, 7P and Cone) overestimate Ueff by 2–10% (see Fig. 9a). This

is because 1) these patterns scan an insufficient amount of positions within the inflow area to characterize the wake flow fully;

2) the autocorrelation structure of the unconstrained turbulence box is such that the spatial regions that are not scanned by the480

lidar are nearly uncorrelated with the locations of the imposed constraints, as also shown in Fig. 5. Thus, in the regions that are

not scanned by the lidar, the reconstructed wind speed approaches the ambient wind speed values.

As a result, lower deficits are simulated, or equivalently higher rotor-effective wind speeds are predicted. Consequently, the

power predictions are overestimated (∆R >10%), as seen for ambient wind speeds below 14 m/s in Fig. 9b. Patterns with

high spatial resolution, as the SL, Grid, and Grid*, provide rotor-effective wind speed and power production estimates in good485

agreement with the baseline.

The statistics of ρ2E in Fig. 9c indicate that increasing the amount of points scanned by the lidar (see SL, Grid and Grid*)

leads to a more accurate reconstruction of the wake turbulence. The biases of both ρ2E and Ueff decrease for high wind

speeds due to the attenuated wake-induced effects (see Fig. 8). The improved performance of the SL, Grid (and Grid*) is also

confirmed by estimates of σ2
u in Fig. 9d, which show that the SL and Grid configurations can match the target variance with490

an accuracy up to 98%, compared to 40–60% estimates inherent of the 4P, 7P, and the Cone configurations. Nevertheless, the

observed biases of Ueff , ρ2E and σ2
u reveal that the 4P, 7P, and Cone patterns lead to inaccurate wake field representations and

do not satisfy the criteria of the load validation (see Criteria I in Sect. 2).

The results from simulations with the SL, Grid and Grid* patterns provide fatigue load statistics of MxBRDEL, MxTBDEL,

MzTTDEL and MzShDEL in good agreement with the results of the baseline (see Fig. 9e–h). However, the calculated biases495

indicate a consistent underprediction at all wind speeds. This gap is largely compensated when probe volume effects are

neglected, as seen for the Grid* (green lines). Overall, the observed deviations in the load predictions are due to the uncertainty

of lidar measurements (i.e., size of the probe volume, cross-contamination effects, limited sampling frequency) and the limited

scanning coverage of the patterns.

Figure 10 shows the statistics of ∆R and XR including all wind speeds. As expected, the baseline leads to ∆R ∼ 1 for all500

the analyzed load sensors, which indicates that the adopted 18 turbulence seeds are sufficient for the load statistics to converge.

The large biases from simulations with the 4P, 7P, and Cone patterns (∆R ∼0.87–1.37) follow from the inaccurate wind field

reconstruction discussed above. The load predictions with the SL and the Grid configurations provide biases closer to the

baseline, although turbulence-driven load sensors are underpredicted by 2–7%. These deviations decrease as probe volume

effects are neglected (i.e., ∆R ∼ 1% for Grid* in Fig. 10-left).505

The statistics of XR are shown in Fig. 10-right. The baseline’s XR is a direct measure of the statistical uncertainty intrinsic

of the DWM model, which is due to the stochastic properties of the synthetic turbulence field and wake meandering. Thus, the

turbine responses largely affected by wake-induced effects are identified by highXR values (see baseline in Fig. 10-right). The
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Figure 9. Comparison of bias ∆R (solid line) and uncertainty XR (error band) of selected load sensors as function of the ambient wind

speed. The uncertainty indicators are computed against the target observations, for each ambient wind speed (marker) that consists in 18

aeroelastic simulations with random turbulence seeds. The lidar-based results are derived from simulations with CS-fields.

power predictions and the majority of fatigue loads show a relatively high statistical uncertainty (XR ∼ 0.05–0.09), resulting

in a large load scatter.510

The XR values of MyTB and MzSh are significantly higher than other load sensors. The cause of the former is structural

resonance occurring at low wind speeds that excites the tower’s natural frequency (Bak et al., 2013). This effect originates

from a design aspect of the DTU 10 MW turbine, and it is independent of the wake-field reconstructing approach. The high

XR values of MzSh originate from the intense controller activity to regulate the generator torque under high-variable inflow

conditions. Significantly lower XR values characterize the CS-based load predictions compared to the statistics obtained with515

the baseline. XR values are reduced by a factor between 1.4–5 for the main wind-driven turbine responses such as Powermean

and fatigue loads (i.e. MxBRDEL, MxTBDEL, MzTTDEL and MzShDEL). The CS-fields, reconstructed using scanning pat-

terns with a sufficient amount of scanned positions and limited lidar probe volume, can satisfy both the load validation Criteria

I and II in Sect. 2.

4.2.3 Load uncertainty of wake deficit superposition simulations520

We present the results relative to the WDS simulations in the same fashion as for the CS in Sect. 4.2.2. Thus, we plot the load

prediction uncertainty as a function of the ambient wind speeds in Fig. 11. The 4P, 7P and Cone patterns lead to improved
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Figure 10. Uncertainty indicators of the load validation analysis based on the constrained field simulations (CS). Results are tabulated

according to the load components and lidar scanning patterns. The colormap reflects the amplitude of the error, thus a dark blue identifies an

overprediction while the ligth-green indicates an undeprediction. A perfect statistical prediction leads to ∆R = 1 and XR = 0.

biases of Ueff , and consequently Powermean (see Fig. 11a,b) compared to the results obtained with the CS fields (shown in

Fig. 10). The Powermean predictions computed with the WDS-approach and the 7P pattern are comparable with the baseline,

while the results using the CS-fields overpredicted it by ≈ 10%. Also, improved estimates of both ρ2E and σ2
u are found in Fig.525

11c,d, and for low wind speeds, which indicates a more accurate reconstruction of the wake turbulence by the WDS- than the

CS-approach. In contrast, we find lower values of ρ2E and σ2
u under higher compared to lower wind speeds because of the less

pronounced wake deficits of the target fields, as also shown in Fig. 8-left.

These findings suggest that more details on the wake characteristics are better recovered by fitting a wake deficit function

rather than incorporating lidar measurements directly into the turbulence boxes, when looking at patterns where the inflow530

is scanned at few positions. Overall, simulations with the 7P, SL, Grid, and Grid* patterns can produce power predictions

comparable with the baseline (see Fig. 11b), whereas the 4P and Cone patterns lead to inaccurate predictions. Figure 11e – h

shows that the fatigue loads obtained with the 7P, SL, Grid, and Grid* configurations are generally lower than those from the

baseline.

We quantify the statistics of ∆R and XR, including all the wind speeds using WDS-simulated fields, and present the results535

in Fig. 12. As discussed above, the 4P and Cone patterns overpredict the rotor-effective wind speed and underpredict the wake

turbulence; these effects counteract each other leading to fictitious biases of fatigue loads. Similar conclusions can be made for

the 7P configuration, although it provides reliable power estimates.

As seen for the CS-results, the SL, Grid, and Grid* configurations provide biases in good agreement with the baseline, al-

though fatigue loads are underpredicted by ∆R ∼ 2–3%. By neglecting volume-averaging effects (i.e., Grid*), only a marginal540

improvement of the biases is achieved. Simulations with the WDS-fields can reduce the statistical uncertainty of Powermean
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Figure 11. Comparison of bias ∆R (solid line) and uncertainty XR (error band) of selected load sensors as function of the ambient wind

speed. The uncertainty indicators are computed against the target observations, for each ambient wind speed (marker) that consists in 18

aeroelastic simulations with random turbulence seeds. The lidar-based results are derived from simulations with WDS-fields.

by a factor of 5 and that of the main load components (i.e., MxBRDEL, MxTBDEL, MzTTDEL and MzShDEL) by a factor of

1.2–2 compared to the baseline (see XR in Fig. 12-right).

4.2.4 Time-series analysis of load predictions

In this section, we investigate the accuracy of lidar-reconstructed load time-series against target observations. An illustrative545

example is provided in Fig. 13, where the lidar-based power and loads time-series predictions are compared with the target

simulations. As shown, both CS- and WDS-approaches recover to a large extent wake-induced effects and the instantaneous

events on the wind turbine responses, leading to load time-series that are highly correlated with the target observations. This

finding explains the reductions of XR observed in Figs. 10 and 12.

In order to quantify the accuracy of the predicted load time-series, we evaluate the cross-correlations ρ(ỹ, ŷ) = cov(ỹ, ŷ)/σỹσŷ550

between the lidar-based results (ỹ) and the target simulations (ŷ) (ρ = 1 means perfect correlation). We focus the analysis on

the SL, Grid and Grid* configurations, which provide the most promising results, as demonstrated in the previous sections.

We compute ρ for all the 162 simulations and for each load component, and provide average estimates in Fig. 14. We

find that both the CS- and WDS-predicted Powermean time-series reach a nearly perfect correlation with the actual target

observations (ρ = 0.96–0.99). Note that Powermean is a low frequency signal (see Fig. 13), which is marginally affected by the555
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Figure 12. Uncertainty indicators of the load validation analysis based on the wake deficit superposition simulations (WDS). Results are

tabulated according to the load components and lidar scanning patterns. The color-map reflects the amplitude of the error, thus a dark blue

identifies an overprediction while the ligth-green indicates an undeprediction. A perfect statistical prediction leads to ∆R = 1 and XR = 0.
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Figure 13. Comparison of predicted load time-series based on aeroelastic simulations carried out with the target, baseline, CS- and WDS-

reconstructed fields. The lidar-based fields are reconstructed using the Grid pattern.

local turbulence fluctuations. A high correlation value is also obtained for MxBR (ρ = 0.89–0.98), and for the tower top and

shaft load components (ρ = 0.60–0.90).
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The correlation relative to MxTB drops to ≈ 0.33 with the WDS-simulations, while higher values are achieved by the CS

results. It should be noted that the structural resonance occurring at low wind speeds, which excites the tower can potentially

affect the correlation results (Bak et al., 2013). Figure 13 shows that the MxTB time-series presents a nearly periodic signal,560

where the wind turbulence imprint is marginal. Overall, the accuracy of lidar-reconstructed load time-series show a significantly

higher degree of correlation with the target observations, compared to that achieved by the baseline. Furthermore, the CS-

approach can predict more accurately the observed load fluctuations compared to the WDS-approach.
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Figure 14. Average cross-correlation coefficient (ρ) computed between the reconstructed and target load times-series from all the 162

simulations. Results from the CS-fields are shown in the left panel, and those from the WDS-fields in the right.

4.2.5 Spectral coherence analysis of load predictions

We conduct a spectral analysis on the time-series of MxBR, MxTB, and MzTT, which are highly correlated with the wake565

meandering (Muller et al., 2015; Moens et al., 2019; Ning and Wan, 2019) and are primarily affected by wake turbulence.

The PSD analysis is provided in Appendix A and shows that neither of the wake field reconstruction methods shift the energy

content among frequencies nor introduce instabilities (i.e., artificial artifacts).

The spectral coherence analysis provides more insight on the accuracy of reconstructed blade and tower loads. Here, we

compute the coherence as γ2 = |S(ỹ, ŷ)(f)|2/(S(ỹ)(f)S(ŷ)(f)), where S(ỹ) and S(ŷ) are the auto-spectra of the CS (or570

WDS) and target load estimates, and S(ỹ, ŷ) is their cross-spectrum. We compare the coherence resulting from the load time-

series produced by either CS and WDS simulations with the target observations for Uamb = 6 m/s and TIamb = 8% (see Fig.

15).

It is observed that both field reconstruction techniques lead to high coherence in the proximity of the principal load fre-

quencies, such as the rotational (1P for the blade, and 3P for the tower, see Fig. A1 for more details), the natural frequency575

of the tower (≈ 0.25 Hz, which is close to the 3P at 6 m/s), and the dominant wake meandering frequency (≈ 0.016 Hz). In

general, the coherence from the CS simulations is non-zero at frequencies up to 0.7 Hz (6P) and is higher than that from WDS

simulations. This confirms that higher frequency fluctuations can be reconstructed more accurately using the CS approach.
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By increasing the scanning pattern’s temporal resolution and the number of scanned points, and neglecting volume-averaging

effects, the CS-approach could potentially reconstruct the whole spectrum of the loads. With the WDS-approach, we can only580

reconstruct turbulence structures corresponding to the size of the wake deficit. Finally, given the limitation of the reconstruction

techniques to recover small-scale turbulence structures, as discussed in Fig. 7, the accuracy of tower loads, which are driven by

high-frequency fluctuations (see Fig. A1), is lower compared to that of the blades. This can partly explain the larger deviations

of ∆R,XR and ρ, inherent of MxTBDEL and relative to MxBRDEL, observed in Figs. 10, 12 and 14, as well as explaining

why ∆R for MxTBDEL improves the most when the probe volume size is neglected, as seen in Fig. 10.
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Figure 15. Spectral coherence analysis between the lidar-based load predictions and the target simulations for (a) the blade root flapwise

bending moment MxBR, (b) tower bottom fore-aft bending moment MxTB, and (c) yaw moment MzTT. The target simulations are run for

Uamb = 6 m/s and TIamb = 8%. The baseline’s results are also shown in solid black line, together with the principal operational frequencies

of the wind turbine (1P ≈ 0.1 Hz, 3P and 6P) in dash-dot grey lines, the dominant frequency of the wake meandering fcut,off ≈ 0.016 Hz,

and the natural frequency of the tower ftower ≈ 0.25 Hz in dashed grey lines.

585

4.3 Sensitivity analysis

The load validation of Sect. 4.2 is carried out using statistics collected under near-neutral conditions at Alpha Ventus, i.e.,

low atmospheric turbulence. Nevertheless, atmospheric turbulence conditions have a strong impact on the wake development

(Kumer et al., 2017; Zhan et al., 2020), and wind turbine loads (Sathe et al., 2013; Kretschmer et al., 2018). Further, the

lidar measuring characteristics can impact the accuracy of reconstructed fields (Lundquist et al., 2015), thus that of load590

predictions. In the next subsections, we investigate the sensitivity of atmospheric turbulence conditions as well as selected lidar

specifications on the accuracy of lidar-based load predictions using the Grid pattern as an example.
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4.3.1 Effect of atmospheric turbulence conditions on load prediction accuracy

Figure 16a shows the sensitivity of the lidar-based load predictions bias on TIamb within the range 4–20%. The high TIamb

leads to faster recovery of the velocity deficit (Doubrawa et al., 2019), amplifies the wake meandering (Machefaux et al.,595

2016), and affects the accuracy of lidar-reconstructed fields (Pettas et al., 2020). This has a negligible effect on the accuracy

of load predictions obtained with the CS-fields, while larger deviations are observed for the WDS results. This is partly due to

the limited scanned area by the lidar combined with the large wake displacements. The fitting procedure intrinsic of the WDS

approach can lead to an inaccurate estimation of the wake shape parameters when the wake moves out of the scanned area

(Trujillo et al., 2011).600

We investigate the influence of the atmospheric turbulence length scale on the load prediction accuracy in Fig. 16b, by

varying L between 5 and 70 m. Earlier studies have shown the strong dependency of load statistics on the turbulence length

scales (Sathe et al., 2013; Dimitrov et al., 2017; Conti et al., 2020). Further, L provides a measure of the scanning configuration

resolution useful for performing constraints (Dimitrov and Natarajan, 2017).

The turbulence length scale affects the predicted statistics of the explained variance ratio of the CS-fields, which decreases605

from ρ2E ∼ 0.8 for L = 29 m to ρ2E ∼ 0.6 for L = 5 m (not shown). This indicates that when L is low, the turbulence structure

sizes fall below the sampling fidelity of the CS approach (note that the scanned points of the Grid configuration are separated

by 29 m as described in Sect. 3.3). The CS-based load predictions’ biases show a dependency on the turbulence length scales,

while the WDS-fields are not significantly affected (see Fig. 16b).
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Figure 16. Influence of atmospheric turbulence conditions on the lidar-based load prediction accuracy, including: (a) the effect of ambient

turbulence (Tamb) given Uamb = 6 m/s, (b) the effect of turbulence length scale, L, given Uamb = 6 m/s and TIamb = 8%. The bias ∆R at

each nominal value is computed from 18 simulated seeds. The Grid pattern is used for the analysis.
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4.3.2 Effect of lidar probe volume and scanning period on load prediction accuracy610

One of the main limitations of continuous-wave lidars is that the probe volume size increases proportionally with the square

of the focal distance (Sathe and Mann, 2013). As the diameter of modern wind turbines has reached 150–200 m, measuring at

farther distances upfront of the rotor becomes an issue due to the larger probe volumes. Hence, we investigate the sensitivity

of the lidar probe volume on the load prediction accuracy in Fig. 17a, by varying the probe volume length between 0 to 210 m.

As shown, the magnitude of ∆R decreases almost linearly with increasing probe volume lengths. Further, the probe volume615

effects are more pronounced for the CS-approach, which directly incorporates the low-pass filtered wind speed fluctuations

into the reconstructed field.

Another limitation inherent of the pulsed lidar technology is the reduced sampling frequency compared to continuous-wave

lidars (Peña et al., 2015). The lidar sampling frequency sensitivity on the load prediction accuracy is assessed by varying the

scanning period, which is defined as the time to complete a full scan (1–30 s). For this particular analysis, the target simulations620

are run for Uamb = 6 m/s and TIamb = 16%.

Although the scanning period does not play an important contribution to the load prediction accuracy, as shown in Fig. 17-b,

this outcome is conditional to the dominant frequency of the wake meandering, which in turn decreases with larger rotors

(fcut,out = Uamb/(2D)), and the amount of scanned points in the inflow. The CS-results show that a bias lower than 2% in

power predictions is found for scanning periods up to≈20 s, which corresponds to one-third of the wake meandering dominant625

period.
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Figure 17. Influence of lidar scanning specifications on the lidar-based load prediction accuracy, including: (a) the effect of probe volume

size given Uamb = 6 m/s and TIamb = 8%, (b) the effect of the scanning period given Uamb = 6 m/s and TIamb = 16%. The bias ∆R at each

nominal value is computed from 18 simulated seeds. The Grid pattern is used for the analysis.
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5 Discussion

One of the main elements used in the study is to consider as target the wake flow fields generated by the DWM model. The

DWM model is a simplified engineering wake model subjected to modelling uncertainties. Although the mean wind velocity

and turbulence fields in the far wake region can deviate from high-fidelity simulations (e.g., computational fluid dynamics,630

CFD) or field data, the calibration of the DWM model coefficients can considerably improve the accuracy and provide wake

fields in good agreement with lidar observations (Reinwardt et al., 2020) and CFD simulations (Keck et al., 2012, 2014, 2015).

The modelling uncertainty originated from an inaccurate calibration of the DWM model is not expected to significantly alter

this study’s findings, as we demonstrate the robustness of the lidar-based approaches under a large variety of inflow wind and

operational conditions.635

The wake turbulence spectral properties are described, to the extent needed for the load analysis, by an isotropic Mann-

generated turbulence field with a low length scale (Madsen et al., 2005). A more realistic modelling choice to accurately

simulate the turbulence structures within the wake fields, which can also affect aeroelastic load simulations, is found in LES

(Churchfield et al., 2015; Nebenführ and Davidson, 2017).

Further, lidar-based wind field reconstruction techniques applied to LES fields have been recently developed (Bauweraerts640

and Meyers, 2020, 2021). Nevertheless, the computational burden of high-fidelity simulations, such as LES, would make the

statistical load analysis of this work unfeasible.

Another limitation stems from the lidar simulator used in the study, which replaces full-field lidar measurements. Real lidar

data taken upfront the rotor should be corrected for induction (Borraccino et al., 2017; Mann et al., 2018), blade blockage

effects, and wind evolution (Bossanyi, 2013; de Mare and Mann, 2016). These effects are not simulated due to the modeling645

assumptions of the DWM model and should be further investigated, e.g., using LES fields.

Despite the limitations mentioned above, the numerical framework developed within this work is useful to assess the influ-

ence of several uncertainty sources on power and load predictions and evaluate different lidar scanning strategies in an idealized

yet fully controllable environment.

Characterizing the small-scale wake-added turbulence poses a challenge given the limitations of lidar’s sampling frequency650

and probe volume size (Peña et al., 2017). The small-scale wake-added turbulence enhances the energy spectral content in the

high-frequency range, 0.4–20 Hz (Madsen et al., 2010; Chamorro et al., 2012; Singh et al., 2014), and its contribution on the

fatigue damage varies according to the load component and turbine operational strategy (Tibaldi et al., 2015).

Bergami and Gaunaa (2014) demonstrated that the most serious fatigue damage on the blades occurs at frequencies around

1P (0.1–0.16 Hz for the DTU 10 MW), whereas structures as tower top (nacelle) and tower bottom are mainly affected by655

the tower eigenfrequency (≈ 0.25 Hz) and the 3P frequency (0.3–0.48 Hz). As the PSD of tower loads exhibits large energy

spectral content at high frequencies (see Fig. A1), the accuracy of tower load predictions decreases compared to that achieved

by blade loads, as found in Sects. 4.2.4 and 4.2.5.

We demonstrate that a high number of lidar-scanned positions of the inflow is required to ensure an acceptable level of

accuracy in the reconstructed wake fields. The results reveal that the current commercially available nacelle-mounted lidars660
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(e.g., the 4P, 7P, and Cone patterns) will not provide sufficient information to reconstruct the wake fields accurately for the load

assessments. In contrast, the scanning requirements are fulfilled by the SpinnerLidar and any arbitrary lidar that can potentially

scan a greater region of the rotor, e.g., a Grid-like configuration. Although we do not optimize the scanning strategies, it is

inferred that the required number of positions scanned by the lidar depends on the size of the turbulence structures in the wake

field.665

Incorporating a sufficient number of lidar measurements directly in the turbulence fields leads to more accurate load pre-

dictions than assuming a wake deficit’s generic shape function. The CS algorithm can also be extended to reconstruct the

v- and w-turbulence fluctuations (Dimitrov and Natarajan, 2017). Additionally, the CS-method finds direct application for

reconstructing more complex flow fields occurring in wind farms, e.g., multiple wakes.

On the other hand, the accuracy of the WDS-predicted loads is conditional to the selected shape function’s goodness to670

represent velocity deficits. The wake deficit can deviate from a Gaussian shape as the atmosphere becomes more unstable (Ning

and Wan, 2019), it exhibits a double-peak shape in the near-wake region (Keck et al., 2014), and a more complex geometry in

a multiple wake scenario. Overall, reproducing the actual observed wake meandering path in the wake field simulations can

potentially reduce the statistical uncertainty of power and load predictions.

The fitting procedure of the WDS-approach is relatively fast and can provide real-time spatial and temporal characteristics675

of the wake flow field, which are useful for power and load predictions, wind farm monitoring, and control strategies. The

computational cost of the CS algorithm considerably increases with the number of constraints simulated and the dimension

of the turbulence boxes. For reference, a single wind field with 27900 constraints (i.e., using the SL configuration) and a

turbulence box with a grid size of 8192×32×32 points currently require one and a half-hour of simulation time on a single

CPU.680

6 Conclusions

This study proposed two alternative wind turbine load validation procedures under wake conditions that reconstruct synthetic

wake fields from time-series of lidar retrievals. The first approach consisted of incorporating nacelle lidar measurements of

the wake as constraints into random Mann turbulence field realizations. The second approach relied on the superposition of

lidar-fitted bivariate Gaussian wake deficit time-series into the Mann turbulence fields.685

The two approaches were numerically evaluated, adopting a tailored-designed framework that uses a virtual lidar simulator

to scan three-dimensional wake fields simulated by the DWM model (i.e., the target fields).

We demonstrated that lidar-reconstructed wake fields recovered the main wake flow features affecting wind turbine power

and load predictions, such as the spatial distribution of the velocity deficit and its meandering dynamics. However, the accuracy

of power and load estimates was highly conditional on the amount of scanned points by the lidar, the probe volume size, and690

the ambient turbulence intensity that in turn affected the wake evolution.
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The load validation analysis showed that the current commercially available nacelle-mounted lidars would not provide suf-

ficient spatial resolution to characterize wakes for power and load assessments, whereas research lidars, e.g., the SpinnerLidar

and the Grid-like configuration, fulfilled these requirements.

Provided that a sufficient number of wind measurements were taken upwind of the rotor (e.g., using the SpinnerLidar or the695

Grid), incorporating them as constraints into turbulence fields was the most robust and accurate procedure for reconstructing

wake fields and predicting power and loads. The lidar-reconstructed wake fields produced power and load time-series that were

highly correlated with the target turbine responses; thus, reducing the statistical uncertainty (realization-to-realization) by a

factor 1.2–5 when compared to the traditional load validation procedure (i.e., using the DWM model).

Although unbiased power productions were predicted, the SpinnerLidar- and Grid-based reconstructed wake fields under-700

predicted fatigue load estimates by 1–8% depending on the load component and the size of the probe volume. The biases in

fatigue load predictions were reduced to less than 2% when neglecting probe volume effects.

Further investigations should evaluate the effects of rotor induction and turbulence evolution on the lidar-reconstructed wake

fields’ accuracy. Further, the proposed wake field reconstruction techniques should be validated using full-field data collected

in operating wind farms.705

Code availability.

Data availability.

Code and data availability.

Sample availability.

Video supplement.710

Appendix A: Power Spectral Density (PSD) of load predictions

Figure A1 shows a comparison of the PSD of MxBR, MxTB, and MzTT between the lidar-reconstructed and target simula-

tions for Uamb = 6 m/s and TIamb = 8%. Figure A1a displays the PSD of MxBR, where the first three peaks correspond to the

subsequent rotor harmonics (1P, 2P and 3P). The highest observed peak is at 1P (∼ 0.1 Hz), which indicates that the greatest
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load cycle amplitude is due to asymmetric blade loading condition. This effect is amplified by the inhomogeneous wake field715

approaching the rotor.

Compared to the rotating blades, the PSD of the tower loads MxTB and MzTT exhibits the largest energy content at

higher frequencies up to 3P (∼ 0.3 Hz). Further, the natural frequency of the tower (0.25 Hz) corresponds nearly to the 3P

frequency at 6 m/s. This explains the very high peak seen for the MxTB. Overall, the PSD produced by the simulations with

lidar-reconstructed fields (CS and WDS) shows good agreement with that of the target simulations, meaning that the energy720

content is not being shifted between frequencies. However, it is observed that the energy content at high frequency (> 1 Hz),

induced by the wake-added turbulence, is not fully recovered due to the lidar probe volume and limited sampling frequency.
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Figure A1. Power spectral density (PSD) of (a) the blade root flapwise bending moment MxBR, (b) tower bottom fore-aft bending moment

MxTB, and (c) yaw moment MzTT. The dominant frequency of the wake meandering fcut,off = 0.016 Hz, the Nyquist frequency of the

lidar flidar = 0.25 Hz (corresponding to the scanning period), and the main rotational frequencies 1P, 2P, 3P, 6P and 9P are shown. The

target simulations are run at 6 m/s with TIamb = 8%.

Author contributions.

Competing interests.

Disclaimer.725

32



Acknowledgements. The work conducted by Vasilis Pettas is funded by the German Federal Ministry for Economic Affairs and Energy

(BMWi) in the framework of the national joint research project RAVE - OWP Control (ref, 0324131B).

33



References

International Standard IEC61400-13: Wind turbines - Part 13: Measurement of mechanical loads, Standard, IEC, 2015.

International Standard IEC61400-1: wind turbines—part 1: design guidelines, Fourth; 2019, Standard, IEC, 2019.730

Achen, C. H.: Interpreting and Using Regression, Sage Publications, https://doi.org/https://dx.doi.org/10.4135/9781412984560, 1982.

Ainslie, J.: Calculating the flow field in the wake of wind turbines, Journal of Wind Engineering and Industrial Aerodynamics, 27, 213–224,

https://doi.org/10.1016/0167-6105(88)90037-2, 1988.

Ainslie, J. F.: WAKE MODELLING AND THE PREDICTION OF TURBULENCE PROPERTIES, Proceedings of the Bwea Wind Energy

Conference (british Wind Energy Association), pp. 115–120, 1986.735

Bak, C., Zahle, F., Bitsche, R., Teaseong, K., Yde, A., LC, H., Natarajano, A., and Hansen, M.: Description of the DTU 10MW reference

wind turbine, 2013.

Barthelmie, R. J., Hansen, K. S., Frandsen, S. T., Rathmann, O., Schepers, J., Schlez, W., Phillips, J., Rados, K., Zervos, A., Politis, E., and

Chaviaropoulos, P.: Modelling and Measuring Flow and Wind Turbine Wakes in Large Wind Farms Offshore, Wind Energy, 12, 431–444,

https://doi.org/10.1002/we.348, 2009.740

Bauweraerts, P. and Meyers, J.: Bayesian based estimation of turbulent flow fields from lidar observations in a conventionally neutral atmo-

spheric boundary layer, Journal of Physics: Conference Series, 1618, 032 047, https://doi.org/10.1088/1742-6596/1618/3/032047, 2020.

Bauweraerts, P. and Meyers, J.: Reconstruction of turbulent flow fields from lidar measurements using large-eddy simulation, Journal of

Fluid Mechanics, 906, A17, https://doi.org/10.1017/jfm.2020.805, 2021.

Bergami, L. and Gaunaa, M.: Analysis of aeroelastic loads and their contributions to fatigue damage, Journal of Physics: Conference Series745

(online), 555, 012 007, https://doi.org/10.1088/1742-6596/555/1/012007, 2014.

Bingöl, F., Mann, J., and Larsen, G. C.: Light detection and ranging measurements of wake dynamics Part I: One-dimensional Scanning,

Wind Energy, 13, 51–61, https://doi.org/10.1002/we.352, 2010.

Borraccino, A., Schlipf, D., Haizmann, F., and Wagner, R.: Wind Field Reconstruction from Nacelle-Mounted Lidars Short Range Measure-

ments, Wind Energy Science, 2, 269–283, https://doi.org/10.5194/wes-2017-10, 2017.750

Bossanyi, E.: Un-freezing the turbulence: application to LiDAR-assisted wind turbine control, Iet Renewable Power Generation, 7, 321–329,

https://doi.org/10.1049/iet-rpg.2012.0260, 2013.

Bossanyi, E. A., Kumar, A., and Hugues-Salas, O.: Wind turbine control applications of turbine-mounted LIDAR, Journal of Physics:

Conference Series, 555, 012 011, https://doi.org/10.1088/1742-6596/555/1/012011, 2014.

Chamorro, L. P., Guala, M., Arndt, R. E., and Sotiropoulos, F.: On the evolution of turbulent scales in the wake of a wind turbine model,755

Journal of Turbulence, 13, 1–13, https://doi.org/10.1080/14685248.2012.697169, 2012.

Churchfield, M. J., Moriarty, P. J., Hao, Y., Lackner, M. A., Barthelmie, R., Lundquist, J. K., and Oxley, G. S.: A comparison of the dynamic

wake meandering model, large-eddy simulation, and field data at the egmond aan Zee offshore wind plant, 33rd Wind Energy Symposium,

pp. 20 pp., 20 pp., 2015.

Conti, D., Dimitrov, N. K., and Peña, A.: Aeroelastic load validation in wake conditions using nacelle-mounted lidar measurements, Wind760

Energy Science, 5, 1129–1154, https://doi.org/10.5194/wes-5-1129-2020, 2020.

de Mare, M. T. and Mann, J.: On the Space-Time Structure of Sheared Turbulence, Boundary-layer Meteorology, 160, 453–474,

https://doi.org/10.1007/s10546-016-0143-z, 2016.

34

https://doi.org/https://dx.doi.org/10.4135/9781412984560
https://doi.org/10.1016/0167-6105(88)90037-2
https://doi.org/10.1002/we.348
https://doi.org/10.1088/1742-6596/1618/3/032047
https://doi.org/10.1017/jfm.2020.805
https://doi.org/10.1088/1742-6596/555/1/012007
https://doi.org/10.1002/we.352
https://doi.org/10.5194/wes-2017-10
https://doi.org/10.1049/iet-rpg.2012.0260
https://doi.org/10.1088/1742-6596/555/1/012011
https://doi.org/10.1080/14685248.2012.697169
https://doi.org/10.5194/wes-5-1129-2020
https://doi.org/10.1007/s10546-016-0143-z


Dimitrov, N., Borraccino, A., Peña, A., Natarajan, A., and Mann, J.: Wind turbine load validation using lidar-based wind retrievals, Wind

Energy, 22, 1512–1533, https://doi.org/10.1002/we.2385, 2019.765

Dimitrov, N. K. and Natarajan, A.: Application of simulated lidar scanning patterns to constrained Gaussian turbulence fields for load

validation, Wind Energy, 20, 79–95, https://doi.org/10.1002/we.1992, 2017.

Dimitrov, N. K., Natarajan, A., and Mann, J.: Effects of normal and extreme turbulence spectral parameters on wind turbine loads, Renewable

Energy, 101, 1180–1193, https://doi.org/10.1016/j.renene.2016.10.001, 2017.

Dimitrov, N. K., Kelly, M. C., Vignaroli, A., and Berg, J.: From wind to loads: wind turbine site-specific load estimation with surrogate770

models trained on high-fidelity load databases, Wind Energy Science, 3, 767–790, https://doi.org/10.5194/wes-3-767-2018, 2018.

Doubrawa, P., Barthelmie, R. J., Wang, H., and Churchfield, M. J.: A stochastic wind turbine wake model based on new metrics for wake

characterization, Wind Energy, 20, 449–463, https://doi.org/10.1002/we.2015, 2017.

Doubrawa, P., Debnath, M., Moriarty, P. J., Branlard, E., Herges, T. G., Maniaci, D. C., and Naughton, B.: Benchmarks for Model Val-

idation based on LiDAR Wake Measurements, Journal of Physics: Conference Series, 1256, 012 024, https://doi.org/10.1088/1742-775

6596/1256/1/012024, 2019.

Fuertes, F. C., Markfort, C. D., and Porteacute-Agel, F.: Wind Turbine Wake Characterization with Nacelle-Mounted Wind Lidars for Ana-

lytical Wake Model Validation, Remote Sensing, 10, 668 (18 pp.), 668 (18 pp.), https://doi.org/10.3390/rs10050668, 2018.

Held, D. P. and Mann, J.: Detection of wakes in the inflow of turbines using nacelle lidars, Wind Energy Science, 4, 407–420,

https://doi.org/10.5194/wes-4-407-2019, 2019a.780

Held, D. P. and Mann, J.: Lidar estimation of rotor-effective wind speed - An experimental comparison, Wind Energy Science, 4, 421–438,

https://doi.org/10.5194/wes-4-421-2019, 2019b.

Herges, T. G. and Keyantuo, P.: Robust Lidar Data Processing and Quality Control Methods Developed for the SWiFT Wake Steering

Experiment, Journal of Physics: Conference Series, 1256, 012 005, https://doi.org/10.1088/1742-6596/1256/1/012005, 2019.

Hoffman, Y. and Ribak, E.: Constrained realizations of Gaussian fields - A Simple algorithm, Astrophysical Journal, 380, L5–L8,785

https://doi.org/10.1086/186160, 1991.

Kaimal, J., Izumi, Y., Wyngaard, J., and Cote, R.: Spectral characteristics of surface-layer turbulence, Quarterly Journal of the Royal Meteo-

rological Society, 98, 563, https://doi.org/10.1002/qj.49709841707, 1972.

Keck, R.-E., Veldkamp, D., Aagaard Madsen, H., and Larsen, G. C.: Implementation of a Mixing Length Turbulence Formulation Into the

Dynamic Wake Meandering Model, Journal of Solar Energy Engineering, 134, 021 012, https://doi.org/10.1115/1.4006038, 2012.790

Keck, R.-E., de Mare, M. T., Churchfield, M. J., Lee, S., Larsen, G. C., and Aagaard Madsen, H.: On atmospheric stability in the dynamic

wake meandering model, Wind Energy, 17, 1689–1710, https://doi.org/10.1002/we.1662, 2014.

Keck, R. E., De Maré, M., Churchfield, M. J., Lee, S., Larsen, G., and Madsen, H. A.: Two improvements to the dynamic wake meandering

model: Including the effects of atmospheric shear on wake turbulence and incorporating turbulence build-up in a row of wind turbines,

Wind Energy, 18, 111–132, https://doi.org/10.1002/we.1686, 2015.795

Kretschmer, M., Schwede, F., Faerron Guzmán, R., Lott, S., and Cheng, P. W.: Influence of atmospheric stability on the load spectra of wind

turbines at alpha ventus, Journal of Physics: Conference Series, 1037, 052 009, https://doi.org/10.1088/1742-6596/1037/5/052009, 2018.

Kretschmer, M., Pettas, V., and Cheng, P. W.: Effects of wind farm down-regulation in the offshore wind farm Alpha ventus, Asme 2019 2nd

International Offshore Wind Technical Conference, Iowtc 2019, https://doi.org/10.1115/IOWTC2019-7554, 2019.

Kristensen, L., Lenschow, D., Kirkegaard, P., and Courtney, M.: The Spectral Velocity Tensor for Homogeneous Boundary Layer Turbulence,800

Boundary-layer Meteorology, 47, 149–193, https://doi.org/10.1007/BF00122327, 1989.

35

https://doi.org/10.1002/we.2385
https://doi.org/10.1002/we.1992
https://doi.org/10.1016/j.renene.2016.10.001
https://doi.org/10.5194/wes-3-767-2018
https://doi.org/10.1002/we.2015
https://doi.org/10.1088/1742-6596/1256/1/012024
https://doi.org/10.1088/1742-6596/1256/1/012024
https://doi.org/10.1088/1742-6596/1256/1/012024
https://doi.org/10.3390/rs10050668
https://doi.org/10.5194/wes-4-407-2019
https://doi.org/10.5194/wes-4-421-2019
https://doi.org/10.1088/1742-6596/1256/1/012005
https://doi.org/10.1086/186160
https://doi.org/10.1002/qj.49709841707
https://doi.org/10.1115/1.4006038
https://doi.org/10.1002/we.1662
https://doi.org/10.1002/we.1686
https://doi.org/10.1088/1742-6596/1037/5/052009
https://doi.org/10.1115/IOWTC2019-7554
https://doi.org/10.1007/BF00122327


Kumer, V. M., Reuder, J., and Eikill, R. O.: Characterization of turbulence in wind turbine wakes under different stability conditions from

static Doppler LiDAR measurements, Remote Sensing, 9, 242, https://doi.org/10.3390/rs9030223, 2017.

Larsen, G., Ott, S., Liew, J., van der Laan, M., Simon, E., R.Thorsen, G., and Jacobs, P.: Yaw induced wake deflection - a full-scale validation

study, Journal of Physics - Conference Series, 1618, 062 047, https://doi.org/10.1088/1742-6596/1618/6/062047, 2020.805

Larsen, G. C., Madsen Aagaard, H., Bingöl, F., Mann, J., Ott, S., Sørensen, J., Okulov, V., Troldborg, N., Nielsen, N. M., Thomsen, K.,

Larsen, T. J., and Mikkelsen, R.: Dynamic wake meandering modeling, 2007.

Larsen, G. C., Madsen Aagaard, H., Thomsen, K., and Larsen, T. J.: Wake meandering: A pragmatic approach, Wind Energy, 11, 377–395,

https://doi.org/10.1002/we.267, 2008.

Larsen, T. J. and Hansen, A. M.: How 2 HAWC2, the user’s manual, Risø National Laboratory, 2007.810

Larsen, T. J., Aagaard Madsen, H., Larsen, G. C., and Hansen, K. S.: Validation of the dynamic wake meander model for loads and power

production in the Egmond aan Zee wind farm, Wind Energy, 16, 605–624, https://doi.org/10.1002/we.1563, 2013.

Lee, S., Churchfield, M., Moriarty, P., Jonkman, J., and Michalakes, J.: Atmospheric and wake turbulence impacts on wind turbine fatigue

loadings, 50th Aiaa Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, pp. AIAA 2012–0540,

https://doi.org/10.2514/6.2012-540, 2012.815

Liew, J., Raimund Pirrung, G., and Meseguer Urbán, A.: Effect of varying fidelity turbine models on wake loss prediction, Journal of Physics:

Conference Series, 1618, 062 002, https://doi.org/10.1088/1742-6596/1618/6/062002, 2020.

Lundquist, J. K., Churchfield, M. J., Lee, S., and Clifton, A.: Quantifying error of lidar and sodar doppler beam swinging measurements of

wind turbine wakes using computational fluid dynamics, Atmospheric Measurement Techniques, 8, 907–920, https://doi.org/10.5194/amt-

8-907-2015, 2015.820

Lydia, M., Kumar, S. S., Selvakumar, A. I., and Prem Kumar, G. E.: A comprehensive review on wind turbine power curve modeling

techniques, Renewable and Sustainable Energy Reviews, 30, 452–460, https://doi.org/10.1016/j.rser.2013.10.030, 2014.

Machefaux, E., Larsen, G. C., Koblitz, T., Troldborg, N., Kelly, M. C., Chougule, A. S., Hansen, K. S., and Rodrigo, J. S.: An experimental and

numerical study of the atmospheric stability impact on wind turbine wakes, Wind Energy, 19, 1785–1805, https://doi.org/10.1002/we.1950,

2016.825

Madsen, Helge Aagaard, H., Larsen, G. C., and Thomsen, K.: Wake flow characteristics in low ambient turbulence conditions, Proceedings

(cd-rom), 2005.

Madsen, H. A., Larsen, G. C., Larsen, T. J., Troldborg, N., and Mikkelsen, R. F.: Calibration and Validation of the Dynamic Wake Meandering

Model for Implementation in an Aeroelastic Code, Journal of Solar Energy Engineering, 132, 041 014, https://doi.org/10.1115/1.4002555,

2010.830

Mann, J.: The spatial structure of neutral atmospheric surface-layer turbulence, Journal of Fluid Mechanics, 273, 141–168, 1994.

Mann, J., Pena Diaz, A., Bingöl, F., Wagner, R., and Courtney, M.: Lidar Scanning of Momentum Flux in and above the Atmospheric Surface

Layer, Journal of Atmospheric and Oceanic Technology, 27, 959–976, https://doi.org/10.1175/2010jtecha1389.1, 2010.

Mann, J., Peña Diaz, A., Troldborg, N., and Andersen, S. J.: How does turbulence change approaching a rotor?, Wind Energy Science, 3,

293–300, https://doi.org/10.5194/wes-3-293-2018, 2018.835

Medley, J., Barker, W., Harris, M., Pitter, M., Slinger, C., Mikkelsen, T., and Sjöholm, M.: Evaluation of wind flow with a nacelle-mounted,

continuous wave wind lidar, Proceedings of Ewea 2014, 2014.

Moens, M., Coudou, N., and Philippe, C.: A numerical study of correlations between wake meandering and loads within a wind farm, Journal

of Physics: Conference Series, 1256, 012 012, https://doi.org/10.1088/1742-6596/1256/1/012012, 2019.

36

https://doi.org/10.3390/rs9030223
https://doi.org/10.1088/1742-6596/1618/6/062047
https://doi.org/10.1002/we.267
https://doi.org/10.1002/we.1563
https://doi.org/10.2514/6.2012-540
https://doi.org/10.1088/1742-6596/1618/6/062002
https://doi.org/10.5194/amt-8-907-2015
https://doi.org/10.5194/amt-8-907-2015
https://doi.org/10.5194/amt-8-907-2015
https://doi.org/10.1016/j.rser.2013.10.030
https://doi.org/10.1002/we.1950
https://doi.org/10.1115/1.4002555
https://doi.org/10.1175/2010jtecha1389.1
https://doi.org/10.5194/wes-3-293-2018
https://doi.org/10.1088/1742-6596/1256/1/012012


Muller, Y. A., Aubrun, S., and Masson, C.: Determination of real-time predictors of the wind turbine wake meandering, Experiments in840

Fluids, 56, 1–11, https://doi.org/10.1007/s00348-015-1923-9, 2015.

Nebenführ, B. and Davidson, L.: Prediction of wind-turbine fatigue loads in forest regions based on turbulent LES inflow fields, Wind Energy,

20, 1003–1015, https://doi.org/10.1002/we.2076, 2017.

Nielsen, M., Larsen, G. C., Mann, J., Ott, S., Hansen, K. S., and Pedersen, B.: Wind Simulation for Extreme and Fatigue Loads, Risø National

Laboratory, 2003.845

Ning, X. and Wan, D.: LES study of wake meandering in different atmospheric stabilities and its effects on wind turbine aerodynamics,

Sustainability (switzerland), 11, 6939, https://doi.org/10.3390/su11246939, 2019.

Pedersen, M. M., Larsen, T. J., Madsen, H. A., and Larsen, G. C.: More accurate aeroelastic wind-turbine load simulations using detailed

inflow information, Wind Energy Science, 4, 303–323, https://doi.org/10.5194/wes-4-303-2019, 2019.

Pettas, V., García, F. C., Kretschmer, M., Rinker, J. M., Clifton, A., and Cheng, P. W.: A numerical framework for constraining synthetic850

wind fields with lidar measurements for improved load simulations, https://doi.org/10.2514/6.2020-0993, https://arc.aiaa.org/doi/abs/10.

2514/6.2020-0993, 2020.

Peña, A., Hasager, C. B., Badger, M., Barthelmie, R. J., Bingöl, F., Cariou, J.-P., Emeis, S., Frandsen, S. T., Harris, M., Karagali, I., Larsen,

S. E., Mann, J., Mikkelsen, T., Pitter, M., Pryor, S., Sathe, A., Schlipf, D., Slinger, C., and Wagner, R.: Remote Sensing for Wind Energy,

2015.855

Peña, A., Mann, J., and Dimitrov, N. K.: Turbulence characterization from a forward-looking nacelle lidar, Wind Energy Science, 2, 133–152,

https://doi.org/10.5194/wes-2-133-2017, 2017.

Peña, A., Mann, J., and Rolighed Thorsen, G.: SpinnerLidar measurements for the CCAV52, 2019.

Reinwardt, I., Schilling, L., Dalhoff, P., Steudel, D., and Breuer, M.: Dynamic wake meandering model calibration using nacelle-mounted

lidar systems, Wind Energy Science, 5, 775–792, https://doi.org/10.5194/wes-5-775-2020, 2020.860

Rommel, D. P., Di Maio, D., and Tinga, T.: Calculating wind turbine component loads for improved life prediction, Renewable Energy, 146,

223–241, https://doi.org/10.1016/j.renene.2019.06.131, 2020.

Sathe, A. and Mann, J.: A review of turbulence measurements using ground-based wind lidars, Atmospheric Measurement Techniques, 6,

3147–3167, https://doi.org/10.5194/amt-6-3147-2013, 2013.

Sathe, A., Mann, J., Barlas, T. K., Bierbooms, W., and van Bussel, G.: Influence of atmospheric stability on wind turbine loads, Wind Energy,865

16, 1013–1032, https://doi.org/10.1002/we.1528, 2013.

Schlipf, D., Schlipf, D. J., and Kuehn, M.: Nonlinear model predictive control of wind turbines using LIDAR, Wind Energy, 16, 1107–1129,

https://doi.org/10.1002/we.1533, 2013.

Schreiber, J., Bottasso, C. L., Salbert, B., and Campagnolo, F.: Improving wind farm flow models by learning from operational data, Wind

Energy Science, 5, 6472 020, https://doi.org/10.5194/wes-5-647-2020, 2020.870

Simley, E., Pao, L. Y., Kelley, N., Jonkman, B., and Frehlich, R.: LIDAR wind speed measurements of evolving wind fields,

50th Aiaa Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, pp. AIAA 2012–0656,

https://doi.org/10.2514/6.2012-656, 2012.

Simley, E., Y. Pao, L., Frehlich, R., Jonkman, B., and Kelley, N.: Analysis of Wind Speed Measurements using Continuous Wave LIDAR for

Wind Turbine Control ∗†, 2013.875

Simley, E., Fürst, H., Haizmann, F., and Schlipf, D.: Optimizing lidars for wind turbine control applications-Results from the IEA Wind Task

32 workshop, Remote Sensing, 10, 863, https://doi.org/10.3390/rs10060863, 2018.

37

https://doi.org/10.1007/s00348-015-1923-9
https://doi.org/10.1002/we.2076
https://doi.org/10.3390/su11246939
https://doi.org/10.5194/wes-4-303-2019
https://doi.org/10.2514/6.2020-0993
https://arc.aiaa.org/doi/abs/10.2514/6.2020-0993
https://arc.aiaa.org/doi/abs/10.2514/6.2020-0993
https://arc.aiaa.org/doi/abs/10.2514/6.2020-0993
https://doi.org/10.5194/wes-2-133-2017
https://doi.org/10.5194/wes-5-775-2020
https://doi.org/10.1016/j.renene.2019.06.131
https://doi.org/10.5194/amt-6-3147-2013
https://doi.org/10.1002/we.1528
https://doi.org/10.1002/we.1533
https://doi.org/10.5194/wes-5-647-2020
https://doi.org/10.2514/6.2012-656
https://doi.org/10.3390/rs10060863


Singh, A., Howard, K. B., and Guala, M.: On the homogenization of turbulent flow structures in the wake of a model wind turbine, Physics

of Fluids, 26, 025 103, https://doi.org/10.1063/1.4863983, 2014.

Tautz-Weinert, J. and Watson, S. J.: Using SCADA data for wind turbine condition monitoring - A review, Iet Renewable Power Generation,880

11, 382–394, https://doi.org/10.1049/iet-rpg.2016.0248, 2017.

Tibaldi, C., Henriksen, L. C., Hansen, M. H., and Bak, C.: Wind turbine fatigue damage evaluation based on a linear model and a spectral

method, Wind Energy, 19, 1289–1306, https://doi.org/10.1002/we.1898, 2015.

Trujillo, J.-J., Bingöl, F., Larsen, G. C., Mann, J., and Kühn, M.: Light detection and ranging measurements of wake dynamics. Part II:

two-dimensional scanning, Wind Energy, 14, 61–75, https://doi.org/10.1002/we.402, 2011.885

Wagner, R., Friis Pedersen, T., Courtney, M., Antoniou, I., Davoust, S., and Rivera, R.: Power curve measurement with a nacelle mounted

lidar, Wind Energy, 17, 1441–1453, https://doi.org/10.1002/we.1643, 2014.

Wagner, R., Courtney, M. S., Friis Pedersen, T., and Davoust, S.: Uncertainty of power curve measurement with a two-beam nacelle-mounted

lidar, Wind Energy, 19, 1269–1287, https://doi.org/10.1002/we.1897, 2015.

Zhan, L., Letizia, S., and Valerio Iungo, G.: LiDAR measurements for an onshore wind farm: Wake variability for different incoming wind890

speeds and atmospheric stability regimes, Wind Energy, 23, 501–527, https://doi.org/10.1002/we.2430, 2020.

Zwick, D. and Muskulus, M.: The simulation error caused by input loading variability in offshore wind turbine structural analysis, Wind

Energy, 18, 1421–1432, https://doi.org/10.1002/we.1767, 2015.

38

https://doi.org/10.1063/1.4863983
https://doi.org/10.1049/iet-rpg.2016.0248
https://doi.org/10.1002/we.1898
https://doi.org/10.1002/we.402
https://doi.org/10.1002/we.1643
https://doi.org/10.1002/we.1897
https://doi.org/10.1002/we.2430
https://doi.org/10.1002/we.1767

