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Abstract. The objective of this paper was the experimental investigation of the accumulated induction effect of a large offshore

wind farm as a whole, i.e. the global blockage effect, in relation to atmospheric stability estimates and wind farm operational

states. We measured the inflow of a 400 MW offshore wind farm in the German North Sea with a scanning long-range Doppler

wind lidar. A methodology to reduce the statistical variability of different lidar scans at comparable measurement conditions

was introduced and an extensive uncertainty assessment of the averaged wind fields was performed to be able to identify5

the global blockage effect which is small compared to e.g. wind turbine wake effects and ambient variations in the inflow.

Our results showed a significant decrease in wind speed at platform height in front of the wind farm of 4.5 % within an

accuracy range between 2.5 % and 6.5 % with the turbines operating at high thrust coefficients in a stably stratified atmosphere,

which we interpreted as global blockage. In contrast, at unstable stratification and similar operating conditions we identified

no wind speed deficit. We discussed the significance of our measurements, possible sources of error in long-range scanning10

lidar campaigns and give recommendations how to measure small flow effects like global blockage with scanning Doppler

lidar. In conclusion, we provide strong evidence for the existence of global blockage in large offshore wind farms in stable

stratification and the turbines operating at a high thrust coefficient by planar lidar wind field measurements. We conclude that

global blockage is dependant on atmospheric stratification.

1 Introduction15

Wind turbine wakes can cause negative effects at downstream turbines due to decreased wind speeds and increased turbulence

(Porté-Agel et al., 2019). This was intensively studied in the last decades and is considered in all wind farm projects planned

today (Rohrig et al., 2019). Recently, the so-called global blockage effect came into the research focus. It denotes the reduction

of the wind speed in a comparably wide area upstream of large wind farms. The effect is supposed to be caused by an inter-

action of the wind farm as a whole with the atmospheric boundary layer since it can not be sufficiently described by a simple20

superposition of the induction zones of individual turbines in a large wind farm. Global blockage is usually not considered in

the planning of wind energy projects and could therefore lead to non-negligible uncertainties in the assessment of the wind

resource (Bleeg et al., 2018).
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The knowledge of the wind resource to be expected during the lifetime of a wind energy project is crucial for its successful25

financing and economic operation. A large wind farm operator recently attributed a reduction in the predicted unlevered life-

cycle Internal Rate of Return (IRR) among others to underestimated wake effects between distant wind farms and the global

wind farm blockage effect (Ørsted A/S, 2019).

The induction zone of a single wind turbine describes the region in front of the rotor where the wind speed is reduced due to

the presence of the wind turbine. The local wind speed at hub height is considered to match the free wind speed, i. e. the wind30

speed at the location of the turbine in absence of it, and is measured in the standard onshore setup ideally 2.5 rotor diameters D

upstream or lateral to the turbine (IEC, 2017). The effect of reduced wind speeds in the induction zone of a wind turbine is

called wind turbine blockage effect and it is caused by the thrust of the rotor. Meyer Forsting et al. (2017) give an overview of

wind turbine blockage and the induction zone.

The accumulated induction zone generated by the wind farm as a whole is called global blockage and leads to a wind speed35

deceleration and flow deflections sideways and upward in front of the wind farm. Wind farm related factors influencing the

extent and the intensity of the global blockage effect are wind farm size, layout, wind direction, turbine spacing and thrust

coefficient (Porté-Agel et al., 2019). A meteorological parameter that affects the extent and strength of the wind farm induction

zone, i.e. the global blockage, is the height of the atmospheric boundary layer (Porté-Agel et al., 2019) which is related to

atmospheric stability (Kitaigorodskii and Joffre, 1988).40

Knowledge about the global blockage effect mainly results from numerical studies. Meyer Forsting et al. (2016) used RANS

simulations to investigate the effect that wind turbines in a row have on each other’s power production when considering

different inflow directions. They found a combined induction zone of the whole turbine row with changes in the individual

turbine’s power in the range of -1 % to 2 % while the accumulated power remained nearly constant. Wu and Porté-Agel (2017)

performed Large Eddy Simulations (LES) of large finite-size wind farms in neutral stratified boundary layers capped with a45

thermally-stratified free atmosphere (conventionally-neutral atmospheric boundary layer) and discovered a wind farm induction

zone extending about 0.8 km (rotor diameter D=80 m ) upwind and leading to power reductions of 1.3 % and 3 % for different

farm layouts. Using LES, Allaerts and Meyers (2017) determined wind farms to excite gravity waves in stable stratification.

They relate the flow deceleration in front of the wind farm to pressure gradients induced by the gravity waves and not directly

to global blockage.50

Some modelling studies analyzed global blockage from implementations of the accumulated turbine induction in engineering

models. Branlard and Meyer Forsting (2020) introduced a computational inexpensive vortex model to assess wind farm pro-

duction considering accumulated blockage effects. The wind turbine and wind farm blockage effects resolved with their model

compared well with results from actuator disk simulations at moderate thrust coefficients. Bleeg (2020) used a graph neural

network surrogate model to predict wind turbine interaction losses including global blockage. He found a good agreement of55

the model and the results of RANS simulations. Nygaard et al. (2020) coupled an engineering model for global blockage with

a wind turbine wake model modified to better represent the far wind farm or cluster wake. Their wind farm blockage model

was able to predict the trend in the variation of power in the front row of turbines but underestimated its amplitude. The authors

pinpoint that more research is needed on the further model development and calibration. Branlard et al. (2020) presented a cur-
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rent overview of engineering models including global blockage and compare their performance with an actuator disk RANS60

simulation as reference. They find the different models to show varying levels of accuracy with a mean error level below 1 %

in the induction zone.

These numerical studies agree on the magnitude of the wind speed deficit in the wind farm induction zone to be in a lower

one-digit percentage range. Nevertheless, most numerical studies lack measurement data for validation since experimental

investigations on global blockage have been rarely performed.65

Segalini and Dahlberg (2019) measured the effect of a model wind farm on a row of upstream turbines in different distances

in a laminar wind tunnel. They observed a decrease in wind speed at the turbine row in distances of up to 30 rotor diameters

(D=45 mm) upstream and with a maximum of 2 %.

To our knowledge the only study presenting free field measurements of global blockage was performed by Bleeg et al.

(2018), who analysed wind measurements of meteorological masts upstream and lateral to three different onshore wind farms70

before and after the commercial operation date and for high thrust coefficients of the turbines. Deficits in wind speed upstream

compared to the lateral reference mast of around 2 % and up to more than 6 % appeared typically in front of the farms after the

turbines went into operation. The authors relate this mainly to the global blockage effect.

Open field measurements of global blockage are challenging. Classic anemometry is limited in its possibilities to study the75

induction zone of a wind farm since just a limited number of masts can be placed in front of it due to mainly financial con-

straints. In the last decade, the remote sensing methods Doppler wind lidar (light detection and ranging) has become a common

tool in many fields of wind energy research and applications (Hasager and Sjöholm, 2019). Lidar devices offer the possibility

to scan whole wind fields with ranges of several kilometres. Commercial scanning lidar systems allow to measure the line-of-

sight (LOS) component of the wind vector on several hundred positions along the emitted laser beam and to orientate the beam80

in any direction. Scanning lidars have enabled many new insights in different fields of wind energy research, like wind turbine

wakes (Käsler et al., 2010; Trabucchi et al., 2014), wind farm cluster wakes (Schneemann et al., 2020), resource assessment in

complex terrain (Menke et al., 2020) and minute-scale wind power forecasts (Theuer et al., 2020b).

The current knowledge on global blockage is mainly based on modelling activities or wind tunnel studies. Compared to85

well-known phenomena like wind turbine wakes with significant wind speed deficits in the order of tens of percents of the

inflow wind speed in a well defined downstream region, global blockage is much harder to study especially due to the larger

spatial expansion over typically several square kilometres and the smaller wind speed differences in a single digit percentage

range. Furthermore, the effect of global blockage needs to be separated from other spatial and temporal variations in the wind

field. Averaged field measurements on single points (Bleeg et al., 2018) lack information on superposed flow features like local90

wind speed variations due to orography, wind farm layout or varying meteorological conditions. Since it is not possible to

distinguish these flow features, this adds uncertainty to the identification of global blockage.

Therefore, accurate field measurements spatially resolving the induction zone of the wind farm are of major importance to

validate the modelling results already achieved. The extent of global blockage in operating wind farms and its dependency on
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atmospheric stability and the farm’s operational state is still not fully understood and proof for the effect appearing in operating95

wind farms is still missing.

Compact Doppler lidar systems offer the possibility to scan large parts of the inflow of a wind farm with measurement ranges

up to 10 kilometres. Nevertheless, to obtain wind data for a quantitative analysis all measurement parameters of the lidar device

such as its orientation and tilt due to platform movements need to be carefully selected and accurately controlled. Furthermore,

environmental parameters and conditions like curvature of the earth, knowledge of the current wind profile and atmospheric100

stability for height correction need to be known and accounted for.

The objective of our paper is the experimental assessment of the global blockage effect in a large offshore wind farm

dependent on atmospheric stability estimates and wind farm operational states. In addition to this, we are proposing a method

to examine comparably small flow effects like global blockage with long-range scanning lidar. Our approach includes:105

– analysing horizontal long-range Doppler lidar plan position indicator (PPI) scans upstream of a 400 MW offshore wind

farm,

– deriving atmospheric stability from local meteorological measurements and

– performing a detailed uncertainty assessment and error correction on all measured quantities.

Furthermore, we provide recommendations for measurements of global blockage or similar small flow effects with scanning110

Doppler Lidar.

In this paper we use the terms blockage effect and wind turbine blockage effect for decreased wind speeds in the induction

zone of single turbines while we call the accumulated blockage effect of all turbines within a wind farm or wind farm cluster

global (wind farm) blockage or global (wind farm) blockage effect.

This paper is structured as follows. In Section 2 we introduce our experimental setup including lidar measurements and115

atmospheric stability estimations. We place special focus on the uncertainty assessment of the lidar data. We present the results

of four different inflow situations varying in atmospheric stability and wind speed in Section 3. In Section 4 we discuss our

findings and give recommendations for lidar measurements of flow effects like global blockage with a magnitude of typical

ambient wind speed fluctuations. We conclude and close the paper in Section 5.

2 Methods120

In this section we describe the analyzed wind farm (Section 2.1), lidar measurements (Section 2.2), meteorological measure-

ments and atmospheric stability characterization (Section 2.3), lidar data analysis (Section 2.4) and lidar wind speed uncertainty

estimation (Section 2.5).
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2.1 Offshore wind farm Global Tech I

At the time of our measurement campaign in the first half of 2019, several offshore wind farms had been installed in the German125

and Dutch North Sea. In the focus of this work is the 400 MW wind farm «Global Tech I» (GT I). It features 80 turbines of

type «Adwen AD 5-116» with a rotor diameter of 116 m and a rated power of 5 MW at a rated wind speed of 12.5 ms−1.

Figure 1 (a) gives an overview of the region around GT I while Figure 1 (b) displays its layout. Supervisory Control and Data

Acquisition (SCADA) data of GT I were available to check the turbines status and the power production within regarded lidar

scan intervals.130

The «BorWin 1» cluster is located in a distance of about 24 km in south-west direction. During our measurements the

wind farms «Hohe See» and «Albatros» (c.f. Figure 1 (b)) were build in the direct south west vicinity of GT I with several

transition pieces, turbines and two sub-stations installed. Measurements after the first power was fed in on 15 July 2019 were

not considered (EnBW, 2019).

Figure 1. (a) Location of the wind farm GT I (orange) in the North Sea with neighbouring wind farms and clusters shown. Wind farms under

construction are depicted as open shapes (status beginning of 2019). (b) Layout of GT I. The position of the lidar on turbine GT58 (red filled

�) and the typical achieved lidar scan sector (red line) are highlighted. The turbine locations (small ×) and the substations (×) of the wind

farms «Hohe See» and «Albatros», which were under construction during our measurements, are marked.

2.2 Lidar measurements135

We used a scanning long-range Doppler wind lidar of type Leosphere Windcube 200S (Serial no. WLS200S-024) which we

installed on the transition piece (TP) of turbine GT58 in GT I (red filled � in Figure 1 (b)). The height of its scanner was

approximately 24.6 m above mean sea level (MSL), 67.0 m below hub height and 9.0 m below lower blade tip height of
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the turbine. The measurement campaign started in August 2018 and ended in January 2020. We consider data from a period

between February 2019 and June 2019. We performed plan position indicator scans (PPI) with an elevation of 0◦, resulting in140

a measurement height of 24.6 m MSL plus a correction due to the earth’s curvature (up to 5 m in 8 km distance). Further, a

turbine thrust-dependent tilt of the lidar was observed, resulting in varying measuring heights across range gates and azimuth

angles (c.f. Section 2.5). We set the lidar’s pulse length to 400 ns, the acquisition time to 2.0 s, the scanning speed to 1◦ s−1 and

scanned the upstream flow in different azimuth sectors of 150◦ that we aligned manually to the wind direction. Range gates

were defined between 500 m and 7990 m with a 35 m spacing. Hence, one lidar scan took 150 s and resulted in 215 range145

gates (also referred to as "measurement points") on each of the 75 beams. The further processing of the lidar scans is described

in Section 2.4. Schneemann et al. (2020) give further information on the measurements and Schneemann et al. (2019) provide

some exemplary lidar scans from this campaign.

2.3 Atmospheric stability characterization and meteorological measurements

For the analysis of the global blockage effect knowledge about wind speed at one common height across the whole scan150

is required. The varying measuring height, as a consequence of the tilt of the lidar device and the Earth’s curvature, thus

necessitate the extrapolation of wind speed to that altitude. In order to keep extrapolation distances small, we here chose

the height of the transition piece. For the extrapolation, knowledge of the wind profile and thus also estimates of atmospheric

stability are required. Information regarding stability further allows us to analyse the effect of atmospheric conditions on global

blockage.155

We used a similar methodology to derive atmospheric stratification as in Theuer et al. (2020b) and Schneemann et al. (2020),

which is described here for completeness. To characterize atmospheric stability (Emeis, 2018) we used local measurements as

well as reanalysis data. On the transition piece of turbine GT58 close to the lidar’s position, we measured air temperature and

humidity (Vaisala HMP155) and air pressure (Vaisala PTB330). Additionally, we used the sea surface temperature (SST) from

the OSTIA data set (Good et al., 2020). We utilized a methodology introduced by Rodrigo et al. (2015) to estimate the Bulk160

Richardson number

Rib =
g

Tv

0.5zTP (ΘTP−Θ0)
u2

li

. (1)

Here, g is the gravitational acceleration, Tv the virtual temperature at sea level and ΘTP and Θ0 the virtual potential temperature

at TP height zTP and sea level respectively. uli describes the wind speed at the lidar position, determined utilising lidar

measurements up to range gates of 600 m. The height used to calculate Rib is defined as the mean between the two height165

levels, i. e. 0.5zTP. After estimating Rib we obtain the dimensionless stability parameter

ζ =





10Rib
1−5Rib

Rib > 0

10Rib Rib ≤ 0
(2)

and finally the Obukhov length

L=
0.5zTP

ζ
. (3)
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We estimated the roughness length z0 using the determined Obukhov length L and the stability corrected logarithmic wind170

profile

u=
√
z0 g

αc

1
κ

(
ln
(
z

z0

)
−Ψ

( z
L

))
, (4)

with z = zTP and u= uTP. Here, κ= 0.4 describes the von Kármán-constant and αc = 0.011 the Charnock parameter, often

used in an offshore context (Smith, 1980). The stability correction term

Ψ =





2ln
(

1+x
2

)
+ ln

(
1+x2

2

)
− 2arctan(x) + π

2 L < 0, where x= (1− γ zL )1/4

−β zL L≥ 0
(5)175

was defined following Dyer (1974) with γ = 19.3 and β = 6 (Högström, 1988).

2.4 Lidar data processing

We filtered the lidar scans using a carrier-to-noise (CNR) threshold filter, considering only values with−26dB< CNR< 0dB.

With a Velocity-Azimuth-Display (VAD) algorithm, we calculated a mean wind speed u and wind direction χ individually for

each scan assuming a homogeneous wind field and neglecting the vertical wind speed component (Werner, 2005). At each180

measurement point we projected the line-of-sight (LOS) wind velocities uLOS onto the mean wind direction by means of

uh =
uLOS

cos(ϑ−χ)
, (6)

with horizontal wind speed uh and azimuth angles ϑ. Sectors with azimuth angles almost perpendicular to the wind direction,

i. e.

75◦ < |ϑ−χ|< 105◦, (7)185

were neglected as they are associated with large errors. Further, outliers with |uh−u|> 2.75 σu, with σu defined as the standard

deviation of horizontal wind speed within each scan, were discarded. For each measurement point we then determined the

measuring height, considering both the curvature of the Earth and a turbine thrust-dependent tilt of the lidar device. Further

details about the alignment of the lidar and the correction function to estimate the measurement height are presented in Rott

et al. (2020). After assessing the measuring height, wind speed values were extrapolated to the lidar height zTP = 24.6m using190

Equations 4 and 5.

Only scans with a data availability of at least 60% were considered for further analysis. Data availability was calculated

individually for each scan, including measurement points up to a range gate of 7000m and not considering critical sectors as

defined in Equation 7.

Finally, we interpolated all valid scans to a Cartesian grid with a spacing of ∆x= ∆y = 50m to be able to average data of195

varying scanning sectors.
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For further analysis, the lidar scans were categorised according to their respective mean wind direction χ, mean wind speed

u and atmospheric stability characterized by L. In each category, consisting of N individual lidar scans i, we performed the

following steps: First, the mean wind speed within the scan i at TP height uTP,i was derived and used to normalise the wind200

speeds on all grid points, yielding uTP,norm,i. Second, all normalised scans were averaged to uTP,norm. Hereby, Cartesian

grid points with data availability < 80 %, i. e. Nr < 0.8N , with N the number of all available scans within the category and

Nr the number of valid scans at each grid point, were neglected. Third, normalised and averaged wind speeds uTP,norm were

interpolated onto a virtual line in mean wind direction upstream of the lidar.

205

For the blockage analysis we decided to distinguish between two stability classes, i. e. unstable and stable situations, and

three different operational states respectively wind speed ranges. The operational state of the wind farm was estimated using

SCADA power data and the wind speed range based on the wind speed at TP height. These states are namely the wind farm

not operating (wind speed below 4 ms−1, low thrust coefficient), the wind farm operating at rated power (wind speed above

12.5 ms−1, moderate to high thrust coefficient) and the wind farm operating below and up to rated power (wind speed below210

13 ms−1, high thrust coefficient). In total, the combination of these two categories left us with a number of six possible cases

to be analysed. However, for brevity we omitted the combinations unstable, not operating and unstable, operating above rated

wind speed. With the comparison of the four remaining cases we aimed to cover both scenarios where global blockage is likely

to occur and those where an occurrence is less likely. This "cross-check" allowed us to better interpret the obtained results.

We start with the analysis of the remaining unstable scenario and then continue with the stable cases, sorted according to their215

thrust coefficients. The values of the thrust coefficient were estimated from a generic 5 MW wind turbine model with same

rated wind speed. The four scenarios are summarized below.

Scenario 1 Wind turbines operating below and up to rated power with a moderate to high thrust coefficient. We chose a wind

speed interval of 10ms−1 < u < 13ms−1, unstable atmospheric conditions and a total power production of the

wind farm with at least 50 % of wind farm’s rated power and 80 % of the wind farm’s estimated power. Here,220

the wind farm power is estimated by extrapolating uTP to hub height using an average logarithmic profile (see

Section 2.3, with L=−300m) and transferring the result to the whole wind farm considering wind farm effects.

Further, only situations with high power production at GT58 (PGT58 ≥ 4000kW) were considered to make the

experienced tilt of the lidar device comparable to that of Scenario 4.

Scenario 2 Wind farm not operating with wind speeds below cut-in wind speed. Here scans with wind speed uTP from225

3ms−1 < u < 4ms−1, during stable atmospheric conditions and a wind farm power production < 5 % of the wind

farm’s rated power were selected.

Scenario 3 Wind farm operating at rated power with wind speeds uTP above rated wind speed and low thrust coefficient. This

comprises scans with 16ms−1 < u < 22ms−1, stable atmospheric conditions and a total wind farm power >80 %

of the rated power. Further, only cases with a blade pitch from SCADA data > 5◦ at GT58 were considered.230
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Scenario 4 Wind turbines operating below and up to rated power with a high thrust coefficient. Same as Scenario 1, however

here we chose scans within the wind speed interval 7ms−1 < u < 10ms−1 and stable atmospheric conditions. In

this case the estimated wind farm power was determined using an average logarithmic profile with L= 300m.

2.5 Uncertainty estimation

For the further analysis and interpretation of the results, several uncertainties introduced in the course of the measurement235

campaign and data analysis procedure are important to consider. In this section, we qualitatively summarise the most important

error contributions and subsequently estimate uncertainties using three different methodologies. First, we calculate the total

propagated uncertainty using the uncertainties assigned to the individual components with Gaussian error propagation, second

we determine the total propagated uncertainty as before but distinguish also between range gate-independent and range gate-

correlated input variables, and third we derive the statistical standard error of the mean.

Figure 2. Illustration of different sources of uncertainty for wind speed estimates in long-range Doppler lidar measurements on an offshore

platform like the TP of an offshore wind turbine. Aside the general uncertainty in the LOS wind speed measurement the main source of

uncertainty is the varying measurement height due to lidar scanner misalignment (dark red) and platform tilts and movements (light red) e.g.

due to the turbine’s thrust. Curvature of the earth (blue) and tide (light blue) adds on the height uncertainty. As a consequence of known

height errors measured wind speeds need to be transformed back to the desired height, thus the lack of knowledge of the prevailing wind

profile introduces additional uncertainty (orange).
240

We summarise sources of errors and uncertainties that need to be considered in offshore lidar measurements of flow effects

with small deviations with respect to the mean flow in Table 1 and visualise them in Figure 2. It becomes clear that several of

the error sources are directly or indirectly linked to the alignment of the lidar: The device’s tilt causes the need for a height

extrapolation, thus wind profile information is required, introducing additional uncertainties. Considering a measurement sce-

nario with perfect horizontal measurements, the error sources could be significantly reduced. However, as in this set-up an245

extrapolation of wind speed um at measuring height zm to lidar height zTP is required we estimated the uncertainty associated

with it in more detail in the following.
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Table 1. Possible errors and uncertainties that might be introduced during the lidar measurement campaign and data analysis. In addition to a

description of the uncertainty components, the measures we take to minimise those are stated and it is indicated whether they are considered

in the uncertainty estimation.

uncertainty components Description Measures

Azimuth / elevation pointing

error

Internal unknown offsets of lidar scanner Not corrected for, calibration prior to

measurement campaign recommended.

Considered in uncertainty estimation.

LOS wind speed Uncertainty in LOS wind speed causes uncer-

tainty in horizontal wind speed

Not corrected for, considered in

uncertainty estimation

Movement / tilt of lidar Uncertainties in pointing accuracy, in particu-

lar caused by a wind turbine thrust-dependent

tilt of the device. Influences the measurement

height of the device and varies with the range

gate.

Empirical correction function for thrust

dependent platform movement (Rott

et al., 2020). Considered in uncertainty

estimation.

Curvature of the Earth Systematic variation in measuring height Corrected for, not considered in

uncertainty estimation

Tide Uncertainty in measuring height estimated to be

±0.6m here

Not corrected for, not considered in

uncertainty estimation

Assumption of a homogeneous

wind field

Wind speed error as a consequence of wind field

reconstruction (VAD algorithm)

Not corrected for, not considered in

uncertainty estimation

Uncertainties in meteorological

measurements

Results in uncertainties in stability estimation Not corrected for, considered in

uncertainty estimation

Uncertainties in roughness

length estimation

Results in uncertainties in wind profile estima-

tion

Not corrected for, considered in

uncertainty estimation

Inapplicability of the

logarithmic wind profile

Occurs especially during stable atmospheric

conditions (Theuer et al., 2020a; Peña et al.,

2008), which might be related to the occurrence

of e. g. kinks or low level jets (Møller et al.,

2019). Leads to uncertainty in wind speed cor-

rection to lidar height.

Not corrected for, not considered in

uncertainty estimation

Laser beam deflection due to

thermal gradients in the lower

boundary layer

Results in measurement height error Not corrected for, not considered in

uncertainty estimation
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2.5.1 Total propagated uncertainty

As stated earlier the height extrapolation of lidar data is performed by means of a stability corrected logarithmic wind speed

profile (Equation 4). The wind speed at height of the TP uTP can thus be expressed as250

uTP = um

ln( zTP
z0

)−Ψ( zTP
L )

ln( zmz0 )−Ψ( zmL )
. (8)

Gaussian error propagation yields the total propagated uncertainty

∆uTP =



(

ln( zTP
z0

)−ΨTP

ln( zmz0 )−Ψm
∆um

)2

+

(
um(ln( zTP

z0
)−ΨTP + Ψm− ln( zmz0 ))

z0(ln( zmz0 )−Ψm)2
∆z0

)2

+

(
um(ΨTP− ln( zTP

z0
))

zm(ln( zmz0 )−Ψm)2
∆zm

)2

(9)

+

(
um

Ψm− ln( zmz0 )
∆ΨTP

)2

+

(
um(ln( zTP

z0
)−ΨTP)

(ln( zmz0 )−Ψm)2
∆Ψm

)2



1/2

,

with the corresponding uncertainty in the stability correction term255

∆Ψ =





∣∣∣ 4x2

x3+x2+x+1

∣∣∣∆x L < 0,

where ∆x=
[(
− γ

4L

(
1− γ zL

)−3/4 ∆z
)2

+
(
γz
4L2

(
1− γ zL

)−3/4 ∆L
)2
]1/2

[(
−β 1

L∆z
)2 +

(
β z
L2 ∆L

)2]1/2
L≥ 0

.

(10)

The indices of the correction terms Ψ refer to the height at which it is determined. The uncertainty of the Obukhov length L is

also determined by means of Gaussian error propagation of Equations 1 to 3, leading to

∆Rib =

[(−g
T 2

v

0.5zTP (ΘTP−Θ0)
u2

li

∆Tv

)2

+
(−2g
Tv

0.5zTP (ΘTP−Θ0)
u3

li

∆uli

)2

+
(
g

Tv

0.5zTP

u2
li

∆Θ0

)2

(11)260

+
(
g

Tv

0.5zTP

u2
li

∆ΘTP

)2
]1/2

, (12)

∆ζ =





∣∣∣ 10
(1−5Rib)2

∣∣∣∆Rib Rib > 0

10∆Rib Rib ≤ 0,
(13)

∆L=
∣∣∣∣
−0.5zTP

ζ2

∣∣∣∣∆ζ. (14)265

The uncertainties ∆Tv , ∆Θ0 und ∆ΘTP are hereby assessed using air and water temperature, humidity and pressure uncer-

tainties. We set ∆Tair = 0.1K, ∆Twater = 0.2K, ∆p= 0.3hPa and ∆H = 1.2%, following typical uncertainties suggested in

the sensors’ user manuals.
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Other uncertainty contributions are set to ∆uli = 0.1ms−1 and ∆z0 = 0.05z0. The wind speed uncertainty at measuring

height ∆um is dependent on the line-of-sight wind speed uncertainty ∆uLOS = 0.1ms−1, the azimuth uncertainty ∆ϑ= 0.05◦270

and the wind direction uncertainty ∆χ= 1◦, following error propagation of Equation 6. ∆zm was estimated using the pitch and

roll uncertainty, which were set to ∆β = ∆γ = 0.05◦ following the findings of the method of sea surface levelling demonstrated

in Rott et al. (2017, 2020). These uncertainties can be understood to comprise both possible elevation pointing uncertainties as

well as the tilt of the lidar device. All uncertainty terms defined here and thus also the total propagated uncertainty ∆uTP are

understood as the 1.96σ values of the corresponding error distributions, i. e. we expect them to include 95% of all values.275

A detailed analysis of the uncertainty associated with wind speed extrapolation to hub height in the framework of an offshore

lidar campaign by Theuer et al. (2020a) has revealed a strong dependency on the Obukhov length L. Large uncertainties need

to be expected especially during very stable atmospheric conditions. Even though the study uses different input parameters,

this also holds valid for our analysis.

We determined the total propagated uncertainty ∆uTP for each scan and grid point. Values were normalised within each280

scan i using uTP,i and averaged across all valid scans, yielding ∆uTP,norm.

2.5.2 Corrected propagated uncertainty

In the uncertainty estimation of the total propagated uncertainty (Section 2.5.1) we defined ∆uTP,norm in a way that assumes

none of the input uncertainties are correlated across range gates. That means, we also assume it is possible that the signs of

the errors vary between range gates. While this might be true for wind speed errors ∆um and roughness length errors ∆z0, it285

does not hold for measurement height errors ∆zm, which are directly related to the tilt of the lidar, and the Obukhov length

error ∆L, which we consider to be constant across the whole measurement domain. Since these assumptions could influence

the interpretation of the results, we decided to determine the uncertainty additionally only considering measurement range

independent input variables. That means, we set ∆zm = ∆ΨTP = ∆Ψm = 0 to calculate the corrected propagated uncertainty

∆uTP,cor =



(

ln( zTP
z0

)−ΨTP

ln( zmz0 )−Ψm
∆um

)2

+

(
um(ln( zTP

z0
)−ΨTP + Ψm− ln( zmz0 ))

z0(ln( zmz0 )−Ψm)2
∆z0

)2



1/2

. (15)290

Also ∆uTP,cor is normalised within each scan and subsequently averaged across all valid scans to ∆uTP,cor.

We examine the uncertainty contributions of ∆zm, ∆ΨTP and ∆Ψm for relevant cases separately in a case distinction in

Section 3.4.

2.5.3 Standard error of the mean

As an alternative to the total propagated uncertainty we calculated the statistical error, i. e. the standard error of the mean295

SEM = 1.96
σuTP,norm√

Nr
(16)

for each grid point, considering all valid scans Nr with the standard deviation of the normalised wind speed at each grid

point σuTP,norm . We included the factor 1.96 already in the definition of the variable to cover the 95 % confidence interval for

12

https://doi.org/10.5194/wes-2020-124
Preprint. Discussion started: 30 November 2020
c© Author(s) 2020. CC BY 4.0 License.



normally distributed errors. The SEM estimates the deviation of the sample mean from the true mean (McKillup, 2005) and

thus yields information regarding the statistical significance of the results. While the total propagated uncertainty regards the300

accuracy of single input variables, the statistical error quantifies the precision of the results from different scans. A higher

number of scans typically reduces measurement noise from the statistical error, i. e. wind speed fluctuations around the mean.

3 Results

In the following we present results of the four scenarios introduced in Section 2.4.

3.1 Scenario 1: Wind farm operating below and up to rated power at unstable atmospheric conditions with moderate305

to high thrust coefficient

Figure 3 (a) shows N = 57 normalised and averaged lidar scans for unstable atmospheric conditions and within a wind speed

interval of u= [10−13]ms−1, i. e. for the wind farm operating at a moderate to high thrust coefficient. The wind field depicted

is relatively homogeneous across the shown area, with slight variations of wind speed visible as streaks in wind direction. As

the most extreme deviation from the normalised wind speed the wake of the OSS of the wind farm «Hohe See» (southern X in310

Figure 3) can be identified. Apart from that, most values fluctuate closely around the mean wind speed.

This impression is confirmed by Figure 3 (b), where a virtual cut in mean wind direction upstream of the lidar, indicated

as red line in Figure 3 (a), is depicted. Again, uTP,norm fluctuates around 1, the three error terms (c. f. Equations 9, 15 and

16), visualised as light and dark grey shaded areas and black dotted line respectively, have a similar magnitude. Be aware that

the SEM overlays the corrected propagated uncertainty ∆uTP,cor and makes its shaded area seem darker than depicted in the315

legend. The uncertainty contributions of L and zm are relatively low, i. e. ∆uTP,norm is only slightly larger than ∆uTP,cor.

This can be attributed to the relatively small change of wind speed with height during unstable conditions. Generally slightly

larger values can be observed for the SEM as compared to ∆uTP,cor. For far range gates from approximately −38D onward,

the SEM increases significantly as a consequence of lower data quality and the lower number of values considered here (c.f.

Figure 3 (c)). We found no evidence for a decreasing trend in wind speed upstream of the wind farm GT I for Scenario 1.320

3.2 Scenario 2: Wind farm not operating at stable atmospheric conditions.

Figure 4 shows normalised and averaged wind speeds in the inflow region of GT I for stable atmospheric conditions and

wind speeds below cut-in in the same manner as Figure 3. Strong relative variations of uTP,norm from the average wind

speed are visible across the scan. Larger values occur for low azimuth angles, i. e. south of the wind farm, and decrease with

increasing azimuth, i. e. south-west of GT I. Despite these large fluctuations within the scan area, no decrease of wind speed325

with decreasing distance to the wind farm can be observed, neither in Figure 4 (a) nor (b). The measurements show a slight

increase in the wind speed of approximately 5% closer to the wind farm. One should be aware that due to the low average wind

speed ranging from u= 3−4ms−1 with a mean value of uTP = 3.19ms−1 the large percental variation in wind speed across

the scan and the increase in wind speed towards the farm are low in absolute values.
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Figure 3. Scenario 1: Analysis of lidar scans during unstable atmospheric conditions and in cases with moderate to high thrust coefficient

with u= [10−13]ms−1, χ= [210−220]◦, N = 57, χ= 218◦, uTP = 11.58ms−1, PGT58 = 4.79MW and the median Obukhov length

Lmed =−401m. Subfigure (a) depicts the normalised wind speed uTP,norm averaged over all valid scans N . The arrow displays the mean

wind direction χ. uTP,norm along the wind field-cut, indicated as red line in (a), is shown in Subfigure (b). Here, additionally the three

estimated uncertainties ∆uTP,cor, SEM and ∆uTP,norm are visualised as grey shaded areas and black dotted line respectively. Be aware

that the SEM here overlays ∆uTP,cor. The distance to the lidar on the x-axis is given in terms of rotor diameter D. Subfigure (c) displays

the number of valid scans at each grid point Nr . The grey horizontal dashed line marks 0.8N . Points highlighted by red x’s in (b) and (c)

correspond to the locations marked in the lidar-cut in (a) and (b).

Especially distinct are the large values of ∆uTP,norm shown in (b). We attribute this to the very stable atmospheric condi-330

tions, which cause large wind speed extrapolation uncertainties (Theuer et al., 2020a) and low wind speeds, which result in

larger relative uncertainties. Be aware of the different y-scale as compared to Figures 3, 5 and 6. The SEM is of similar size as

∆uTP,cor, however, it strongly increases with decreasingNr for increasing distances to the wind farm (Figure 4 (c)), exceeding

∆uTP,cor but not ∆uTP,norm.

3.3 Scenario 3: Wind farm operating above rated wind speed at stable atmospheric conditions with low thrust335

coefficient

Figure 5 visualises the results of Scenario 3, considering stable atmospheric conditions and the wind farm running far beyond

rated wind speed, i. e. at a low thrust coefficient. No decrease of wind speed close to the wind farm as indication of global

blockage can be observed with uTP,norm fluctuating around a value of 1. As shown in Figure 5 (b), similarly as for Scenario 1,
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Figure 4. Scenario 2: Analysis of lidar scans during stable atmospheric conditions and in cases with low thrust coefficient with u= [3−
4]ms−1, χ= [220− 230]◦, N = 60, χ= 225◦, uTP = 3.20ms−1, PGT58 = 0MW and Lmed = 22m. For details on Subfigure (a), (b)

and (c) refer to the caption of Figure 3. Be aware that the SEM here overlays ∆uTP,cor.

the SEM exceeds ∆uTP,cor and increases strongly for far distances due to decreasing Nr (see Figure 5 (c)) and decreasing340

data quality for far range gates. The difference between ∆uTP,cor and ∆uTP,norm increases with distance to the wind farm as

a consequence of the increasing measuring altitudes and the shape of the wind profile. Also considering the larger mean wind

speed, the impact of the uncertainties of L and zm is here stronger as compared to the unstable cases in Scenario 1.

3.4 Scenario 4: Wind farm operating below rated wind speed at stable atmospheric conditions with high thrust

coefficient345

In Figure 6 we illustrate the results of Scenario 4, i. e. stable atmospheric conditions and the wind farm operating at a high

thrust coefficient. The normalised and averaged wind field shown in Figure 6 (a) suggests a decrease in wind speed for flow

approaching the wind farm. Contour lines highlight the shape of the decrease and show that it is less distinct at the sides of

the lidar scan. Observed values of uTP,norm vary between approximately 0.95 and 1.04. The virtual cut on the wind field

given in Figure 6 (b) supports these findings. Starting at a value of about 1.03 at −40 D the normalised and averaged wind350

speed slowly decreases until it reaches a value of 0.99 at −5 D. The magnitude of the curve’s slope hereby increases with

decreasing distance to the wind farm. The SEM is narrow compared to ∆uTP,cor and especially ∆uTP,norm. Only for far

distances it strongly increases as a consequence of reduced sample size (see Figure 6 (c)) and data quality. The total propagated

15

https://doi.org/10.5194/wes-2020-124
Preprint. Discussion started: 30 November 2020
c© Author(s) 2020. CC BY 4.0 License.



Figure 5. Scenario 3: Analysis of lidar scans during stable atmospheric conditions and in cases with low thrust coefficient with u= [16−
22]ms−1, χ= [220−230]◦,N = 75, χ= 223◦, uTP = 18.36ms−1, PGT58 = 4.78MW and Lmed = 461m. For details on Subfigure (a),

(b) and (c) refer to the caption of Figure 3. Be aware that the SEM here overlays ∆uTP,cor.

uncertainty ∆uTP,norm reaches values of up to 3 %. As the analysed scans are attributed to stable atmospheric conditions, the

impact of L and also zm is large.355

As defined in Section 2.5, the width of the uncertainty contributions are considered to cover 95 % of all cases. Figure 6 (b)

indicates a significant decrease of wind speed closer to the wind farm when considering the corrected propagated uncertainty

∆uTP,cor. This is not true anymore when including all error contributions, i. e. considering the width of the total propagated

uncertainty ∆uTP,norm. In Figure 7 we visualise how the decrease of wind speed changes when assuming the largest uncer-

tainties for L and zm to analyse the error contributions of the range gate-correlated variables in more detail. We consider the360

same data set in Figure 7 as in Figure 6. Here, we show the two most extreme scenarios with L−∆L,zm + ∆zm (blue, largest

reducing effect on the deficit) and L+ ∆L,zm−∆zm (red, largest enhancing effect on the deficit) respectively. As explained

earlier, we assume ∆L and ∆zm to be correlated across range gates within the same scan and thus consider the corrected

propagated uncertainty ∆uTP,cor more valuable than the total propagated uncertainty ∆uTP,norm depicted in Figure 6 (b).

As clearly visible in Figure 6 (b) and Figure 7, misestimations of Obukhov length and measurement height have a significant365

impact on the magnitude and shape of the observed wind speed decrease. In the blue graph in Figure 7 the wind speed deficit

is reduced as a consequence of the more stable conditions and larger differences between measuring height and hub height

assumed here. Considering the associated uncertainty, the observed wind speed deficit of approximately 2.5 % for this case

with the largest reducing effect tends to be within the range of the corrected propagated uncertainty. When considering errors
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with less reducing effect, i. e. errors with the same sign but smaller magnitude, the wind speed deficit increases towards a370

significant value. If maximal errors occur in the opposite direction (red curve), the effect would be maximally enhanced to

a wind speed decrease of 6.5 %. Here, the observed decrease is large compared to the uncertainty intervals and thus clearly

significant. Considering the range gate-correlated error contributions the wind speed deficit of 4.5 % lies within an uncertainty

interval between 2.5 % and 6.5 %.

Figure 6. Scenario 4: Analysis of lidar scans during stable atmospheric conditions and in cases with high thrust coefficient with u= [7−
10]ms−1, χ= [250−260]◦,N = 71, χ= 257◦, uTP = 8.95ms−1, PGT58 = 4.46MW and Lmed = 307m. Contour lines in the flow field

in Subfigure (a) highlight the shape of the wind farm’s induction zone. For further details on Subfigure (a), (b) and (c) refer to the caption of

Figure 3.

4 Discussion375

We analyzed averaged long-range Doppler lidar PPI scans at TP height in the inflow of the 400 MW offshore wind farm

GT I and found wind speed deficits upstream in stably stratified boundary layers with wind turbines operating at high thrust

coefficient in the upper partial load range. In contrast, at unstable stratification and similar operating conditions, no effect

was visible. We identified the comparably small wind speed difference by performing a data correction and by averaging the

normalised lidar scans. We analyzed the effect considering a detailed uncertainty estimation. In this section, we discuss our380

findings and relate them to the global blockage effect dependant on atmospheric stability and to the wind farm’s operational

state as well as possibilities and difficulties for global blockage measurements.
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Figure 7. Scenario 4: uTP,norm over the distance to the lidar given in terms of rotor diameterD along the wind field-cut, indicated as red line

in Figure 6 (a), with the corrected propagated uncertainty ∆uTP,cor visualised as colored shaded area. For the blue curve L was additionally

reduced by ∆L and zm increased by ∆zm, for the red curve L was increased and zm reduced respectively. These cases represent the two

combinations of ∆L and ∆zm that yield the most extreme results.

4.1 Global blockage dependant on atmospheric and operational conditions

To distinguish between different wind turbine operational states and atmospheric stabilities we divided our measurement data

into four different scenarios (c.f. Section 2.4).385

In unstable conditions with wind speeds from 10ms−1 to 13ms−1 and a moderate to high thrust coefficient (Scenario 1,

Figure 3) we could not identify decreasing wind speeds in front of the wind farm and thus no global blockage effect. This result

is plausible since wind speed fluctuations in unstable flows are much higher due to convection than the assumed magnitude

of global blockage. Convection leads to more mixing in the boundary layer and thus repeals global blockage. Furthermore,

in unstable stratification, the boundary layer is typically higher and thus the flow can pass obstacles like hills (Stull, 1988) or390

in this case a wind farm more easily. Additionally to Scenario 1 we performed the analysis for unstable stratification and the

wind speed ranges above rated wind speed and below cut-in wind speed respectively (c.f. Section 2.4). In both cases, we could

not identify decreasing wind speeds in the inflow of the wind farm. As explained earlier we do not show these results here for

brevity.

In stable atmospheric stratification and with low wind turbine thrust coefficients due to low wind speeds (i.e. not operating395

turbines, Scenario 2, c.f. Figure 4) or due to high wind speeds (i.e. turbines operating with pitched blades above rated wind

speed, Scenario 3, c.f. Figure 5) no wind speed reductions upstream of the wind farm were identifiable. When the turbines are

out of operation there should not be any reason for global blockage to appear due to the very low thrust. For turbines operating

above rated wind speed a small global blockage effect might occur. However, it is unlikely that the effect would be clearly

visible in the data as a consequence of high wind speeds and the reduced thrust. Since the turbines operate at rated power400

global blockage, if any, would not have a negative impact on power production in this wind speed range.
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In stable atmospheric conditions with a high wind turbine thrust coefficient (i.e. wind turbines operating in the partial load

range, Scenario 4, c.f. Figure 6) we found the wind speed to decrease towards the wind farm by approx. 4.5 % over a distance

of 25 D = 2.9 km. For larger distances upstream, the wind speed approaches a constant value. The wind speed reduction is

significant when considering range gate-uncorrelated uncertainties. It is considered meaningful for global blockage to be most405

significant in stable stratification and for higher thrust coefficients.

Despite the intensive uncertainty analysis and error correction we performed in this work (c.f. Section 2.5), how certain can

we be that our observations are caused by the global blockage effect? To consider the effect of the correlated error sources

that we excluded from the calculation of the total propagated uncertainty, namely ∆L and ∆zm, Figure 7 shows the two most

extreme cases with the largest reducing effect (blue) and the largest enhancing effect (red) of both error values. Assigning these410

combinations of errors, the extent of the global blockage wind speed deficit is limited by 2.5 % to 6.5 %. In the latter case, the

wind speed deficit is clearly significant, while for the first one, it could be explained by the correlated propagated uncertainty.

However, considering more likely error magnitudes in between those two most extreme cases, the wind speed deficit would

become significant. Thus, we consider the wind speed deficit in front of the wind farm to be caused by the global blockage

effect.415

Our measurements of global blockage were performed at a height of approx. 9 m below the rotor area while Bleeg et al.

(2018) used measurements at hub height. An extrapolation to hub height instead of lidar height would not have a significant

impact on our findings as it would only result in an upscaling of the observed effect to a higher altitude. Further, we assume

extrapolation uncertainties would increase significantly when extrapolating across larger height differences (Theuer et al.,

2020a). We do not know whether the global blockage effect is distributed equally over height but expect it to be most distinct420

in the rotor area especially at hub height. With our measurement data, we were not able to study global blockage induced flow

deflections upwards, downwards or sideways which could lead to increased wind speeds above, below or aside the wind farm’s

rotor area. The vertical extent of the global blockage effect in front of a wind farm needs to be assessed in future experimental

or numerical studies.

Schneemann et al. (2020) show the existence of cluster wakes in the inflow of GT I using data from the same measurement425

campaign as used here. In the wind directions, we chose for the analysis of global blockage no distinct wind speed gradients are

present in the inflow. Generally, the data we present here could be influenced by cluster wakes. We do not expect disturbances

of the global blockage measurement since the centre flow of a cluster wake in the far-field is comparably homogeneous and

would only reduce the mean wind speed in the whole lidar scan.

We found the magnitude of the global blockage induced deficit of approx. 4.5 % (uncertainty range 2.5 % to 6.5 %) in stable430

stratification to correspond well with values measured in an onshore free field experiment by Bleeg et al. (2018) based on met

mast point measurements at three different wind farms of typically 2 % to 4 %. One possible explanation of the comparably

lower deficits of Bleeg et al. (2018) is the lack of stability information and thus the comparison of long intervals including

the climate mean of stratifications. Our results suggest less or no global blockage effects in unstable stratification, this effect

possibly reduced the average values of Bleeg et al. (2018). RANS simulations performed by Bleeg et al. (2018) typically435

showed similar or slightly smaller global blockage deficits. Wu and Porté-Agel (2017) found global blockage deficits in LES
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simulations of large finite-size wind farms of 1.3 % and 3 % for different farm layouts in a weak free-atmosphere with neutral

stratification across the rotor area, which is slightly lower than our findings.

Aside from results from wind tunnel experiments (Segalini and Dahlberg, 2019) and onshore free field point measurements

(Bleeg et al., 2018) our lidar measurements represent the first areal free field investigation of the global blockage effect offshore.440

Spatial analysis of global blockage has only been reported from numerical studies so far. RANS simulations performed by

Bleeg et al. (2018) for three different large onshore wind farms reveal homogeneous induction zones upstream of the farms

with spatial extents of more than 2 km for a deficit of 1 %. Such distances correspond well to our findings in Scenario 4. The

higher wind speed deficits in our data could possibly be explained by the restriction to stable stratification. Nevertheless, the

shape of the induction zones in their RANS simulations seem to smoothly follow the first row of turbines. The contours we445

show in Figure 6 tend to have the same shape in the middle sector of the wind field but deviate from that shape on the sides. We

assume this behaviour to be related to the applied VAD lidar processing. With an increasing angular difference of the lidar’s

azimuth angle from the wind direction the orthogonal components of the main wind direction increasingly contaminate the

measurement of the local horizontal wind under the assumption of a homogeneous wind direction. Flow effects resulting from

the wind farm’s blockage with flow components tending to flow around the wind farm (Porté-Agel et al., 2019) could increase450

this issue.

To assess the impact of the global blockage effect on a wind farms annual energy production (AEP) more research and

development on the implementation and validation of the effect in wind farm planning tools is needed. A detailed AEP assess-

ment then needs to consider particularly the local undisturbed wind speed and stability wind roses. The consideration of global

blockage in the future could further increase the accuracy of wind energy site assessment which is especially important for455

the financing process of wind farm projects. Despite its possible negative impact on energy production, global blockage seems

not to have a critical impact on wind energy utilization. In our study, we observed the effect only below rated power, in stable

stratification and with a magnitude of 4.5 % within the uncertainty range of 2.5 % to 6.5 %. Consequently, we expect global

blockage to have a much lower impact on the power production than other wind farm flow features like inner wind farm wakes.

4.2 Global blockage measurement techniques460

Compared to wind turbine wake effects with several ms−1 wind speed deficit over a distance of less then one rotor radius

between wake centre and free flow the global blockage effect has a comparably small magnitude. Scenario 4 reveals a deficit of

about 4.5 % of the average wind speed of 9.0 ms−1 which equals approx. 0.4 ms−1. This difference builds up over a distance

of 25 D = 2.9 km. This is well below typical fluctuations in wind fields due to e.g. orographic or thermal influences which

makes global blockage hard to identify in measurement data.465

There are no further areal wind field measurements of global blockage in literature. The shape of the zone with reduced wind

speeds in front of the wind farm and comparisons of different locations could not be analyzed using single-point measurements

like presented by Bleeg et al. (2018). Spatial characteristics of global blockage inflows of wind farms that were generated by

numerical simulations and modelling (Bleeg et al., 2018; Branlard and Meyer Forsting, 2020) have not been experimentally

verified, yet. Different from point measurements areal lidar wind field measurements of the wind farm inflow resolving the470
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zone with wind speed reduction can allow for a more detailed analysis.

Generally, we do not expect global blockage to be significantly identifiable in single flow measurements like an individual lidar

scan. The effect is much smaller than the common fluctuations in wind farm inflows and needs to be derived from averaged

measurements where the influence of local turbulence and coherent turbulent structures is reduced in the averaging process.

The lidar measurements we analyse in this paper were originally performed to study the effect of cluster wakes in the inflow475

of GT I (Schneemann et al., 2020) and to perform minute-scale power forecasts (Theuer et al., 2020b). Due to the comparably

small global blockage effect, all errors influencing the accuracy of lidar measurements need to be carefully examined and

reduced wherever possible. We give an overview on sources of uncertainty in Table 1. For lidar measurement campaigns

aiming at the assessment of global blockage or similar small flow effects we recommend to

– calibrate the lidar before the campaign. This includes the measurement of radial velocities, the range gate distance from480

the device and especially the scanner orientation and movements. Here especially the scanners elevation angle deviation

is crucial since it results in height errors of the measurement.

– carefully align the lidar at the measurement location and to monitor the lidar’s tilt dynamically. We recommend using

accurate inclinometers and accelerometers and in offshore campaigns the method of "sea surface levelling" for lidar tilt

alignment and the method of "hard targeting" for alignment of the north direction (Rott et al., 2017, 2020).485

– perform independent measurements of the prevailing wind profile either by e.g. met mast, VAD lidar or virtual met masts

spanned by scanning lidars (Bell et al., 2020) to be able to perform a proper height correction of the scanning lidar data.

– perform measurements of meteorological quantities for characterization of atmospheric stability to support a more pre-

cise interpolation of the wind profile (e.g. Schneemann et al., 2020).

The stronger tilting on the nacelle compared to the transition piece and the resulting large errors in the measurement height490

introduce increased uncertainties to nacelle-based measurements especially when aiming to achieve several kilometres of range

or to detect small flow effects like global blockage. Active motion compensation of the lidar’s scanner or similar measures could

enable the possibility of nacelle-based measurements.

Further, the use of overlapping Dual Doppler measurements could be beneficial to better resolve local flow characteristics

like global blockage induced flow deflections and to overcome the need for basic assumptions like the homogeneity of the495

wind field in the VAD algorithm (c.f. e.g. van Dooren et al., 2016; Stawiarski et al., 2013). Another measurement system to

assess global blockage could be the remote sensing method Doppler radar which was successfully deployed for wind turbine

and wind farm wake measurements (Nygaard and Newcombe, 2018).

5 Conclusions

This paper has pursued the objective to analyze whether it is possible to measure global wind farm blockage with long-range500

Doppler lidar dependant on different atmospheric stability estimates and wind farm operational states. We present averaged
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lidar PPI measurements of the inflow of the 400 MW offshore wind farm Global Tech I. In stable stratification and with the

turbines operating below and up to rated power with a high thrust coefficient, the measurements revealed reduced wind speeds

at the height of the transition piece in the approaching flow. At unstable stratification and similar operating conditions, however,

no effect was visible. We relate this upstream wind speed reduction to the presence of the wind farm, namely to global wind505

farm blockage. Therefore, we conclude global blockage to be dependant on atmospheric stability.

Compared to wind turbine wakes or cluster wakes, global blockage is a very small effect that is overlaid with different

atmospheric phenomena and thus very hard to detect. Nevertheless, based on our detailed uncertainty assessment we arrive at

the conclusion that the wind speed deficit in front of Global Tech I in our lidar measurements is caused by global blockage.

Generally, we assume long-range Doppler lidar to be able to accurately measure global blockage and recommend to carefully510

align and calibrate the used lidar systems.

Our measurements agree with recent findings of the magnitude of the global blockage effect to range from 2 % to 6 %. At

platform level, we found a wind speed reduction of 4.5 % within an uncertainty range from 2.5 % to 6.5 %, over a distance of

approx. 2.9 km or 25 D. The influence of the global blockage effect on the annual energy production of a wind farm requires

further experimental and numerical investigations. Due to the expected limited appearance of global blockage only in special515

atmospheric situations and wind farm operational states and its small magnitude, we expect the impact on power production

to be much smaller in comparison to inner wind farm wakes. Accurate estimates of the global blockage effect by means of

well-calibrated engineering models could further decrease uncertainties in wind farm site assessments and power calculations

in the future.

In this work, we demonstrated scanning long-range Doppler lidar to be a suitable tool to study global wind farm blockage520

and provide strong evidence for the existence of the global blockage effect for a wind farm with the turbines operating at high

thrust coefficients in a stably stratified atmosphere.
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