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Abstract. Greater blade lengths and higher tip speeds, coupled with a harsh environment, has caused blade leading edge 

erosion to develop into a significant problem for the offshore wind industry. Current protection systems do not last the 

lifetime of the turbine and require regular replacement. It is important to understand the characteristics of the offshore 

environment to model and predict leading edge erosion. The offshore precipitation environment has been characterised using 10 

up to date measuring techniques. Heavy and violent rain was rare and is unlikely to be the sole driver of leading edge 

erosion. The dataset was compared to the most widely used droplet size distribution. It was found that this distribution did 

not fit the offshore data and that any lifetime predictions made using it are likely to be inaccurate. A general offshore droplet 

size distribution has been presented that can be used to improve lifetime predictions and reduce lost power production and 

unexpected turbine downtime. 15 

1 Introduction 

The offshore wind industry’s need of larger rotors and higher tip speeds has caused blade leading edge erosion to develop 

into a major problem for the industry. Leading edge erosion is caused by raindrops, hailstone, and other particles impacting 

the leading edge of the blade and removing material. This degrades the aerodynamic performance of the blade and requires 

operators to perform expensive repairs. The issue has grown in prominence recently with reports that Ørsted had to make 20 

repairs to up to 2,000 offshore wind turbines after just a few years of operation (Finans, 2018). 

The industry attempts to prevent the onset of leading edge erosion by applying protection systems, such as coating and tapes, 

to the blade leading edge. However, currently these do not last the lifetime of the turbine and require regular replacement. 

Several analytical models that aim to estimate the expected lifetime of a protection system have been developed (Eisenberg 

et al., 2018, Slot et al., 2015, Springer et al., 1974). Finite element models that can predict the stresses and strains in a 25 

protection system from an impinging water droplet have also been produced (Keegan et al., 2012, Doagou-Rad and 

Mishnaevsky, 2019). To model leading edge erosion, it is important to understand the characteristics of the impinging 

hydrometeors and, as rain is the most frequent hydrometeor, the droplet size distribution (DSD) of the impinging rain. 
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Weather radars are widely used to predict the offshore precipitation environment due to their ability to examine large 

geographical areas. To translate the radar data to DSDs, it is passed through complex algorithms and, due to the lack of 30 

offshore rain datasets, validated against onshore datasets collected from strain gauges and disdrometers. The most 

extensively used onshore distribution is the Best distribution published in 1950 (Best, 1950). However, the manual 

measurement techniques used by Best are outdated and have been found to provide inaccurate results (Kathiravelu et al., 

2016). 

The lack of an offshore dataset introduces uncertainty into radar predictions and, as a result, validation inaccuracies may 35 

exist. In this work, state of the art measurement techniques have been used to characterise the offshore precipitation 

environment and provide the required offshore dataset. A general offshore DSD is also presented. 

2 The Best Distribution 

The most widely used DSD is the Best distribution. Best takes the work of several authors and converts them into a common 

DSD defined as: 40 

1 − 𝐹 = 𝑒𝑥𝑝 [− (
𝑥

𝑎
)

𝑛

] ,           (1) 

where 𝐹 is fraction of liquid water in the air comprised by drops with diameter less than 𝑥, 𝐼 is the rate of precipitation and 

𝑎 = 𝐴𝐼𝑝 ,            (2) 

where 𝐴 = 1.30, 𝑝 = 0.232, 𝑛 = 2.25. Best concluded that the constant 𝑛 is independent of the precipitation intensity. 

This is commonly presented in literature as: 45 

𝐹(𝑥) = 1 − 𝑒𝑥𝑝 [− (
𝑥

1.3 𝐼0.232)
2.25

] ,         (3) 

Data was predominantly collected by two manual methods; the ‘Stain’ method and the ‘Flour Pellet’ method. In the Stain 

method, a sheet of absorbent paper is exposed to the rain for a short time. The stains made by the droplets are rendered 

permanent by previously treating the paper with a suitable powder dye. Then, the stains are counted, measured and 

interpreted in terms of drop sizes. A calibration curve specific to the filter paper is used to relate the stain diameter to the 50 

droplet diameter. The spread factor relationship is dependent upon the physical properties of the fluid, drying conditions and 

the impact velocity of the droplet (Sommerville and Matta, 1990). In the Flour Pellet method, rain is allowed to fall into pans 

of silted flour. The resulting dough pellets are baked and subsequently sized by passing them through graded sieves. 

In both measurement techniques, sampling can only occur in short intervals. Best performs measurements using the Stain 

method for a maximum of two minutes. During prolonged periods of sampling, the droplet stains and pellets can overlap, 55 

making it difficult to accurately measure and count individual drops. Furthermore, the techniques also have a low resolution. 
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Best registers droplet sizes in 0.5 mm intervals. Given that the distribution predicts that for a rain rate of 1 mm/hr, most 

droplets are between 0 and 2 mm, it is clear that a higher resolution is required for effective analysis. 

3 Offshore Measurement Technique 

Two Campbell Scientific PWS100 disdrometers have been installed onto Offshore Renewable Energy Catapult’s offshore 60 

anemometry hub, which is located three nautical miles from the coast of Blyth, Northumberland. Fig. 1 shows the position of 

the two disdrometers, with the first mounted on the existing platform 25 m metres above sea level and the second mounted 

55 m above sea level. 

 

Figure 1: The optical disdrometers mounted to the platform (left) and at 55 m above sea level (right). 65 

The optical disdrometers are non-intrusive and do not influence drop behaviour during measurement. They have also been 

shown to successfully resolve droplet break-up and splatter problems experienced by other measurement techniques 

(Kathiravelu et al., 2016). Agnew (Agnew, 2013) found that the PWS100 slightly underestimates the number of droplets 

with a diameter below 0.8 mm. However, the measurement of larger, more damaging droplets was found to be accurate. 

DSD data from 1st September 2018 up to and including the 31st August 2019 is presented to provide a 12 month period for 70 

analysis. This allows analysis to also be completed seasonally. Hydrometeors have been recorded with a resolution of 0.1 

mm. Data is available with a time interval of 1 minute. 

Table 1 presents the percentage of available data for each month and the percentage of the available data in which 

precipitation was recorded. An estimation of the actual percentage of precipitation can be obtained by assuming that the 

same proportion of precipitation occurred across the unavailable data. A total of 82.89% of the data was available during the 75 
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entire measurement period. Precipitation was recorded in 8.71% of the available data giving a yearly precipitation estimate 

of 10.50%. Winter had the highest estimation of total time with precipitation with 12.07%, whilst spring saw the lowest with 

an estimation of 8.65%. 

Table 1: Percentage of available data for each month. 

Month 
Percentage of available 

values (%) 

Percentage of time with 

precipitation (%) 

Estimation of total time 

with precipitation (%) 

September 2018 88.84 5.81 6.54 

October 2018 98.55 8.57 8.70 

November 2018 96.29 10.30 10.70 

December 2018 90.11 9.73 10.80 

January 2019 81.42 10.69 13.13 

February 2019 68.43 7.35 10.74 

March 2019 75.94 7.82 10.30 

April 2019 91.24 4.83 5.29 

May 2019 72.50 11.19 15.43 

June 2019 83.28 13.31 15.98 

July 2019 53.43 5.53 10.35 

August 2019 94.66 9.35 9.88 

Total 82.89 8.71 10.50 

4 The Offshore Dataset 80 

In line with recommendations from Chen (Chen et al., 2016) and Vejen (Vejen et al., 2018), quality control was performed 

on the raw data collected from the disdrometers. Data was neglected if it met any of the following criteria: 

• Event had a duration of 1 minute or under, 

• Event had less than 10 hydrometeors recorded in total, 

• Events where the disdrometer recorded a rain rate of 0, but hydrometeors were recorded. 85 

4.1 Precipitation Intensity Frequency 

The average precipitation intensity was recorded every minute. Fig. 2 presents its variation across the measurement period, 

and Fig. 3 presents the cumulative frequency of the recorded intensities. The median precipitation intensity for the 

measurement period was 0.311 mm/hr. 

Precipitation is classified according to its intensity with the following categories defined by the Met Office (Met Office, 90 

2007): 

• Light – precipitation intensity less than 2.5 mm/hr, 

• Moderate – precipitation intensity between 2.5 mm/hr and 10 mm/hr, 

• Heavy – precipitation intensity between 10 mm/hr and 50 mm/hr, 
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• Violent – precipitation intensity greater than 50 mm/hr. 95 

 

Figure 2: Precipitation intensity during the measurement period. 

 

Figure 3: Cumulative distribution of precipitation for the respective seasons. 

Table 2: Precipitation intensity distribution for seasons and intensity categories. 100 

 Median precipitation 

intensity (mm/hr) 

Percentage of precipitation category (%) 

Light Moderate  Heavy Violent 

Autumn 0.3492 89.42 10.09 0.46 0.03 

Winter 0.2217 96.43 3.49 0.08 0 

Spring 0.2778 98.56 1.44 0 0 

Summer 0.4321 89.87 8.85 1.16 0.12 

Total 0.3111 92.58 6.89 0.50 0.03 
 

The seasonal breakdown of precipitation categories is shown in Table 2. Summer had the highest median precipitation 

intensity with the highest amount of recorded heavy and violent precipitation. In contrast, winter and spring saw minimal 

heavy precipitation and no violent precipitation. Light precipitation dominated across the entire measurement period 

accounting for 92.58% of all precipitation. Furthermore, 78.31% of the recorded minutes had an intensity lower than 1 105 

mm/hr. Moderate precipitation was recorded in 6.89% of all cases, whilst heavy and violent rain occurred in 0.50% and 

0.03% cases, respectively. This corresponds to a total of 151 minutes of heavy precipitation and only 9 minutes of violent 
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precipitation across the year. This gives a total of 193 minutes a year of heavy and violent rain once the unavailable data is 

factored in.  

Therefore, a wind turbine in this location would experience less than 3.5 hours a year of precipitation with an intensity 110 

greater than 10 mm/hr. Without corresponding erosion data, it is not possible to conclude if erosion damage is predominantly 

caused by heavy and violent precipitation. However, given that erosion can occur within just a few years of installation and 

assuming that heavy and violent precipitation occurs with the same frequency as found in this dataset, a turbine would 

experience less than a day of high intensity rain before erosion occurs. This suggests that erosion damage is not driven solely 

by heavy and violent precipitation disagreeing with current research theories (Bech et al., 2018). 115 

4.2 Hydrometeor Frequency 

Fig. 4 presents the number of recorded hydrometeors by type during the data collection period. The hydrometeor type is 

clearly dominated by rain droplets. ‘Errors’ and ‘unknown’ particles accounted for 17.93% of all data recorded. These may 

be caused by insects, particles between states or equipment failures and have been neglected. Drizzle and rain droplets make 

up a combined 98.45% of all hydrometeors recorded. The number of ice pellets, hail and graupel particles recorded was low, 120 

accounting for only 0.49% of hydrometeors recorded. 

 

Figure 4: Number and type of hydrometeors recorded during the total measurement period. 

As expected, ice and snow based hydrometeors occurred most frequently in winter. Ice pellets, hail and graupel accounted 

for 0.94% of the hydrometeors recorded in the season with snow grains and snowflakes accounting for 3.56%. In contrast, 125 

only 0.16% of hydrometeors recorded in summer were ice pellets or hail, with no graupel, snow grains or snowflakes. Spring 

and autumn respectively recorded 0.31% and 0.57% of ice pellets, hail and graupel.  
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4.3 Hydrometeor Velocity 

The severity of a hydrometeor impact is governed by its kinetic energy. Whilst the blade speed provides most of the impact 

velocity, the hydrometeor fall velocity and mass are important. For each minute, the average diameter and velocity was 130 

plotted for the modal hydrometeor type. This is presented in Fig. 5. 

 

Figure 5: Relationship between size and velocity for the modal hydrometeor at each minute. 

There is a clear distinction between water particles and snow particles, with snow particles occurring across a wider range of 

diameters and lower velocities than rain particles. For the few cases where ice pellets were the model hydrometeors, they all 135 

occurred to the right of the rain droplet scatter, indicating that they have a lower fall velocity that rain droplets. There were 

no cases where hail or graupel were the modal hydrometeor and they were found to be mixed in with rain particles. 

5 Offshore Rain Distribution 

To accurately translate weather radars into DSDs and reduce uncertainties in radar predictions, a general equation for an 

offshore DSD is required. The Best DSD has been reproduced, both seasonally and non-seasonally, with updated constants 140 

for the offshore rain data presented. Only data where rain particles were the modal hydrometeor were examined. 

5.1 Constant Derivation 

For each recorded minute, the cumulative function, 𝐹, has been evaluated.  

Rearranging Eq. (1) gives: 
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ln ln (
1

1−𝐹
) = 𝑛 ln 𝑥 − 𝑛 ln 𝑎 ,          (4) 145 

Values of 𝑛 and 𝑎 for the average precipitation intensity over the minute can therefore be determined by plotting Eq. (4). Fig. 

6 presents the evaluation of Eq. (4) across a range of precipitation intensities. 

 

a) I = 0.1058 mm/hr 

 

b) I = 0.2708 mm/hr 

 

c) I = 4.9865 mm/hr 
 

 

d) I = 10.2624 mm/hr 

Figure 6: Evaluation of Eq. (4) for precipitation intensities a) 0.1058, b) 1.2708, c) 4.9865 and d) 10.2624 mm/hr. 

Rearranging Eq. (2) gives: 

ln 𝑎 = 𝑝 ln 𝐼 + ln 𝐴 ,           (5) 150 

By plotting Eq. (5), the constants 𝐴 and 𝑝 can be obtained. Fig. 7 evaluates Eq. (5) across the whole dataset. 

https://doi.org/10.5194/wes-2020-11
Preprint. Discussion started: 12 February 2020
c© Author(s) 2020. CC BY 4.0 License.



 

9 

 

 

Figure 7: Evaluation of Eq. (5) to derive the constants 𝑨 and 𝒑. 

The constants 𝐴 and 𝑝 are determined as 1.0260 and 0.1376, respectively.  

Best concluded that the constant 𝑛 is independent of the precipitation intensity. However, for the data presented, 𝑛 has 155 

dependence on the rain rate. The following relationship applies: 

𝑛 = 𝑁𝐼𝑞 ,            (6) 

This can be evaluated as: 

ln 𝑛 = 𝑞 ln 𝐼 + ln 𝑁 ,           (7) 

Fig. 8 presents the plot of Eq. (7) from which the constants 𝑁 and 𝑞 can be obtained. 160 
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Figure 8: Evaluation of Eq. (7) to derive the constants 𝑵 and 𝒒. 

The constants 𝑁 and 𝑞 are determined as 2.8264 and -0.0953, respectively. Fig. 8 shows substantial scatter in determining 

these constants. However, as 𝑞 is small there is only slight dependence of 𝑛 on the precipitation rate and whilst the scatter is 

likely to introduce some error, it does not have a significant effect on the resulting DSD. Table 3 summarises the constants 165 

for the non-seasonal distribution. 

Table 3: Determined constants for the non-seasonal offshore DSD. 

Constant Value 

𝐴 1.0260 

𝑝 

𝑁 

𝑞 

0.1376 

2.8264 

-0.0953 

 

Reproducing Eq. (1) with the derived constants gives a general non-seasonal offshore DSD: 

𝐹(𝑥) = 1 − 𝑒𝑥𝑝 [− (
𝑥

1.03 𝐼0.138)

2.83

𝐼0.0953
] ,         (8) 170 

This is presented for various precipitation intensities in Fig. 9. Table 4 presents the constants for seasonal DSDs. For detailed 

modelling and lifetime predictions it may be favourable to use season dependent DSDs. 
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Figure 9: The non-seasonal offshore DSD at different precipitation intensities. 

Table 4: Determined constants for the seasonal offshore DSDs. 175 

Season Data used (%) 𝐴 𝑝 𝑁 𝑞 

Autumn 27.62 0.9723 0.1335 2.7762 -0.0911 

Winter 24.95 0.9831 0.1338 2.6581 -0.1136 

Spring 20.43 1.0393 0.1270 2.8282 -0.1065 

Summer 27.00 1.0937 0.1410 2.9657 -0.0893 

5.2 Sensitivity Analysis 

The sensitivity of the constants to the data selected has been evaluated. The following cases have been examined: 

• Low and high precipitation intensity have been individually and collectedly neglected. Precipitation intensities 

below 0.1 mm/hr and above 10 mm/hr were neglected. 

• Precipitation intensities that account for a small number of the recorded intensities have been individually and 180 

collectively neglected. These are the bottom 1% and the top 1%. 

Minutes where the measured precipitation intensity is low generally record fewer droplets than those with higher 

precipitations. Conversely, a significant number of droplets are generally seen in heavy precipitation. Low and heavy 

intensity rain may, therefore, have a high scatter that could influence the determined constants. Fig. 3 presented the 

cumulative distribution of the recorded precipitation intensities. The bottom and top 1% of precipitation intensities may also 185 

skew the data by providing a point significantly different to the trend. The impact of these conditions on the constants is 

shown in Table 5. 
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Table 5: Sensitivity of constants to the selected cases. 

Precipitation 

Intensities (mm/hr) 

Data Used 

(%) 
𝐴 𝑝 𝑁 𝑞 

I 100 1.0260 0.1376 2.8264 -0.0953 

I > 0.1 77.68 1.0218 0.1249 2.8132 -0.1067 

I < 10 96.85 1.0269 0.1382 2.8227 -0.0961 

0.1 < I < 10 6.89 1.0219 0.1252 2.8071 -0.1090 

I > 0.0158 99 1.0245 0.1350 2.8223 -0.0979 

I < 6.95  99 1.0280 0.1388 2.8192 -0.0969 

0.0158 < I < 6.95 98 1.0263 0.1360 2.8144 -0.0997 
 

In general, the constants are consistent across all the examined cases. The constant 𝑝 is the most sensitive to the data 190 

included. Neglecting low precipitation intensities reduces its value, whilst neglecting higher intensities increases its value. 

Removing precipitation intensities below 0.1 mm/hr has the greatest effect on the constants. However, ignoring these 

intensities loses 22.32% of the data available. It can be concluded that the proposed constants are acceptable. 

5.3 Comparison to Best DSD 

The general offshore DSD has been compared to the Best DSD at various precipitation intensities in Fig.10. The 195 

precipitation intensities 0.1, 1, 2.5, 5, 10, 20 mm/hr were selected to enable comparison of the two DSDs across a range of 

intensities. To account for variability in the recorded results, minutes which recorded an intensity within ±5% of the selected 

intensity were included. For each data group, the intensities were averaged and the offshore DSD and Best DSD for the 

average intensity plotted against them. 

 

a) I = 0.10005 mm/hr 

 

b) I = 0.99612 mm/hr 
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c) I = 2.501 mm/hr 

  

d) I = 4.9818 mm/hr 

 

e) I = 10.0194 mm/hr 

 

f) 19.9687 mm/hr 

Figure 10: Comparison between the offshore DSD and the Best DSD at precipitation intensities a) 0.09998 mm/hr, b)0.9971, c) 200 
2.5493, d) 5.0769, e) 9.9653 and f) 20.3311 mm/hr. 

Fig 10. reveals that the Best DSD significantly overestimates the diameter of droplets. This is particularly true at the higher 

precipitation intensities. The goodness of fit of the offshore and Best DSD has been evaluated across the range of 

precipitation intensities in Fig. 11. The offshore DSD aligns well with the raw data and possesses a high coefficient of 

determination (R2) across the precipitation intensity range. The slight reduction in R2 at higher intensities can be attributed to 205 

the reduced amount of heavy and violent precipitation recorded. The coefficient of determination of the Best DSD reduces 

significantly as the precipitation intensity increases. Therefore, it is not appropriate to validate offshore weather radar data 

against the Best DSD. 
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Figure 11: Coefficient of determination of the offshore DSD and the Best DSD across a range of precipitation intensities. 210 

5.4 Limitations 

The offshore DSD presented has two main limitations. Firstly, the presented measurement period may be a limiting factor. 

As the disdrometer continues to collect data, the DSD can be further refined. Secondly, data has only been collected at one 

point. Offshore DSDs may vary from location to location. To address this, a disdrometer has been positioned at ORE 

Catapult’s Levenmouth offshore demonstration turbine for future comparison and validation. 215 

6 Conclusions 

DSDs are important in predicting and modelling leading edge erosion. Currently, there is a lack of an offshore dataset and 

the industry validates weather radars against onshore data. In this work, a disdrometer has been positioned three nautical 

miles offshore to collect and characterise the offshore precipitation environment and to provide an offshore dataset for 

validating weather radar predictions. 220 

Heavy and violent precipitation was rare in the measurement period, accounting for less than 3.5 hours of precipitation 

across the year. Therefore, erosion damage is not likely to be driven exclusively by heavy and violent precipitation. Rain was 

the most frequently occurring hydrometeor, whereas snow, ice and hail particles were scarce. A clear distinction was visible 

in the diameter-velocity plots for each hydrometeor, with snow particles occurring across a wider range of diameters and 

lower average velocities. The majority of raindrops observed had a diameter below 2 mm. 225 
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A general offshore DSD has been presented. The raw data was compared to the presented DSD and the most widely used 

DSD proposed by Best. The offshore DSD aligned well with the data. In contrast, the Best DSD significantly overestimated 

the diameters of droplets and is not a suitable validation for weather radars and use in lifetime prediction models. 

The results presented address the lack of an offshore dataset and provide a general offshore DSD that can be used to validate 

weather radar predictions. A disdrometer has been placed at ORE Catapult’s Levenmouth offshore wind turbine to provide 230 

further information about the precipitation environment and validate the presented DSD. The offshore dataset can be used to 

improve prediction and modelling techniques, reducing lost energy production and unexpected turbine downtime. 

The aim of the industry is to develop a methodology that can predict the lifetime of a protection system on a wind turbine 

from rain erosion tests. The DNV-GL project COBRA aims to address this. The project uses the Best DSD to characterise 

the offshore environment. However, this DSD has been shown to be unsuitable for the offshore environment and any 235 

offshore lifetime prediction determined using it is unlikely to be accurate. 
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