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Abstract. This paper presents a heuristic building block for wind farm layout optimization algorithms. For each pair of wake-

interacting turbines, a vector is defined. Its magnitude is proportional to the wind speed deficit of the waked turbine due to

the waking turbine. Its direction is chosen from the inter-turbine, downwind, or crosswind directions. These vectors can be

combined for all waking or waked turbines and averaged over the wind resource to obtain a vector, a ‘pseudo-gradient’, that

can take the role of gradient in classical gradient-following optimization algorithms. A proof-of-concept optimization algorithm5

demonstrates how such vectors can be used for computationally efficient wind farm layout optimization. Results for various

sites, both idealized and realistic, illustrate the types of layout generated by the proof-of-concept algorithm. These results

provide a basis for a discussion of the heuristic’s strong points—speed, competitive reduction in wake losses, flexibility—and

weak points—partial blindness to the objective and dependence on the starting layout. The computational speed of pseudo-

gradient-based optimization is an enabler for analyses that would otherwise be computationally impractical. Pseudo-gradient-10

based optimization has already been used by industry in the design of large-scale (offshore) wind farms.
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1 Introduction

1.1 Context

For any wind farm, its layout is one of the most important design choices a developer has to make. Often, the goal of a layout15

optimization is to obtain the lowest possible wake losses, to maximize the revenue under a fixed feed-in tariff, where a 0.1%

gain in energy yield for a large wind farm can easily correspond to several million euros in revenue over its lifetime.

A layout optimization for a large (offshore) wind farm—which could involve tens to hundreds of turbines to be placed in a

possibly very complex polygon—is demanding in terms of computational power since it requires a wake model run for every

cost function evaluation. For a final layout design, a runtime of several weeks is quickly justified. However, before reaching20

a final design, a designer usually goes through an exploratory phase where many options are still on the table, ranging from

different turbine types and numbers of units to various practical constraints set by the installation contractor. Furthermore,

being one of the first steps of a Levelized Cost of Energy (LCoE) assessment, layout optimizations are in general under a lot

of time pressure in a real-life competitive tender process.
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At the same time, the cost functions to be used in the optimizations are becoming increasingly complex. Where wake

losses used to be a good gauge for the LCoE improvement, falling subsidy levels mean that the balance of plant costs play

an increasingly bigger role in the layout design, which calls for an assessment of foundation weight and cable length in every

cost function evaluation. Moreover, for subsidy-free wind farms, the electricity price can no longer be assumed a constant and

market dynamics will have to be involved. Finally, since risk is a significant part of the LCoE assessment as well, an uncertainty5

evaluation method such as a stochastic simulation might also be part of the cost function, further driving up its runtime.

In this context of complex and expensive cost functions, existing classes of optimization algorithms have important down-

sides. Meta-heuristic approaches (e.g., genetic algorithms, particle swarm optimization) and numerical gradient-based ap-

proaches require many cost function evaluations for a single iteration step. Analytical gradient-based approaches involve time-

consuming effort to derive analytical gradients and impose smoothness constraints on the cost function.10

In this paper, we present a new heuristic optimization algorithm that uses some of the steps of the cost function—most

notably the energy losses per wind direction sector—to construct a so-called pseudo-gradient. In its simplest form, this pseudo-

gradient describes the value that each wind turbine gains or loses when facing the wind from a certain direction, which can

then be translated into a vector that shifts it to a new location. The major advantage of such an approach is that it only requires

a single cost function evaluation for the wind farm to construct the pseudo-gradient vector for every turbine. The algorithm has15

been successfully used in commercial offshore wind projects.

1.2 Overview

This paper starts with a mathematical description of the different aspects of the wind farm layout optimization problem (Sec. 2).

This establishes the concepts and mathematical formalization used in the rest of the paper. Next, pseudo-gradients themselves

are defined and illustrated (Sec. 3). This answers the question of what they are in a mathematically precise way and indicates20

how they can form a basis for wind farm layout optimization. Then it is concretely shown how pseudo-gradients can be used for

this purpose (Sec. 4.3). Namely, optimization algorithms and the results of their application to wind farm layout optimization

problems are presented and discussed. Finally, the important conclusions of the research are presented and some possible lines

of follow-up research are shared (Sec. 5).

2 Wind farm layout optimization25

2.1 Overview

This section gives an abstract mathematical description of the models involved in the wind farm layout optimization problem.

It starts with a description of the wind farm in Sec. 2.2, where the optimization problem’s design variables and constraints are

defined. It continues with the models that play a role in the optimization problem’s objective function. Namely, those for the

wind resource (Sec. 2.3), the turbine (Sec. 2.4), and the wake effects (Sec. 2.5). It closes with a description of the objective in30

Sec. 2.6.
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The description is abstract because the approach to layout optimization presented in this paper is applicable independent of

the concrete details of the models involved. For example, it can be used with a large class of wake models. This does not mean,

however, that the behavior of optimization algorithms built on this approach are not affected by specific modeling choices.

2.2 The wind farm

For the purposes of this paper, a wind farm is fully defined by the site and the layout. The site is characterized by its sur-5

face roughness length and the location constraints turbines must satisfy, expressed abstractly as a set S of coordinate values.

Regulations may determine a minimal inter-turbine distance dmit characterizing the distance constraints. A location called σ

can be specified using coordinates: `σ = (pσ,zσ), where zσ is the height coordinate and pσ = (xσ,yσ) = xσeθref + yσeθref+
π
2

is the planar location, with θref the reference direction for the site planar coordinate system. The set of turbines in the farm

is conceptualized by a set of indices T . So |T | is the number of turbines. The layout of a wind farm is then determined by10

the finite set of turbine hub locations L= {`t : t ∈ T }. These locations `t are the design variables of the wind farm layout

optimization problem.

The planar vector from turbine t to turbine τ is pt→τ = pτ −pt and the corresponding unit vector is et→τ =
pt→τ
‖pt→τ‖

.

A layout is valid if the turbine locations satisfy the location constraints (L ⊂ S) and the distance constraints (‖pt→τ‖ ≥ dmit

for all distinct t and τ in T ).15

2.3 The wind resource

The wind resource at a site is mainly characterized by a joint probability distribution for wind directionΘ and free stream wind

speedU . The joint probability distribution can be decomposed as a marginal probability distribution for the wind direction—the

wind rose—and conditional probability distributions for the free stream wind speed UΘ for a given direction. The operators

E, EΘ, and EUΘ denote expectation relative to the joint, marginal, and conditional probability distributions, respectively. (The20

expressions for concrete computation of expectations of functions of random variables can be found in App. A1.) Because of

the dependence of certain variables on wind direction, it is useful to formalize downwind and (horizontal) crosswind directions

as unit vectors eΘ and eΘ+π
2

, respectively.

A number of examples can clarify the use of the expectation operators and related notation:

– ū= E(U ) = EΘ(EUΘ (UΘ)) is the site’s expected—or mean—free stream wind speed,25

– ēθ̄ = EΘ(eΘ) is the expectation of the downstream wind unit vector (it provides a definition of mean wind direction θ̄;

in general ‖ēθ̄‖< 1),

– P̄ θ = EUθ (P (Uθ)) is the expected power output for a solitary turbine at the site, for wind coming from the direction θ,

and

– P̄ = E(P (UΘ)) = EΘ(EUΘ (P (UΘ))) = EΘ(P̄Θ) is the expected power output for a solitary turbine at the site.30
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Random variables are denoted by uppercase letters and their values are denoted by the corresponding lowercase ones. (Due to

convention and practicality, some non-random variables and parameters, such as D and P , are also denoted by an uppercase

letter.) Expected values—means—of random variables get a bar on top, which is also used for expectations of functions of

random variables.

Next to the wind direction and speed distributions, the wind resource includes constants describing further atmospheric5

conditions, such as turbulence intensity. Also, the wind resource depends on the height above the surface: there is vertical

wind shear. A site’s wind resource is normally available at a single reference height, but it is needed at other heights, namely,

hub height and possible other heights of points on the rotor disc. The dependence on height is formalized using logarithmic

and power law profiles, parametrized by the roughness length. We can assume that we have a site-specific function that maps

speeds at reference height to any given height. In this paper this is not made explicit, given that it has no relevant effect for our10

application, but it is implicitly assumed to be applied as needed.

2.4 The turbine

For the purposed of this paper, a wind turbine is fully characterized by its hub height, rotor diameter D, power curve P , which

maps wind speed at hub height to turbine power output, and thrust curve, which maps wind speed at hub height to the turbine

thrust coefficient. The power curve and thrust curve are usually provided as tables of values for a discrete set of wind speeds,15

but by interpolation a power or thrust coefficient value can be obtained for any wind speed.

We only consider farms with a single turbine type and with a constant hub height. The approach presented in this paper is

essentially unaffected if these assumptions are relaxed.

2.5 The wake effects

2.5.1 The wake function20

A wind turbine in operation affects the wind in its vicinity. Important for wind farms is the mid-to-far wake downstream

of a turbine, because it is a region with decreased wind speeds, resulting in lower power production of turbines located in

the wake. High-fidelity modeling—using computational fluid dynamics—of wakes and their interaction in a wind farm is too

computationally demanding for wind farm layout optimization purposes. Therefore, simpler engineering wake models are used,

such as those proposed by Katić et al. (1987, ‘Jensen’s model’) and Bastankhah and Porté-Agel (2014, the ‘EPFL model’). The25

papers by Archer et al. (2018) and Polster et al. (2018) provide recent reviews of such models.

For the purposes of this paper, we only need a high-level characterization of such engineering wake models. Namely, we use

a function w that maps the representative inflow wind speed UΘt at the wake-generating turbine t to a ‘wake’ wind speed at any

location σ in the region covered by the wake model, taking into account the replenishing effect of the surrounding free stream

wind UΘ. Locations outside this region are assumed to be unaffected. For the wake function, the wind direction-dependent30
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downwind and crosswind distances from t to σ are required:

xΘt→σ = pt→σ · eΘ (downwind),

yΘt→σ = pt→σ · eΘ+π
2

(horizontal crosswind), zt→σ = zσ − zt (vertical crosswind),

where pt→σ = pσ −pt and ‘·’ denotes the scalar product. Gathered in a tuple, we have `Θt→σ = (pΘt→σ,zt→σ) with pΘt→σ =

(xΘt→σ,y
Θ
t→σ). Then the waked wind speed can be written compactly as UΘσ←t = w(UΘ,UΘt ,`

Θ
t→σ). The wake function ex-5

pression may of course include environmental parameters such as turbulence intensity and wind speed-dependent values such

as the turbine’s thrust coefficient, but we can leave those implicit.

2.5.2 Rotor disc averaging

Points on the rotor disc of a turbine τ that finds itself in the region covered by the wake model are of course those of interest

for their effect on its power output. The vector from waking turbine hub to waked turbine hub is `Θt→τ . Then the vector to10

any point σ on the rotor disc can be written as `Θt→σ = `Θt→τ + r, where r is a vector from the hub to the rotor disc point. (In

aligned flow, r will be a crosswind vector, but conditions like yaw misalignment lead to an additional orthogonal component.)

The wake wind speed at this point is then UΘτ,r←t = w(UΘt ,U
Θ,`Θt→τ + r). Often a set of rotor disc points will be of interest,

which corresponds to a set of vectors {`Θt→τ +r : r ∈R}. Applying the wake function then results in the wake wind field over

the waked rotor disc:15

UΘτ←t =W(UΘt ,U
Θ,`Θt→τ ,R) =

{
(r,UΘτ,r←t) : r ∈R

}
,

where the functionW generalizes w to a set of rotor disc points.

Wakes are one reason why there can be a non-constant inflow wind speed over the rotor disc of any turbine t. Wind shear is

another. So irrespective of its origins, we can consider a wind field Ut over the rotor disc, or, more precisely, the points defined

by R. Engineering wake models and the power curve take a single, representative wind speed as an argument. So we need an20

averaging function a that takes the wind field as an argument and returns the representative wind speed: Ut = a(Ut). In caseR
just consists of the hub, this function is normally taken to be trivial: a

({
(0,Ut,0)

})
= Ut. For R containing a finite number

of points, a must be some quadrature rule. An example where R consists of the continuum of all rotor disc points occurs with

Jensen’s model, where a piecewise constant function must be integrated over the rotor disc to calculate a (cf., e.g., Feng and

Shen, 2015b, Sect. 2.2).25

2.5.3 Wake mixing

In a wind farm, a turbine τ is in general exposed to the effect from multiple waking turbines, gathered in the set T Θτ←. Therefore,

a function c is needed that models the mixing (combination) of individual wakes. Consider a point σ on the rotor disc. The

function c must return a combined-wake wind speed for a given free stream wind speed UΘ and a given set {UΘσ←t : t ∈ T Θτ←}
of single-wake wind speeds as inputs:30

UΘσ = c
(
UΘ,{UΘσ←t : t ∈ T Θτ←}

)
.
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Usually, this combination function is based on the root-sum-square of wind speed deficits (Katić et al., 1987). Namely, let

∆Θ
σ←t = 1− UΘσ←t

UΘ

be the deficit for the point σ due to turbine t in isolation. Then

∆Θ
σ =

√ ∑
t∈T Θτ←

(∆Θ
σ←t)

2

is its root-sum-square combination. The combined-wake wind speed is then defined as5

UΘσ =
(
1−ϕ(∆Θ

σ )
)
UΘ.

Here, ϕ is some saturating function, included to avoid negative or also zero wind speeds. It could be, for example, min{1, ·},
tanh, or ·/

√
1 + ·2.

2.5.4 Blame fractions

In principle the combination function needs to be applied before the averaging function to obtain a representative inflow wind10

speed, so

UΘτ = a(UΘτ ) = a

({(
r,UΘτ,r

)
: r ∈R

})
= a

({(
r, c
(
UΘ,{UΘτ,r←t : t ∈ T Θτ←}

))
: r ∈R

})
.

However, to simplify calculations, it is often done the other way around (see, e.g., Feng and Shen, 2015b, Eq. 7), so

UΘτ = c
(
UΘ,{UΘτ←t : t ∈ T Θτ←}

)
= c
(
UΘ,

{
a(UΘτ←t) : t ∈ T Θτ←

})
.

In whatever way this is done and which precise functions a and c are chosen matter for the purposes for this paper only because15

of the fact that it determines whether or not a precise fraction ΛΘτ←t of the total deficit∆Θ
τ can be blamed on each of the waking

turbines t. These fractions will be used as weights in the definition of pseudo-gradients, characterizing the relative impact of

each waking turbine (cf. Sec. 3.3).

For root-sum-square deficit combination done after averaging, it is straightforward to calculate these blame fractions:

ΛΘτ←t =
(∆Θ

τ←t)
2

(∆Θ
τ )2

.20

If averaging is done after combination, one would also need to average blame fractions, making things substantially more

involved.

The rest of this paper ignores the order in which a and c are applied by considering both the cases where blame fractions can

or cannot be (practically) defined. (The latter case also includes models where no separate wake and combination function can

be distinguished, e.g., based on computational fluid dynamics.) So we will instead use a function b that summarizes the effects25

of both a and c:

UΘτ = b
(
UΘ,{UΘτ←t : t ∈ T Θτ←}

)
.

Some computational considerations on wake wind speed calculations are discussed in App. B1.
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2.6 The objective

The objective we consider here is the normalized expected farm wake loss; it must be minimized and is therefore also called

the cost function. The loss is in terms of energy (or power) production. The expectation is taken over the wind resource (cf.

Sec. 2.3). The normalization is relative to the hypothetical case without wakes. This objective is formalized below.

A solitary turbine at the site, so without wakes, would produce a power P (UΘ), with expectation P̄ = E(P (UΘ)). In this5

paper, this value is the same for all turbines, as these are assumed to be identical. In the waked case, each turbine τ produces

a power P (UΘτ ) with expectation P̄τ = E(P (UΘτ )); these may differ from the production of others. The turbine wake loss is

LΘτ = P (UΘ)−P (UΘτ ). Its expectation is L̄τ = E(LΘτ ) = P̄ − P̄τ . This is normalized by dividing by the expected wakeless

turbine power P̄ , so

L̄τ
P̄

= 1− P̄τ
P̄
.10

The corresponding farm-level quantities are obtained by considering all turbines. The farm wake loss is LΘ =
∑
τ∈T L

Θ
τ . Its

expectation is L̄ = E(LΘ) =
∑
τ∈T E(LΘτ ) =

∑
τ∈T L̄τ . This is now normalized by dividing by the expected wakeless farm

power, so

L̄

|T |P̄
=

1

|T |
∑
τ∈T

L̄τ
P̄

= 1−
∑
τ∈T P̄τ
|T |P̄

.

where the last equality shows that the normalized expected farm wake loss is the same as the mean normalized expected turbine15

wake loss. (This holds because all turbines are assumed to be identical.) The quantity L̄
|T |P̄ is the objective.

Because |T | is fixed, minimizing the objective considered is equivalent to maximizing (expected) annual energy produc-

tion (AEP), which is proportional to
∑
τ∈T P̄τ . However, for presentation purposes, normalized expected farm (wake) loss

has advantages. As a relative quantity, it facilitates comparing different layouts and even inter-site comparisons. AEP as an

absolute, wind farm nameplate capacity-specific quantity makes this difficult, as the bounding wakeless reference value is not20

immediately apparent. Of course AEP can be replaced by normalized expected farm (wake) yield or farm efficiency. Still, wake

losses are generally small relative to yields, and smaller numbers are easier to digest (e.g., 4.2%–5.1% vs. 94.9%–95.8%).

3 Pseudo-gradients

3.1 Introduction & Overview

A formal gradient-based optimization uses the objective function’s gradient, which is the vector of partial derivatives of this25

function with respect to the design variables. The (negative) gradient at a given design variable vector corresponds to the

direction of steepest ascent (descent) of the objective and has a magnitude reflecting the steepness. For a minimization problem,

the optimizer would follow the negative gradient in a stepwise fashion over design variable vectors corresponding to decreasing

objective function value.
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A pseudo-gradient is a proxy for the objective’s actual gradient that is defined using some heuristic. It is intuitive and

convenient to formulate such heuristics in a per-turbine fashion. Therefore, pseudo-gradients are in practice defined for de-

sign variable components corresponding to a single turbine. Thus, pseudo-gradients can be visualized as vectors attached to

individual turbines in the design space.

This paper only deals with wake losses affected by relative turbine positions, for which (dominant) wind directions are an5

important factor. So the heuristics make use of

– the turbine wake loss LΘτ , due to it being the basic building block of the objective function (cf. Sec. 2.6),

– the turbines’ relative positions et→τ , and

– the wind direction eΘ.

However, pseudo-gradients can also be superpositions of several proxies, corresponding to different elements of the objective10

function, implemented as a weighted vector sum. For instance, in the minimization of the levelized cost of energy, a vector that

directs an offshore turbine towards shallower water could be an additional contribution to the pseudo-gradient. This vector’s

magnitude should be representative for the reduction of support structure costs, while its weight in the vector sum should

represent the importance of support structure costs relative to the importance of wake losses and other contributions to levelized

cost of energy.15

The rest of this section proposes concrete definitions for pseudo-gradient vectors that can form the basis for heuristic wind

farm layout optimization. The definition of the pseudo-gradients is built-up step by step. First, only a single wind case (i.e.,

a single wind direction and wind speed) and a single wake interaction is considered (Sec. 3.2). Then, a single wind case is

combined with multiple wake interactions (Sec. 3.3). Next, multiple wind cases are combined with a single wake interaction

(Sec. 3.4). Finally, full generality is reached when multiple wind cases and multiple wake interactions are combined (Sec. 3.5).20

There are multiple types of pseudo-gradients that we propose. In every step each of these types is discussed. Their joint

presentation does not imply that they have to be used jointly; they can be used individually. After their definition in this

section, their use in optimization algorithms is discussed in Sec. 4.

3.2 Single wind case, single wake interaction

First consider just a pair of turbines t and τ , a single wind direction Θ = θ, and a single wind speed Uθ = u. Figure 1 shows25

this setup, including the four pseudo-gradient vectors defined below, where it is also discussed. In terms of wind speed, the

effect waking turbine t on waked turbine τ is

uτ = b(u,{Uτ←t}) = b
(
u,
{
W(u,u,`θt→τ ,R)

})
. (1)

(Because there is only one waking turbine, uτ is actually also equal to a
(
W(u,u,`θt→τ ,R)

)
, but this simplification is of no

use further on.) The effect in terms of power loss is Lθτ = P (u)−P (uτ ).30

The wake power loss combines with the wind direction into what we call the simple pseudo-gradient vector:

q̃θτ = Lθτeθ. (2)

8



eθ

t

τpt→τ
q̃θτ

q̌θτ←tq̇θτ←t

q̂θt←τ

Figure 1. Illustration of the four pseudo-gradient vectors for the single wind case, single wake interaction case.

It points downstream with a magnitude equal to the wake power loss. A spatial vector can be derived from it by multiplying it

with some proportionality constant. Moving the waked turbine τ according to this vector, would place it further downstream

from the wake-generating turbine t. This reduces the wake effect and therefore the resulting wake power loss. This may seem

trivial, but forms the basic principle of optimization using pseudo-gradients. Figure 1 provides an illustration. For the purpose

of clarity, the wake effect has been exaggerated for the given angle between wind direction and inter-turbine vector. (This will5

also be the case for further such illustrations.) For a single given wind direction θ and pair of waking turbine t and waked

turbine τ , it shows the vector attached to the waked turbine as it would be used for layout optimization purposes.

A next type of pseudo-gradient follows from combining the wake power loss with the unit vector that points from the waking

turbine t to the waked turbine τ :

q̌θτ←t = Lθτet→τ . (3)10

We call it a push-away pseudo-gradient vector. Again, after converting it to a spatial vector, it can be used to move the waked

turbine away from the waking turbine, reducing the wake power loss. Figure 1 shows the vector attached to the waked turbine.

The dotted line between it and the simple pseudo-gradient-derived vector illustrates that for this single wind case they only

differ in orientation, not magnitude.

Instead of moving the waked turbine away, it is also possible to move the waking turbine back relative to the waked turbine.15

This idea can be implemented using what we call a push-back pseudo-gradient vector:

q̂θt←τ = Lθτeτ→t. (4)

Attached to the waking turbine and converted to a spatial vector, it moves the waking turbine away from the waked one. It

has the same effect in terms of wake power loss reduction as the corresponding push-away vector. Figure 1 shows this vector,

attached now to the waking turbine.20

A final type is derived from push-away vectors, by considering their projection on the crosswind direction:

q̇θτ←t = (q̌θτ←t · eθ+π
2

)eθ+π
2

= Lθτ (et→τ · eθ+π
2

)eθ+π
2

= Lθτ
yθt→τ
‖pt→τ‖

eθ+π
2
. (5)
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We call it the push-cross pseudo-gradient vector. A corresponding spatial vector attached to the waked turbine moves it away

from the center line of the wake, in that way reducing the wake effects and the wake power loss. It can be seen as a wake

evasion strategy. Figure 1 shows the vector attached again to the waked turbine. The dotted line between it and the push-away

pseudo-gradient-derived vector illustrates that q̇θτ←t is the projection of q̌θτ←t on the cross-wind direction θ+ π
2 .

One can conceive more types of pseudo-gradients than the four presented here. For example, by projecting the push-back5

pseudo-gradient vector on the crosswind direction, a second push-cross type vector can be defined. Systematizing, there are

three choices to make:

– associated (attached) to the waking or the waked turbine;

– oriented along the downwind direction, crosswind direction, inter-turbine direction, or the direction orthogonal to the

inter-turbine one;10

– defined directly or by projection.

For the four presented pseudo-gradients, we have

– simple: waked, downwind, direct;

– push-away: waked, inter-turbine, direct;

– push-back: waking, inter-turbine, direct;15

– push-cross: waked, crosswind, projected.

These four presented pseudo-gradients already provide sufficient variation for this seminal investigation of pseudo-gradients

for layout optimization. However, that does not imply that other variants cannot be useful in such a context. Nevertheless,

some combinations are more natural: direct inter-turbine for distancing turbines and projected crosswind for wake evasion.

The direction orthogonal to the inter-turbine one seems fit for neither purpose. The simple pseudo-gradients can be seen as a20

poor man’s push-away pseudo-gradient when calculating blame fractions is impractical.

3.3 Single wind case, multiple wake interactions

Again consider a single wind direction Θ = θ and a single wind speed Uθ = u. But now consider multiple waking or waked

turbines. The expression for the waked wind speed is unchanged from before (cf. Eq. 1), as is the one for the power loss Lθτ .

However, now there are possibly multiple wake interactions causing this loss. In case blame fractions can be calculated25

(cf. Sec. 2.5.4), these can be used to divide the power loss over the single turbine-to-turbine interactions involved:

Lθτ←t = λθτ←tL
θ
τ (6)

and so by definition of blame fractions, we have that∑
t∈T θτ←

Lθτ←t = Lθτ . (7)
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eθ

τ

t

t′

pt→τ

pt′→τ
q̌θτ←t

q̌θτ←t′

q̌θτ

Figure 2. Illustration of how turbine-specific push-away pseudo-gradient vectors combine into a combined push-away pseudo-gradient

vector.

Simple pseudo-gradient vectors are aligned with the wind direction. Therefore its defining expression, Eq. 2, is unchanged,

because Eq. 7 causes any decomposition into fragments Lθτ←teθ to recombine into Lθτeθ. (This would not hold for a waking

variant; see the discussion for push-back vectors below for a similar difference.) This independence of blame fractions is what

makes simple pseudo-gradient vectors applicable even if those blame fractions cannot be calculated, in contrast to the other

pseudo-gradients we discuss.5

The push-away pseudo-gradient vector for the case of multiple waking turbines is defined by summing over those for single

wake interactions (cf. Eq. 3):

q̌θτ =
∑
t∈T θτ←

q̌θτ←t =
∑
t∈T θτ←

Lθτ←tet→τ . (8)

This sum is illustrated in Fig. 2 for two waking turbines t and t′ and one waked turbine τ . One can see that the corresponding

planar vector will move the waked turbine, relatively speaking, farther away from the waking turbine that is most to blame for10

the power loss.

The combined push-cross pseudo-gradient vector is closely related to the combined push-away pseudo-gradient vector. As

before, it is its projection on the crosswind direction, or, equivalently because of the linearity of the projection operation, the

sum of the push-cross vectors for single wake interactions (cf. Eq. 5):

q̇θτ = (q̌θτ · eθ+π
2

)eθ+π
2

=
∑
t∈T θτ←

(q̌θτ←t · eθ+π
2

)eθ+π
2

=
∑
t∈T θτ←

q̇θτ←t =
∑
t∈T θτ←

Lθτ←t
yθt→τ
‖pt→τ‖

eθ+π
2
. (9)15

This sum and the projections are illustrated in Fig. 3 for the same turbines t, t′, and τ as in Fig. 2. In this illustration, one

can see that in the definition of (combined) push-cross pseudo-gradient vectors effectively a side must be chosen. The effect is

that the waked turbine moves away from the turbines responsible to the largest part of the wake power losses, but closer to the

others. So there is a qualitatively different effect compared to the other pseudo-gradient types treated; a real trade-off is made.

Quantitatively, there is also a difference, as the magnitude of the combined push-cross vector is substantially smaller than the20

push-away one. This is due to the projection and the summing of vectors of opposing orientation.
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eθ

τ

t

t′

pt→τ

pt′→τ
q̇θτ←t

q̇θτ←t′

q̇θτ

Figure 3. Illustration of how turbine-specific push-cross pseudo-gradient vectors combine into a combined push-cross pseudo-gradient vector

and their relation by projection to push-away pseudo-gradient vectors.

eθ

t

τ

τ ′

pt→τ

pt′→τ

q̂θτ←t

q̂θτ←t′

q̂θt

Figure 4. Illustration of how turbine-specific push-back pseudo-gradient vectors combine into a combined push-back pseudo-gradient vector.

The combined push-back pseudo-gradient vector arises differently from the push-away one, because now we must sum over

vectors for waked turbines instead of those for waking turbines. But apart from that, things are the same; namely, we again

must sum over push-away vectors for single wake interactions (cf. Eq. 4):

q̂θt =
∑
τ∈T θt→

q̂θt←τ =
∑
τ∈T θt→

Lθτ←teτ→t (10)

This sum is illustrated in Fig. 4 for one waking turbine t and two waked turbines τ and τ ′. One can see that the corresponding5

planar vector will move the waking turbine, relatively speaking, farther away from the waked turbine that it affects the most in

terms of power loss.

3.4 Multiple wind cases, single wake interaction

Return to the two-turbine setup of Sec. 3.2. But now consider multiple wind cases, or, in mathematical terms, random variables

for wind direction (Θ instead of θ) and wind speed (UΘ instead of u). So expectations over these random variables of the10

pseudo-gradient vectors defined in Eqs. 2 to 5 must be considered. As before, the waking turbine is denoted by t and the waked

turbine by τ

Common in these defining expressions is the appearance of the wake power loss LΘτ . It is the only factor in these expressions

that depends on UΘ. Therefore, we can develop the impact of expectation over UΘ in a uniform way. Let g be a function that

12
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q̃θ
′

τ

q̃τ

Figure 5. Illustration of how wind direction-specific simple pseudo-gradient vectors combine into an averaged simple pseudo-gradient vector.

may depend on wind direction Θ and possibly other variables o, then (cf. Sec. 2.3)

E
(
LΘτ g(Θ,o)

)
= EΘ

(
EUΘ (LΘτ )g(Θ,o)

)
= EΘ

(
L̄Θτ g(Θ,o)

)
, (11)

where L̄Θτ = EUΘ (LΘτ ). In case g does not depend on Θ, we get

E
(
LΘτ g(o)

)
= EΘ

(
L̄Θτ
)
g(o) = L̄τg(o), (12)

where L̄τ = E(L̄Θτ ) as in Sec. 2.6.5

Applying the expectation to the expression of Eq. 2 for the simple pseudo-gradient vector gives

q̃τ = E(q̃Θτ ) = E(LΘτ eΘ) = EΘ(L̄Θτ eΘ). (13)

This expectation is illustrated in Fig. 5 for two wind directions, eθ and eθ′ and a single wind speed. (For the multiple-speed

case the same picture would apply, with q̃θτ = Lθτeθ and q̃θ
′

τ = Lθ
′

τ eθ′ replaced by L̄θτeθ and L̄θ
′

τ eθ′ , respectively. Since the

downwind unit vector is a function of wind direction only, the expectation of the loss for a certain wind direction can be10

separated according to Eq. 11. The same argument can be made for the illustrations for the other types of pseudo-gradients

shown below.) One can see that the per-direction pseudo-gradient vectors have different directions and so a non-trivial vector

average is taken. While the direction aligned most with the inter-turbine vector results in the largest per-direction pseudo-

gradient vector (here ‖q̃θ′τ ‖> ‖q̃θτ‖), its impact on the expectation is modulated by the relative weight of the wind directions

in the wind rose (here θ is more probable than θ′).15

This is not the case for push-away pseudo-gradient vectors. Applying the expectation to the expression of Eq. 3 gives

q̌τ←t = E(q̌Θτ←t) = E(LΘτ et→τ ) = L̄τet→τ . (14)

This expression shows that, because only the single direction et→τ independent of the wind direction is used, the result is

effectively obtained as a scalar average of losses. This expectation is illustrated in Fig. 6, again for two wind directions,

eθ and eθ′ and a single wind speed.20

Push-back pseudo-gradient vectors behave similarly. Applying the expectation to the expression of Eq. 4 gives

q̂t←τ = E(q̂Θt←τ ) = E(LΘτ eτ→t) = L̄τeτ→t (15)
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eθ′
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τ
pt→τ q̌θτ←t

q̌θ
′

τ←t

q̌τ←t

Figure 6. Illustration of how wind direction-specific push-away pseudo-gradient vectors combine into an averaged push-away pseudo-

gradient vector.

eθ

eθ′

t

τ
pt→τ

q̂θt←τ
q̂θ
′

t←τ

q̂t←τ

Figure 7. Illustration of how wind direction-specific push-back pseudo-gradient vectors combine into an averaged push-back pseudo-gradient

vector.

The only difference with the push-away vector is the sense of the vector. This expectation is illustrated in Fig. 7 for the same

setup as above.

Things become interesting again for the push-cross pseudo-gradient vectors. Applying the expectation to the expression of

Eq. 5 now gives

q̇τ←t = E(q̇Θτ←t) = E
(
LΘτ

yΘt→τ
‖pt→τ‖

eΘ+π
2

)
= EΘ

(
L̄Θτ

yΘt→τ
‖pt→τ‖

eΘ+π
2

)
. (16)5

As was the case for simple pseudo-gradients, the expectation cannot be worked out completely and the unit vector is direction-

dependent, so that a non-trivial vector average results. This is visible in Fig. 8, which reminds us that the direction-dependence

stems from the projection used for this type of pseudo-gradient. An effect of this projection also visible in the figure is that these

pseudo-gradient vectors are considerably smaller in magnitude than the push-away pseudo-gradient vectors they are derived

from. Such somewhat arbitrary differences in resulting magnitude between pseudo-gradient types can be normalized away10

before using them in optimization algorithms and should therefore not be a cause for concern.

eθ

eθ′

t

τ
pt→τ

q̇θτ←t

q̇θ
′

τ←t

q̇τ←t

Figure 8. Illustration of how wind direction-specific push-cross pseudo-gradient vectors combine into an averaged push-cross pseudo-

gradient vector.

14



The illustrations of Figs. 5–8 use just two wind directions, which are moreover not very different. In reality, all directions

must generally be taken into account. For many of these directions, the wake effect is small or even non-existent, resulting in

pseudo-vectors of negligible magnitude. The effect is that in general after averaging the magnitude of the resulting pseudo-

vectors is significantly reduced relative to the largest wind direction-specific ones.

3.5 Multiple wind cases, multiple wake interactions5

To define pseudo-gradients for the fully general case requires considering both multiple wind cases and multiple wake in-

teractions. Multiple wake cases are described by taking a finite sum of simple single-wake cases (see Sec. 3.3). The terms

appearing in this sum depend on the wind direction, as can be seen in Eqs. 8–10. An expectation operation describes the effect

of multiple wind cases (see Sec. 3.4). Considering both can be done by applying the expectation after the summation. However,

when implicitly setting (undefined) blame fractions for non-waking turbines to zero, the sum becomes independent of the wind10

direction. Then the order can be switched, because of the linearity of the expectation operation and the finite nature of the wake

interaction sum.

For the simple pseudo-gradient vector, the argument made in Sec. 3.3 holds (no blame needs to be assigned), so the resulting

expression of Eq. 13 still holds:

q̃τ = EΘ(L̄Θτ eΘ). (17)15

For the push-away, push-back, and push-cross pseudo-gradient vectors, we can take Eqs. 8–10 and apply the expectation

operator as demonstrated in Eqs. 14–16:

q̌τ = EΘ(q̌Θτ ) = EΘ
( ∑
t∈T Θτ←

L̄Θτ←tet→τ
)

=
∑
t∈T

EΘ(L̄Θτ←t)et→τ =
∑
t∈T

L̄τ←tet→τ =
∑
t∈T

q̌τ←t, (18)

q̂t = EΘ(q̂Θτ ) = EΘ
( ∑
τ∈T Θt→

L̄Θτ←teτ→t
)

=
∑
τ∈T

EΘ(L̄Θτ←t)eτ→t =
∑
τ∈T

L̄τ←teτ→t =
∑
t∈T

q̂τ←t, (19)

q̇τ = EΘ(q̇Θτ ) = EΘ
( ∑
t∈T Θτ←

L̄Θτ←t
yΘt→τ
‖pt→τ‖

eΘ+π
2

)
=
∑
t∈T

EΘ
(
L̄Θτ←t

yΘt→τ
‖pt→τ‖

eΘ+π
2

)
=
∑
t∈T

q̇τ←t. (20)20

Here, the expressions after the second equality symbol correspond to applying summation over wake interactions first and ex-

pectation second. The expressions after the third equality symbol correspond to applying the expectation before the summation.

This allows making the connection with Eqs. 14–16. The freedom to choose an expression may be exploited for computational

reasons: depending on the wake model details either may allow for the more efficient implementation.

4 Optimization using pseudo-gradients25

4.1 Overview and introduction

This section discusses how pseudo-gradients can be used for wind farm layout optimization. Here a general introduction of

this topic follows. Sec. 4.2 describes proof-of-concept optimization algorithms that were used to demonstrate the viability of

15



the approach. Sec. 4.3 shows results of the application of these algorithms to a number of academic and realistic cases. Finally,

Sec. 4.4 discusses these results in general terms, disentangling the strong and weak points of the use of pseudo-gradients from

the particulars of the proof-of-concept algorithms.

Sec. 3.2 already disclosed the central idea underlying pseudo-gradient based layout optimization: moving a turbine according

to a pseudo-gradient attached to it will reduce the wake effect it experiences, thus resulting in a reduced wake power loss for5

the turbine. For simple, push-away, and push back pseudo-gradients this is because the distance between the waked and waking

turbine are increased. For push-cross pseudo-gradients this is because the waked turbine is moved away from the wake center-

line so as to reduce the wake incidence on its rotor plane.

For the two-turbine single wind direction case of Sec. 3.2 this is an almost trivial observation. When considering all wind

directions and multiple waking or waked turbines, the resulting summed and averaged pseudo-gradient vectors as derived in10

Sec. 3.5 express a trade-off between the possible wind cases and wake interactions. For a given turbine, the magnitude of

the resulting vector (e.g., ‖q̌τ‖) relative to the summed average of the magnitude of individual vectors (
∑
t∈T E

(
‖q̌Θτ←t‖

)
)

expresses the degree of consensus on direction, including sense. For a turbine at the end of a row of turbines along the dominant

wind direction, this consensus will be high, but for one in the middle of a farm at a site without a clear dominant wind direction,

it will be low. For pseudo-gradient based layout optimization, the assumption is made that in any case, these resulting vectors15

still point in the right general direction for reducing the wake effects. Effectively, it is assumed that they can function as gradient

vectors in a gradient-descent type optimization approach. This is also the reason for calling them pseudo-gradients.

So the hypothesis is that pseudo-gradient vectors can be used, after transformation to spatial vectors, to iteratively move the

turbines from an initial layout to layouts of decreased (normalized) expected farm wake loss. To test this hypothesis, proof-

of-concept optimization algorithms (see Sec. 4.2) were created and implemented. The hypothesis was tested for a number of20

cases (see Sec. 4.3). What are the advantages of using pseudo-gradients as compared to real, analytical or numerical gradients?

– No analytical gradients are needed. These might not be available, difficult to derive, or have to be approximated.

– For every layout, only a single farm wake model calculation is required to produce the quantities necessary for pseudo-

gradients as intermediate values, reducing the computational burden. Numerical gradients require multiple calculations

of the objective to determine finite differences.25

These advantages become more pronounced when more partial derivatives are involved.

Pseudo-gradients find a natural application in gradient-descent-type approaches to layout optimization, but they can be used

in other approaches as well. Because of the limited computational impact of calculating them, they can be used to replace

(some of) the random turbine displacement steps used in the many heuristic layout optimization approaches (e.g., Mosetti

et al., 1994; Grady et al., 2005; Pookpunt and Ongsakul, 2013; Feng and Shen, 2015b; Pillai et al., 2018). This should improve30

the convergence speed to local optima, while the remaining random-search aspects of these approaches can preserve their

exploratory power. Even though we think that broader design space exploration can play a beneficial role in layout optimization,

we do not investigate this further in this paper, to keep the focus on the strengths and weaknesses of pseudo-gradients.
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4.2 Proof-of-concept optimization algorithms

This subsection describes three layout optimization algorithms using pseudo-gradients (Algs. 1, 5, and 7). Each one is more

complex than the preceding one. The first one is the most straightforward implementation; it functions mainly as a stepping

stone to in the explanation of the other two. The second aims to improve convergence. The third furthermore aims to improve

design space exploration.5

Some auxiliary algorithms (Algs. 2, 3, 4, and 6) are used. They cover parts that are common to or repeated in these opti-

mization algorithms. They are described together with the optimization algorithm they first appear in.

All algorithms start from some inputs. Among these is a valid initial layout. Approaches to creating or generating such

initial layouts are not discussed in this paper, as there is no indication that the proof-of-concept optimization algorithms depend

qualitatively differently on this initial condition as compared to other optimization algorithms.10

Handling of site and turbine distance constraints also forms an important part of the wind farm layout optimization problem.

Again we do not discuss concrete approaches for this aspect because the specifics of constraint handling have no effect that

depends on the use of pseudo-gradients. The following summary suffices: Whenever a turbine is placed outside of the site, it is

moved to the closest point on the border. Whenever two turbines become located too close to each other, they are moved away

sufficiently in opposite directions. So fixing layout constraints changes the layout and affects the loss, usually increasing it.15

Algorithm 1, shown below, describes an iterative optimization algorithm with a predetermined maximum number of itera-

tions. Every iteration, first (on line 3) it calculates pseudo-gradients of predetermined type and gathers them into a so-called

layout step (making use of Alg. 2). Then (on line 4) it scales this layout step with a chosen step size and combines it with the

layout to generate an updated layout (making use of Alg. 3). Finally (on line 5), it checks whether the current layout is the best

one or whether it needs to terminate the optimization run early (making use of Alg. 4).

Algorithm 1 Produce an optimized layout given an initial layout and pseudo-gradient type

Input: maximum number of iterations n, valid initial layout L0 with loss L0, pseudo-gradient type q́, step size multiplier s

1: k := 0 {k corresponds to the best layout yet encountered}

2: for i := 1 to n do

3: Use Alg. 2 to generate layout step Q́ from Li−1 and q́

4: Use Alg. 3 to update to layout Li with loss Li from Li−1 and sQ́

5: Insert lines from Alg. 4 to update k or terminate iteration early as needed

6: end for

Output: optimized layout Lk

20

Auxiliary Algorithm 2, shown below, generates a layout step for a given layout and chosen pseudo-gradient type. It starts (on

line 1) by calculating the pseudo-gradients. Then (on line 2) it removes any common shift from these pseudo-gradients, as that

makes the layout drift without changing relative turbine positions. Furthermore (on line 3), it normalizes the pseudo-gradients

so that the largest has magnitude one. Finally (on line 4), it gathers them in the layout step.
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Algorithm 2 Generate a layout step from a given layout and pseudo-gradient type

Input: valid layout L, pseudo-gradient type q́

1: Calculate pseudo-gradients q́t for L

2: Remove shift from pseudo-gradients: q́′t := qt− 1
|T |

∑
t∈T q́t

3: Normalize pseudo-gradients: q́′′t := q́′t/maxt∈T q́
′
t

4: Gather q́′′t into layout step Q́

Output: layout step Q́

Auxiliary Algorithm 3, shown below, updates a given layout with a layout step. First (on line 1) it adds the layout step to the

layout to create a new layout. Then (on line 2) it fixes any constraint violations present in this new layout. Finally (on line 3) it

calculates the loss of the updated layout.

Algorithm 3 Update layout and loss from a given layout and layout step

Input: layout Lin, layout stepQ

1: Change layout: Lout := Lin +Q

2: Fix any constraint violations of Lout

3: Calculate loss Lout for Lout

Output: layout Lout and loss Lout

Auxiliary Algorithm 4, shown below, contains code lines to check and update the current best layout index and to decide

whether the optimization run needs to be terminated early, i.e., before the maximum number of iterations has been reached.5

First, if the current layout’s loss is smaller than the previously best layout’s (line 1), the best layout index is updated (on line 2).

Second, if the current layout’s loss is significantly worse than the best layout’s (line 3), the algorithm is terminated early (on

line 4). A loss is considered significantly worse if it exceeds the best layout’s loss by a fraction inversely proportional to the

iteration number.

Algorithm 4 Code lines to update current best layout and check early termination conditions

Input: current iteration index i, losses Lk and Li, layouts Li and Li−1

1: if Li < Lk then

2: k := i

3: else if Li > Lk + (L0−Lk)/i then

4: break

5: end if

Output: best layout index k

Algorithm 5, shown below, modifies Alg. 1 by adding an adaptive step size. The aim is increasing the speed of convergence.10

For this, the algorithm introduces two scaling factors, which determine a small and a large step size at each iteration. Essentially
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(on line 4), it applies Alg. 1 for both of these step sizes. However (on line 7), it retains only the best of both resulting layouts

(making use of Alg. 6). Furthermore (on line 8), the step size multiplier for the next iteration is taken to be the scaled multiplier

resulting in the best layout of this iteration.

Algorithm 5 Produce an optimized layout given an initial layout and pseudo-gradient type using an adaptive step size

Input: maximum number of iterations n, valid initial layout L0 with loss L0, pseudo-gradient type q́, initial step size multiplier s1, scaling

factors α− and α+

1: k := 0 {k corresponds to the best layout yet encountered}

2: for i := 1 to n do

3: Use Alg. 2 to generate layout step Q́ from Li−1 and q́

4: for all � ∈ {−,+} do

5: Use Alg. 3 to update to layout L�i with loss L�i from Li−1 and α�siQ́

6: end for

7: Use Alg 6 to pick Li with loss Li and index � from {(L�i ,L
�
i ) :� ∈ {−,+}}

8: Rescale step size multiplier: si+1 = α�si

9: Insert lines from Alg. 4 to update k or terminate iteration early as needed

10: end for

Output: optimized layout Lk

Auxiliary Algorithm 6, shown below, picks the best layout from a set of layouts (with pre-computed losses). Naturally (on

line 1), it selects the layout with the smallest loss.

Algorithm 6 Pick best layout from set of layouts and losses

Input: set of layout–loss pairs {(Lj ,Lj) : j ∈ J}

1: ∗ := argminj∈J Lj

Output: best layout L∗ with loss L∗ and index ∗

5

Finally, Algorithm 7, shown below, expands on Alg. 5 by considering a set of pseudo-gradient types instead of just one. The

aim is increasing its capacity to explore the space of layouts. Essentially (on line 4), it applies Alg. 5 for all the pseudo-gradient

types considered. But again (on line 12) it retains only the best of the resulting layouts (making use of Alg. 6). A computational

analysis of this algorithm is available in App. B2.

In Algorithm 7, the per-type application of Alg. 2 (on line 5) means that the pseudo-gradients’ magnitudes are normalized10

separately for each type, so that any (arbitrary) difference between them (most notably between push-cross ones and the others)

is removed. Nevertheless, because the step size multiplier evolves in a per-type fashion (cf. line 10), they can ‘compete’, even

if, for example, this requires a smaller or larger step size for push-cross ones relative to the others.
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Algorithm 7 Produce an optimized layout given an initial layout using an adaptive step size

Input: maximum number of iterations n, valid initial layout L0 with loss L0, initial step size multiplier s1, scaling factors α− and α+

1: k := 0 {k corresponds to the best layout yet encountered}

2: ś1 := s1 for all q́ ∈ {q̌ , q̂ , q̇}

3: for i := 1 to n do

4: for all q́ ∈ {q̌ , q̂ , q̇} do

5: Use Alg. 2 to generate layout step Q́ from Li−1 and q́

6: for all � ∈ {−,+} do

7: Use Alg. 3 to update to layout Ĺ�i with loss Ĺ�i from Li−1 and α�śiQ́

8: end for

9: Use Alg 6 to pick Ĺi with loss Ĺi and index � from {(Ĺ�i , Ĺ
�
i ) :� ∈ {−,+}}

10: Rescale step size multiplier: śi+1 = α�śi

11: end for

12: Use Alg 6 to pick Li with loss Li and index q̀ from {(Ĺi, Ĺi) : q́ ∈ {q̌ , q̂ , q̇}}

13: Insert lines from Alg. 4 to update k or terminate iteration early as needed

14: end for

Output: optimized layout Lk

4.3 Results

4.3.1 Overview

This subsection shows results of the application of these algorithms to a number of academic and realistic cases. The order is

more-or-less from less to more complex. For all cases, a brief description of the wind resource, site, turbine and wake model

are given. All information and the scripts used to generate the results and figures are included in the code bundle made available5

as supplementary material (Quaeghebeur, 2020).

The first case, in Sec. 4.3.2, is the one of the IEA Wind Task 37 wind farm layout optimization Case Study 1 (Baker et al.,

2019a). It is built up elaborately, to provide a good basis for understanding the algorithms described in Sec. 4.2. It has a simple

site and its wind rose is described by few directions. The second case, in Sec. 4.3.3, is one from the seminal paper of Mosetti

et al. (1994). Its wind rose has a larger number of directions. Next, in Sec. 4.3.4, comes a case built around the Horns Rev10

1 offshore wind farm. This is the first one with a realistic wind rose. Then, in Sec. 4.3.5, the IEA Wind Task 37’s reference

offshore wind farm is considered. Its non-convex site shape is more complex than those of the previous cases. Finally, in

Sec. 4.3.6, a case built around the Borssele IV site is presented. Its non-connected site is the first to be realistically complex.

For all cases, the optimization runs are set up in such a way as to get useful information about the optimization approach not

yet gleaned from the previous cases.15
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Figure 9. Pseudo-gradient vectors associated with a single wind direction for the IEA Wind Task 37 Case Study 1 initial layout.

4.3.2 IEA Wind Task 37 wind farm layout optimization Case Study 1

The IEA Wind Task 37 on Systems Engineering organizes case studies to compare different approaches to wind farm layout

optimization. Baker et al. (2019a) reports on the results of Case Studies 1 and 2. Layouts produced by early versions of the

pseudo-gradient-based algorithms were submitted to this case study (Baker et al., 2019a, submissions 3 and 9). The paper

shows that the pseudo-gradient-based algorithms used are competitive in situations where computational cost is a factor (see5

Baker et al., 2019a, Table 4 and Figure 5). This is the case, for example, when exploring many different starting layouts or

re-optimizing manually changed layouts.

This subsection focuses on Case Study 1, which compares algorithms for three sites, a given wind turbine, a given wind

resource, and a given wake model (cf. Bastankhah and Porté-Agel, 2014, but simplified). The sites are all disc-shaped, but vary

in size and number of turbines (16, 36, and 64). (Case Study 2 explores the effect of using different wake models, which is less10

relevant here.) First the 16-turbine site is used to illustrate pseudo-gradient-based optimization and then all sites are used for

comparative purposes.

Before addressing the case with the actual wind rose used for the IEA Wind Task 37 Case Study 1, pseudo-gradient vectors

for a single wind direction are illustrated. Figure 9 shows a single-direction wind rose (on the left) and the pseudo-gradient

vectors associated to it (black vectors attached to the blue dots representing turbines), for the optional initial layout provided15

as part of the IEA Wind Task 37 Case Study 1. (The site boundary is drawn in gray.) In this case study, only a single wind

speed (at rated) is considered. The simple pseudo-gradient vectors are aligned with this wind direction, by definition (cf. Eq. 2).

The push-away and push-back pseudo-gradients are constructed as a sum of inter-turbine vectors (cf. Figs. 2 and 4) that turns

out mostly, but not completely aligned with the wind direction. The push-cross pseudo-gradient vectors are orthogonal to the

single wind direction by definition (cf. Eq. 9). Below Eq. 9, it was stated that push-cross pseudo-gradient vectors have a smaller20

magnitude than those of the other types. This is not visible here, because the push-cross pseudo-gradient vectors are scaled up

by a factor of 32 relative to the others.

Figure 10 shows the IEA Wind Task 37 Case Study 1’s wind rose (on the left) and the pseudo-gradient vectors associated to

it. (The wind rose wedge area is proportional to the direction’s probability, which is less perceptually misleading than length.)

The simple, push-away, and push-back pseudo-gradient vectors mostly point towards the exterior of the site. This expansionist25
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Figure 10. Pseudo-gradient vectors for the IEA Wind Task 37 Case Study 1 initial layout and wind rose.

behavior is a general tendency for these types of pseudo-gradients. The push-cross pseudo-gradient vectors do not exhibit this

behavior as much. At the end of Sec. 3.4 it was stated that the pseudo-gradient vector magnitudes after wind resource-averaging

is in general reduced relative to the single wind direction-case. This is not visible here, because the vectors here are scaled up

by a factor of 4 relative to the ones in Fig. 9. The vectors shown here have magnitudes larger than the spatial vectors typically

used to move turbines during optimization. The maximum magnitude or step size s the algorithms are initialized with typically5

lie between 0.5 and 3 rotor diameters D (the gray dots have a diameter of D).

Figure 11 gives an overview of a set of 20-iteration optimization runs that where performed starting from the IEA Wind

Task 37 Case Study 1 initial layout (blue dots in the top row drawings indicate initial turbine positions). The first four columns

correspond to the application of Alg. 5 for each of the pseudo-gradient types listed at the top. The last column corresponds to

the application of Alg. 7. The top row drawings show the evolution of the layout (black curves) and the best layout obtained10

(red dots circled with a gray line indicating the distance constraint). The middle row plots show the evolution of the wake loss

over the iterations (blue line) and wake loss stopping criterion value (gray, dashed line; cf. Alg. 4 line 3). The bottom row plots

show the maximum step size at each iteration (pseudo-gradient type-specific markers; gray dots for maximum step size after

site constraint correction). The meaning of the plot elements is gathered in Table 1 for convenient reference.

The results of the optimization runs of Figure 11 vary significantly over the different pseudo-gradient types. Figures 915

and 10 showed that simple and push-away pseudo-gradients are very similar. This is reflected in the optimization runs for

these types, which are also very similar, although push-away pseudo-gradients perform slightly better, which is typical in our

experience. The wake loss plots show that after two optimizing iterations the pseudo-gradients start having a degrading effect.

The push-back pseudo-gradients are even counterproductive right at the first iteration. (They might still point in a direction of

improvement, but the step size may be too large.) This is a good reminder of the fact that pseudo-gradient-based optimization,20

as a heuristic, provides no guarantees. However, the push-cross optimization run shows that they can be very effective indeed.

When using multiple pseudo-gradients and each iteration picking the best result, it is therefore no surprise push-cross pseudo-

gradients dominate in this case.
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Figure 11. Overview of optimization runs for the IEA Wind Task 37 Case Study 1 16-turbine site using the different types of pseudo-

gradients. (Legend in Table 1.)

For all optimization runs default parameters were used (s1 =D, (α−,α+) = (0.8,1.1); cf. Alg. 5). Optimization can be

improved, sometimes quite significantly, by tweaking these. Strategies for this have at this point not yet moved beyond trial-

and-error.

Figure 12 gives an overview of 30-iteration optimization runs using Alg. 7 for the 36 and 64-turbines sites that where

performed starting from the IEA Wind Task 37 Case Study 1 initial layouts. This time, the parameters were tweaked to both5

improve the optimization result and get two qualitatively different optimization behaviors. For the 36-turbine site (s1 = 1.3D,

(α−,α+) = (0.5,0.99)) convergence is smooth and the optimized layout lies very close to the initial one. After iteration 22,

the step size has become so small (points fall outside the plot) that the layout does not really change anymore: a nearby local

optimum has been reached. For the 64-turbine site (s1 = 2D, (α−,α+) = (0.9,2)) expansionist behavior and larger steps are

present, giving a non-smooth convergence. The larger steps cause exploration of a different area of the solution space, so that10

the final layout does not lie as close to the initial layout as for the 36-turbine site.
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Table 1. Legend for optimization run overview plots.

Layout evolution drawing

– blue/red dots •/•: initial/final turbine locations

(dot radius equal to rotor radius)

– black lines –: turbine path over optimization run

– gray lines —/–: site/rotor constraints

Wake loss plot

– full blue line —: wake loss curve

– dashed gray line – –: early termination constraint

Step size plot

– colored markers: maximal step size set

– blue lozenge �: simple

– orange triangle-right I: push-away

– green triangle-left J: push-back

– red cross×××: push-cross

– gray dots •: actual maximal step size

(after constraint handling)

The outstanding success of push-cross-based optimization visible in Figs. 11 and 12 is due to the limited number of wind

directions used in the wake loss calculations (16), as prescribed by the Case Study. This rough discretization of wind directions

results in ‘holes’ where turbines can ‘hide’. These holes are artificial and do not correspond to what happens in reality (see,

e.g., Feng and Shen, 2015a, Sec. 5.2). Other cases, below, do not have this defect.

Figure 13 gives a comparison of the wake loss percentages achieved by the participants in IEA Wind Task 37 Case Study 15

(gray indicators). The wake loss percentage for the layouts presented above have been added to this picture (black indicator).

The relative position shows decent performance of the pseudo-gradient-based optimization algorithm used, certainly consider-

ing its relative computational efficiency. Strategies compatible with pseudo-gradient-based optimization, such as using different

initial layouts and applying wake spreading (Thomas and Ning, 2018) can further improve the results.

Figure 14 shows the number of wake model calls reported by the participants for each of the submissions for the 64-10

turbine scenario of IEA Wind Task 37 Case Study 1. These numbers give an indication of inherent efficiency of the different

algorithms used that is independent of implementation and computer performance. (The plot should nevertheless be interpreted

qualitatively rather than quantitatively, because the reduction of the algorithms to an iteration of wake model calls is obviously
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Figure 12. Overview of optimization runs for the IEA Wind Task 37 Case Study 1 36 and 64-turbine sites. (Legend in Table 1.)
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Figure 13. Comparison of IEA Wind Task 37 Case Study 1 wake loss percentages. Black bars show the results of the case studies discussed

here.

25



10 100 1,000 10,000

20

22

24

26

28

reported number of wake model calls
w

ak
e

lo
ss

[%
]

gradient-based
heuristic
pseudo-gradient-based (simple, old)
pseudo-gradient-based (multiple, old)
pseudo-gradient-based (multiple)

Figure 14. Scatter plot of IEA Wind Task 37 Case Study 1 64-turbine scenario wake loss percentage vs. reported number of wake model

calls.

approximate.) The logarithmic horizontal axis emphasizes the very wide range of model call numbers. Pseudo-gradient-based

algorithms are all found at the efficient, low numbers side. The plot shows both results for our ‘old’ algorithms, written

specifically for this case study, and the algorithm described in this paper. We see that simple pseudo-gradients are less effective

and that better layouts can be obtained with an increased number of model calls.

4.3.3 Mosetti et al.’s problem5

Mosetti et al. (1994) wrote a seminal paper on wind farm layout optimization. They used a genetic algorithm for a discretized

solution space. The problems they analyze have been used as a benchmark by many others (e.g., Grady et al., 2005; Pookpunt

and Ongsakul, 2013; Turner et al., 2014; Feng and Shen, 2015b; Pillai et al., 2018). Here, their multiple wind direction and

multiple wind speed problem (Mosetti et al., 1994, Sec. 4.3) is considered, using Jensen’s model as described by Frandsen

(1992, Sec. 2.2) with rotor-plane averaging, 36 wind directions, fifteen 630 kW turbines, and a square site. In the follow-up10

literature cited, the wind rose used was inadvertently modified. We use the original wind rose, so only a comparison with the

results of the original paper is made.

Figure 15 gives an overview of the optimization runs performed for the selected problem. The (area-proportional) wind rose

is at the top. The left column shows the result of an optimization run starting from Mosetti et al.’s optimized layout (s1 = 3D,

(α−,α+) = (0.9,1.1)). The higher number of wind directions as compared with the problem of Sec. 4.3.2 makes push-cross15

pseudo-gradients much less attractive, leading to only push-away and push-back pseudo-gradients being used. The resulting

expansionist behavior leads to an optimized layout with all but one turbine at the site’s border. Because of the low power

density, the wake loss is quite small for this problem. Nevertheless, a significant relative improvement can be made. The right

column shows the result when starting from a regular hexagonal layout (s1 = 3D, (α−,α+) = (0.7,1.3)). It proves that it is
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Figure 15. Overview of optimization runs for the Mosetti et al. (1994) wind farm layout problem. (Legend in Table 1.)

possible to achieve similar results when starting from a non-optimized initial layout. The optimization evolution and optimized

layout are symmetric relative to the dominant wind direction due to the symmetry of the wind rose around this direction and

the (almost) alignment of the hexagonal layout with this direction. (When fully aligning the hexagonal layout, the resulting

initial layout had a low wake loss of about 2.7 %. Optimization then failed, likely because this initial layout corresponds to a

deep local minimum.)5

4.3.4 Horns Rev 1

Horns Rev 1 is well-known, as the first large-scale offshore wind farm. The site has the shape of a parallelogram. The farm

is composed of 80 V80-2.0 MW turbines. Here the wind farm layout optimization problem for this site as defined by Feng

and Shen (2015b, Sec. 5, Case 1) is considered, using Jensen’s model with rotor-plane averaging. It subdivides a 12-direction
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Figure 16. Overview of optimization runs for the Horns Rev wind farm layout problem. (Legend in Table 1.)

wind rose into 360 wind directions (using nearest-neighbor interpolation), which makes it far more realistic than the problems

discussed above. It uses a minimal inter-turbine distance dmit of 5D, which implies that the turbines have less room to maneuver

than in the problems discussed above.

Figure 16 gives an overview of the optimization runs performed for the selected problem. The (area-proportional) wind rose

is at the top. The left column shows the result of an optimization run starting from the actual Horns Rev 1 layout (s1 = 0.5D,5

(α−,α+) = (0.7,1.1)). As for the problem of Sec. 4.3.3, there is clear expansionist behavior. During the expansion phase,

driven mostly by push-back pseudo-gradients, the greatest improvement is seen. However, because of the limited maneuvering

space, further improvement attempts mostly involve push-cross pseudo-gradients. Given the inter-turbine constraint, the origi-

nal Horns Rev 1 layout appears well-optimized already, because little improvement can be made. The right column shows the

result when starting from a regular hexagonal layout (s1 = 2D, (α−,α+) = (0.8,1.1)). It proves that it is possible to achieve10
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similar results when starting from a non-optimized initial layout. The optimization behavior mimics that of the run for the

original layout, but with larger step sizes. The most important qualitative difference is a higher turbine density on the site

border.

(A comparison with the results of Feng and Shen (2015b, Sec. 5, Case 1) was not possible. Namely, the wakeless power

obtained for the original layout differs from theirs, and so do the wake loss values, and sufficiently so that wake loss values for5

optimized layouts cannot be reliably compared. While very helpful, Feng and Shen could not provide us the materials needed

to determine the cause of the difference.)

4.3.5 IEA Wind Task 37 reference offshore plant

The IEA Wind Task 37 on Systems Engineering is defining a reference offshore plant. This is a description of an offshore

wind farm meant to serve for comparisons of offshore wind farm design tools, i.e., for benchmarking. It goes beyond simple10

power-based layout optimization, as covered in this paper, and considers cable layout and substructure costs as well. Sanchez

Perez-Moreno (2018) provides the actual definition. New in this paper is that the site is non-convex. The farm is composed of

74 reference 10 MW turbines. It subdivides a 16-direction wind rose into 360 wind directions (using linear interpolation) and

uses Jensen’s model with rotor-plane averaging. It uses a minimal inter-turbine distance dmit of 3D, which makes for a much

sparser layout problem than the one for Horns Rev above.15

Figure 17 gives an overview of the optimization runs performed for the selected problem. The (area-proportional) wind rose

is at the top. The left column shows the result of an optimization run starting from the reference layout (s1 = 2D, (α−,α+) =

(0.8,1.1)). The right column shows the result when starting from a regular hexagonal layout (s1 = 3D, (α−,α+) = (0.7,1.5))

constrained to the central area of the site. For both cases, the optimization behavior is similar to the one seen in Fig. 16 and

there is a significant relative improvement. The right-column result shows that the algorithm has no problem with the irregular,20

non-convex shape and manages to place turbines in every part of it.

4.3.6 Borssele IV

The final problem considered in this paper is one constructed on the basis of the Borssele IV site. The new aspect this site

brings to the table is that it is composed of multiple non-connected parcels. The Dutch government has published a detailed

description of this actual site (RVO, 2016; van der Heijden, 2016). The wind resource used is Mosetti et al.’s (cf. Sec. 4.3.3), but25

now with 360 wind directions (obtained using linear interpolation); see Fig. 18. This case uses Jensen’s model with rotor-plane

averaging. The turbine used is the 10 MW IEA37 offshore reference one (cf. Sec. 4.3.5). The minimal inter-turbine distance

dmit is 4D.

This problem is used to explore the effect of different turbine densities and scaling parameters on the optimization. Layouts

with 30, 50, 70, and 90 turbines are considered. The parameters (α−,α+) = (0.9,1.1) define a ‘soft’ scaling strategy that30

allows for only small differences in step size between consecutive iterations. The parameters (α−,α+) = (0.5,2) define an

‘aggressive’ scaling strategy that forces substantial differences in step size between consecutive iterations. For all cases, s1 =

2D.
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Figure 17. Overview of optimization runs for the IEA Wind Task 37 offshore reference wind farm layout problem. (Legend in Table 1.)
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Figure 19. Overview of optimization runs for the Borssele IV wind farm layout problem. (Legend in Table 1.)
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Figure 19 gives an overview of the resulting optimization runs. It shows that the pseudo-gradient approach works with a wide

variety of turbine densities. For increasing densities, the wake loss increases, of course, but the algorithm always manages to

achieve a significant improvement. It also shows that differences in scaling strategy have a clear impact on the optimization

behavior. Most notably, the ‘aggressive’ strategy manages to move turbines between parcels, whereas the ‘soft’ strategy does

not (cf. 30, 70, and 90 turbine cases). This can result in a noticeable improvement.5

4.4 Discussion

This section provides a discussions of the results from two perspectives. The first, academic perspective, considers the proof-of-

concept algorithm and results presented in the sections above. The aim is to disentangle the strong and weak points of the use

of pseudo-gradients from the particulars of the proof-of-concept algorithms. The second, industry perspective, considers the

non-public counterparts of the algorithm and results. The aim is to share, in general terms, the experience gained and lessons10

learned from its practical application.

4.4.1 The academic perspective

The proof-of-concept algorithms of Sec. 4.2 are all purely deterministic. Randomized steps in the design space and the use of

multiple candidate solutions evolving in parallel are an important driver of the exploratory power of many heuristic optimiza-

tion algorithms. Here, exploratory power is created by using multiple pseudo-gradients concurrently and each step picking15

the one that delivers the best results (cf. Alg. 7). To improve the exploratory power, the above-mentioned techniques from

heuristic optimization can be added. Based on comparisons with other approaches (cf. Sec. 4.3.2 and specifically Fig. 13), this

may be necessary to be able to achieve results comparable to the current best performing algorithms. This would trade off

computational speed for exploratory power.

Because of the gradient-like nature of pseudo-gradients, the proof-of-concept algorithms can also be extended to make20

use of innovations for gradient-based optimization methods. The already-included use of an adaptive step is one example. The

technique of wake-spreading helps avoid shallow local minima (Thomas and Ning, 2018). It can be directly integrated. Because

it increases the number of iterations necessary for convergence, it trades off computational speed for convergence quality.

The fact that these techniques from heuristic and gradient-based optimization theory were not applied for this paper’s study is

intentional. It makes the results presented (Figs. 12, 15, 16, 17, 19) show very clearly that pseudo-gradient-based optimization25

can achieve significant layout improvements in a very limited number of iterations. The main reason for this is the following:

Contrary to most existing heuristic methods, but similar to gradient-based optimization, the steps taken each iteration are

purposeful, being constructed from domain knowledge. However, contrary to gradient-based approaches, there is no need to

calculate derivatives.

That does not mean that pseudo-gradient-based optimization provides the best of both worlds. Specifically, the heuristic30

nature of the pseudo-gradients and their essentially decentralized computation (one per turbine) imply that they will not be

able to match true gradients in their ability to point towards the objective’s optima. An important unanswered question here is
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a quantification of this difference. On the other hand, existing heuristic approaches could all benefit from replacing some of

the random steps or part of each random step by pseudo-gradient-based steps.

Looking at the pseudo-gradient-based steps in Figs. 9 and 10 and the step types in all the overviews (Figs. 11, 12, 15, 16,

17, 19), it becomes clear that there are two qualitatively different classes of pseudo-gradients. Namely, there are the push-

cross ones versus the other, outward pushing ones. The latter lead to an optimized use of the available space in the site. The5

former optimize the relative position of the turbines to reduce wake incidence. The expansionist behavior resulting from the

outward pushing ones is understandable, but leads to the turbines bunching up near the border, precluding proper exploration

of more uniform layouts. For cases with a realistic number of wind directions, push-cross pseudo-gradients become important

only after the initial stage of the optimization run, when the most substantial improvement is seen. By then, many turbines

have bunched-up on or near the border, reducing their freedom of movement and therefore the possible efficacy of push-cross10

pseudo-gradients.

There are potential options for improving the effectiveness and usefulness of pseudo-gradients. In the proof-of-concept

algorithm, the different pseudo-gradient types are applied in an either-or fashion. One might temper the expansionist behavior

of the outward pushing pseudo-gradient vectors by mixing in push-cross pseudo-gradient vectors (making linear combinations).

Also, strategies for scaling a turbine’s step size depending on its distance to the border can be devised, for example to control15

expansionist behavior. (This may create a coupling to the site constraint handling.) Furthermore, push-cross pseudo-gradients

can be used for wake steering through yaw control instead of or next to turbine displacement, as that is also used for reducing

wake incidence (see, e.g., Fleming et al., 2016).

The parameter settings for the proof-of-concept algorithm have a clear impact on their optimization behavior (cf. Fig. 19).

This shows that flexible layout optimization algorithms can be devised based on pseudo-gradients. This is not specifically linked20

to the specific nature of pseudo-gradients, as similar flexibility can be achieved using, e.g., real gradients. Many other ways of

making the algorithm more flexible can be thought of. For example by adding functionality to only move one or a subset of

turbines, which can allow for a reduction in the per-iteration computational complexity at a cost of slower convergence.

Despite enabling effective and efficient layout optimization algorithms, there are two important properties that pseudo-

gradients cannot provide. First, they are defined locally for each turbine based on a proxy for the objective function. This25

makes optimization partially blind to this objective. (The objective is of course used to select between different types of

pseudo-gradients, but that is due to the design of the proof-of-concept algorithm.) Gradient-based optimization does not have

this downside. Second, they require a starting layout, although this is the case for most existing layout optimization approaches.

That makes the optimization depend quite strongly on the initial layout. Algorithms that construct a layout by placing one

turbine at a time do not have this problem (see, e.g., Changshui et al., 2011; Tilli, 2019). Of course such algorithms can be used30

to create a starting layout for pseudo-gradient-based optimization.

4.4.2 The industry perspective

In an industry environment, the algorithm was successful in creating layouts that performed as well as those created with

commercial software packages, but at a fraction of the runtime. Because the wind turbines gradually move towards their optimal
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location over the course of the iteration steps, it also gives a design team good insight in how the optimization progresses and

whether it matches engineering intuition. This is important in order to catch errors and weaknesses in the cost function—which

can lead to severely biased results—but also to be able to defend the results. Very artificial-looking layouts that are produced

by a black box-type algorithm are often scrutinized and have more difficulties being accepted in a business environment.

One of the major challenges is how to deal with practical location constraints. Within the site boundaries, an offshore site5

usually has areas where wind turbines cannot be placed. For example, shipwrecks and war graves are often surrounded by

buffer zones where offshore activities are forbidden, and a designer may choose to avoid (clusters of) obstacles that are too

cumbersome to remove. There may also be areas where the soil type makes it impracticable to install a foundation, or where

sand banks limit the accessibility of large vessels. Moreover, some sites (e.g., Borssele) are crossed by existing (telecom)

cables, pipelines, or shipping lanes that each have safety zones of usually 500 m. Combined, this often leads to a location10

constraint polygon that is concave, with multiple regions, and with numerous holes. A pseudo-gradient algorithm that moves

turbines around therefore needs to contain a rationale on when to cross certain zones or how to navigate around obstacles. A

combination with a tangent bug algorithm has proven to be successful in the past, but other solutions undoubtedly exist.

5 Conclusions

The pseudo-gradient concept is useful for wind farm layout optimization. Pseudo-gradients can be derived efficiently during15

the wake loss calculations necessary to evaluate a layout (Sec. 3). It is straightforward to build a wind farm layout optimization

algorithm using them (Sec. 4.2). Such algorithms have proven themselves effective, versatile, and efficient (Sec. 4.3). Because

of their computational efficiency, pseudo-gradients-based algorithms are an enabler for analyses, such as robustness studies,

that require a number of iterations or repetitions that make many other approaches computationally prohibitive. They do have

their weaknesses, such as their strong dependence on an initial layout and a limited exploratory power, leading, e.g., to layouts20

with many turbines on the border. There are also limitations, such as simple pseudo-gradients being available for computational

fluid dynamics-based wake models.

The pseudo-gradient concept is flexible. Pseudo-gradients can be defined for a wide range of wake models (Sec. 2.5). It is

in principle applicable also beyond wakes to other air-mediated turbine interactions, such as induction and blockage, as long

as a per-turbine loss (or perhaps gain) can be obtained from the interaction model. Even other layout optimization-relevant25

aspects such as the impact of water depth and cable interconnections for offshore wind farms allow for a pseudo-gradient-type

treatment. (This has been done in a non-public implementation of the second author.) The only things that are needed to create

such pseudo-gradients are an indicator of the magnitude of a favourable or unfavourable performance indicator, and one or more

(possibly intuitive) definitions of directions in which improvements are expected. Focusing again on wake models, different

pseudo-gradient variants can be defined (Sec. 3), leading to qualitatively different behavior during optimization (Sec. 4.3).30

While this paper presents gradient-following algorithms (Sec. 4.2), pseudo-gradients could also be used to replace random

steps in typical heuristic optimization approaches (e.g., genetic and particle swarm algorithms).
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There are many possible further investigations that can start from the ideas presented in this paper. The following has already

been mentioned: integration in various heuristic optimization approaches, the definition of new pseudo-gradient variants, and

the combination of pseudo-gradient vectors for potentially more effective optimization. Two further ideas related to research

of current interest to the wind energy community are related to push-cross pseudo-gradients:

– When adding hub height as a design variable (see, e.g., Stanley et al., 2017), push-cross pseudo-gradients might be useful5

for the optimization of the height of individual turbines.

– For wake steering (see, e.g., Fleming et al., 2016), push-cross pseudo-gradients may be used to tune yaw-misalignment

of each turbine for each wind direction.

Finally, the public development of pseudo-gradient (compatible) approaches to aspects of the multi-disciplinary wind farm

layout optimization problem (cable layout, substructure cost, etc.) is necessary for the continued relevance of the concept in10

the wind energy community.

Code and data availability. The implementation code and data used to define all problem cases is publicly available (Quaeghebeur, 2020).

Appendix A: Mathematical details

A1 Expectation for the wind resource

Let the marginal probability mass function for Θ be denoted pΘ and the conditional probability density or mass functions15

for UΘ be denoted, respectively, fUΘ or pUΘ . Usually, the conditional wind speed probability density functions fUΘ are

Weibull distributions and the conditional probability mass functions pUΘ can be discretizations thereof or derived directly

from a wind speed dataset.

The expectation of a function g that depends on wind direction Θ and possibly other variables o can then be calculated using

the following expression:20

ḡ(o) = EΘ
(
g(Θ,o)

)
=
∑
θ∈ΩΘ

g(θ,o)pΘ(θ),

where ΩΘ is the set of discrete wind directions considered. Similarly, the conditional expectation of a function g that depends

on wind speed Uθ for a given direction θ and possibly other variables o, can then be calculated using the following expression:

ḡθ(o) = EUθ
(
g(UΘ,o)

)
=


∫∞

0
g(u,o)fUθ (u)du (continuous wind speed case),∑

u∈Ω
Uθ
g(u,o)pUθ (u) (discrete wind speed case),

where ΩUθ is the set of discrete free stream wind speeds considered. Finally, to calculate the joint expectation of a function g25

that depends both on wind direction Θ and wind speed UΘ, we apply the law of the iterated expectation:

E
(
g(UΘ,Θ,o)

)
= EΘ

(
EUΘ

(
g(UΘ,Θ,o)

))
= EΘ

(
ḡΘ(Θ,o)

)
= ḡ(o).
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Appendix B: Computational considerations

B1 Calculating the wake wind speed

Consider once more the turbine-specific representative inflow wind speed UΘτ . It is the result of a number of nontrivial calcu-

lation steps. The expansion of its defining expressions (see Sec. 2.5) provides useful insight:

UΘτ = b
(
UΘ,{UΘτ←t : t ∈ T Θτ←}

)
= b
(
UΘ,

{
W(UΘt ,U

Θ,`Θt→τ ,R) : t ∈ T Θτ←
})
.5

These expressions’ dependence on the wind direction Θ is very explicit. Furthermore, the last expression shows that the

representative inflow wind speed UΘt at the waking turbines needs to be available.

When the turbines can be linearly ordered such that a turbine only wakes others that come later in the order, the calculation

of the speeds UΘτ can be performed in that order. So then the above expression still provides an explicit calculation procedure.

Because this ordering depends on the wind direction, this is a second, implicit way in which Θ has an effect. However, to10

simplify the calculations, UΘt is often replaced by UΘ in the wake model w. (This was also done when deriving the results

for this paper.) This makes the representative inflow wind speed calculations for a turbine independent from the representative

inflow wind speed of others, facilitating parallel computation.

B2 Computational analysis of the proof-of-concept algorithm

Consider Alg. 7. This section discusses the computational cost of all parts of the algorithm.15

The outer loop starting on line 3 regulates the optimization iteration. There are n iterations and as in all iterations (mostly)

the same computations are performed, this means the computational cost is linear in n. Because each iteration depends on the

outcome of the previous iteration, this loop cannot be parallelized.

The loop over pseudo-gradient variants starting on line 4 requires a repetition of three times essentially the same computation,

so the the computational cost for the computations it contains must be multiplied by 3. Because the results of one computation20

do not depend on another, this loop can be fully parallelized.

The same argument holds for the loop over two step scalings starting on line 6. This means the cost for the computations it

contains must be multiplied by 2, but again that this can be done fully parallelized.

The effect of the loops is now clear and we can write an expression for the computational cost as a function of the cost c7:i

for each of Alg. 7’s lines i: n
(
c7:5 +3(2c7:7 + c7:9 + c7:10)+ c7:12 + c7:13

)
. Most of these costs correspond to the cost of running25

an auxiliary algorithm, so replace the indices to make this explicit: n
(
c2 +3(2c3 +c

(2)
6 +c7:10)+c

(3)
6 +c4

)
. Here, Alg. 6, which

picks the minimum from a finite set of values, appears twice, once for a set of two and once for a set of three values. Relative

to the other costs, these are insignificant. Similarly, the cost for line 10 of Alg. 7, multiplying two values, can also be ignored.

The same holds for Alg. 4, which corresponds to the comparison of two numbers. This leaves us with n(c2 + 6c3).

So Alg. 2 and Alg. 3 need to be investigated further. The former consists of a pseudo-gradient calculation step and then a30

number of arithmetic operations on the pseudo-gradient vectors. The latter consists of an arithmetic operation on the layout,

constraint handling, and a wake loss calculation. The arithmetic operations are all applied to arrays of |T | 2-component vectors
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and their cost is therefore proportional to 2|T |. The site constraint handling must be done for each turbine, so has a cost

proportional to |T | as well, but now the proportionality constant depends on the complexity of the site and may be significant

relative to |T |. The safety distance constraint must be handled for every pair of turbines and therefore has a complexity

proportional to |T 2|. The wake loss calculations also involve pairs of turbines and next to that the calculation of an expectation

over the wind resource (cf. App. B1), which leads to a cost essentially proportional to |T 2|, the number of wind directions |ΩΘ|,5

and the number of wind speeds |ΩU |. The pseudo-gradient calculation is similar in complexity to the wake loss one.

Combining the results of the two preceding paragraphs gives an expression for the computational cost of the form

n(αpseudo-gradient|T 2×ΩΘ ×ΩU |+αarithmetic|T |+ 6βarithmetic|T |+ 6βsite|T |+ 6βsafety|T 2|+ 6βwake|T 2×ΩΘ ×ΩU |).

In practice, the arithmetic operations do not play a significant role. So, grouping terms, the computational cost picture can be

summarized by n(γ|T 2×ΩΘ ×ΩU |+ γsite|T |+ γsafety|T 2|). In this expression the last two, constraint-related terms have an10

important impact in practice, but are outside the scope of this paper. The first term shows that the computational cost scales

quadratically with the number of turbines and linearly with the number of wind directions and wind speeds. To manage the

turbine-count related complexity, an option is to only move a limited number of turbines each iteration (cf. Wagner et al., 2013,

Sec. 3.1). To manage the complexity related to the number of wind directions and wind speeds, a pre-averaging-type approach

is an option (cf. Tilli, 2019).15
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