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Abstract.

This work aims at developing a low-order framework to predict the onset of transition
::
to

:::::::
develop

:
a
::::::
simple

::::::::::
framework

:::
for

::::::::
transition

::::::::
prediction

:
over wind-turbine bladeswithout requiring

:
,
::::::::
including

::::::
effects

::
of

:::
the

:::::
blade

::::::
rotation

::::
and

::::::::
spanwise

:::::::
velocity

::::::
without

::::::::
requiring

::::
fully three-dimensional simulations. The effects of three-dimensionality and rotation on the transition location

are also analyzed. The framework consists of a model to approximate the base-flow and another to predict the transition5

location. The former
:::::::::
framework is based on the quasi-three-dimensional Euler and a

:::
set

::
of

:
boundary-layer equations and only

requires the pressure distribution over an airfoil to provide an approximation for the base-flow over the blade. The latter is

based on the envelope of N factors method, where this quantity is computed using the
::::
(BL)

::::
and parabolized stability equa-

tions (PSE)considering rotational effects. It is shown that rotation accelerates the flow towards the tip of the blade in the fully

developed flow region and towards the opposite direction ,
::::::::
including

:::::::
rotation

:::::::
effects.

:::
An

::::::::
important

:::::::
element

::
of

:::
the

:::::::::
developed10

:::
BL

::::::
method

::
is

:::
the

::::::::
modeling

:::
of

:::
the

::::::::
spanwise

:::::::
velocity

::
at

:::
the

:::::::::::::
boundary-layer

::::
edge.

::::
The

::::
two

:::::::
analyzed

:::::::::::
wind-turbine

::::::::::
geometries

:::::::::
correspond

::
to

::
a
:::::::::::::
constant-airfoil

:::
and

::::
the

::::
DTU

:::
10

:::::
MW

::::::::
Reference

::::::
Wind

:::::::
Turbine

::::::
blades.

::::
The

:::
BL

::::::
model

::::::
allows

::
an

::::::::
accurate

::::::::
prediction

::
of

:::
the

:::::::::
chordwise

:::::::
velocity

:::::::
profiles.

:::::::
Further,

:::
for

::::::
regions

::::
not

:::
too close to the stagnation point . The database method

embedded
:::
and

::::
root

::
of

:::
the

::::::
blade,

::::::
profiles

:::
of

:::
the

::::::::
spanwise

:::::::
velocity

:::::
agree

::::
with

:::::
those

:::::
from

::::::::::::::::
Reynolds-averaged

::::::::::::
Navier-Stokes

:::::::
(RANS)

::::::::::
simulations.

::::
The

::::::
model

::::
also

::::::
allows

::::::::
predicting

::::::::::
inflectional

:::::::
velocity

:::::::
profiles

:::
for

:::::
lower

:::::
radial

:::::::::
positions,

::::::
which

::::
may15

::::
allow

:::::::::
crossflow

::::::::
transition.

:::::::::
Transition

:::::::::
prediction

::
is

:::::::::
performed

::
at

::::::
several

:::::
radial

::::::::
positions

:::::::
through

::
an

:::::::::::::::::::::
"envelope-of-envelopes"

:::::::::::
methodology.

::::
The

::::::
results

:::
are

:::::::::
compared

::::
with

::::
the

:::
eN

:::::::
method

::
of

:::::
Drela

::::
and

::::::
Giles,

:::::::::::
implemented

:
in the EllipSys3D RANS

codeindicates overly premature transition locations , matching those obtained with a .
::::
The

::::::
RANS

::::::::
transition

:::::::
locations

:::::::
closely

::::
agree

::::
with

:::::
those

::::
from

:::
the

:
PSE analysis of a two-dimensional base-flow. The consideration of the spanwise velocity, as carried

out in the developed model , has a stabilizing effect, delaying transition. Conversely, rotation plays a destabilizing role,20

hastening the transition onset. Moreover, airfoils with lower pressure gradients
:::
2D

:::::::::
mean-flow

::::::
without

::::::::
rotation.

:::::
These

::::::
results

:::
also

:::::
agree

::::
with

:::::
those

::::
from

:::
the

:::::::::
developed

::::::
model

:::
for

::::
cases

:::::
with

:::
low

:::
3D

::::
and

::::::
rotation

:::::::
effects,

::::
such

::
as

::
at

::::::
higher

:::::
radial

::::::::
positions

:::
and

:::::::::
geometries

::::
with

::::::
strong

:::::::
adverse

:::::::
pressure

::::::::
gradients

::::::
where

:::
2D

:::
TS

:::::
waves

:::
are

:::::::::
dominant.

::::::::
However,

:::
the

::::::
RANS

::::
and

::::
PSE

:::
2D

::::::
models

::::::
predict

:
a
::::
later

::::::::
transition

::
in

:::
the

::::::
regions

::::::
where

:::
3D

:::
and

:::::::
rotation

:::::
effects

:
are more susceptible to its effects . The increase in

the rotation speed makes transition occur through increasingly oblique disturbances from the middle to the tip
::::::::::::
non-negligible.25
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:::
The

:::::::::
developed

:::::::
method,

::::::
which

:::::::
accounts

:::
for

:::::
these

::::::
effects,

::::::::
predicted

::::::
earlier

::::::::
transition

::::::
onsets

::
in

::::
this

:::::
region

:::::
(e.g.,

:::
19

::
%

::::::
earlier

:::
than

::::::
RANS

:::
at

::
26

::
%

:::
of

:::
the

:::::
radius

:::
for

:::
the

:::::::::::::
constant-airfoil

:::::::::
geometry)

::::
and

:::::
shows

::::
that

::::::::
transition

::::
may

:::::
occur

:::
via

::::::
highly

:::::::
oblique

::::::
modes.

:::::
These

::::::
modes

:::::
differ

::::
from

::::
2D

:::
TS

:::::
waves

::::
and

:::::
appear

:::
in

::::::::
locations

::::
with

:::::::::
inflectional

::::::::
spanwise

::::::::
velocity.

::::::::
However,

::::::
except

::::
close

::
to

:::
the

::::
root of the blade, whereas the opposite happens for lower radial positions

:::::::
crossflow

::::::::
transition

::
is

:::::::
unlikely

:::::
since

:::
the

::::::::
crossflow

:::::::
velocity

::
is

:::
too

::::
low.

::
At

::::::
higher

:::::
radial

:::::::::
positions,

:::::
where

:::
3D

::::
and

:::::::
rotation

::::::
effects

:::
are

::::::
weaker

::::
and

:::
the

::::::
adverse

::::::::
pressure30

:::::::
gradient

:
is
:::::
more

:::::::::
significant,

::::::
modes

::::
with

:::::
small

::::::::::
waveangles

:::::
(close

::
to
::::
2D)

:::
are

:::::
found

::
to

:::
be

::::::::
dominant.

:::::::
Finally,

::
it

:
is
::::::::
observed

::::
that

::
an

:::::::
increase

:::
of

::::::
rotation

::::::
speed

:::::::
modifies

::::
the

::::::::
spanwise

:::::::
velocity

:::
and

::::::::
increases

:::
the

::::::::
Coriolis

:::
and

::::::::::
centrifugal

::::::
forces,

:::::::
shifting

:::
the

::::::::
transition

:::::::
location

:::::
closer

::
to

:::
the

:::::::
leading

:::::
edge.

::::
This

:::::
work

::::::::
highlights

:::
the

::::::::::
importance

::
of

::::::::::
considering

:::
the

:::::
blade

:::::::
rotation

::::
and

:::
the

::::::::::::::
three-dimensional

::::
flow

:::::::::
generated

::
by

::::
that

::
in

::::::::
transition

:::::::::
prediction,

:::::::::
especially

::
in

:::
the

::::
blade

:::::
inner

::::
part. Tollmien-Schlichting (TS)

waves seem to trigger transition. However, highly oblique critical modes that may be intermediates between TS and crossflow35

ones occur for low radii. The developed framework allows transition predictionwith reasonable accuracy using chordwise cp

distributions as input, such as those provided by XFOIL.

1 Introduction

In wind-turbine design, accurate determination of aerodynamic loads is of importance as they are related to properties, such

as performance and structural loads. Since aerodynamic loads can be influenced by the boundary-layer character, an accurate40

determination of the transition location can be significant to obtain a successful wind-turbine design. This has long been

recognized by aerodynamiscists
:::::::::::::
aerodynamicists, and significant efforts have been devoted to the development of transition

models.

There are several transition models available (for a review see e.g. Saric et al., 2003; Langtry et al., 2006; Pasquale et al.,

2009; Colonia et al., 2017). Some of these are based on the transport equations, such as the γ (Colonia et al., 2017) and45

γ− R̃eΘ equation models (Menter et al., 2006; Langtry et al., 2006; Sørensen, 2009; Menter et al., 2015; Langtry et al., 2015);

other ones rely on stability analysis, such as the eN method (Smith and Gamberoni, 1956; van Ingen, 1956). These models are

compatible with modern RANS-based, CFD solvers , and they
:::::
RANS

:::::::
solvers.

::
In

:::::::::
particular,

:::
the

::::::
models

::
of

::::::
natural

::::
and

::::::
bypass

::::::::
transition

::::::
coupled

::::
with

::::::
RANS

::::::
solvers

::::
have

::::::
shown

::::
good

:::::::::
agreement

::::
with

::::::::::
experiments

:::
on

::::
wind

:::::::
turbines

::::::::::::::::::::
(Özçakmak et al., 2020)

:
.
:::
The

::::::::
γ− R̃eΘ :::

has
::::
also

::::
been

::::
used

:::
for

:::::::::
prediction

::
of

::::::::
transition

:::::::::
dominated

::
by

::::::::
crossflow

:::::::::
instability

::::::::::::::::::
(Guerrero et al., 2018)

:
.
:::::
More50

::::::::
accessible

:::::::::::
measurement

:::::::::
techniques

::::
such

::
as

::::::::::::
ground-based

::::::::::::
thermographic

:::::::
imaging

::::::::::::::::::::
(Reichstein et al., 2019)

::::
have

::::::
offered

::::::
further

:::
data

:::
for

:::
the

:::::::::::
development,

::::::::::
calibration,

:::
and

::::::::::
comparison

::
of

::::::::
transition

:::::::
models.

::::
The

:::::::
methods

:::::::::
mentioned

:::::
above

:
can provide transi-

tion predictions at a relatively low computational cost. As such, they are
:
,
:::::
being common in engineering applications. While

their accuracy has been validated for a number of two- and three-dimensional flows, further knowledge about their performance

for rotating wind-turbine blades would be beneficial.55

There are also more advanced transition-prediction methods, such as those based on direct numerical simulations (DNS)

and parabolized stability equations (PSE) (Bertolotti et al., 1992; Simen and Dallmann, 1992), which can provide accurate

transition prediction in three-dimensional flows. DNS aims at exactly resolving the flow field, and it can thus provide detailed
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information about velocity fluctuations within the boundary layer, based on which results about transition and turbulence

characteristics can be derived. PSE models compute the growth of disturbance waves within a given boundary layer. They are60

thus related to envelope eN methods, which compute an envelope for the growth rate for a set of disturbance waves.
::
At

::::
this

:::::::
moment,

::::
only

::
a
:::
few

:::::::
studies

::
of

:::
the

::::::::
transition

:::::::
process

::
on

:::::::::::
wind-turbine

::::::
blades

:::::
using

::::
high

:::::::::
resolution

::::::::::
simulations

:::
are

::::::::
available

::::::::::::::
(Jing et al., 2020)

:
.
:::
The

:::::
DNS

::::::::
approach

:::
for

::::::::
transition

:::::::::
prediction

:::::::
provides

:::::::
accurate

:::::::
results,

:::
but

::
it

::::::
implies

::
a

::::
high

::::::::::::
computational

::::
cost.

::::
With

:::
the

:::::::
current

:::::::
available

::::::::::::
computational

::::::
power,

::::::::::
simulations

::
at

::::::::
Reynolds

::::::::
numbers

::::::::::::
corresponding

::
to

:::::
those

:::
on

:::
real

:::::
wind

::::::
turbines

:::
are

::::
not

:::::::
possible.

::::
The

::::
PSE

:::::::
analysis

:::
has

::
a
:::::
much

:::::
lower

::::::::::::
computational

::::
cost

::::::::
compared

::
to

:::::
DNS

::::::::::::::::::::
(Özçakmak et al., 2020)65

:
,
:::
but

:
it
::::::::
provides

::::
more

::::::::
accurate

::::::::
transition

:::::::::
predictions

::::
than

:::
the

::::::
RANS

::::::::
approach

::::
with

:::
an

:::::::::::::::
algebraic-integral

::
or

::::::::
transport

::::::
model.

::::::::
However,

::::
there

:::
are

:::::::::
limitations

::
in

:::
the

:::::
linear

:::
PSE

:::::::::
approach,

:::::
which

:::
are

:::
the

:::::::
inability

::
to

::::::
predict:

::
i)

::::::::
transition

::
in

:::::::
strongly

::::::::::
non-parallel

::::
flows

::::
with

:::::
rapid

::::::::
variation

::
in

:::
the

:::::::::
streamwise

:::::::::
direction;

::
ii)

::::::::
transition

::
in

:::::::
strongly

:::::::::::::::
three-dimensional

::::::
flows;

:::
iii)

::::::::
transition

::::::
caused

::
by

::::::
global

:::::::::
instability,

:::
as

::
in

:::
the

:::
case

:::
of

:::::
strong

:::::::::
separation

:::::::
bubbles.

:

In two-dimensional flow fields, the waves
::::::
causing

:::::::::
instability are typically of the Tollmien-Schlichting type (van Ingen, 2008)70

::::
(TS)

::::
type

:::::::::::::::::::::::::::::
(Tollmien, 1929; Schlichting, 1933), whereas in three-dimensional flow fields, waves of cross-flow

::::::::
crossflow type

are also common (Saric et al., 2003). DNS and PSE models commonly have a high computational cost. They are thus not very

well-suited for wind-turbine design applications that involve analyses of a large number of different design configurations and

flow cases .
:::
The

:::::
former

::
is
:::::
more

:::::
prone

::
in

:::::
wings

::::
with

:::::
small

:::::
sweep

::::::
angles

:::
and

::::
very

:::::
weak

::
or

::::::
adverse

:::::::::
chordwise

:::::::
pressure

::::::::
gradients

::::
while

:::
the

:::::
latter

::::::::
generally

::::
takes

:::::
place

::
for

:::::
large

:::::
sweep

::::::
angles

:::
and

::::::::
favorable

::::::::
chordwise

:::::::
pressure

:::::::::
gradients.

:::::::::::::::::::
Borodulin et al. (2019)75

::::::
showed

:
a
:::::
good

:::::::::
agreement

:::::::
between

:::::
linear

:::::::
stability

::::::
results

:::
and

::::::::::
experiments

:::
for

:::
TS

::::::
waves

:::::::::
developing

::::
over

:
a
::::::
swept

:::::
wing.

:::::
There

::::
were

:::::::::
similarities

:::::::
between

:::
the

:::
TS

:::::
waves

:::::
found

:::::::::::::
experimentally

:::
and

:::::
those

:::
for

::
the

:::::::
Blasius

::::::::
boundary

:::::
layer,

::::
such

::
as

:::
the

:::::
shape

::
of

:::
the

::::::::::::
eigenfunctions

:::
and

:::::
phase

:::::
speed.

:::::::::
However,

::
the

::::::
waves

:::::::
observed

::::
over

:::
the

:::::
swept

:::::
wing

::::
could

:::::::::
propagate

:
at
::
a
::::::
broader

:::::
range

::
of

::::::
angles

::::::
relative

::
to

:::
the

:::::::
inviscid

:::::::::
streamline,

:::::
being

:::::
more

:::::::
unstable

::
at

::::::::::
propagation

::::::
angles

:::::::
between

::::
25◦

:::
and

::::
70◦.

::::::
Unlike

:::
the

:::
TS

:::::::::
instability,

::::::::
crossflow

::::::::
instability

::::
has

:::
an

:::::::
inviscid

::::::
origin,

::::::
caused

:::
by

:::
the

:::::::::
inflection

::
of

::::
the

::::::::
crossflow

:::::::
velocity

:::::::
profile

:::::::::::::::
(Saric et al., 2003)

:
.80

:::::::
Unstable

::::::::
crossflow

::::::
modes

:::
can

::
be

::::::::
triggered

::
by

:::::
noise

::
or

::::
even

::::::::::
microscopic

::::::
surface

:::::::::
roughness

::::::::::::::::::::::::::::::::
(Bippes, 1999; Gaponenko et al., 2002)

:
.
:::
The

::::::::
crossflow

:::::::::
instability

:::
can

::::::::
manifest

::
as

::::::::
stationary

:::::::
vortices

::
in
::::::::::::
environments

::::
with

:::
low

:::::::::
turbulence

::::::::
intensity

:::
and

:::
as

::::::::
travelling

:::::
modes

::
in

:::::
cases

::::
with

::::
high

:::::::::
turbulence

:::::::::::
intensity/low

::::::
surface

:::::::::
roughness.

:::::
These

::::::
waves

:::
can

::::::::
propagate

::
at

:
a
::::::::
narrower

:::::
range

::
of

::::::
angles

:::::::
compare

::
to

:::
TS

:::::
waves

::::
and

:::
are

::::
more

:::::::
unstable

:::
for

:::::::::
directions

:::::
nearly

::::::::::::
perpendicular

::
to

:::
the

::::::
inviscid

::::
flow

::::::::
direction.

:

The present work aims to develop a simple model for transition prediction applicable for wind-turbine blades and to under-85

stand the effects of blade rotation on the boundary-layer flow and its stability. Firstly, a model to compute the boundary-layer

profiles over the wind-turbine blades is developed. This model is based on the quasi-three-dimensional boundary-layer equa-

tions (BLE) and accounts for effects of the blade rotation and the three dimensional outer flow. A technique to obtain an

approximation for the spanwise velocity is also provided, such that the only required inputs are the chordwise distribution of

pressure or streamwise velocity and the blade geometry. Secondly, the eN method is employed to predict the transition loca-90

tions. TheN -factors are obtained using an existing PSE code (Hanifi et al., 1994; Hein et al., 1994) to which rotation effects are

added. The developed framework is applied to two different full-scale wind-turbine geometries and the results are compared

with the mean-flow and transition data from EllipSys3D RANS simulations (Michelsen, 1992, 1994; Sørensen, 1994). Transi-
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tion locations provided by this solver rely on a database method , which has a restricted accuracy range.
::::::::
prediction

:::::
within

::::
this

:::::
solver

::
is

:::::::
obtained

:::::::
through

:::
the

::::::::::::
semiempirical

:::
eN

:::::::
method

::
of

:::::
Drela

::::
and

:::::
Giles

::::::::::::::::::::::::::::::::::::::
(Drela and Giles, 1987; Özçakmak et al., 2020)

:
.95

::::
This

::::::::
transition

:::::
model

::::
does

:::
not

:::::::
account

:::
for

:::::
effects

::
of

:::
the

:::::
blade

:::::::
rotation

::
or

:::
the

:::::::::::::::
three-dimensional

::::
flow. The PSE results may also

indicate accuracy of the RANS prediction. Finally, effects of the rotation speed and spanwise velocity on the transition location

are analyzed and the suitability of XFOIL (Drela, 1989) data as the input to the developed model is assessed.

2 Boundary-layer model

This section describes the boundary-layer (BL) model developed in this work.100

2.1 Coordinate system

The coordinate system of the BL model is illustrated in Fig. 1. The blade rotates around a vertical axis at a constant angular

velocity ω
::
Ω, and the coordinate system is fixed to the blade. Therefore, centrifugal and Coriolis forces need to be included in

the fluid-dynamic equations (Kundu et al., 2016). The first coordinate direction x1 follows the wing contour along a circular arc

with radius r0, the second coordinate direction x2 is perpendicular to the x1 direction in the plane tangent to the wing surface,105

whereas the third coordinate direction x3 is defined to be in the direction normal to the surface. Hence, x1,x2,x3 describe

an orthogonal, curvilinear coordinate system. The error committed by assuming that the x1 and x2 directions are respectively

the chordwise and spanwise directions is low. That is because the chord to radius ratio and the sweep angle are small in the

analyzed wind-turbine blades. For instance, the angle between the x2 and spanwise directions oscillates between 1◦ and 4◦.

Ω

x1

x2

x3

u‖

k

x1

x2

x3

Ψ

Figure 1. Coordinate system
::
on

:::
the

::::::::::
wind-turbine

::::
blade.

:
Ω
::

is
:::
the

::::::
rotation

:::::
speed,

:::
u‖ ::

the
::::::::
mean-flow

:::::::
velocity

:::::
vector

:::::::
projected

::
in

::
the

:::::::
x1−x2

::::
plane,

::::::::::
k = (α,β,0)

:::
the

:::::::::
wavevector

:::
and

:
Ψ
:::

the
:::::::::
perturbation

:::::::::
propagation

:::::
angle

::::::
relative

:
to
:::
the

::::
outer

:::::::::
streamline.
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2.1.1 Boundary-layer equations110

There are several integral formulations of the boundary-layer equations (BLE) (Du and Selig, 2000; Dumitrescu and Cardos,

2011; Drela, 2013; Garcia et al., 2014). However, a differential formulation is expected to be more accurate than its integral

counterpart , and, based on experience, it appears that an accurate base-flow is needed to obtain correct results in a subsequent

stability analysis
::::::
because

:::
the

:::::
latter

:::::::
requires

::::::
closure

::::::::
relations

:::::
which

:::
are

::::::
found

:::::::
through

::::::::
empirical

:::::::
relations

::::::::::::::::
(van Garrel, 2004)

. For this reason, a differential formulation is chosen
::::::
selected

:
in the present case. When expressed in the coordinate system115

described in Sect. (2.1), the differential form of the BLE can be written as (Warsi, 1999)

∂

∂x1
(ρh2h3u1) +

∂

∂x2
(ρh1h3u2) +

∂

∂x3
(ρh1h2u3) = 0, (1)

ρ

(
u1

h1

∂u1

∂x1
+
u2

h2

∂u1

∂x2
+
u3

h3

∂u1

∂x3
+

1

h1h2

(
∂h1

∂x2
u1u2−

∂h2

∂x1
u2

2

))
=

− 1

h1

∂p

∂x1
+

1

Re

1

h3

∂

∂x3

(
µ

h3

∂u1

∂x3

)
+ ρ

(
2Ω3u2 +

Ω2

2h1

∂r2

∂x1

)
, (2)120

ρ

(
u1

h1

∂u2

∂x1
+
u2

h2

∂u2

∂x2
+
u3

h3

∂u2

∂x3
+

1

h1h2

(
∂h2

∂x1
u1u2−

∂h1

∂x2
u2

1

))
=

− 1

h2

∂p

∂x2
+

1

Re

1

h3

∂

∂x3

(
µ

h3

∂u2

∂x3

)
+ ρ

(
−2Ω3u1 +

Ω2

2h2

∂r2

∂x2

)
, (3)

ρcp

(
u1

h1

∂T

∂x1
+
u2

h2

∂T

∂x2
+
u3

h3

∂T

∂x3

)
=

1

RePr

1

h3

∂

∂x3

(
κ

h3

∂T

∂x3

)
+125 (

γγ− 1

)
M2

{
u1

h1

∂p

∂x1
+
u2

h2

∂p

∂x2
+

µ

Re

[(
∂u1

∂x3

)2

+

(
∂u2

∂x3

)2
]}

. (4)

In these equations, cp,γ,κ,µ,M,Re
::::::::::::::
cp,γ,κ,µ,M,Re, and Pr denote specific heat capacity at constant pressure, ratio of spe-

cific heats, thermal conductivity, dynamic viscosity, Mach number, Reynolds number based on a reference length l0, and

Prandtl number, respectively. Moreover, ρ,p, and T denote density, pressure, and temperature, whereas u,Ω, and h represent

velocity , rotation, and metric vectors, respectively.
:
u

::::
and

::
Ω

::::::::
represent

:::::::
velocity

::::
and

:::::::
rotation,

:::::::::::
respectively.

::
hi:::

are
:::

the
::::::

Lamé130

::::::::::
coefficients,

:::::
where

:::::::
h2
i = gii::::

and
:::
gij :

is
:::
the

::::::
metric

::::::
tensor.

::::
Note

::::
that

::::
since

:::
the

:::::::::
coordinate

::::::
system

::
is
:::::::::
orthogonal

:::::::
gij = 0

:::
for

:::::
j 6= i.

The subscripts 1, 2, and 3 indicate components in the respective x1,x2, and x3 directions. r is the radial position.

In the BL model, the chordwise curvature of the wing model is neglected, while the radial curvature is considered. Thus, the

metric vector becomes

h1 =
x2 + r0

r0
, h2 = 1, h3 = 1. (5)135

Since the code is intended for analysis of laminar flows, turbulent fluctuations and statistics need not be considered. In order

to obtain a well-conditioned system which solution is compatible with the subsequent PSE analysis, the terms in the system of

Eqs. (1) to (4) are normalized by the reference quantities given in Table 1. The value of l0 is set to c0, the chord of the airfoil

at the radial position r0, where the analysis is performed.
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Table 1. Reference values.∞ denotes freestream values.

Variable Reference value

Length l0

Velocity u∞

Angular velocity u∞/l0

Density ρ∞

Pressure p∞

Temperature T∞

Dynamic viscosity µ∞

Thermal conductivity κ∞

2.1.2 Approximations of the spanwise derivatives140

As they stand, the BL equations are dependent on all three coordinate directions so that their numerical solution requires a full

volume discretization. Such a discretization can easily
:
A
:::::::::::::::
three-dimensional

::::::::::::
discretization

:::
can

:
result in a solution procedure

that is very costly from a computational perspective
:::::
costly

::
in

:::::
terms

:::
of

::::::::::::
computational

:::::::
capacity

:::
and

:::::
CPU

::::
time. By employing

approximate models for the derivative terms in the x2 direction, instead of exact expressions, one can obtain a quasi-three-

dimensional model requiring discretization in the x1 and x3 directions only. The reduced dimension of the discretization145

typically results in significant savings in computational cost and meshing effort. Furthermore, a judicious selection of the

model for the x2 derivative can provide accurate mean-flows. These beneficial properties lead a quasi-three-dimensional model

to be employed in the present work.

Similarity solutions for rotating flows suggest that the velocity in the x1 direction can be assumed to depend on the x2

coordinate linearly (Greenspan, 1968; Hernandez, 2011). This approximation is employed in the present work, together with150

the further assumption that the velocity in the x2 direction, pressure, and temperature does not depend on x2. Thus,

u1 = u10

x2 + r0

r0
, u2 = u20

, p= p0, T = T0. (6)

The subscript 0 denotes evaluation at the radial location r0. This choice can result in a momentum imbalance in the x2 direction

at the boundary-layer edge, as pointed by Sturdza (2003) for swept-wing flows. Sturdza argued that the imbalance could be

compensated by defining an additional source termA that accounts for the momentum difference. The extra source term is then155

multiplied by a blending function f (x3) and added to the right-hand side of the spanwise momentum equation (Eq. (3)). A is

found by considering momentum balance at the boundary-layer edge. With the current approximation of spanwise derivatives

and curvature terms, A becomes

A= ρu1e

∂u2e

∂x1
−
ρu2

1e

r0
− ρ
(
−2Ω3u1 + Ω2r0

)
, (7)
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where the subscript e denotes evaluation at the boundary-layer edge. The blending function is selected to linearly depend on160

the wall-normal distance inside the boundary layer, i.e.,

f (x3) =
x3

x3e

. (8)

2.1.3 Discretization of BLE

The spanwise approximations described in Sect. (2.1.2) make the system of the BLE (Eqs. (1) to (4)) include only derivatives in

the x1 and x3 directions. The derivatives in the x3 direction are evaluated using a second-order central finite-difference scheme,165

whereas the derivatives in the x1 direction are evaluated using a second-order backward Euler finite-difference scheme.

The BLE can be expressed as

A1Φ + A2
∂Φ

∂x3
+ A3

∂2Φ

∂x2
3

+ A4
∂Φ

∂x1
= A5, (9)

where Φ = (u1,u2,T )
T denotes the vector of primary variables. Pressure can be obtained from those variables by using

the constitutive relations for isentropic flow
:::
The

::::::
density

::
is
:::::::::

calculated
:::::
from

:::
the

::::::::::
temperature

::::
and

:::::::
pressure

:::::
using

:::
the

::::::::
equation170

::
of

::::
state

::::
and

:::
the

:::
BL

:::::::::::::
approximation

::
of

:::::::
pressure

::::::
being

:::::::
constant

::::::
inside

:::
the

::::::::
boundary

:::::
layer. The components of the matrices

A1,A2,A3,A4, and A5 are found by collecting terms in Eqs. (1) to (4).

The solution is computed by space marching in the x1 direction. Uniform boundary conditions are assumed at the inflow.

The attachment-line equations (Cebeci, 1999) are solved at the first inflow node, since the BLE are ill-conditioned when u1

is equal to zero. Because of the boundary-layer singularity (Goldstein, 1948), the system of equations can become strongly175

ill-conditioned if flow separation is encountered. However, the present code is intended to be used for transition prediction, and

separation within a laminar-flow region typically causes transition. Therefore, the separation point can be taken as a reasonable

approximation of the transition location, and the issue is circumvented.

2.2 Edge velocity model

The velocity in the x2 direction at the boundary-layer edge is required as input to the quasi-three-dimensional BL model. In180

order to avoid the necessity of a costly simulation to obtain it, a model for u2e
is devised with inspiration from the conical-wing

approximation (Cebeci, 1999; Sturdza, 2003) . An approximation for u2e
is obtained by combining the Euler equation in the

x2 direction with an approximation for the variation of the pressure coefficient in this direction. The Euler equation in the x2

direction can be written as (Warsi, 1999)

ρ

[
u1

h1

∂u2

∂x1
+
u2

h2

∂u2

∂x2
+
u3

h3

∂u2

∂x3
+

1

h1h2

(
∂h2

∂x1
u1u2−

∂h1

∂x2
u2

1

)
+

1

h2h3

(
∂h2

∂x3
u2u3−

∂h3

∂x2
u2

3

)]
=− 1

h2

∂p

∂x2
+Frot2 , (10)185

where

Frot2 = ρ [2u3Ω1− 2u1Ω3− (Ω2x3−Ω3x2)Ω3 + (Ω1x2−Ω2x1)Ω1] . (11)
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We assume that
u2

h2

∂u2

∂x2
≈ 0, based on the fact that the flow and the variations in the x2 direction have a small magnitude. A

second hypothesis is that
u3

h3

∂u2

∂x3
≈ 0, built on the evidence that the flow and variations in the normal direction at the boundary-

layer edge are small. Since u3 ≈ 0 and Ω1 ≈ 0, the term 2u3Ω1 is neglected in Eq. (11). However, the terms
u3

h3

∂u2

∂x3
and 2u3Ω1190

may be relevant close to the stagnation point because u3 ≈ ||u|| and Ω1 ≈ ||Ω||. Therefore, Eq. (10) should be valid only after

a slightly downstream distance from the stagnation point. Moving all terms except the one containing
∂u2

∂x1
to the right-hand

side, dividing both sides of the equation by ρ
u1

h1
, and including the scale factors given by Eq. (5) yield

∂u2

∂x1
=

h1

ρu1

(
− ∂p

∂x2
+Frot2 + ρu2

1

∂h1

∂x2

)
. (12)

All terms on the right-hand side are known except for the x2 pressure gradient. An approximation for this term can be found195

by rewriting the definition of the pressure coefficient with the reference speed equals to the rotational one, i.e.,

p= cC
: p

1

2
ρ
(
ωΩ

:
r0

)2

+ p∞, (13)

and assuming that

cC
: p = cC

: p0

r2

r2
0

α

α0
, (14)

where cp0::::
Cp0

is the pressure coefficient at the radial position r0 and r = x2 + r0. Equation (14) models the variation in cp:::
Cp200

due to the change of the reference velocity with r, as well as a first-order variation in cp:::
Cp due to the change of the angle of

attack α. The latter is defined as

α= tan−1

w∞
ωr0

w∞
Ωr0
:::

+ θ (x2) , (15)

with w∞ and θ representing the incoming-flow velocity and the geometric twist angle, respectively. Note that Eq. (14) is

singular for α0 = 0 and may not be very accurate for small values of α0. Therefore, some other approximations may be more205

suitable for these cases. With inspiration from the conical-wing approximation (Cebeci, 1999; Sturdza, 2003), cp0 ::::
Cp0 is

assumed to be constant along conical lines. These lines as well as other parameters related to the conical-wing approximation

are illustrated in Fig. 2.

r0 r1

β0 β1

CO A

Figure 2. Conical parameters. O and A are the center of rotation and the cone apex, respectively. Lines of constant β1 are the conical lines.
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With this assumption, the derivative of cp0 ::::
Cp0

in the x2 direction can be related to its derivative in the x1 direction by

∂cp0

∂x2

∂Cp0

∂x2
::::

=−tan(β1 +β0)
∂cp0

∂x1

∂Cp0

∂x1
::::

. (16)210

The angles β1 and β0 are defined as

β1 = sin−1

(
x1c
−x1

r1

)
, β0 = sin−1

(
x1c
−x1

r0

)
, (17)

where x1c
denotes the x1 coordinate of point C, where the line connecting the center of rotation O and the cone apex A

intersects the arc with radius r0. These assumptions lead to an expression for the pressure derivative, given by

∂cp
∂x2

∂Cp

∂x2
::::

=−tan(β1 +β0)
∂cp0

∂x1

∂Cp0

∂x1
::::

r2

r2
0

α

α0
+ cC

: p0

(
α

α0

2r

r2
0

+
r2

r2
0

1

α0

∂α

∂x2

)
. (18)215

Inserting Eqs. (13), (14), and (18) in Eq. (12) provides an expression that can be integrated along x1 to obtain the distribution

of u2e
in this direction. However, it is necessary to obtain an approximation for u2e

at the initial point of integration. In order

to do that, we use as inspiration the swept-wing approximation (Cebeci, 1999) and assume that u2e
can be approximated by

the velocity over a conical line (see Fig. 2). This approximation yields

u2e
=
(

2ωΩ
:
r0−u1e

)
tan(β1 +β0) , (19)220

where 2ωr0 ::::
2Ωr0 is a reference velocity. However, Eq. (19) is not very accurate if u1e

is small, as is the case near the attachment

line. Thus, it is advisable to start the integration at a position x10
downstream of the attachment line, where u1e

has a value

that is comparable to the freestream velocity. An approximate initial value for u2e at x10 can be found from

u2e
(x10

) =
[
2ωΩ

:
r0−u1e

(x10
)
]

(x1c
−x10

)
r0 + r1

r0r1
. (20)

3 PSE225

The coordinate system employed in the PSE analysis is the one in Fig. 1. The PSE is derived from the continuity, Navier-Stokes
:::::::::
momentum,

energy, and state equations (Hanifi et al., 1994; Kundu et al., 2016), as shown in Eqs. (21) to (24). Because of the complexity

of performing a full three-dimensional analysis, periodicity is assumed in the x2 direction. Moreover, rotation terms are added

9



to the momentum equations.

∂ρ

∂t
+∇ · (ρu) = 0, (21)230

ρ

[
∂u

∂t
+ (u · ∇)u

]
=−∇p+

1

Re
∇ [λ(∇ ·u)] +

1

Re
∇ ·
[
µ
(
∇u +∇uT

)]
+ Frot, (22)

ρcp

[
∂T

∂t
+ (u · ∇)T

]
=

1

RePr
∇ · (κ∇T ) +

(
γγ− 1

)
M2

[
∂p

∂t
+ (u · ∇)p+

1

Re
Φ

]
, (23)

γγM2p= ρT, (24)

Frot =−ρ [2Ω×u + Ω× (Ω×x)] , (25)

Φ = λ(∇ ·u)
2

+
1

2
µ
(
∇u +∇uT

)2
, (26)235

where λ=− 2
3µ denotes the second viscosity coefficient under the Stokes hypothesis. The quantities in these equations have

been normalized with the reference values given in Table 1.

The flow can be decomposed as

q(x1,x3, t) = q̄(x1,x3) + ε q̃(x1,x3, t) , (27)

where t denotes time, q̄ =
(
ū1, ū2, ū3, T̄, ρ̄

)T
stands for the vector of variables of the base-flow

:::::::::::::::::::
q = (u1,u2,u3,T,ρ)

T .
:::::
Here,240

:::::::
pressure

:
is
:::::::::
eliminated

:::::
using

:::
the

:::::::
equation

::
of

:::::
state.

:::
The

:::
bar

:::::::
denotes

:::
the

:::::::::
mean-flow

:::::::
variables

:
from the BL model or the mean-flow

from RANS(assumed O(1)), and q̃ is the vector of the perturbation of these variables (assumed O(ε)) (Hanifi et al., 1994)

::::::
RANS,

::::
tilde,

:::
the

:::::::::::
perturbation

::::::::
quantities,

::::
and

:::::
ε� 1

:::::::::::::::::::::::::::::::
(Hanifi et al., 1994; Hein et al., 1994) . The perturbation part has the form

q̃(x1,x3, t) = q̂(x1,x3)eiΘ, (28)

where q̂(x1,x3) denotes the slowly varying part of the perturbation, i the imaginary unit, and Θ is245

Θ =

x1∫
x0

α(x′)dx′+βx2− γω:t, (29)

where α and β are the wavenumber in the x1 and x2 directions, respectively, whereas γ
:
ω

:
denotes the temporal angular

frequency of the disturbance.
::
x0::

is
:::
the

:::::::::
chordwise

:::::::::
coordinate

::
of

:::
the

::::::
initial

::::
point

:::
of

:::::::
analysis.

:
Including these relations in Eqs.

(21) to (24), assuming that the variation in the x1 direction is weak compared to the variation in the x3 one (there is a scale of

1/Re between them), neglecting terms of order ε2, and collecting the terms we obtain a system of the form250

B1q̂ + B2
∂q̂

∂x3
+ B3

∂2q̂

∂x2
3

+ B4
∂q̂

∂x1
= 0. (30)

In addition, the following normalization condition is used

∞∫
0

q̂∗
∂q̂

∂x3
dx3 = 0, (31)
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where the superscript ∗ denotes the complex conjugate (Hanifi et al., 1994). The following boundary conditions are employedû1 = û2 = û3 = T̂ = 0, for x3 = 0,

û1, û2, û3, T̂ → 0, for x3→∞.
(32)255

:::::
Notice

::::
that

:::
the

:::::::
far-field

::::::::
condition

:::::::
û3→ 0

:::
can

::
be

::::::::
replaced

::
by

::::::
ρ̂→ 0.

:
The derivatives in the x3 direction are computed with a

fourth-order compact finite-difference scheme, whereas the derivatives in the x1 direction are computed with a second-order

compact finite-difference scheme. Given initial values of α and β, the growth of the disturbances along x1 is evaluated by

marching Eq. (30) in the x1 direction. In order to avoid restrictions on the step size,

::
In the stabilization method described in Andersson et al. (1998) is employed

:::
eN

:::::::
method,

::::::::
transition

:::::::
location

::
is
:::::::::

predicted260

:::::
based

::
on

:::
the

:::::::::::
amplification

::
of

:::::::::::
disturbances

::::::::
presented

::
by

:::
the

:::::::::
N -factors

::::::::
computed

::
as

:

N = ln(A/A0) =

x∫
xI

σ(x′)dx′,

::::::::::::::::::::::::

(33)

:::::
where

::
A

::
is

:::
the

:::::::::
amplitude

::
of

:::
the

:::::::::::
perturbations

::::::::::::
(A0 =A(x0)),

:::
xI:::

the
:::::::
location

::::::
where

:::
the

::::::::::
perturbation

::::
first

::::
start

::
to

::::
grow

::::
and

::
σ

::
the

:::::::
growth

:::
rate

::
of

:::
the

::::::::::
perturbation

::::::
kinetic

::::::
energy

::
E

:::::::
defined

::
as

:::::::::::::::::
(Hanifi et al., 1994)

σ =
1

h1

[
−Im(α) + Re

(
1

E

∂E

∂x1

)]
, E =

∞∫
0

ρ
(
û2

1 + û2
2 + û2

3

)
dx3.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::

(34)265

::::
Here,

:::::::::
consistent

::::
with

:::
the

::::
PSE

::::::::::
framework,

:::
we

::::
use

::
an

::
"
::::::::::::::::::
envelope-of-envelopes"

:::::::
approach

::::::::
meaning

:::
that

:::::::::
transition

::
is

::::::::
predicted

:::::
based

::
on

:::
the

::::::::
envelope

::
of

:::
the

:::::::::::
amplification

:::::
curves

:::::::::
computed

:::
for

::::
fixed

::::::
values

::
of

::
ω

:::
and

::
β

:::::::::::::::::::::::::::
(see e.g. Arnal and Casalis, 2000).

4 Results

The results of the proposed approach are compared to those from the EllipSys3D RANS code. This solver is based on the

incompressible Navier-Stokes equations and employs a block-structured, finite-volume discretization, including a second-order270

upwind scheme for the discretization of convective terms and a central difference scheme for the discretization of the viscous

ones. Turbulence is modeled using the SST k−ω turbulence model (Menter, 1993) and the transition prediction is performed

using an eN method (Drela and Giles, 1987) combined with a model for the turbulence intermittency factor γ (Özçakmak et al.,

2020).
:::
The

::::::::::::
intermittecncy

:::::::
function

::
is

::::::
defined

::
as

:

γ = 1− exp

{
−(x−xtr)2

(
Ue,tr

ν

)2

n̂σ

}
, for x≥ xtr,

:::::::::::::::::::::::::::::::::::::::::::::

(35)275

:::::
where

::
x

:
is
::::

the
::::::::
chordwise

:::::::
position

:::::::::
(measured

:::::
from

:::
the

::::::::
stagnation

:::::
line,

:::
xtr ::

is
:::
the

::::::::
chordwise

:::::::
position

:::
of

:::
the

::::::::
transition

:::::
onset,

::
ν

:
is
:::
the

:::::::::
kinematic

::::::::
viscosity,

::
σ

::
is

:::
the

::::
spot

::::::::::
propagation

::::
rate,

::̂
n
::
is

:::
the

:::::::::::::
nondimensional

::::
spot

:::::::::
formation

::::
rate,

::::
and

::::
Ue,tr::

is
:::
the

:::::
edge

::::::
velocity

::
at
::::

the
::::::::
chordwise

::::::::
position

::
of

:::
the

::::::::
transition

:::::
onset

::::::::::::
(Mayle, 1999)

:
.
:::
For

:::::::
laminar

::::
flow,

::::
i.e.,

:::::::
x < xtr,

::::::
γ = 0,

:::
and

:::
for

:::::
fully

:::::::
turbulent

:::::
flow,

:::::
γ = 1.

:
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4.1 Test cases280

Two different full-scale wind-turbine rotors are investigated. Both have three blades, and their geometries are illustrated in

Fig. 3. The shaded colors show a normalized measure of the axial position of each mesh point on the blade surface. The

first geometry (Geometry 1) has a tapered and twisted blade with a symmetric NACA 63-018 airfoil profile along its en-

tire span. It was mainly designed to allow the investigation of the accuracy of the conical-wing-based edge velocity model

when applied to a geometry respecting its geometrical assumptions. The second geometry (Geometry 2)
:::::::::
corresponds

:::
to

:::
the285

::::
blade

:::
of

:::
the

:::::
DTU

:::
10

::::
MW

:::::::::
Reference

:::::
Wind

:::::::
Turbine

:::::::::::::::
(Bak et al., 2012).

::
It
:

has a tapered and twisted blade with spanwise-

varying cross-sectional properties. This enables the evaluation of our quasi-three-dimensional model when applied to a general

wind-turbine blade geometry. It is assumed that the flows over the three blades are similar so that it is sufficient to analyze

one blade. We focus on the suction side of the blade since transition often occurs earlier there.
:::::::::::::
Attachment-line

::::::::
transition

::
is

:::
not

:::::::
expected

:::
to

:::::
occur

::
as

:::
the

:::::::::::::
attachment-line

::::::::
Reynolds

:::::::
number

:::::::
R= 41

:::
and

:::
15

:::
for

::::::::::
Geometries

::
1

:::
and

:::
2,

::::::::::
respectively,

::::::
where290

::::::::::::::::::::::::::::
R= (u∞Rle sinφtanφ/(2ν))

1/2,
:::
u∞::

is
:::
the

::::::::
incoming

::::::
infinite

:::::::
velocity,

::::
Rle::

is
:::
the

::::::::
curvature

:::::
radius

::
of

:::
the

:::::::
leading

:::::
edge,

:::
and

::
φ

:
is
:::
the

::::::
sweep

:::::
angle.

::::
This

::
is

::::
well

:::::
below

:::
the

::::::::
threshold

::
of

::::
250

:::
for

::::::::::::
contamination

::::::::::
(Poll, 1978).

:

(a) Geometry 1 (b) Geometry 2

Figure 3. Wind-turbine blades with radial sections of analysis. The surface is colored with a normalized measure of the axial position of the

mesh point. The radial coordinate r is given in meters. R is the radius of the wind-turbine rotor.

The main parameters of the two cases are given in Table 2. Both were computed using a temperature of 287.5 K, den-

sity of 1.225 kg ·m−3, dynamic viscosity of 1.784 · 10−5 kg ·m−1 · s−1, ratio of specific heats of 1.4, and gas constant of

287 J · kg−1 ·K−1. The meshes used for the RANS computations of Geometries 1 and 2 have 15.5 · 106 nodes, of which295

118 · 103 are surface ones. The boundary layer is discretized with approximately 50 nodes in the wall-normal direction. The

corresponding meshes for the BL and PSE models have 200 and 500 points in this direction, respectively. This level of dis-

cretization provided spatially converged results for test cases. However, a lower number of grid points could be used for

increased performance when computing the envelope of N -factors with the PSE.

:::
For

:::
the

:::::::
easiness

::
of

:::
the

::::::
reader,

:::
the

::::::::
acronyms

::
of

:::
the

:::::::
methods

:::::
used

::
in

:::
the

::::::::
following

:::::::
sections

:::
are

::::::::::
summarized

::
in

:::::
Table

::
3.300

4.2
:::::::

Pressure
:::::::::::
distributions
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Table 2. Physical parameters of the wind turbines.

Geometry 1 Geometry 2

Number of blades 3 3

Radius [m] 100.0 102.9

Position of maximum chord [m] 12.0 30.0

Root chord [m] 7.5 5.4

Tip chord [m] 3.7 2.9

Maximum chord [m] 14.2 6.0

Root twist angle [◦] −90.0 0.0

Tip twist angle [◦] 0.0 -4.0

Twist angle at position of maximum chord [◦] −17.0 -11.3

Blade cross section (airfoil profile) NACA 63-018 Varying
::::::::::
FFA-W3-241

::::
with

::::::::
decreasing

:::::::
thickness

::
up

::
to

:::
2/3

::
of

::
the

:::::
radius

:

Rotational velocity [rad · s−1] 0.64 0.90

Horizontal free stream velocity [m · s−1] 8.0 10.0

Tip-speed ratio 8.0 9.3

Average chord Reynolds number 1.48 · 107 1.55 · 107

Table 3.
::::::::
Acronyms

::
of

:::
the

:::::::
employed

:::::::
methods.

:::::::
Acronym

:::::::::
Description

:::::
RANS

::::::
Results

:::
from

::::::
RANS

::::::::
simulations

::::::::
performed

::::
with

:::
the

::::::::
EllipSys3D

::::
code

:::::
EVMR

: ::::
Edge

::::::
Velocity

:::::
Model

::::
with

:::::::
u1e(x1)

::::
from

:::::
RANS

:::::
EVMX

: ::::
Edge

::::::
Velocity

:::::
Model

::::
with

:::::::
u1e(x1)

::::
from

:::::
XFOIL

::::
BLR

:::::::
Boundary

:::::
Layer

:::::
Model

::::
with

::::::
u1e(x1)

::::
from

:::::
RANS

:::
and

:::::::
u2e(x1)

::::
from

:::::
EVMR

:

::::
BLX

:::::::
Boundary

:::::
Layer

:::::
Model

::::
with

::::::
u1e(x1)

::::
from

::::::
XFOIL

:::
and

::::::
u2e(x1)

::::
from

::::::
EVMX

::::
BLR

::
2D

: ::
2D

::::::::
boundary

::::
layer

:::::::
equations

:::
(no

:::::::
rotation)

:::
with

:::::::
u1e(x1)

::::
from

:::::
RANS

:::::
RANS

::::::::
(γ = 0.01)

: ::::::::
Transition

::::::
locations

:::::::
obtained

::::
from

:::::
RANS

:::
for

::
an

::::::::::
intermittency

:::::
factor

:::::::
γ = 0.01

:::::
PSER

::::::::
Transition

::::::
locations

:::::::
obtained

::::
from

::::
PSE

::
for

::::
BLR

::::::
velocity

::::::
profiles

:::::
PSEX

::::::::
Transition

::::::
locations

:::::::
obtained

::::
from

::::
PSE

::
for

::::
BLX

::::::
velocity

::::::
profiles

:::::
PSER

::
2D

: ::::::::
Transition

::::::
locations

:::::::
obtained

::::
from

::::
PSE

::
(no

:::::::
rotation)

:::
for

::::
BLR

::
2D

:::::::
velocity

:::::
profiles

:::
The

:::::::
pressure

:::::::::::
distributions

::::
from

::::::
RANS

::::
and

::::::
XFOIL

:::
are

::::::
shown

::
in

:::
Fig.

::
4.
::::::
Close

::::::::
agreement

::
is
::::::::
obtained

:::
for

:::
the

::::::
middle

:::
and

:::::
outer

:::::
radial

:::::::
locations

:::
of

::::::::
Geometry

:::
1.

:::
For

:::::::::
Geometry

:
2
::::
and

:::
the

:::::
inner

:::::
radial

:::::::
location

::
of

:::::::::
Geometry

::
1,

:::::::
XFOIL

::::::
results

:::::::
indicate

:
a
::::
less

:::::
severe

:::::::
pressure

:::::
drop

:::::
along

:::
the

::::::
airfoil,

::::::::
although

::::::
RANS

:::
and

:::::::
XFOIL

:::::::
pressure

::::::::
gradients

:::
are

:::::
close

::
to

:::::
each

::::
other

:::
for

:::
the

::::::
initial

::::::::
chordwise

::::::
extent

::
of

:::
the

::::::
airfoils.

::::
For

::::::::
Geometry

::
1

::
at

::::::::::
r0/R= 0.26

::::
and

::::::::
Geometry

::
2

::
at

:::::::::::
r0/R= 0.89,

::::::
XFOIL

::::::
results

::::
also

:::::::
indicate305
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::::
small

:::::::::
separation

:::::::
bubbles

::
at

:::::::::
x1 ≈ 0.45,

:::::
which

:::
are

:::
not

:::::::
present

::
in

::::::
RANS

:::::::::::
distributions.

::
A

:::::::
possible

::::::
source

::
of

::::
those

::::::::::
differences

::
is

::
the

:::::::::
mismatch

:::::::
between

:::
the

::::::
angles

::
of

:::::
attack

::::::
(AoA)

::
of

::::::
XFOIL

::::
and

::::::
RANS.

::::
The

::::::
XFOIL

:::::::::::
computations

:::
are

:::
for

:::
an

::::
AoA

:::::::::
calculated

:::::
based

::
on

:::
the

::::::
inflow

:::::::
velocity

::::
and

:::
that

:::::::::
generated

::
by

::::
the

:::::
blade

:::::::
rotation,

::::::
which

::::
may

:::::
differ

::::
from

:::
the

::::::
actual

::::
AoA

:::
in

:::
the

::::::
RANS

:::::::::
simulation.

:::::::::
Moreover,

::::::
XFOIL

:::
Cp:::::::::::

distributions
::::
were

:::::::
obtained

:::
for

::
a
::::::::::::::
two-dimensional

::::::
section

::
of

:::
the

:::::
wing,

:::::::
without

::::::::::
considering

::
its

::::::::
spanwise

::::::::
variation

:::
and

::::
the

:::::::::::::::::
three-dimensionality

::
of

:::
the

:::::
flow

::::::
present

::
in

::::
the

::::::
RANS

::::::
results.

::::::
Those

::::::
effects

:::
are

::::::::::
particularly310

::::::::
important

:::
for

::::::::
Geometry

::
1

::
at

:::::::::::
r0/R= 0.26.

Figure 4.
:::::::::
Comparison

:::::::
between

::::::
XFOIL

:::
and

:::::
RANS

:::::::
pressure

:::::::::
distributions

:::
for

::
the

::::::
suction

::::
side

::
of

::
the

::::::
airfoils

::
of

:::::::::
Geometries

:
1
:::
and

::
2
::
at

::::
three

::::
radial

::::::::
positions.

4.3 Spanwise edge velocity

Here, we compare the chordwise distributions of spanwise velocity at the edge of the boundary layer u2e
obtained with RANS

simulations and the edge velocity model (EVM). The analyses are performed at three radial locations r0 in the inner (r0/R=

0.26 and 0.40), middle (r0/R= 0.58), and outer (r0/R= 0.89) parts of the blade, where R is the radius of the rotor. The inner315

section for Geometry 2 (r0/R= 0.40) is chosen after location of the maximum chord at r0/R= 0.30 .

Figures 5a, 5c, and 5e present the results for Geometry 1. The spanwise velocity is of the order of 1 % of the freestream

velocity, except close to the stagnation point, where it can reach higher values. EVMR and RANS results agree for the middle

and outer radial locations after 10 % of the chord. The differences between EVMX and RANS results are also small for these

locations. The small overestimation of u2e
of the EVMX method compared to RANS/EVMR is related to the smaller flow320
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acceleration predicted by XFOIL compared to its RANS counterpart (see Eq. (12)). The discrepancies
:::::::::
differences

:::::::
between

:::
the

::::
EVM

::::
and

::::::
RANS

:::::
results

:::
are

:::::
larger

:
at the inner radial position and close to the stagnation pointare due to the non-respect of the

conical-line approximation at these locations . .
::::
The

:::::
reason

::
is
::::
that

:::
the

::::::::::::
approximation

:::
for

:::
the

::::::::
spanwise

:::::::
pressure

:::::::
gradient

:::::
given

::
by

:::
Eq.

::::
(16)

::
is

:::::
more

:::::::
accurate

::
at

::::
large

::::
radii

::::
and

::::::::
chordwise

:::::::::
positions.

::::
This

::::::::::::
approximation

:::::
relies

::
on

:::
the

::::::::::
assumption

::
of

::::
Cp0 :::::

being

:::::::
constant

::::
over

::::::
conical

:::::
lines,

:::::
which

::::
may

:::
not

::
be

:::::::::
respected

:
at
:::
the

:::::::::
mentioned

::::::::
locations

:::
due

:::
to

::
the

::::::
strong

::::::::
variation

::
of

:::
the

::::::::
geometry325

::
in

:::
the

::::::
radial

:::::::
direction

::::
and

::
the

:::::
flow

:::::::::::::::::
three-dimensionality.
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(f) Geometry 2, r0/R = 0.89

Figure 5. Spanwise edge velocity.

The results for Geometry 2 are presented in Figs. 5b, 5d, and 5f. At the inner radial location, r0/R= 0.40, EVMR and

EVMX results indicate a higher spanwise velocity than RANS, similarly to Geometry 1. In previous analysis of Geometry 2

(Zahle et al., 2014), a region of three-dimensional flow radially pumped from the root to r0/R= 0.36 was observed. Moreover,

a separation bubble is also present from the root to almost r0/R= 0.40 (Horcas et al., 2017). These factors increase the flow330
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three-dimensionality at the inner radial part of the blade, making it more difficult for the quasi-three-dimensional BL model

to capture the flow features correctly. However, the agreement between EVM and RANS results improves with r0/R and x1.

This is particularly true at r0/R= 0.58 and 0.89 after 15 % of the chord. The differences between EVM and RANS velocity

distributions were expected to be higher for Geometry 2 because the spanwise variation of the airfoil spurs changes in the cp:::
Cp

along conical lines. The higher spanwise velocity of Geometry 1, especially at the inner radial location, along with the presence335

of inflectional velocity profiles indicates a larger potential for crossflow instability. These results suggest that the edge velocity

model can provide a reliable approximation for u2e
for radial positions not too close to the root of the blade and stagnation

point. The results are expected to be more accurate for geometries respecting the assumptions of the model and generating a

less three-dimensional flow, such as Geometry 1.

4.4 Velocity profiles340

The streamwise
::
We

:::::::
present

:::
the

:::::::::
chordwise

:
and spanwise velocity profiles for Geometry 1, obtained from RANS and the

proposed model , are shown in Fig. 6.
:::::::
obtained

::::
with

::::::
RANS

::::::::::
simulations

:::
and

::::
the

::::::::::::
boundary-layer

::::::
model

::
as

::
a
:::::::
function

:::
of

:::
the

::::::
normal

:::::::::
coordinate

::
x3:::::::::::::::::

nondimensionalized
:::
by

:::
the

:::
BL

::::::::
thickness

::
δ. Two chordwise positions are analyzed for each radial loca-

tion. The
:::::
Figure

::
6

:::::::
presents

:::
the

::::::
results

::
for

:::::::::
Geometry

::
1.

::::
The

:::::
BLR,

:::::
BLX,

:::
and

:
BLR acronym stands for the BL model with u1e

from RANS and u2e from EVMR, while BLXrefers to this model with u1e from XFOIL and u2e from EVMX. The
::
2D

:::::::
profiles345

::
of

::::::::
chordwise

:::::::
velocity

:::
are

::
in
:::::
close

:::::::::
agreement

::::
with

:::
the

::::::
RANS

:::::
results

:::
for

:::
all

::::::::
locations.

:::::
They

:::::::
resemble

:::
the

::::::::::::
Falkner-Skan

::::
type

::
of

::::::
profiles

:::
for

::
an

::::::::::
accelerating

:::::
flow

:::
and

:::::
seem

::
to

::
be

::::
little

:::::::
affected

:::
by

:::::::::::::::::
three-dimensionality

::::
since

::::
they

:::::
agree

::::
with

:::
the

:
BLR 2D case

refers to the base-flow obtained with the two-dimensional BL equations using u1e
from RANS

:::::::
solution.

::::::
Further

:::::::::::
downstream,

::::::
around

:::::::::
x1 = 0.40,

:::
the

::::
flow

:::::
starts

::
to

:::::::::
decelerate

::::
(see

::::
Fig.

:::
4),

:::::
which

::::
may

:::::
allow

:::
the

::::::::::
appearance

::
of

::
a
:::::::
viscous

::::::::
instability

:::
of

:::
the

:::::::::::::::::
Tollmien-Schlichting

::::
(TS)

::::
type.

::::::
These

:::::::::
conclusions

::::
also

:::::
apply

::
to

::::::::
Geometry

::
2,

::::::
whose

:::::
results

:::
are

::::::
shown

::
in

:::
Fig.

::
7.
::::
The

:::::::::
qualitative350

:::::::
behavior

::
of

:::
the

:::::::::
chordwise

:::::::
velocity

:::::::
profiles

::
is

::::::
similar.

::::::::
However,

:::
the

:::::
flow

::::
starts

:::
to

::::::::
decelerate

::::::
earlier,

::
at
:::::::

around
:::::::::
x1 = 0.30,

:::
for

::
the

:::::
inner

:::::
radial

:::::::
position

:::
and

::::::::::::
approximately

:::::::::
x1 = 0.40

:::
for

:::
the

::::::
middle

:::
and

:::::
outer

:::::
radial

::::::::
locations.

:::::::::
Therefore,

::
an

::::::
earlier

::::::::
transition

:::
may

:::
be

:::::::
expected

:::
for

:::::::::
Geometry

:
2
::
at

:::::::::::
r0/R= 0.40. This model disregards the variations and the velocity in the x2 direction.

Considering Geometry 1, in Fig. 6, we observe that the BLR, BLX, and BLR 2D profiles of streamwise velocity obtained

with the boundary-layer equations are in close agreement with the RANS data for all locations. Concerning the spanwise355

velocity , we note, from Figs. 6a and 6b, that the flow

:::
The

::::::::
spanwise

:::::::
velocity

::
at

:::
the

::::
inner

::::::
radial

:::::::
position

::
of

::::::::
Geometry

::
1 is directed towards the root of the blade at the inner radial

position.
:
as

::::::::
portrayed

:::
in

::::
Figs.

:::
6a

:::
and

:::
6b.

:
This reverse flow supports the hypothesis of a considerable three-dimensionality at

radial locations closer to the root of the blade (Du and Selig, 2000). Although exhibiting higher values, the BLR and BLX

profiles of spanwise velocity present the same shape of those from RANS .360

For the middle radial position, as presented in
:::
are

:::::
close

::
to

::::
each

:::::
other,

::::
they

:::::::
indicate

::
a
:::::::
positive

:::::::
velocity

:::::
(flow

:::::::
towards

:::
the

::
tip

::
of

:::
the

::::::
blade)

:::::::
whereas

:::
the

::::::::
spanwise

:::::::
velocity

:::::
profile

:::::
from

::::::
RANS

::
is

::::
only

:::::::
positive

::
in

:::
the

::::::::
near-wall

::::::
region.

:::
The

:::::::
RANS,

:::::
BLR,

:::
and

:::::
BLX

:::::::
spanwise

:::::::
velocity

:::::::
profiles

::::::
present

:::::::::
inflection

::::::
points.

:::::::::
Therefore,

::::
they

:::
are

:::::::::
susceptible

::
to
:::

an
:::::::
inviscid

::::::::
instability

:::
of

:::
the

::::::::
crossflow

::::
type.

:::::
Other

:::::
cases

::::
with

::::::::
inflection

::
of

:::
the

::::::::
spanwise

:::::::
velocity

::::::
profile

:::
are

:::
the

::::::
RANS

:::
and

:::::
BLR

::::::
results

::
at

:::::::::::
r0/R= 0.58

::
of
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Figure 6.
:::::::
Boundary

::::
layer

::::::
profiles

:::
for

::::::::
Geometry

:
1.

:::::::::
Geometries

::
1
:::
and

::
2
:
(Figs. 6c and 6d, we observe that the BLR profiles of spanwise velocity

::
d,

:::
7c,

:::
and

::::
7d),

::::
and

:::
the

::::::
RANS365

:::::
results

::
at

:::::::::::
r0/R= 0.40

::
of

:::::::::
Geometry

:
2
::::
(Fig.

::::
7b).

:

:::
The

:::::
BLR

:::
and

::::::
RANS

::::::::
spanwise

:::::::
velocity

:::::::
profiles are in close agreement with those from RANS, whereas the BLX results

show higher values of u2. This is a consequence of the
:
at

:::
the

::::::
middle

:::
and

:::::
outer

:::::
radial

::::::::
positions

::
of

:::::::::
Geometry

:
1
::
as

:::::::::
presented

::
in
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Figure 7.
:::::::
Boundary

::::
layer

::::::
profiles

:::
for

::::::::
Geometry

:
2.

::::
Figs.

:::
6c,

:::
6d,

::
6e,

::::
and

::
6f.

::::
The

:::::
higher

::::::
values

:::::::
obtained

::::
with

:::
the

:::::
BLX

:::::::
approach

::
in

:::::
those

:::::
cases

::
are

::::::
caused

:::
by

:::
the

:::::
larger u2e

predicted

by the EVMX model being higher than that from RANS. Figures 6e and 6f show that,
::::
with

:::
the

::::
edge

:::::::
velocity

:::::
model

:::::::::
(EVMX).370

:::
The

:::::
same

:::::
occurs

:
at the outer radial position, there is close agreement between BLR and RANS results. The BLX results for u2

display higher values than the
:::::::
location

::
of

::::::::
Geometry

::
2,

::
as

::::::
shown

::
in

:::::
Figs.

::
7e

:::
and

:::
7f,

::
in

:::::
which

:
BLR and RANS profiles

::::::::
spanwise
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::::::
velocity

:::::::
profiles

:::::
agree, but the same shape.

:::::
result

::::
from

:::::
BLX

::::::::::::
overestimates

:::
u2e

.
:::::::::::

Nonetheless,
:::
the

::::::
shapes

:::
of

:::
the

::::
BLX

:::::::
profiles

::::
agree

::::
with

::::
that

::
of

:::
the

:::::
other

:::::::
methods,

:::::::::
indicating

:::
that

:::
the

:::::::::
mismatch

:
is
::::
only

::::
due

::
to

:::
the

:::
u2e::::::

values.
:

Boundary layer profiles for Geometry 1.375

Figure 7 presents the results for Geometry 2. We can note that the streamwise velocity profiles obtained with
:::
The

::::
BLR

::::
and

::::
BLX

::::::
results

:::
for the boundary-layer equations are in close agreement with the RANS results for all positions. Concerning the

spanwise velocity at the inner radial location,
:::
and

::::::
middle

::::::
radial

::::
parts

::
of

:::::::::
Geometry

::
2

:::::
(Figs.

:::
7a,

:::
7b,

:::
7c,

:::
and

::::
7d)

::
in

::::::
general

:::
do

:::
not

:::::
follow

:::
the

:::::
trend

::
of

:::
the

::::::
RANS

:::::::
results.

:::
An

::::::::
exception

::
is

:::
the

::::
BLR

::::::::
spanwise

:::::::
velocity

::::::
profile

::
at

:::::::::::
r0/R= 0.58

::::
and

:::::::::
x1 = 0.25.

::
As

::::::
shown

::
in Figs. 7a and 7bshow that ,

:
the RANS profile presents an inversion of the direction between 10 % and 20 % of the380

chord. This is similar to what was observed in Geometry
:::
also

::::::
occurs

::
in

:
a
:::::::
smaller

:::::
extent

::
at

:::
the

::::
inner

:::::
radial

:::::::
position

::
of

:::::::::
Geometry

1 and may indicate the
::::
(Figs.

:::
6a

:::
and

:::
6b)

::::::
where,

::
at
:::
the

::::::::
near-wall

:::::::
region,

:::
the

:::::::
spanwise

:::::::
velocity

::::::
profile

:::::::
presents

:::
an

::::::::
inversion

::
of

::::::::
direction.

:::
The

::::
fact

:::
that

:::
the

::::::::
inversion

:::
of

:::
the

::::::::
spanwise

:::::::
velocity

:::::
profile

::::
only

::::::
occurs

::
at
:::
the

:::::
inner

:::::
radial

:::::::
position

::
of

::::::::::
Geometries

::
1

:::
and

:
2
::::
may

:::::::
confirm

:::
the three-dimensional character of the flow at lower radii.

Considering the middle radial location, in Figs. 7c and 7d, the BLR and RANS profiles of spanwise velocity are close to385

each other, and their agreement improves from 15 % to 25 % of the chord. The remaining differences between them at 25 % of

the chord are small and can be attributed to the quasi-three-dimensional approach adopted in the BL model. The BLX profile

of spanwise velocity displays larger values than that from RANS because of the higher u2e obtained with the EVMX model.

At the outer radial position , as shown by Figs. 7e and 7f, the BLR and RANS results are in close agreement, whereas the BLX

results indicate a higher spanwise velocity but the same shape of the profiles compared to the RANS data
::::::::
character

::
of

:::
the

::::
flow390

:
at
:::::::
smaller

::::
radii.

Boundary layer profiles for Geometry 2.

The results show that the BL model accurately predicts the profiles of streamwise velocity. Concerning
:::
The

::::::
effects

:::
of

::::::
rotation

:::
on the spanwise velocity , the agreement between the model and RANS profiles improves with the radial position. The

disagreements are larger at the inner radial location, probably because of the influence of three-dimensionality generated by395

the root of the blade. The results are more accurate for Geometry
:::
are

::::::::::
investigated

:::::
using

:::
the

::::::::
approach

::
of

:::::::::::::::::
Du and Selig (2000)

:
,
::
in

:::::
which

:::
the

:::::::
rotation

::::::
speed

::
is

:::::
varied

:::::
while

::::
the

:::::
angle

::
of

:::::
attack

::
is
::::

kept
::::::::

constant.
:::::

This
:::::
allows

:::
for

::::::::::
segregating

:::
the

::::::
effects

:::
of

::
the

::::::::
variation

:::
of

:::
the

::::::::
spanwise

:::::::
velocity

::
as

:::::
well

::
as

:::::::
Coriolis

::::
and

:::::::::
centrifugal

::::::
forces

::::
from

:::::
those

::::::
caused

:::
by

:::
the

::::::::
variation

:::
of

:::
the

::::
angle

::
of

::::::
attack.

::::
The

:::::::
selected

::::::
rotation

::::::
speeds

:::
are

:
5
:::
%,

:::
50

::
%,

::::
100

::
%,

::::
and

:::
150

::
%

::
of

::::
that

::::
used

::
in

::::::
RANS

::::
(0.64

::::
and

::::::::::
0.9 rad · s−1

:::
for

:::::::::
Geometries

:
1 since it better agrees with the conical-wing approximation and has a constant airfoil geometry. The XFOIL-based400

results present a higher spanwise velocity than those from RANS. However, this ensues from the higher u2e values obtained

with the EVMX model, due to differences in the cp distributions, and not from the BL model. The magnitude of the spanwise

velocity is low, which might indicate a small influence on
:::
and

::
2,

::::::::::::
respectively).

::::
The

:
5
:::

%
:::
and

:::
50

:::
%

::::
cases

:::::::
account

::::
for

:::
the

::::::::::
accelerating

:::::
phase

::
of

:::
the

::::
wind

:::::::
turbine,

:::::::
whereas

:::
the

:::
150

::
%

::::
case

::
is
:::
not

::
in

:::
the

::::::
normal

::::::::
operating

:::::
range

::
of

:::::
most

:::::::
turbines

:::
but

:::::
offers

:::::
insight

::::
into

::::
how

:::::::::
overspeed

::::
may

::::::
impact

:
transition.405

We investigate the effects of rotation on the spanwise velocity. Analysis of the EVMX data for Geometry 1 shows that the

inviscid streamline
:::
flow

:
is accelerated in the −x2 direction near the stagnation point due to a negative x2 :::::::

spanwise
:

pressure
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gradient and the Coriolis force to a lesser extent. The dominant term of the latter is −2ρu1Ω3 in Eq. (11), pointing in the −x2

direction. After roughly 10 % of the chord, where the flow reaches its maximum streamwise velocity(fully developed flow), the

spanwise pressure gradient vanishes
:::::::
decreases

:::::::::::
substantially. Hence, the centrifugal force, with leading term ρΩ2

3x2 in Eq. (11),410

and the inertial term with ρu2
1 in Eq. (12) overcome the Coriolis force and accelerate the flow in the +x2 direction. For low

::::
small

:
radii, the Coriolis force tends to increase faster with the rotation speed than the centrifugal and inertial ones, impelling

the flow in the −x2 direction. For the middle and outer parts of the blade, the
:::
The centrifugal and inertial forces tend to grow

faster with ω
::
Ω

::
at

:::
the

::::::
middle

:::
and

:::::
outer

::::
parts

::
of

:::
the

:::::
blade, forcing the flow in the +x2 direction.

Figure 8 presents the profiles of spanwise velocity obtained with the BLX approach at several rotation speeds
::::
BLX

::::::::
spanwise415

::::::
velocity

:::::::
profiles for Geometry 1. The selected speeds are 5 %, 50 %, 100 %, and 150 % of that used in RANS (0.64 rad · s−1).

One can observe that, compared
:::::::::
Compared to an almost translatoric situation (0.032 rad · s−1), rotation tends to accelerate the

flow in the x2 direction, driven by the centrifugal and inertial forces.
::::::::::
Considering

::::::::::
r0/R= 0.58

::::
and

::::
0.89,

:::
the

::::::::
spanwise

:::::::
velocity

:::::::
increases

::::
with

::
Ω
:::::

since
:::
the

:::::::::
centrifugal

::::
and

::::::
inertial

:::::
forces

:::::
grow

:::::
faster

::
at

:::::
larger

:::::
radii.

:
At the inner radial position, the spanwise

velocity decreases for ω rising
:::::
when

::
Ω

::::::::
increases from 0.32 to 0.96 rad · s−1 because the Coriolis force grows faster than its420

counterparts. Considering r0/R= 0.58 and 0.89, the spanwise velocity increases with ω since the centrifugal and inertial

forces have higher growth rates for larger radii.
::::
These

:::::::
velocity

:::::::
profiles

:::::::
present

::::::::
inflection

::::::
points,

:::::::::
indicating

:::
the

:::::::
potential

:::
of

::::::::
crossflow

::::::::
instability.

::::::::::
Inflectional

:::::::
profiles

:::
can

::::
also

::
be

::::::::
observed

::
at

:::
the

::::
inner

:::::
radial

:::::::
position

::
of

:::::::::
Geometry

::
2.

The same analysis is carried out

:::
The

:::::::::::::
boundary-layer

::::::
profiles

:
for Geometry 2 , for which the rotation speed used in RANS is 0.9 rad · s−1, and the results are425

presented in Fig. 9. The airfoils of Geometry 2 sustain negative streamwise
::::::::
chordwise

:
and spanwise pressure gradients over a

larger chordwise extent compared to Geometry 1. Therefore, it is not possible to decouple a region where the pressure gradient

is dominant from another in which rotation effects are preponderant. This fact makes the effects of rotation less clear than in

the previous geometry. However, one can still observe the trend described in the theoretical analysis. The
::
At

:::
the

:::::::::::
downstream

::::::::
chordwise

::::::::
stations,

:::
the flow accelerates with ω

::
Ω in the −x2 and

:
at

:::
the

:::::
inner

::::::::
locations

::::
and

::
in +x2 directions at the inner430

and outer radial locations, respectively, considering the downstream chordwise stations. At r0/R= 0.58, the increase in
::::
outer

:::::::
sections.

:::
An

:::::::
increase

::
of

:
the rotation speed tends to accelerate the flow in the −x2 direction , indicating the preponderance of

the
:
at
::::::::::::
r0/R= 0.58.

::::
This

:::
fact

::::::::
indicates

::::
that

:::
the pressure gradient and Coriolis forces over

:::
are

::::
more

:::::::::
important

::::
than the inertial

and centrifugal ones
:
at
::::

this
:::::::
location. This trend remains for the downstream chordwise station (25 % of the chord) since the

pressure gradient, pointing in the −x2 direction,
::::
since

:::
the

:::::::
negative

::::::::
spanwise

:::::::
pressure

:::::::
gradient

:
does not vanish.435

Spanwise velocity profiles for Geometry 2 for several rotation speeds.

4.5 Transition prediction

The quasi-three-dimensional PSE model is applied to analyze the disturbance growth within
:::::
inside the boundary layer. The

stability analyses are performed with BLR 2D, BLR, BLX, and RANS base-flows. These analyses will be referred to as PSER

2D, PSER, PSEX, and PSE RANS. Transition
::::
onset

::
of

::::::::
transition

:
is assumed to occur when the amplification factor N based440

on the integral disturbance energy (Hanifi et al., 1994) reaches Ncrit. It
:::
This

:::::
state

::::::::::
corresponds

::
to

:::
the

::::::::::
appearance

::
of

:::
the

::::
first
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Figure 8. Spanwise velocity profiles for Geometry 1 for several rotation speeds.

:::::::
turbulent

:::::
spots.

::::::::
Although

:::
not

::::::::::::
representative

::
of

:::
all

::::::::::
atmospheric

:::::::::
conditions,

::
it
:
is assumed Ncrit = 9 in the current work

::
to

::::
have

:
a
:::::
larger

::::::
region

::
of

:::::::
laminar

::::
flow

::
in

:::
the

::::::
RANS

::::::
results,

::::::::
allowing

:
a
:::::
more

:::::::
detailed

::::::::::
comparison

:::::::
between

:::
the

:::::::::
developed

:::::
model

::::
and

:::::
RANS. In the EllipSys3D code, used to perform the RANS simulations, the

::::
when

:::
the

:::
eN

:::::::
method

::
of

::::::::::::::::::::
Drela and Giles (1987)

:::::::
indicates

::::
that

::::
Ncrit::::

was
:::::::
reached,

:::
the

:::::
onset

::
of

::::::::
transition

::
is

:::::::
detected

:::
and

:::
the

:
intermittency factor γ is

::::
starts

::
to

::::
grow

:::::
from zero in445

the laminar region and
:
to

:
one in the fully turbulent flow . γ starts to grow when the database method embedded in the solver

indicates that transition occurs. Therefore, it is reasonable
:::::::::::::::::::
(Özçakmak et al., 2020)

:
.
::
As

::::
the

::::::::
transition

:::::::
location

::
is

:::
not

:::::::
directly

:::::
stored

::
in

::::::
RANS

:::::
data,

:::
we

::::::
choose

:
to select a small value for this parameter

::::::::
(γ = 0.01

::
is
::::::::
selected)

:
to indicate the transition

location, and γ = 0.01 is selected. These results are referred to as RANS (γ = 0.01).
:
.

The transition locations
::
for

:::::::::
Geometry

:
1
:
as a function of the radial position are presented in Fig. 10afor Geometry 1. The450

results indicate that transition .
:::::::::
Transition is delayed as the radial position increases. This is in agreement with observations

from the literature that report stabilization
:
,
:::::
which

::::::
agrees

::::
with

:::::::
previous

::::::
works

:::
that

::::::::
observed

:::::::::
stabilizing

:
effects of rotation for

increasing radii (Du and Selig, 2000). At the inner part
:::::
PSER

:::
and

::::::
RANS

::::::::
transition

::::::::
locations

:::::
agree

:::::
from

:::::::::::
r0/R= 0.68

::
to

:::
the

::
tip

:
of the blade, up to r0/R= 0.40, PSER and RANS transition locations are close to each other. For the middle and outer

parts, the RANS database method indicates earlier transition locations than the PSER results with a maximum difference of 10455
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Figure 9.
:::::::
Spanwise

::::::
velocity

::::::
profiles

:::
for

:::::::
Geometry

::
2
::
for

::::::
several

::::::
rotation

::::::
speeds.

% at r0/R= 0.89
:
.
:::
For

::::::::::::
r0/R < 0.68,

:::::
PSER

::::::
results

:::::::
indicate

::
an

::::::
earlier

::::::::
transition

::::::::
compared

::
to

:::::::
RANS.

::::
This

:
is
::::
due

::
to

:::
the

::::::
effects

::
of

:::
the

::::::::
spanwise

:::::::
velocity

:::
and

:::::::
rotation,

::::::
which

:::
are

:::
not

:::::::::
considered

::
in

:::
the

::::::::::
EllipSys3D

::::::::
transition

::::::
model.

:::
As

::::::
shown

::
in

::::::
Section

::::
4.4,

::
the

::::::::
spanwise

:::::::
velocity

:::::::
reaches

:::::
higher

::::::
values

::
at

:::::
lower

::::
radii. Moreover, the

:::::::
presence

::
of

::
a
::::::
laminar

:::::::::
separation

::::::
bubble

::
at

:::
the

:::::
inner

:::
part

::
of

:::
the

:::::
blade

::::::::
increases

:::
the

:::::::
rotation

::::::
effects

:::::::
because

:::
the

:::::::
Coriolis

::::
force

::::::
passes

::
to

:::
act

::
in

:::
the

:::::
same

:::::::
direction

:::
of

:::
the

:::::::::
centrifugal

:::
one.

:::::::::
Therefore,

::::::::::
differences

:::::::
between

::::::::
transition

::::::::
locations

:::::
from RANS and the

::::::::
developed

::::::
model

::::
were

::::::::
expected

::
to

::
be

::::::
larger

::
at460

:::::
lower

::::
radii.

::::::::
Another

:::::::::
conclusion

::
is

::::
that

::::::::::
considering

:::::::::::::::
three-dimensional

::::
and

::::::
rotation

::::::
effects

:::::
leads

:::
to

:::
the

:::::::::
prediction

::
of

::::::
earlier

::::::::
transition

::::::::
locations.

::::
The PSER 2D results are close to each other, which possibly indicates that

::::::::
transition

::::::::
locations,

::::::
which

::
do

:::
not

::::::::
consider

:::
3D

:::
and

:::::::::
rotational

::::::
effects,

:::
are

::
in

:::::
close

:::::::::
agreement

::::
with

:::
the

::::::
RANS

:::::::
results,

::::::
except

::
at

:::::::::::
r0/R= 0.26,

::::::
where

:::
the

:::::
former

::::::::
indicates

:::::::::
transition

::::::
slightly

:::::::::::
downstream.

::::::::::
Concerning

::::
the

:::::
PSEX

:::::::
results,

::::::
earlier

::::::::
transition

::::::::
locations

:::
are

::::::::
obtained

:::
for

::::::::::
r0/R≥ 0.58

:::::::::
compared

::
to

::::::
RANS

:::
and

::::::
PSER.

:::::
This

::
is

:::::
likely

:::
due

::
to
:

the RANS transition locationsdisregard stabilizing effects465

of three-dimensionality and are thus overly premature. The PSE RANS results (not shown) support this claim because they

presented only modes that do not reach Ncrit. This fact means that the RANS base-flow becomes turbulent (stable) too early,

before a mode could reach Ncrit. The later transition locations obtained with the PSERapproach seem to be a consequence of

the stabilization provided by considering the velocity and gradients in the spanwise direction. The PSEX results indicate
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transition locations generally lying between those from the PSER and RANS. These differences arise from the pressure470

distributions from XFOIL not exactly matching those from RANS, although they
:::::
higher

::::::::
spanwise

:::::::
velocity

::::::
found

::
at

:::::
these

:::::::
locations

:::::
with

:::
the

:::::
PSEX

::::::::
method.

:::::
PSEX

::::
and

:::::
PSER

:::::::::
transition

::::::::
locations are close to each other . The maximum difference

between the PSEX and PSER results is 12 % at r0/R= 0.26
:::
for

:::::
lower

:::::
radial

:::::::::
positions,

::::::::
probably

:::::::
because

:::
the

::::::::::
differences

:::::::
between

::::
their

::::::::
predicted

::::::::
spanwise

:::::::
velocity

::::::
profiles

:::
are

::::::
smaller.

Figure 10b presents the transition locations for Geometry 2. The PSER and PSEX results are close to each other and indicate475

later onsets of transition than the other methods. The maximum difference between PSER and RANS transition locations is 27

% at r0/R= 0.40. The discrepancies between PSER and PSEX results occur because the pressure distributions from XFOIL do

not exactly reproduce those from RANS despite being close to each other. The RANS
:::::
PSER and PSER

::
2D

::::::
results

:::
are

::
in

:::::
close

:::::::::
agreement.

::::
This

::::::::
indicates

:::
that

:::::::::::::::
three-dimensional

::::::
effects

:::
and

:::::::
rotation

:::
are

:::::
likely

:::
not

::::
very

::::::::
important

:::
for

:::
this

::::::
blade.

:::
As

::::::::
discussed

::::::
Section

:::
4.4,

:::
the

:::::::
pressure

:::::::
gradient

::::::
seems

::
to

::
be

:::::
more

::::::::
important

::::
than

:::::::
rotation

:::::
effects

::
in

:::::::::
Geometry

::
2.

:::::
PSER

:::
and

::::::
PSER 2D

::::::
present480

::::::
slightly

::::::::::
downstream

::::::::
transition

::::::::
locations

:::::
when

::::::::
compared

::
to

::::::
RANS.

::::
The

:::::
PSEX

::::::::
transition

::::::::
locations

::
are

:::::::::::
downstream

::
of

:::
the

:::::
PSER

::::
ones,

:::::::
possibly

::::
due

::
to

::
the

:::::::
weaker

::::::
adverse

:::::::
pressure

:::::::
gradient

::
in

:::
the

:::
Cp ::::::::::

distributions
::::
from

:::::::
XFOIL.

::::
The transition locations lie near

one another and indicate earlier transition onsets. It is possible to infer that RANSconverges to a two-dimensional transition

mechanism and that the three-dimensionality, as considered in the PSER and PSEX results, has a stabilizing effect. The fact

that the PSE RANS results (not shown) presented no mode reaching Ncrit also supports the claim that transition is triggered485

too early in RANS and the validity of the later PSER and PSEX transition locations. The increase in the radial position has

the effect of delaying the transition onset. However, this effect is less marked
:::::
delay

:::
due

::
to

:::::::::
increasing

:::::
radius

::
is
::::
less

:::::::::
significant

in Geometry 2because the relative importance of the rotation effects compared to the spanwise pressure gradient is smaller
:
,

:::::::
probably

:::::::
because

::
of

:::
the

:::::
lower

::::::::
influence

::
of

:::::::
rotation

::::::
effects.
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Figure 10. Transition locations.
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The PSER contours of N factor
::::::
-factor as a function of the chordwise position and propagation angle η

:
Ψ
:

are shown in490

Fig. 11for Geometries 1 and 2. η
:
.
::
Ψ is the angle between the inviscid streamline and the perturbation propagation direction.

:::::::::
wavevector

::::
(see

::::
Fig.

:::
1). The dashed red line indicates the transition location. Considering Geometry 1 in Figs. 11a, 11c

:
b,

and 11e, we observe that
::
c, the region of critical N factor is less symmetrical and more displaced towards low η

::::::
-factor

::
is

::::::::
displaced

::
in

:::
the

::::
−Ψ

::::::::
direction

::::
and

:
it
:::

is
:::
less

:::::::::::
symmetrical

:
at the inner radial location. The mode causing transition at this

location has η =−52◦, whereas its counterparts at the middle and outer radial positions have respectivelyη =−34◦ and−10◦.495

This behavior may be linked to the higher spanwise velocity
::::::
critical

::::::
modes

::::
have

:::::::::
Ψ =−58◦,

::::::
−24◦,

:::
and

::::
−6◦

::
at
::::::::::::
r0/R= 0.26,

::::
0.58,

:::
and

:::::
0.89,

::::::::::
respectively.

::::
The

:::::
lower

:::::::::
Ψ =−58◦ at r0/R= 0.26, which allows the occurrence of transition via more oblique

waves. Moreover, transition
:::::::::::
r0/R= 0.26

::
is

:::::::
possibly

::::::
related

::
to
::::

the
:::::::
stronger

:::
and

::::::::::
inflectional

::::::::
spanwise

:::::::
velocity

:::::::::
occurring

::
at

:::
this

:::::::
location,

::::::
which

:::::
makes

:::::::::
transition

::::
more

::::::::::
susceptible

::
to

::::::
oblique

::::
and

::::::::
crossflow

::::::
modes.

:::::::::
Transition occurs significantly earlier

at r0/R= 0.26 (x1/c= 0.23) compared to
:::
this

:::::::
position

::::::::::
(x1 = 0.23,

:::::::::
compared

::
to

:::::::::
x1 = 0.34

::::
and

::::
0.37

::
at

:
r0/R= 0.58 and500

0.89(x1/c= 0.34 and 0.37, respectively).

Regarding Geometry 2
:::
The

::::::
PSER

:::
2D

:::::::
contours

::
of

::::::::
N -factor,

::::::
shown

:
in Figs. 11b,

:::
12a,

::::
12b,

::::
and

::::
12c,

:::
are

::::
more

:::::::::::
symmetrical

::::::
around

::::::
Ψ = 0◦,

:::::
with

:::
the

::::::
critical

:::::
modes

::::::
having

:::::
lower

:::
|Ψ|

:::::::::
(Ψ = 17◦,

:::
5◦,

:::
and

:::
4◦

:::
for

:::::::::::
r0/R= 0.26,

:::::
0.58,

:::
and

::::
0.89,

::::::::::::
respectively).

::::
This

:::::
shows

::::
that

::
the

:::::::
oblique

::::::
critical

::::::
modes

:::::::
obtained

::
in

:::
the

:::::
PSER

::::::
results

:::
are

::::::
caused

::
by

::::::::::::::::::
three-dimensionality

:::
and

:::::::
rotation.

:

::::::
Figures

:
11d,

:::
11e,

:
and 11f , the

::::
show

::::
that

:::
the

::::::
PSER critical regions are more spread along the η direction , showing the505

susceptibility of transition
:::::::
elongated

::
in
:::
the

:::
Ψ

:::::::
direction

:::
for

:::::::::
Geometry

::
2,

::::::::
indicating

::::::::
transition

::::::::::::
susceptibility to a broader range

of wavescompared to Geometry 1. At the middle and outer radial locations, the modes causing transition present respectively

η =−30◦ and −11◦, close to those indicated by Geometry 1. However,
:
.
::::
The

::::::
critical

:::::
modes

::::
have

::::::::::
Ψ =−12◦,

:::::
−16◦,

::::
and

:::::
−12◦

::
for

::::::::::::
r0/R= 0.40,

:::::
0.58,

:::
and

:::::
0.89.

::::::
These

:::::
waves

:::
are

::::
less

:::::::
oblique

::::
than

:::::
those

:::
for

:::::::::
Geometry

::
1,

::::::::::
particularly

:
at the inner radial

location, transition occurs with η =−6◦, which is higher than the angle obtained for the first geometry. The reason is possibly510

the lower spanwise velocity of Geometry
:
.
::::::
Notice

:::
that

:::
the

::::
BL

::::::
profiles

::
of

::::::::
spanwise

:::::::
velocity

:::
at

:::
this

:::::::
location

:::::
(Fig.

:::
7b)

:::
do

:::
not

::::::
present

::
an

::::::::
inflection

::::::
point,

::::::
making

::::::::
transition

:::
via

:::::
lower

::::
|Ψ|

:::::
modes

:::::
more

:::::
likely.

:::::::::
Regarding

:::
the

::::::
PSER

:::
2D

::::::
results,

::
in

:::::
Figs.

::::
12d,

:::
12e,

::::
and

:::
12f,

:::
the

:::::::
regions

::
of

::::::
critical

::::::::
N -factors

:::
are

:::::
more

:::::::
centered

::::::
around

:::::::
Ψ = 0◦,

::::
with

:::
the

::::::
critical

:::::
modes

:::
for

:::::::::::
r0/R= 0.40,

:::::
0.58,

:::
and

::::
0.89

:::::::::
presenting

:::::::
Ψ = 0◦.

::::
This

:::::
means

::::
that

::::::::::
disregarding

:::
3D

::::
and

::::::
rotation

::::::
effects

::
in

:::
the

:::::::::
mean-flow

:::::
leads

::
to

:::
2D

::::::
critical

::::::
modes

::
for

:::::::::
Geometry 2. The contours also show that the increase in the radius shrinks the critical region and delays transition.515

Figures 13a, 13b, and 13c present the profiles of the perturbation of u1 velocity of the modes leading to transition in Geom-

etry 1. At the inner radial position, the
:::
The

:
PSER and PSEX modes are in close agreement

::
for

:::
the

:::::
three

:::::
radial

::::::::
positions,

indicating that
:::
they

::::::
predict

::::
the

:::::
same

::::::::
transition

::::::::::
mechanism.

:::
At

::::::::::::
r0/R= 0.26,

:::::
these

::::::
modes

::::
have

::
a
::::::
single

:::::
peak,

::::::
located

:::
at

::::::::::
x3/δ = 0.2,

::::::::
associated

::::
with

::::
their

::::
high

:::
|Ψ|

:::
and

:
the transition mechanisms computed by them are the same . There are differences

between the modes close to the wall at the middle and outer radial positions. These differences probably ensue from the higher520

spanwise velocity in the base-flow of the PSEX analyses. The modes resemble Tollmien-Schlichting (TS) waves. However, the

:::::::::
inflectional

::::::::
spanwise

:::::::
velocity

::::
(Fig.

::::
6b).

::::
This

:::::::
indicates

::::
that

::::::::
transition

::::
may

::
be

::::::::
triggered

::
by

:::::::
oblique

:::
TS

::
or

::::::::
crossflow

::::::
modes.

::::
The

:::::
PSER

:::
2D

::::::
critical

:::::
mode

:::::
differs

:::::
from

:::
the

:::::::
previous

::::
ones

::
by

:::::::::
presenting

::
a

::::::::
near-wall

::::
peak,

::
at

::::::::::
x3/δ = 0.1,

::::
and

:::::
having

::
a
::::::
second

::::
lobe

::
for

::::::::::
x3/δ > 0.7

:
.
::
At

:::::::::::
r0/R= 0.58,

:::
the

:::::
PSER

::::
and

:::::
PSEX modes tend to have a single-peaked structure at r0/R= 0.26, associated
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(a) Geometry 1,r0/R=0.26 (b) Geometry 1,r0/R=0.58 (c) Geometry 1,r0/R=0.89

(d) Geometry 2,r0/R=0.40 (e) Geometry 2,r0/R=0.58 (f) Geometry 2,r0/R=0.89

Figure 11.
:::::::
N -factor

::::::
contours

::::
from

:::::
PSER

::
for

::::
three

:::::
radial

:::::::
positions.

:::
The

:::::
white

:::
line

:::::::
indicates

::
the

::::::
critical

:::::
region,

:::
and

:::
the

::
red

::::::
dashed

:::
line

:::::
shows

::
the

:::::::
transition

:::::::
location.

with their high propagation angle (in absolute value)
:::::::
approach

:::
the

:::::
PSER

:::
2D

::::
one

::
by

::::::::::
developing

:
a
::::::::
near-wall

:::::
peak,

:::::::
although

::::
less525

::::::::
important

::::
than

:::
the

:::
one

::
at

::::::::::
x3/δ = 0.2,

:::
and

::
a
::::::
second

::::
lobe

:::
for

::::::::::
x3/δ > 0.7.

:::
The

::::::
PSER

:::
and

:::::
PSEX

::::::
modes

::::::
finally

:::::::
converge

::
to
::
a
:::
2D

::::
mode

::
at
::::::::::::
r0/R= 0.89,

:::::
where

::::
they

:::
are

::
in

:::::
close

::::::::
agreement

::::
with

:::
the

::::::
PSER

:::
2D

:::
one.

::::
The

:::::
latter

:
is
:::::::
similar

::
to

:
a
:::
2D

:::
TS

:::::
wave,

::
as

::::
also

:::::::
observed

:::
for

:::::::::::
r0/R= 0.58.

::::
The

:::::::::
appearance

:::
of

::::::::
near-wall

:::::
peaks

::
in

:::
the

:::::
PSER

:::
and

::::::
PSEX

:::::
modes

::
at
:::::::::::
r0/R= 0.58

::::
and

::::
0.89

::
as

::::
well

::
as

:::
the

::::
close

:::::::::
agreement

:::::::
between

:::::
these

::::::
modes

:::
and

:::
the

::::::
PSER

:::
2D

::::
ones

::
at

:::::::::::
r0/R= 0.89

:::
can

::
be

::::::
related

::
to
:::
the

::::::::::::
amplification

::
of

:::
2D

::
TS

::::::
waves

:::
due

::
to

:::
an

::::::
adverse

:::::::
pressure

:::::::
gradient.530

The results for Geometry 2 are presented in Figs. 13d, 13e, and 13f. There are differences between the modes in the vicinities

of the airfoil for the inner and middle radial locations. These variations are probably caused by the spanwise velocity, which

is higher in the base-flow of the PSEX analyses. At the outer radial position, the PSER
::
As

::::::
occurs

:::
for

::::::::
Geometry

::
1,
:::
the

::::::
PSER

:::
and

:::::
PSEX

::::::
modes

:::::
agree

::
for

:::
the

:::::
three

:::::
radial

::::::::
positions.

:::::
They

::::::
indicate

:::::::::::
double-peak

::::::
modes,

::::
with

:::::::
maxima

::
at

:::::::::
x3/δ = 0.1 and PSEX

modes converge since the spanwise
:::
0.2.

:::
The

:::::::
former

:::
has

:
a
::::::

larger
::
or

::::::
similar

:::::::::
magnitude

:::::::::
compared

::
to

:::
the

:::::
latter.

::::::
These

::::::
modes535

::
are

:::::
close

::
to

:::
the

::::::
PSER

:::
2D

::::
ones

::::::
except

::::::
around

::::::::::
x3/δ = 0.2,

::::::
where

:::
the

:::::
PSER

::::
and

:::::
PSEX

::::::
modes

::::
have

:::::
more

::::::::::
pronounced

::::::
peaks.

:::
The

::::::::
presence

::
of

::
a

::::
peak

::
at

::::::::::
x3/δ = 0.1

:::
for

::
all

:::::
radial

::::::::
locations

::
is
::::::
related

::
to
::

a
::::::
strong

::::::
adverse

::::::::
pressure

:::::::
gradient

::
in

:::::::::
Geometry

::
2.
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(a) Geometry 1,r0/R=0.26 (b) Geometry 1,r0/R=0.58 (c) Geometry 1,r0/R=0.89

(d) Geometry 2,r0/R=0.40 (e) Geometry 2,r0/R=0.58 (f) Geometry 2,r0/R=0.89

Figure 12. N -factor contours from PSER
::
2D for three radial positions.

:::
The

:::::
white

:::
line

:::::::
indicates

::
the

::::::
critical

:::::
region,

::::
and

::
the

:::
red

::::::
dashed

:::
line

::::
shows

:::
the

:::::::
transition

:::::::
location.

:::
The

::::::
second

:::::
peak,

::
at

::::::::::
x3/δ = 0.2,

:::::
seems

::
to

:::
be

::::::::
associated

::::
with

:::
the

::::::::::
obliqueness

::
of
:::
the

::::::
mode,

::::::
having

:
a
:::::
larger

:::::::::
amplitude

:::
for

:::::
larger

:::::
values

::
of

::::
|Ψ|.

::
A

:::
2D

:::
TS

::::::::::
mechanism

::::::
seems

::
to

::
be

:::::
more

::::::::
important

:::
in

::::::::
Geometry

::
2
:::::::
because

:::
the

::::::
critical

::::::
modes

:::
are

:::::
closer

:::
to

:::
the

:::::
PSER

:::
2D

::::
ones,

::::
and

:::
the

::::::
adverse

:::::::
pressure

:::::::
gradient

::
is
::::::::
stronger.

::::::::
However,

:
a
::::::::::
mechanism

::::::
related

::
to

::::::
oblique

:::
TS

::::::
waves,

::::::::::
engendered540

::
by

:::
3D

::::
and

::::::
rotation

:::::::
effects,

:::::::
appears

::
to

::
be

:::::
more

::::::::
important

:::
for

:::::::::
transition

::
in

::::::::
Geometry

:::
1.

::::
This

::
is

:::
due

::
to
:::
its

:::::
larger

::::::
sweep

:::::
angle

:::
and

:::::
region

:::
of

::::::::
favorable

:::::::
pressure

:::::::
gradient.

::::::::
Although

:::
the

::::::::
crossflow

:
velocity profiles are closer to each other. The modes causing

transition in Geometry 2 also bear a resemblance to TS waves.
::::::::::
inflectional,

:::
the

:::::::::
magnitude

::
of

:::
this

:::::::
velocity

::::::::::
component

::
is

::::
very

:::
low,

:::
of

:::
the

::::
order

:::
of

:::
0.1

::
%

::
of

:::
the

:::::::::
freestream

::::::::
velocity,

:::::
except

:::
for

:::
the

:::::
inner

:::::
radial

:::::::
location

::
of

:::::::::
Geometry

::
1,

:::::
where

::
it
:::::::
reaches

:::
3.5

::
%.

:::::
Thus

::::::::
excluding

:::::::::
Geometry

:
1
::

at
::::::::::::
r0/R= 0.26,

:
a
:::::::::
crossflow

::::::::
transition

:::::::::
mechanism

::
is
::::::::

unlikely.
:::::::::::
Nevertheless,

:::
the

:::::
effect

:::
of

:::
the545

:::::::
spanwise

:::::::
velocity

:::
on

::::::::
transition

::::::
cannot

::
be

::::::::
neglected

::
as

::
it
::::::
allows

::::::::
transition

::::::
through

:::::::
oblique

::::::
modes.

:

PSE results for the mode leading to transition.

In the next, we analyze the effects of rotation on the transition locations. Figure 14a presents the PSEX transition locations

as a function of the radial position and rotation speed for Geometry 1. The trend shown in the picture indicates that the increase

in
::::::::
displayed

:::::
trend

:::::::
indicates

::::
that

::
an

:::::::
increase

:::
of the rotation speed accelerates transition

::::
shifts

:::
the

::::::::
transition

:::::::
location

::::::
closer

::
to550
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Figure 13.
:::
PSE

:::::
results

:::
for

:::
the

::::
mode

::::::
leading

::
to

:::::::
transition.

::
the

:::::
nose. In particular, the rise in ω

:
Ω

:
from 0.32 to 0.96 rad · s−1 leads to transition 37 % earlier. The case corresponding to 5

% of the RANS rotation speed (not shown) did not present any mode reaching Ncrit further indicating the destabilizing effect

of rotation. These effects take place through the rotation terms in the PSE and the
::::
occur

:::::::
through

:::
the

:::::::
Coriolis

:::
and

::::::::::
centrifugal

:::::
forces

:::::
acting

:::
on

::
the

:::::::::::
disturbances

::
as

::::
well

::
as

:::::::
through

::
the

:
variation of the spanwise velocity. The former seems to be preponderant

since , at r0/R= 0.89, there is no significant variation in the spanwise velocity with ω
::
Ω

::
at

::::::::::
r0/R= 0.89, but transition occurs555

earlier regardless. There is a delay in transition for increasing radius up to r0/R= 0.47. In this region, ,
::::::
where the Coriolis

force is prevalent. Further increases in radius do not produce significant changes in
::::::::::
significantly

::::::
change the transition locations,

indicating a balance between the rotation effects.
:::
The

:::::::
presence

::
of

::
a

::::::
laminar

:::::::::
separation

::::::
bubble

:::
for

:::::
radial

:::::::
positions

::::::
closer

::
to

:::
the

:::
root

:::
can

:::::
make

:::
the

:::::::
Coriolis

:::::
force

:::
act

::
in

:::
the

::::
same

::::::::
direction

::
as

:::
the

:::::::::
centrifugal

::::
one.

:::
For

::::::
higher

:::::
radial

::::::::
positions

:::
and

::
in

:::
the

:::::::
absence

::
of

:::::::::
separation,

::::
these

::::
two

:::::
forces

::::
tend

::
to
:::::::
balance

::::
each

:::::
other.

:
560
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Figure 14.
::::::::
Transition

:::::::
locations

::
for

::::::
several

::::::
rotation

:::::
speeds.

Figure 14b portrays the results for Geometry 2. The increase in ω
::
Ω plays a destabilizing role. This observation is supported

by the fact that the case with 5 % of the RANS rotation speed (not shown) presented no mode reaching Ncrit. However, the

variation of ω
:
Ω does not play a role as important as for Geometry 1. For instance, transition occurs 8 % earlier on average for

an increase in ω
:
Ω
:
from 0.45 to 1.35 rad·s−1. The smaller sensitivity of transition to variations in

::::::::
transition

:::::::
location

:::::
moves

::::
less

::::
with the rotation speed ensues from the fact that the airfoils of

::
for

:
Geometry 2 maintain favorable pressure gradients

:::::::
because565

:::
this

:::::
blade

::::::::
maintains

::
a
::::::::::::
non-negligible

:::::::
pressure

:::::::
gradient

:
over a larger chordwise extent, which makes the rotation effectshave

smaller relative importance. Although the changes in the spanwise velocity with the rotation speed may affect the transition

locations, the rotation effects embedded in the PSE seem to be the driving force of the variation in the transition onsets. This is

because the spanwise velocity of
::::::::
overtaking

:::::::
rotation

::::::
effects.

::::
The

::::
fact

:::
that

:::
the

::::::::
spanwise

:::::::
velocity

::
in

:
Geometry 2 , especially at

the middle and outer radial locations, varies more with the rotation velocity
:
Ω

:
than in Geometry 1 , but the transition locations570

present smaller changes
::::
with

:
a
:::::::
smaller

:::::
effect

:::
on

::::::::
transition

::::::::::
corroborates

::::
this

:::::
claim. Transition is delayed when increasing the

radius up to r0/R= 0.58, a range along which the Coriolis force is dominant. Only slight variations in transition locations

occur after this radial position, pointing to a balance in the rotation effects.

Transition locations for several rotation speeds.

The PSEX contours of N -factor at r0/R= 0.58 for Geometries 1 and 2 are shown in Fig. 15. In the case of Geometry575

1, as shown in Figs. 15a, 15b, and 15c, the increase in ω
:
Ω
:

forces the critical region towards lower x1. This region lies

mostly in the −η
:::
−Ψ

:
half-plane, meaning that the critical waves propagate towards the root of the blade. These modes present

η =−25◦
::::::::
Ψ =−25◦, −24◦, and −25◦ for ω = 0.32

:::::::
Ω = 0.32, 0.64, and 0.96 rad · s−1. For Geometry 2, in Figs. 15d, 15e, and

15f, we also observe the displacement of the critical region to lower x1 with the increase in ω
::
Ω. Moreover, the flat critical
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region extending from η =−60◦
:::::::::
Ψ =−60◦ to 40◦ obtained with ω = 1.35 rad · s−1

:::::::::::::::
Ω = 1.35 rad · s−1

:
shows that the higher580

rotation velocity allows transition through a broader range of disturbances. The critical regions are mostly located in the

−η
:::
−Ψ

:
half-plane, indicating stronger transition susceptibility to waves traveling to the inner blade part. The critical modes

present η =−16◦
:::::::::
Ψ =−16◦,−15◦, and−13◦ for ω = 0.45

:::::::
Ω = 0.45, 0.9, and 1.35 rad · s−1. The analysis of the full geometry

indicates that the increase in ω
::
Ω reduces the critical |η|

:::
|Ψ| in the region 0≤ r0/R≤ r, where r = 0.58 and 0.5 for Geometries

1 and 2. For larger r, the opposite occurs, i.e., rising ω
:
Ω
:
leads to increasingly oblique critical modes.585

(a) Geom. 1,Ω=0.32 rad s−1 (b) Geom. 1,Ω=0.64 rad s−1 (c) Geom. 1,Ω=0.96 rad s−1

(d) Geom. 2,Ω=0.45 rad s−1 (e) Geom. 2,Ω=0.9 rad s−1 (f) Geom. 2,Ω=1.35 rad s−1

Figure 15. N -factor contours from PSEX at r0/R= 0.58 for several rotation speeds.
:::
The

::::
white

:::
line

:::::::
indicates

:::
the

:::::
critical

:::::
region,

:::
and

:::
the

:::
red

:::::
dashed

:::
line

:::::
shows

:::
the

:::::::
transition

:::::::
location.

Figures 16a, 16b, and 16c show the PSEX profiles of the critical modes for Geometry 1. All modes collapse at the inner

radial location, indicating that ω
:
Ω

:
does not alter the transition mechanism. The inflectional spanwise velocity profiles at this

location (Figs. 8a and 8d) seem to render the transition mechanism, through oblique modes, quite robust to changes in ω
:
Ω.

At r0/R= 0.58 and 0.89, the modes for ω = 0.64
:::::::
Ω = 0.64

:
and 0.96 rad · s−1 are in close agreement. However, the mode for

ω = 0.32 rad · s−1
:::::::::::::::
Ω = 0.32 rad · s−1 differs from the previous ones by the presence of a near-wall peak. As already discussed,590

the mode shapes are closely related to their propagation angles, with higher-|η|
:::
|Ψ|modes occurring at locations of inflectional

spanwise velocity and tending to have a single-peak like those at r0/R= 0.26. Figures 16d, 16e, and 16f shows the results
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for Geometry 2. At r0/R= 0.40, the increase in ω reduces |η|
:
Ω
:::::::

reduces
::::
|Ψ| and makes double-peak modes such as those

for ω = 0.45
:::::::
Ω = 0.45

:
and 0.9 rad · s−1 become a 2D, single-peak mode like the one for ω = 1.35 rad · s−1

::::::::::::::
Ω = 1.35 rad · s−1.

At r0/R= 0.58, all modes collapse and present double peaks. At the outer radial location, the mode for ω = 0.45 rad · s−1595

:::::::::::::::
Ω = 0.45 rad · s−1 is nearly 2D, and the rise in ω

::
Ω increases its obliqueness (i.e., increases |η|

:::
|Ψ|). The modes for higher ω

::
Ω

are in close agreement at this location. In Geometry 2, the adverse pressure gradient is more important, and transition is more

susceptible to modes closer to 2D TS waves with near-wall peaks. The increase of the rotation tends to prompt these 2D modes

at low radial locations, while it makes the critical modes more oblique at higher radii.
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(a) Geometry 1,r0/R=0.26
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Figure 16. PSEX results for the mode leading to transition for several rotation speeds.

5 Conclusions600

A framework for transition prediction applicable to flows over wind-turbine blades is developed. The method, which comprises

a boundary-layer model and the PSE, accounts for effects of the quasi-three-dimensional flow and the blade rotation. It aims to
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provide more reliable transition predictions without requiring three-dimensional simulations. Using the developed method, we

have analyzed the role of flow three-dimensionality and rotation on the transition onset over two geometries.

The developed method provides accurate chordwise velocity profiles and, for locations not too close to the root of the blade605

and stagnation point, spanwise velocity. The use of cp distributions from XFOIL as input to the model leads to an overestimation

of the spanwise velocity. The discrepancies diminish for higher radial positions. The analysis of the rotational effects reveals

that they
:::
flow

::
is

::::::
highly

:::::::::::::::
three-dimensional

:::::
close

::
to

:::
the

::::
root

::
of

:::
the

::::::
blade,

:::::::
reducing

:::
the

::::::::
accuracy

::
of

::
a
::::::::::::::::::::
quasi-three-dimensional

::::::::
approach.

:::
The

::::::::
spanwise

:::::::
velocity

:::::::
obtained

::::
with

:::
the

::::::
model

:::::
better

:::::
agrees

::::
with

::::::
RANS

:::
for

:::::::::
geometries

:::::::::
respecting

:::
the

:::::::::::
conical-wing

::::::::::::
approximation.

:::::
Some

:::
of

:::
the

::::::::
spanwise

:::::::
velocity

:::::::
profiles

::::::
contain

::::::::
inflection

::::::
points,

::::::
which

::::
may

:::::
allow

::::::::
crossflow

:::::::::
instability,

::::
not610

:::::::::
considered

::
in

::::::::::::::
two-dimensional

::::::::
transition

::::::
models.

::::::::
Rotation

:::
was

::::::
shown

::
to

:
accelerate the flow towards the tip of the blade in the

developed flow regionand towards the root close to
:
,
:::::
while

:::
the

:::::::
opposite

::::::
occurs

::::
near the stagnation point.

Regarding the transition onset, three-dimensionality displays a stabilizing role. The quasi-three-dimensional effects considered

in the developed model, such as the velocity and gradients in the spanwise direction, delay transition. This is true even though

the spanwise velocity has a low magnitude in most of the blade. Conversely, considering a two-dimensional base-flow leads615

to earlier transition locations . These results
::::::::
Transition

::::::::
locations

::::
from

:::
the

:::
eN

:::::::
method

:::::::::::
implemented

::
in

:::
the

::::::::::
EllipSys3D

::::::
RANS

::::
code

::::::
closely

:::::
agree

::::
with

:::::
those

::::
from

:::
the

::::
PSE

:::::::
analysis

::
of

::
a

:::
2D

:::::::::
mean-flow

::::::
without

:::::::
rotation.

::::::
RANS

::::::::
transition

::::::::
locations

:
are close

to those from the database method in
:::::
model

::::::::
developed

:::
in

:::
this

:::::
work

::
in

::::::
places

::::::
where

:::
3D

:::
and

:::::::
rotation

::::::
effects

:::
are

::::
low.

:::::
This

:::::
occurs

:::
for

:::::::::
Geometry

::
2

:::
and

::::::
higher

:::::
radial

::::::::
positions

::
in
:::::::::

Geometry
::
1.
:::::::::

However,
::::::
results

::
of

:::
the

::::::
RANS

::::::::
transition

::::::
model

::::
and

:::
the

::
2D

::::::::
approach

:::::::
deviate

::::
from

:::::
those

:::::
from

:::
the

::::
new

::::::::
approach

:::
for

::::::::
locations

::::
from

:::
the

::::
root

::
to

:::::::::::::
approximately

::
58

::
%

:::
of

:::
the

:::::
radius

:::
of620

::::::::
Geometry

::
1,

::::::
where

:::
3D

:::
and

:::::::
rotation

::::::
effects

:::
are

::::::::
important.

:::
At

:::::
these

::::::::
locations,

:
the EllipSys3D RANS code, indicating that the

latter predicts forward transition locations. PSE analyses of the RANS base-flow corroborate this result, showing that transition

is triggered in RANS before a mode has sufficiently amplified.

Rotation plays a destabilizing role, hastening the onset of transition. Moreover, airfoils with a smaller region of favorable

pressure gradient are more susceptible to rotational effects. Transition
::::::::
combined

::::::::
influence

::
of

:::::::::::::::::
three-dimensionality

:::
and

:::::::
rotation625

::::
leads

::
to

::::::
earlier

::::::::
transition

::::::
onsets.

:::::
These

::::::
effects

:::::
make

::::::::
transition

:::::
occur

:::::::
through

::::::
oblique

::::::
modes,

::::::
which

::::
have

:::::
single

:::::
peaks

::::
and

:::
are

:::
not

:::::::
predicted

:::::
with

::
the

:::
2D

:::::::::
approach.

:::
The

:::::::
oblique

::::::
modes

:::::
appear

::
in
::::::::
locations

::::::
where

::
the

::::::::
spanwise

:::::::
velocity

::::::
profile

::
is

::::::::::
inflectional,

:::::
raising

:::
the

:::::::::
possibility

::
of

:::::
being

::::::
related

::
to

::::::::
crossflow

:::::::::
instability.

::::::::
However,

::::::
except

:::
for

:::
the

::::
inner

:::::
radial

:::::::
location

::
of

:::::::::
Geometry

::
1,

:::
the

::::::::
magnitude

:::
of

:::
the

::::::::
crossflow

:::::::
velocity seems to be caused by

:::
too

:::
low

::
to

::::::
trigger

::::::::
crossflow

:::::::::
transition.

:::
The

::::::::::
single-peak

::::::
modes

::::
may

::
be

::::
very

::::::
oblique

:
TS waves. However, at low radii, where the spanwise velocity reaches higher values,

:::
For

:::::
larger

:::::
radial

::::::::
positions,630

the critical modes are more oblique and present a distinctive shape that points to the possibility of them being intermediates

between TS and crossflow modes.
::::
flow

:::::
tends

::
to

::
be

::::
more

:::::::::::::::
two-dimensional,

:::
and

:::
the

:::::::
adverse

:::::::
pressure

:::::::
gradient

:
is
:::::
more

:::::::::
important.

::::
Thus

:::
the

::::::
critical

::::::
modes

::::::
become

::::
less

::::::
oblique

:::
and

:::::::
develop

:::::::
features

::
of

:::
2D

:::
TS

:::::
waves,

:::::
such

::
as

:
a
::::::
second

::::
peak

::::
near

:::
the

::::
wall.

:::::::
Finally,

:
it
::
is

::::
also

::::::
shown

:::
that

:::
the

:::::::
increase

:::
of

:::
the

::::::
rotation

::::::
speed,

:::::::
through

:::
the

:::::::::::
modification

::
of

:::
the

::::::::
spanwise

:::::::
velocity

:::
and

:::
the

:::::::
increase

:::
of

::
the

:::::::
Coriolis

::::
and

:::::::::
centrifugal

::::::
forces,

:::::
seems

::
to

::::
shift

:::
the

::::::::
transition

:::::::
location

::::::
closer

::
to

:::
the

::::::
leading

:::::
edge.635

Despite overestimating the spanwise velocity, the use of XFOIL input in the developed model leads to transition locations

close to those obtained with RANS input. Therefore, the model fulfills the goal of providing a reliable estimate for the transition
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onset without requiring three-dimensional simulations
:
In
:::::

order
:::

to
:::::
better

:::::::::
understand

::::
the

::::::::
transition

::::::
process

:::::
over

:::
the

:::::::
rotating

:::::
blades

::::
and

:::::::
validate

:::
the

:::::::::
prediction

::
of

:::
the

:::::::::
presented

::::::::
approach,

::::::::
in-depth

::::::::::
investigation

:::::::
through

:::::
DNS

::::::::::
simulations

::::
and

:::::::
detailed

::::::::::
experimental

::::::
works

:::
are

::::::
desired.640
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