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Abstract. Greater blade lengths and higher tip speeds, coupled with a harsh environment, has caused blade leading edge 

erosion to develop into a significant problem for the offshore wind industry. Current protection systems do not last the 

lifetime of the turbine and require regular replacement. It is important to understand the characteristics of the offshore 

environment to model and predict leading edge erosion. The offshore precipitation environment has been characterised using 10 

up to date measuring techniques. Heavy and violent rain was rare and is unlikely to be the sole driver of leading edge 

erosion. The dataset was compared to the most widely used droplet size distribution. It was found that this distribution did 

not fit the offshore data and that any lifetime predictions made using it are likely to be inaccurate. A general offshore droplet 

size distribution has been presented that can be used to improve lifetime predictions and reduce lost power production and 

unexpected turbine downtime. 15 

1 Introduction 

The offshore wind industry’s need of larger rotors and higher tip speeds has caused blade leading edge erosion to develop 

into a major problem for the industry. Leading edge erosion is caused by raindrops, hailstone, and other particles impacting 

the leading edge of the blade and removing material. This degrades the aerodynamic performance of the blade and requires 

operators to perform expensive repairs. The issue has grown in prominence recently with reports that Ørsted had to make 20 

repairs to up to 2,000 offshore wind turbines after just a few years of operation (Finans, 2018). 

The industry attempts to prevent the onset of leading edge erosion by applying protection systems, such as coating and tapes, 

to the blade leading edge. However, currently these do not last the lifetime of the turbine and require regular replacement. 

Several analytical models that aim to estimate the expected lifetime of a protection system have been developed (Eisenberg 

et al., 2018, Slot et al., 2015, Springer et al., 1974). Finite element models that can predict the stresses and strains in a 25 

protection system from an impinging water droplet have also been produced (Keegan et al., 2012, Doagou-Rad and 

Mishnaevsky, 2019). To model leading edge erosion, it is important to understand the characteristics of the impinging 

hydrometeors and, as rain is the most frequent hydrometeor, the droplet size distribution (DSD) of the impinging rain. 
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The aim of the industry is to develop a methodology that can predict the lifetime of a protection system on a wind turbine 30 

from rain erosion tests. The DNV-GL project COBRA aims to address this, and Eisenberg proposes using the Springer 

model. Due to the lack of an offshore dataset, the project uses the onshore Best distribution published in 1950 (Best, 1950). 

However, the manual measurement techniques used by Best are outdated and have been found to provide inaccurate results 

(Kathiravelu et al., 2016). The lack of an offshore dataset introduces uncertainty into lifetime predictions and, as a result, 

inaccuracies may exist. In this work, state of the art measurement techniques have been used to characterise the offshore 35 

precipitation environment and provide the required offshore dataset. A general offshore DSD is presented. 

2 The Best Distribution 

The most widely used DSD is the Best distribution. Best takes the work of several authors and converts them into a common 

DSD defined as: 

1 − 𝐹 = 𝑒𝑥𝑝 [− (
𝑥

𝑎
)

𝑛

] ,           (1) 40 

where 𝐹 is fraction of liquid water in the air comprised by drops with diameter less than 𝑥, 𝐼 is the rate of precipitation and 

𝑎 = 𝐴𝐼𝑝 ,            (2) 

where 𝐴 = 1.30, 𝑝 = 0.232, 𝑛 = 2.25. Best concluded that the constant 𝑛 is independent of the precipitation intensity. 

This is commonly presented in literature as: 

𝐹(𝑥) = 1 − 𝑒𝑥𝑝 [− (
𝑥

1.3 𝐼0.232)
2.25

] ,         (3) 45 

Data was predominantly collected by two manual methods; the ‘Stain’ method and the ‘Flour Pellet’ method. In the Stain 

method, a sheet of absorbent paper is exposed to the rain for a short time. The stains made by the droplets are rendered 

permanent by previously treating the paper with a suitable powder dye. Then, the stains are counted, measured and 

interpreted in terms of drop sizes. A calibration curve specific to the filter paper is used to relate the stain diameter to the 

droplet diameter. The spread factor relationship is dependent upon the physical properties of the fluid, drying conditions and 50 

the impact velocity of the droplet (Sommerville and Matta, 1990). In the Flour Pellet method, rain is allowed to fall into pans 

of silted flour. The resulting dough pellets are baked and subsequently sized by passing them through graded sieves. 

In both measurement techniques, sampling can only occur in short intervals. Best performs measurements using the Stain 

method for a maximum of two minutes. During prolonged periods of sampling, the droplet stains and pellets can overlap, 

making it difficult to accurately measure and count individual drops. Furthermore, the techniques also have a low resolution. 55 

Best registers droplet sizes in 0.5 mm intervals. Given that the distribution predicts that for a rain rate of 1 mm/hr, most 

droplets are between 0 and 2 mm, it is clear that a higher resolution is required for effective analysis. 
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3 Offshore Measurement Technique 

Two Campbell Scientific PWS100 disdrometers have been installed onto Offshore Renewable Energy Catapult’s offshore 

anemometry hub, which is located three nautical miles from the coast of Blyth, Northumberland. Fig. 1 shows the position of 60 

the two disdrometers, with the first mounted on the existing platform 25 m metres above sea level (disdrometer A) and the 

second mounted 55 m above sea level (disdrometer B). Each disdrometer consists of two photodiode sensing heads, one 

near-IR diode laser head and one CS215 temperature and humidity sensor. The sensor heads are positioned 20° off-axis to 

the system unit axis, introducing a time-lag between the two sensors that enables the fall velocity and size of particles to be 

calculated. 65 

  

 

Figure 1: The optical disdrometers mounted to the platform (left) and at 55 m above sea level (right). 

Optical disdrometers are non-intrusive and do not influence drop behaviour during measurement. They have also been 

shown to successfully resolve droplet break-up and splatter problems experienced by other measurement techniques 70 

(Kathiravelu et al., 2016). Agnew (Agnew, 2013) explored the performance of the PWS100 at a site in Southern England, 

finding that the device slightly underestimates the number of droplets with a diameter below 0.8 mm. However, the 

measurement of larger, more damaging droplets was found to be accurate. Montero-Martinez (Montero-Martínez et al., 

2016) compared the performance of the disdrometer during natural rain events in Mexico City to results from a beam 

occlusion disdrometer and a reference tipping bucket. The PWS100 recorded greater amounts of precipitation than the 75 

reference, but the study was unable to back this up statistically and no significant differences in precipitation estimation was 

found between the disdrometers. Montero-Martinez concluded that the two devices performed similarly and that the 
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PWS100 provides reliable precipitation measurements. Johannsen (Johannsen et al., 2020) studied the PWS100 against a 

Thies Clima Laser Precipitation Monitor and a Parsivel OTT at a site in Austria. In contrast to Montero-Martinez, the 

PWS100 recorded less than the reference rain gauge in all but two events. The PWS100 recorded 3% less total precipitation 80 

that the rain gauge across the measurement period, outperforming the Thies and the Parsivel which recorded 20 and 30% 

less, respectively, and the PWS100 was consistently closest to the rain gauge reading throughout the period. Similar drop 

sizes were recorded between the PWS100 and the Parsivel, with Johannsen noting that the PWS100 tended to record slightly 

faster and larger drops. The studies show that there are uncertainties in the accuracy of all disdrometers, with the PWS100 

used in this study performing comparatively or better than the other examined disdrometers. 85 

DSD data from 1st September 2018 up to and including the 31st August 2019 is presented to provide a 12 month period for 

analysis. This allows analysis to also be completed seasonally. Hydrometeor diameters have been recorded with a resolution 

of 0.1 mm. Data is available with a time interval of 1 minute. 

4 The Offshore Dataset 90 

4.1 Quality Control 

Raw data was received from the disdrometers and, therefore, detailed quality control was completed before subsequent 

analysis in line with recommendations from (Hasager et al., 2020), Chen (Chen et al., 2016) and Vejen (Vejen et al., 2018), 

Duplicate records were assessed by comparing time stamps, with any identical timestamps eliminated from the dataset. The 

meteorological parameters were also evaluated to remove entire duplicate records. It may be possible for a few parameters to 95 

be the same, however an entire row of identical parameters is extremely unlikely and consequently duplication has almost 

certainly occurred. A gross value check was completed to remove unrealistic and impossible values. Certain parameters are 

constrained within limits, such as relative humidity, which is given as a percentage, whereas other parameters, such as 

droplet size, can be evaluated against sensible threshold values. Furthermore, precipitation events where the disdrometer 

recorded a rain rate of 0 mm/hr, but hydrometeors were recorded were removed, as were events within the bounds of 100 

disdrometer error, such as those with a duration of 1 minute or where less than 10 total hydrometeors were recorded. Particle 

type classification is determined by the C215 sensor on the disdrometer, which distinguishes particles based on an algorithm 

using the temperature, wet bulb temperature and relative humidity. The outputs from the sensor were evaluated against an air 

temperature threshold, commonly used to distinguish between snow and rain events (Jennings et al., 2018), with any errors 

being manually inspected. 105 

The consistency between disdrometers was also explored. No sensible results were recorded by disdrometer A from 23rd 

November 2018 until its repair at the start of May 2019, whilst disdrometer B remained operating throughout the year with 

short, infrequent gaps in data gathering. Of the available recordings, the two disdrometers agreed on the occurrence of 

precipitation 97.40% of the time, with this increasing to 99.74% when evaluating precipitation intensities above 0.5 mm/hr. 

Between the two disdrometers, 0.9% of the data recorded a difference in precipitation intensity greater than 1 mm/hr, with 110 
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these almost exclusively occurring in the higher precipitation intensities. A manual inspection of the greatest differences 

found that where large values were recorded in one disdrometer, the other recorded a comparable value in the surrounding 

minutes. This indicates that the large differences are correct and may suggest a small time discrepancy between the 

disdrometers, only noticed in the short, high intensity events. 

The comparable data gathered by disdrometer A and B enabled some gaps in disdrometer B’s dataset to be filled with the 115 

respective data from disdrometer A, where available. In total, 34.25 hours were gap filled, of which 229 minutes experienced 

precipitation and 111 minutes experienced a precipitation greater than 0.5 mm/hr. 

Table 1 presents the percentage of available quality controlled data for each month and the percentage of the available data 

in which precipitation was recorded. An estimation of the actual percentage of precipitation can be obtained by assuming 

that the same proportion of precipitation occurred across the unavailable data. A total of 82.89% of the data was available 120 

during the entire measurement period. Precipitation was recorded in 8.71% of the available data giving a yearly precipitation 

estimate of 10.50%. Winter had the highest estimation of total time with precipitation with 12.07%, whilst spring saw the 

lowest with an estimation of 8.65%. Including the missing data provides an annual accumulation of 500 mm, which is lower 

than the 650 mm average annual precipitation reported in Northumberland (WeatherSpark, 2020), indicating that the 

measurement year was a relatively dry year for the area.  125 

Table 1: Percentage of available data for each month. 

Month 
Percentage of available 

values (%) 

Percentage of time with 

precipitation (%) 

Estimation of total time 

with precipitation (%) 

September 2018 88.84 5.81 6.54 

October 2018 98.55 8.57 8.70 

November 2018 96.29 10.30 10.70 

December 2018 90.11 9.73 10.80 

January 2019 81.42 10.69 13.13 

February 2019 68.43 7.35 10.74 

March 2019 75.94 7.82 10.30 

April 2019 91.24 4.83 5.29 

May 2019 72.50 11.19 15.43 

June 2019 83.28 13.31 15.98 

July 2019 53.43 5.53 10.35 

August 2019 94.66 9.35 9.88 

Total 82.89 8.71 10.50 
 

4.1 Precipitation Intensity Frequency 

The average precipitation intensity was recorded every minute. Fig. 2 presents its variation across the measurement period, 

and Fig. 3 presents the cumulative frequency of the recorded intensities. The median precipitation intensity for the 130 

measurement period was 0.311 mm/hr. 
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Precipitation is classified according to its intensity with the following categories defined by the Met Office (Met Office, 

2007): 

• Light – precipitation intensity less than 2.5 mm/hr, 

• Moderate – precipitation intensity between 2.5 mm/hr and 10 mm/hr, 135 

• Heavy – precipitation intensity between 10 mm/hr and 50 mm/hr, 

• Violent – precipitation intensity greater than 50 mm/hr. 

 

Figure 2: Precipitation intensity during the measurement period. 

 140 

Figure 3: Cumulative distribution of precipitation for the respective seasons. 

Table 2: Precipitation intensity distribution for seasons and intensity categories. 

 Median precipitation 

intensity (mm/hr) 

Percentage of precipitation category (%) 

Light Moderate  Heavy Violent 

Autumn 0.3492 89.42 10.09 0.46 0.03 

Winter 0.2217 96.43 3.49 0.08 0 

Spring 0.2778 98.56 1.44 0 0 

Summer 0.4321 89.87 8.85 1.16 0.12 

Total 0.3111 92.58 6.89 0.50 0.03 
 

The seasonal breakdown of precipitation categories is shown in Table 2. Summer had the highest median precipitation 

intensity with the highest amount of recorded heavy and violent precipitation. In contrast, winter and spring saw minimal 145 
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heavy precipitation and no violent precipitation. Light precipitation dominated across the entire measurement period 

accounting for 92.58% of all precipitation. Furthermore, 78.31% of the recorded minutes had an intensity lower than 1 

mm/hr. Moderate precipitation was recorded in 6.89% of all cases, whilst heavy and violent rain occurred in 0.50% and 

0.03% cases, respectively. This corresponds to a total of 151 minutes of heavy precipitation and only 9 minutes of violent 

precipitation across the year. This gives a total of 193 minutes a year of heavy and violent rain once the unavailable data is 150 

factored in.  

Therefore, a wind turbine in this location would experience less than 3.5 hours a year of precipitation with an intensity 

greater than 10 mm/hr. Without corresponding erosion data, it is not possible to conclude if erosion damage is predominantly 

caused by heavy and violent precipitation. However, given that erosion can occur within just a few years of installation and 

assuming that heavy and violent precipitation occurs with the same frequency as found in this dataset, a turbine would 155 

experience less than a day of high intensity rain before erosion occurs. When considering the Springer model, this suggests 

that erosion damage is not driven solely by heavy and violent precipitation disagreeing with current research theories (Bech 

et al., 2018). 

4.2 Hydrometeor Frequency 

Fig. 4 presents the number of recorded hydrometeors by type during the data collection period. The hydrometeor type is 160 

clearly dominated by rain droplets. ‘Errors’ and ‘unknown’ particles accounted for 17.93% of the hydrometeors recorded. 

These may be caused by insects, particles between states or equipment failures and have been ignored in the subsequent 

analysis, with any records where they were the modal hydrometeor removed. Drizzle and rain droplets make up a combined 

98.45% of all hydrometeors recorded. The number of ice pellets, hail and graupel particles recorded was low, accounting for 

only 0.49% of hydrometeors recorded. 165 
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Figure 4: Number and type of hydrometeors recorded during the total measurement period. 

As expected, ice and snow based hydrometeors occurred most frequently in winter. Ice pellets, hail and graupel accounted 

for 0.94% of the hydrometeors recorded in the season with snow grains and snowflakes accounting for 3.56%. In contrast, 

only 0.16% of hydrometeors recorded in summer were ice pellets or hail, with no graupel, snow grains or snowflakes. Spring 170 

and autumn respectively recorded 0.31% and 0.57% of ice pellets, hail and graupel.  

4.3 Hydrometeor Velocity 

The severity of a hydrometeor impact is governed by its kinetic energy. Whilst the blade speed provides most of the impact 

velocity, the hydrometeor fall velocity and mass are important. For each minute, the average diameter and velocity was 

plotted for the modal hydrometeor type. This is presented in Fig. 5. 175 
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Figure 5: Relationship between size and velocity for the modal hydrometeor at each minute. 

There is a clear distinction between water particles and snow particles, with snow particles occurring across a wider range of 

diameters and lower velocities than rain particles. For the few cases where ice pellets were the model hydrometeors, they all 

occurred to the right of the rain droplet scatter, indicating that they have a lower fall velocity that rain droplets. There were 180 

no cases where hail or graupel were the modal hydrometeor and they were found to be mixed in with rain particles. The 

presented velocities for water particles are in line with those predicted in models by Gossard (Gossard et al., 1992) and 

Brandes (Brandes et al., 2002). The data presented in the above figure is used in the subsequent analysis to estimate the 

number of droplets that impact the blade per second and inform lifetime prediction models.   

5 Offshore Rain Distribution 185 

To inform lifetime prediction models, a general equation for an offshore DSD is required. The Best DSD has been 

reproduced, both seasonally and non-seasonally, with updated constants for the offshore rain data presented. Only data 

where rain particles were the modal hydrometeor were examined. 

5.1 Constant Derivation 

For each recorded minute, the cumulative function, 𝐹, has been evaluated.  190 

Rearranging Eq. (1) gives: 

ln ln (
1

1−𝐹
) = 𝑛 ln 𝑥 − 𝑛 ln 𝑎 ,          (4) 
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Values of 𝑛 and 𝑎 for the average precipitation intensity over the minute can therefore be determined by plotting Eq. (4). Fig. 

6 presents the evaluation of Eq. (4) across a range of precipitation intensities. 

 195 

Figure 6: Evaluation of Eq. (4) for precipitation intensities 0.1058, 1.2708, 4.9865 and 10.2624 mm/hr. 

Rearranging Eq. (2) gives: 

ln 𝑎 = 𝑝 ln 𝐼 + ln 𝐴 ,           (5) 

By plotting Eq. (5), the constants 𝐴 and 𝑝 can be obtained. Fig. 7 evaluates Eq. (5) across the whole dataset. 
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 200 

Figure 7: Evaluation of Eq. (5) to derive the constants 𝑨 and 𝒑. 

The constants 𝐴 and 𝑝 are determined as 1.0260 and 0.1376, respectively.  

Best concluded that the constant 𝑛 is independent of the precipitation intensity. However, for the data presented, 𝑛 has 

dependence on the rain rate. The following relationship applies: 

𝑛 = 𝑁𝐼𝑞 ,            (6) 205 

This can be evaluated as: 

ln 𝑛 = 𝑞 ln 𝐼 + ln 𝑁 ,           (7) 

Fig. 8 presents the plot of Eq. (7) from which the constants 𝑁 and 𝑞 can be obtained. 
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Figure 8: Evaluation of Eq. (7) to derive the constants 𝑵 and 𝒒. 210 

The constants 𝑁 and 𝑞 are determined as 2.8264 and -0.0953, respectively. Fig. 8 shows substantial scatter in determining 

these constants. However, as 𝑞 is small there is only slight dependence of 𝑛 on the precipitation rate and whilst the scatter is 

likely to introduce some error, it does not have a significant effect on the resulting DSD. Table 3 summarises the constants 

for the non-seasonal distribution alongside the constants for seasonal DSDs. For detailed modelling and lifetime predictions 

it may be favourable to use season dependent DSDs. 215 

Table 3: Determined constants for the non-seasonal and seasonal offshore DSDs. 

Season Data used (%) 𝐴 𝑝 𝑁 𝑞 

Non-seasonal 100.00 1.0260 0.1376 2.8264 -0.0953 

Autumn 27.62 0.9723 0.1335 2.7762 -0.0911 

Winter 24.95 0.9831 0.1338 2.6581 -0.1136 

Spring 20.43 1.0393 0.1270 2.8282 -0.1065 

Summer 27.00 1.0937 0.1410 2.9657 -0.0893 
 

Reproducing Eq. (1) with the derived non-seasonal constants gives a general non-seasonal offshore DSD: 

𝐹(𝑥) = 1 − 𝑒𝑥𝑝 [− (
𝑥

1.03 𝐼0.138)

2.83

𝐼0.0953
] ,         (8) 220 

This is presented for various precipitation intensities in Fig. 9. 
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Figure 9: The non-seasonal offshore DSD at different precipitation intensities. 

5.2 Sensitivity Analysis 

The sensitivity of the constants to the data selected has been evaluated. The following cases have been examined: 225 

• Low and high precipitation intensity have been individually and collectedly neglected. Precipitation intensities 

below 0.1 mm/hr and above 10 mm/hr were neglected. 

• Precipitation intensities that account for a small number of the recorded intensities have been individually and 

collectively neglected. These are the bottom 1% and the top 1%. 

Minutes where the measured precipitation intensity is low generally record fewer droplets than those with higher 230 

precipitations. Conversely, a significant number of droplets are generally seen in heavy precipitation. Low and heavy 

intensity rain may, therefore, have a high scatter that could influence the determined constants. Fig. 3 presented the 

cumulative distribution of the recorded precipitation intensities. The bottom and top 1% of precipitation intensities may also 

skew the data by providing a point significantly different to the trend. The impact of these conditions on the constants is 

shown in Table 4. 235 

Table 4: Sensitivity of constants to the selected cases. 

Precipitation 

Intensities (mm/hr) 

Data Used 

(%) 
𝐴 𝑝 𝑁 𝑞 

I 100 1.0260 0.1376 2.8264 -0.0953 

I > 0.1 77.68 1.0218 0.1249 2.8132 -0.1067 

I < 10 96.85 1.0269 0.1382 2.8227 -0.0961 

0.1 < I < 10 6.89 1.0219 0.1252 2.8071 -0.1090 
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I > 0.0158 99 1.0245 0.1350 2.8223 -0.0979 

I < 6.95  99 1.0280 0.1388 2.8192 -0.0969 

0.0158 < I < 6.95 98 1.0263 0.1360 2.8144 -0.0997 
 

In general, the constants are consistent across all the examined cases. The constant 𝑝 is the most sensitive to the data 

included. Neglecting low precipitation intensities reduces its value, whilst neglecting higher intensities increases its value. 

Removing precipitation intensities below 0.1 mm/hr has the greatest effect on the constants. However, ignoring these 240 

intensities loses 22.32% of the data available. It can be concluded that the proposed constants are acceptable. 

5.3 Comparison to Best DSD 

The general offshore DSD has been compared to the Best DSD at various precipitation intensities in Fig.10. The 

precipitation intensities 0.1, 1, 2.5, 5, 10, 20 mm/hr were selected to enable comparison of the two DSDs across a range of 

intensities. To account for variability in the recorded results, minutes which recorded an intensity within ±5% of the selected 245 

intensity were included. For each data group, the intensities were averaged and the offshore DSD and Best DSD for the 

average intensity plotted against them. 

 

a) I = 0.10005 mm/hr 

 

b) I = 0.99612 mm/hr 
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c) I = 2.501 mm/hr 

  

d) I = 4.9818 mm/hr 

 

e) I = 10.0194 mm/hr 

 

f) 19.9687 mm/hr 

Figure 10: Comparison between the offshore DSD and the Best DSD at precipitation intensities a) 0.09998 mm/hr, b)0.9971, c) 

2.5493, d) 5.0769, e) 9.9653 and f) 20.3311 mm/hr. 

Fig 10. reveals that the Best DSD significantly overestimates the diameter of droplets. This is particularly true at the higher 250 

precipitation intensities. The goodness of fit of the offshore and Best DSD has been evaluated across the range of 

precipitation intensities in Fig. 11. The offshore DSD aligns well with the raw data and possesses a high coefficient of 

determination (R2) across the precipitation intensity range. The slight reduction in R2 at higher intensities can be attributed to 

the reduced amount of heavy and violent precipitation recorded. The coefficient of determination of the Best DSD reduces 

significantly as the precipitation intensity increases. 255 
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Figure 11: Coefficient of determination of the offshore DSD and the Best DSD across a range of precipitation intensities. 

5.4 Limitations 

The offshore DSD presented has two main limitations. Firstly, the presented measurement period may be a limiting factor. 

As the disdrometer continues to collect data, the DSD can be further refined. Secondly, data has only been collected at one 260 

point. Offshore DSDs may vary from location to location. To address this, a disdrometer has been positioned at ORE 

Catapult’s Levenmouth offshore demonstration turbine for future comparison and validation. 

 

6 Impact of DSD on Leading Edge Erosion Lifetime Prediction 

The implications of the offshore DSD has been assessed using the Springer model, which is used by Eisenberg to predict a 265 

protection solution’s in-situ lifetime from leading edge erosion. The model uses the median droplet diameter for a given rain 

rate to determine the number of impacts to failure, 𝑁𝑖𝑐, and the number of impacts on the blade per m2 per second, �̇�. The 

number of impacts to failure is found from: 

𝑁𝑖𝑐 =
8.9

𝑑2 (
𝑆𝑒𝑐

𝜎𝑜̅̅ ̅̅
)

5.7

 ,           (9) 

where 𝑆𝑒𝑐  is the effective strength of the protection system found from rain erosion test results, and 𝜎𝑜̅̅ ̅ is the pressure at the 270 

interface between the droplet and protection system, and is a function of the droplet diameter and the relative properties of 

the system to the substrate it is applied on. The number of impacts on the blade per m2 per second is given as: 

�̇� = q 𝑉𝑠 𝛽 ,            (10) 



 

17 

 

where q is the number of droplets in a cubic metre of air,  𝑉𝑠 is the velocity of the drop impact and 𝛽 is the impingement 

efficiency of the droplets, which is dependent on the aerofoil geometry and droplet diameter. The number of droplets per 275 

cubic metre is found from geometry and is presented by Springer as: 

𝑞 = 530.5
𝐼

𝑉𝑡𝑑3 ,            (11) 

where 𝑉𝑡 is the terminal velocity of the droplets. 

The rate of damage, �̇�, from a given precipitation intensity is found from: 

�̇� =
�̇�

𝑁𝑖𝑐
 ,            (12) 280 

The analysis presented here has shown that the Best DSD currently used in the Springer model overestimates the size of 

impinging offshore droplets.  

The exact number of impacts to failure is dependent on the protection system and substrate used. For a commercial erosion 

resistant polyurethane coating system, the offshore DSD has been applied to the above equations and the relative effect on 

leading edge erosion prediction of the DSD in relation to the Best DSD is presented in Figure 12.    285 

 

Figure 12: Percentage change in leading edge erosion damage values from implementing the offshore DSD relative to 

implementing the Best DSD. 

The smaller median droplet diameter for precipitation intensities above 0.15 mm/hr requires a greater number of impacts to 

reach initiation. However, the equations show that there are a far greater number of droplet impacts per second, giving a 290 

higher damage rate for precipitation intensities, with the difference becoming substantial at the higher intensities. The impact 

of this is dependent on the site conditions and frequency of precipitation intensities. However, for the dataset presented here 

and the above material properties, the implementation of the offshore DSD causes the Springer model to predict a 23.7% 

reduction in lifetime in comparison to when the Best DSD is implemented. As a result, employing the Best DSD in leading 
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edge erosion prediction models underestimates the severity of the offshore environment in terms of leading edge erosion. 295 

Therefore, the lifetime of protection systems installed offshore is greatly overestimated, resulting in earlier than expected 

maintenance and ultimately a higher cost of energy. 

This dataset can be used to help to inform the lifetime of leading edge erosion protection systems installed offshore, helping 

to ensure maintenance is conducted early and further leading edge erosion can be combatted. The dataset can also be used to 

inform droplet impact models and rain erosion testing with the greater understanding of the environment facilitating the 300 

development of improved protection systems. 

7 Conclusions 

DSDs are important in predicting and modelling leading edge erosion. Currently, there is a lack of an offshore dataset and 

the industry uses onshore distributions in lifetime predictions. In this work, a disdrometer has been positioned three nautical 

miles offshore to collect and characterise the offshore precipitation environment and to provide an offshore DSD for lifetime 305 

prediction models. 

Heavy and violent precipitation was rare in the measurement period, accounting for less than 3.5 hours of precipitation 

across the year. Therefore, erosion damage is not likely to be driven exclusively by heavy and violent precipitation. Rain was 

the most frequently occurring hydrometeor, whereas snow, ice and hail particles were scarce. A clear distinction was visible 

in the diameter-velocity plots for each hydrometeor, with snow particles occurring across a wider range of diameters and 310 

lower average velocities. The majority of raindrops observed had a diameter below 2 mm. 

A general offshore DSD has been presented. The raw data was compared to the presented DSD and the most widely used 

DSD proposed by Best. A statistical R2 analysis found that the offshore DSD aligned well with the data, whereas the Best 

DSD significantly overestimated the diameters of droplets. The implication of the offshore DSD was evaluated with the 

Springer model where it was found the inaccuracies in the Best DSD greatly underestimates the severity of the offshore 315 

environment in terms of leading edge erosion. As a result, the Best DSD is not a suitable distribution to use in lifetime 

prediction models for protection systems positioned offshore and therefore predictions determined using it are unlikely to be 

accurate. 

The results presented address the lack of an offshore dataset and provide a general offshore DSD that can be used to inform 

lifetime prediction models for the offshore environment. A disdrometer has been placed at ORE Catapult’s Levenmouth 320 

offshore wind turbine to provide further information about the precipitation environment and validate the presented DSD. 

The offshore dataset can be used to improve prediction and modelling techniques, helping to inform the design of new 

protection solutions and help combat leading edge erosion, whilst reducing lost energy production and unexpected turbine 

downtime. 
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