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Abstract.

Measure-Correlate-Predict (MCP) approaches are often used to correct wind measurements to the long-term wind conditions

on site. This paper investigates systematic errors in MCP-based long-term corrections which occur if the measurement on site

covers only a few months (seasonal biases). In this context, two common linear MCP methods are tested and compared, namely

Variance Ratio and Linear Regression with Residuals. Wind measurement data from 18 sites with different terrain complexity5

in Germany are used (measurement heights between 100 and 140 m). Six different reanalysis data sets serve as the reference

(long-term) wind data in the MCP calculations. Besides experimental results, theoretical considerations are presented which

provide the mathematical background for understanding the observations. General relationships are derived which
:::
can

:::
be

::::
used

::
to trace the seasonal biases to the mechanics of the methods and the properties of the reanalysis data sets. This allows the

transfer of the results of this study to different measurement durations, other reference data sets and other regions of the world.10

In this context, it is shown both theoretically and experimentally that the results do not only depend on the selected reference

data set but also significantly change with the choice of the MCP method.

1 Introduction

An extensive measurement campaign generally constitutes an essential part of wind resource assessment and, therefore, of a

successful wind energy project. In most cases, these measurements provide around one year of wind data at the site of interest15

(Lackner et al., 2008). Inter-annual variations in wind speed are reported to vary by between 4 % and up to 10 % (e.g., Corotis,

1976; Justus et al., 1979; Klink, 2002), depending on the respective site; hence, the measured wind data usually do not represent

the long-term wind conditions. This aspect becomes even more momentous when the energy in the wind is considered which

has been reported to vary by 6 % (Pryor et al., 2018) up to 20 or even 30 % (Albrecht and Klesitz, 2006; Pryor et al., 2006; Corotis, 1976)

::::::::::::::::::::::::::::::::::::::::::::::::::
(Corotis, 1976; Albrecht and Klesitz, 2006; Pryor et al., 2006) from year to year. To account for this issue, a long-term correc-20

tion is performed.

For this purpose, reference data are needed which should be available for a long-term period of one to two decades

(Carta et al., 2013; Liléo et al., 2013; Lackner et al., 2008)
:::::::::::::::::::::::::::::::::::::::::::::::
(Lackner et al., 2008; Carta et al., 2013; Liléo et al., 2013) and show

a high degree of similarity to the measured wind data (e.g., a high correlation coefficient of measured and reference data).
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Over the recent past, reanalysis data gained more and more popularity in the wind industry and are now used extensively25

in wind resource assessment (Ramon et al., 2019; Miguel et al., 2019). This type of data is characterized by a combination

of both meteorological observations as well as numerical models which simulate the state of the atmosphere (climate and

weather)
:::::::::::::::::::::::::::::::::
(Miguel et al., 2019; Ramon et al., 2019).

:::::::::
Reanalysis

::::
data

:::
sets

:::
are

::::::::
produced

:::::
using

::::::::
numerical

:::::::
weather

::::::::::
simulations

::::
with

:
a
::::
fixed

::::::::::
state-of-the

::
art

::::::
model

:::
and

::::::::::
assimilating

::::::::
historical

:::::::
weather

::::
data.

:::
In

::::::
contrast

::
to

:::::::
models

::::
used

:::
for

::::::
weather

:::::::::
prediction,

::::::
which

::
are

:::::
often

:::::::
updated

:::
and

::::::::
changed

:::::
during

::::::::::
operations,

::::
they

::::::::
therefore

::::::
provide

:::::::::
temporally

:::::::::
consistent

::::
data

:::
sets

::::
over

:::::::
periods

::
of

:::
up

::
to30

::::::
several

:::::::
decades. Different types of reanalysis data are available, ranging from (often freely available) global data sets (e.g.,

MERRA-2 by NASA (NASA, 2019), ERA5 by ECMWF (CDS, 2018)) to mesoscale reanalyseswhich generally are ,
::::::
which

::
are

::::::::
generally

:
not free of charge but provide higher spatial resolution.

A statistical procedure relating the reference data to the measured data is performed to derive a correction function. In this

context Measure-Correlate-Predict (MCP) approaches have evolved to become a standard tool for wind farm developers (Carta35

et al., 2013). These methods model a statistical relationship between the time series of the reference and the measurement

data. Afterwards, the relationship is applied to the long-term reference data
:
, providing the long-term wind conditions. The

relationship between reference and target data, therefore, is assumed not to be time-dependent, i.e., valid in the correlation

period as well as in the correction period.

Numerous MCP methods are used in modern wind resource assessment applications. They range from simple linear models40

(e.g., Rogers et al., 2005a; Weekes and Tomlin, 2014a; Romo Perea et al., 2011; García-Rojo, 2004)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., García-Rojo, 2004; Rogers et al., 2005a; Romo Perea et al., 2011; Weekes and Tomlin, 2014a)

to complex machine learning approaches like neural networks (e.g., Albrecht and Klesitz, 2006; Velázquez et al., 2011; Jie Zhang et al., 2014; Bass et al., 2000; Bilgili et al., 2007)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Bass et al., 2000; Albrecht and Klesitz, 2006; Bilgili et al., 2007; Velázquez et al., 2011; Jie Zhang et al., 2014). The in-

vestigation and comparison of different MCP approaches has been subject to a large amount of scientific publications. In Carta

et al. (2013) an extensive review is given on existing MCP methods applied in wind resource assessment and related research45

fields. It is concluded that, by far, the most commonly used MCP methods in the wind industry are based on linear approaches.

Other studies confirm this observation and underline the benefit of the simplicity of linear MCP methods for use in wind energy

applications (e.g., Weekes et al., 2015; Weekes and Tomlin, 2014c; Sørensen et al., 2011)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Sørensen et al., 2011; Weekes and Tomlin, 2014c; Weekes et al., 2015)

. In a Round-Robin
::::::::::
round-robin experiment in Germany in 2018 it was found that 24 of 29 consultants used linear correlation

methodswhich mostly overperformed
:
,
:::::
which

::::::
mostly

::::::::::::
outperformed more complicated approaches (Basse et al., 2018).50

In order to enable a precise determination of the relationship between measurement and reference data, a sufficient amount

of measurement data is necessary, that is, the concurrent period needs to be "long enough". Various studies have been pre-

sented which address the question
:
in

::::::
which

:::
the

::::::::
question

::
is

::::::::
addressed

:
of how long the time span covered by the measure-

ment should be. In general, it is recommended to be at least one year (Carta et al., 2013), while the use of complete years

is important as an uneven representation of different months increases the uncertainty (Liléo et al., 2013; Taylor et al., 2004)55

:::::::::::::::::::::::::::::::
(Taylor et al., 2004; Liléo et al., 2013). As a consequence of such studies, an amount of 12 months of measurement is rec-

ommended or even a mandatory minimum duration due to technical guidelines and standards such as FGW e.V. (2020), IEC

(2017) or MEASNET (2016).
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From an economic perspective, though, there is a strong desire to reduce the duration of the measurement in order to save

time and money (Carta et al., 2013). This is especially true with the increasing popularity of lidar measurements, which60

have a high mobility and low installation costs compared to classical measurement masts
:::::
while

::::::::::::
comparatively

::::
high

:::::::
running

::::
costs. Moreover, an estimate of the wind conditions on site often is

:
is

:::::
often of interest for the wind park planner before the

measurement campaign is completed. In all such cases, a smaller amount of wind data needs to be dealt with and a long-term

correction is performed based on wind measurement data which comprise much less than a year.

However, seasonal effects occur when the measurement does not cover all seasons (Rogers et al., 2005a; Weekes and Tomlin, 2014a,b,c; Saarnak et al., 2014)65

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Rogers et al., 2005a; Saarnak et al., 2014; Weekes and Tomlin, 2014a,b,c) resulting in a dependence of the estimated energy

yield on the period in which the measurement is conducted. These can induce systematic deviations and, thus, increase the

uncertainty of the resource assessment significantly. Therefore, understanding seasonal patterns in long-term correction and

their relation to data sources and the choice of the MCP method is of high interest for the wind industry.

Several studies have investigated the accuracy of a long-term correction (LTC) of short-term wind measurements in depen-70

dence of the measurement duration (e.g., Rogers et al., 2005a,b; Weekes and Tomlin, 2014c; Weekes et al., 2015; Taylor et al., 2004; Romo Perea et al., 2011; Miguel et al., 2019)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Taylor et al., 2004; Rogers et al., 2005a,b; Romo Perea et al., 2011; Weekes and Tomlin, 2014c; Weekes et al., 2015; Miguel et al., 2019)

. While in some of these, seasonal effects are broadly addressed, to the authors’ knowledge there is a lack of scientific publica-

tions which give profound explanations for seasonal patterns in biases of the LTC.

This paper investigates seasonal effects and related biases in wind speed (mean and variance) and annual energy yield in75

the LTC induced by short (three months) measurement periods. Motivated by their relevance for practical use, two linear

MCP methods are applied and compared: Linear Regression with Residuals (Weekes and Tomlin, 2014a) and the Variance

Ratio method (Rogers et al., 2005a). First, theoretical considerations are developed to assess the impact of varying statistical

relationships between the measurement and the reference data in the short-term period when compared to the long-term period.

In a second step, wind measurement data from 18 sites in Germany and six different reanalysis data sets are used to assess the80

significance and magnitude of seasonal effects in the LTC. Interrelations of the seasonal effects with properties of the reference

data and the correlation method are analyzed both theoretically and experimentally.

2 Measurement and reanalysis data used in this study

An overview of the measurement campaigns is given in Tab. 1. All sites are located in Germany; the complexity of the sites

ranges from flat agricultural areas to the hilly low mountain ranges in Central Germany (one of the complex sites is described85

in Pauscher et al. (2018)). For all sites a time series of an entire year for a height level between 100 and 140 m is available,

representing typical hub heights of modern wind turbines. The data were collected by profiling lidar (Light Detection And

Ranging, see e.g., Emeis et al. (2007)) of type Leosphere WindCube V1 & V2 (Leleu, 2019), sodar (Sound Detection And

Ranging, see e.g., Bradley (2008)) or mast measurements.

Measurement
:::
The

::::::::
one-year

::::::
periods

::::
are

:::::::::
distributed

::::::::
relatively

::::::::::::::
homogeneously

:::::::
between

:::::
May

::::
2013

::::
and

:::::
April

:::::
2019;

:::::
only90

::
the

:::::
year

::::
2016

:::::
may

::
be

::::::
judged

:::::::
slightly

::::::::::::::::
over-representated

:::::
(with

::::
eight

:::
of

:::
the

:::
18

::::
sites

::::::::
covering

::
at

::::
least

::
a
::::
few

::::::
months

:::
of

:::
the
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Table 1. Details of the measurement sites. The duration of the individual measurements is exactly one year. The measurements were carried

out between May 2013 and April 2019.

Site No. orography and surface cover measurement height [m] measurement device

1 hilly, forested 140 Lidar (WindCube V2)

2 slightly hilly, forested 140 Lidar (WindCube V2)

3 mainly flat, forested 140 Lidar (WindCube V2)

4 hilly, sparsely forested 140 Lidar (WindCube V1)

5 slightly hilly, barely forested 140 Lidar (WindCube V1)

6 slightly hilly, forested 140 Lidar (WindCube V2)

7 hilly, forested 140 Lidar (WindCube V1)

8 slightly hilly, no trees 140 Lidar (WindCube V1)

9 slightly hilly, sparsely forested 140 Lidar (WindCube V1)

10 mainly flat, buildings nearby 135 Lidar (WindCube V2)

11 mainly flat, small town nearby 140 Lidar (WindCube V2)

12 hilly, forested 135 Mast

13 slightly hilly, forested 140 Mast

14 rather flat, forested 130 Mast

15 flat, close to a city 110 Mast

16 flat, agricultural area 100 Mast

17 rather flat, forest nearby 140 Sodar

18 slightly hilly, forested 140 Sodar

:::
year

::::::
2016).

::::
The

:::::::::::
measurement

:
data were collected at a temporal resolution of 10 minutes and then averaged to hourly values

(centered at the full hour) to comply with the typical temporal resolution of the reanalysis data (see below). The availability

of the measurement data is higher than 80 % at all sites with more than 90 % data availability at 14 sites. All data gaps are

smaller than 100 consecutive hours except for a single site (Site 17 in Tab. 1), where approx. 10 days of data are missing in95

winter (overall data availability for this site: 95 %).

The following six different reanalysis data sets serve as reference data in the MCP calculations:

1. MERRA-2 (GMAO, 2015). The Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-

2) is based on global numerical weather analyzes of the U.S. National Aeronautics and Space Agency (NASA). The data

are available as one-hour time series since 1980 for a height of 50 m and a spatial resolution of 0.5° x 0.66°. The time100

stamps refer to average hourly values centered at 00:30 h, 01:30 h etc. In order to obtain comparability with the other

reanalysis data sets and consistency in temporal terms, these were interpolated to values centered at the full hour.

2. ERA5 (CDS, 2018)
::::::::::::::::::
(Hersbach et al., 2020). The data set is calculated at the European Centre for Medium-Range Weather

Forecasts (ECMWF) and provided by the Copernicus Climate Change Service. The ERA5 data represent the follow-up
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data set to the ERA-Interim reanalyses of the ECMWF. The spatial resolution of the ERA5 data is approx. 31 km (≈105

0.28°). Long-term series of this data set are available for 100 m above ground in an hourly resolution. In contrast to the

MERRA-2 data, these data are instantaneous values instead of averaged wind speeds (centered at the full hour).

3. EMD-ConWx (EMD, 2020a). This data set is created using the WRF model (Weather Research & Forecasting Model,

see WRF (2020)) and is provided by EMD International A/S from Denmark. It is based on the ERA-Interim reanal-

ysis data of the ECMWF, refined to a resolution of 3 km. The temporal resolution of the long-term time series is 1 h110

(instantaneous values centered at the full hour). Wind data are provided at heights of 10, 25, 50, 75, 100, 150, and 200 m.

4. EMD-WRF Europe+ (EMD, 2020b). This dataset is a further development of the EMD-ConWx data. The ERA5 re-

analysis data have replaced the ERA-Interim data, while spatial resolution and temporal properties did not change
::::
have

:::
not

:::::::
changed. Wind data are provided at the same heights as in EMD-ConWx and six additional heights up to 4000 m.

5. anemosM2: anemos Windatlas based on MERRA-2 (anemos, 2020a,c). Similar to the EMD data sets, these data are115

created based on a downscaling of global reanalysis data (here: MERRA-2) using the WRF model (version 3.7.1) to a

resolution of 3 km. In contrast to the other models, anemos uses statistical post-processing based on measurement data,

known as remodeling, to improve the simulation results. Furthermore, additional downscaling of the data from the 3 km

grid to the specific site is applied. The heights of the wind data generally are
::
are

::::::::
generally

:
freely selectable between 40

and 200 m; for the analysis in this study, wind data at 100 and 140 m were provided.120

6. anemosE5: anemos Windatlas based on ERA5 (anemos, 2020b,c). This data set is similar to the anemosM2 but uses

ERA5 data. Furthermore, in the course of the remodeling, a seasonal correction is performed, i.e., biases in the seasonal

course
:::::
annual

:::::
cycle

:
of the ERA5 data are corrected before the statistical downscaling is implemented. The goal is to

better capture the seasonal behaviour of the wind conditions. Additionally, a more precise consideration of the roughness

at the respective site represents a further difference to the anemosM2 data. Both the magnitude of the seasonal corrections125

as well as the modifications on roughness constitute a trade secret of anemos (anemos, 2021).

It should be noted that both the anemosM2 and anemosE5 models generally provide a temporal resolution of 10 minutes.

In order to guarantee comparability of the results, these were averaged to 1 h ensuring the same temporal resolution for all

reanalysis data sets.

In general, reanalysis data are modeled for different locations on a geographical grid. In this study, data were selected from130

the grid point closest to the respective site. For data sets 3. - 6. data at more than one height level were provided. In these cases,

the data at the height closest to the measurement were used (i.e., 100 and 150 m for EMD-ConWx and Emd-Wrf Europe+,

100 and 140 m for the two anemos data sets). For the MERRA-2 and ERA5 data sets the data at the given height (i.e., 50 and

100 m, respectively) were used, i.e., no vertical extrapolation (or interpolation) was performed in this study.
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3 Methodology135

This study compares statistics as observed over different periods in the investigated data - namely short-term data and long-

term data. For this purpose, the convention is applied that capital letters are used for long-term variables (e.g., the long-term

corrected wind speed) while parameters in lower case letters represent data from the short-term period. The indicesmeas, ref ,

and corr
::::::
"meas",

:::::
"ref",

::::
and

:::::
"corr"

:
refer to measurement, reference (i.e., reanalysis) and corrected data, respectively.

3.1 Selection of short-term periods and procedure of long-term correction140

Short-term periods with a duration of 90
:::::::::
consecutive

:
days are selected starting at the first day of year and running through the

data with an increment of three days ("sliding window"
:
,
::::
e.g.,

::
the

::::
first

::::::
period

::::
starts

:::
on

:::::::
January

::
1,

:::
the

::::::
second

::
on

:::::::
January

:
4
::::
etc.).

When the end of the data is reached, the data from the beginning of the year
:::
data

:::
set

:
is appended ensuring that 122 90-days

::::::
90-day measurement periods can be investigated for all reanalysis data sets and all sites.

In a first step, the data in these three-month data portions are analyzed with respect to, e.g., mean and variance of wind speed145

(Sect. 5.1, 5.2 and 5.3). Secondly, MCP predictions are performed. Regression parameters are derived using the short-term

data and, afterwards, correction is performed in the entire one-year period in which measurement data are available. Finally,

the corrected data are compared to the measured one-year data (benchmark) and error scores are derived (see Sect. 3.3).

The
:::
The

::::::
general

::::::::
procedure

::
is

:::::::::
illustrated

::
in

:::
Fig.

::
1.

::::
The results, therefore, do not represent the overall errors (or uncertainty) of

an LTC in general, which usually is
:
is
:::::::
usually performed over a period of ten years or more (Liléo et al., 2013; Lackner et al., 2008; Carta et al., 2013)150

:::::::::::::::::::::::::::::::::::::::::::::::
(Lackner et al., 2008; Carta et al., 2013; Liléo et al., 2013). Instead, the analysis provides findings on systematic errors (sea-

sonal biases) which emerge due to the reduction of the measurement duration from one year to three months.

It should be noted that in practical applicationsoften
:
, a sector-wise regression is

::::
often performed for an LTC of measurement

data comprising a whole year. This means, that the regression parameters are calculated separately for different wind direction

bins which allows to take the effects of terrain on wind flow into account. This can be important especially in a complex155

environment (López et al., 2008). For the shorter three-month periods,
:
sectorwise binning, however, generally yielded slightly

worse results in this study (presumably due to low data coverage in the different direction sectors). This procedure is, therefore,

not applied here. It is acknowledged, though, that in some specific cases a sectorwise approach can be a reasonable choice for

an LTC of short-term measurements nevertheless.

When
:
a
:
correction is performed, few negative wind speed values can occur. In this study, these values were set to zero.

::
In160

::::
order

::
to

::::::
derive

:::::
robust,

:::::::::
conclusive

::::::::
findings,

:::
the

::::::::
individual

::::::
results

:::::::
obtained

::
at

:::
the

::
18

::::
sites

:::::
were

:::::::
averaged

::::::::::::
arithmetically,

::::::::
resulting

::
in

:::
one

:::
set

::
of

:::::::
statistics

:::::
(e.g.,

::::
error

::::::
scores)

:::
for

::::
each

:::::::::
reanalysis

::::
data

::
set

::::
and

::::
each

::::::
90-day

:::::::::::
measurement

::::::
period.

:

::
As

:::::::::
mentioned

::
in

:::
the

:::::::::::
introduction,

::
the

::::::::::
correlation

::::::::
coefficient

::
of

::::
site

:::
and

::::::::
reference

::::
data

:::::
should

:::
be

::::::::
evaluated

:::::
before

:
a
:::::::::
long-term

::::::::
correction

::
is
::::::::::

performed.
::
It
::
is
:::::::

obvious
::::

that
::::

the
:::::::::
correlation

:::::::::
coefficient

:::
is

:::::
lower

:::::
when

::::::::::
considering

::::::::::
short-term

::::::
periods

:::::
(this

:::
will

::::::
shortly

:::
be

:::::::::
addressed

::
in

:::::
Sect.

::::::
5.4.2).

::
In

:::::
most

:::::::::::
combinations

:::
of

::::::::
reanalysis

::::
and

::::
site

::::
data,

:::
the

::::::::::
correlation

:::::::::
coefficient

::::
was165

:::::::::::::
rref,meas > 0.65

::::::::::
throughout,

::::::
despite

:::
the

::::
small

:::::::
amount

::
of

::::
only

:::
90

::::
days

::
of

::::
data.

:::::
Only

::
in

:::
case

:::
of

:::
the

:::::::::::
EMD-ConWx

::::
and

::::::::
EMDWrf

:::::::
Europe+

:::::::
datasets,

::::::
values

::
of
::::

less
::::
than

:::
0.5

:::::
were

::::::::
observed

::
in

:::::::
summer

:::::::
periods

::
at

:::::
some

:::::
sites.

::::
This

::::::
should

::
be

::::::::::
considered

:::::
when

6



:::::::
assessing

:::
the

:::::::
results.

::::::::
However,

::
it

:::::
should

:::
be

:::::
noted

:::
that

::::
this

::::
work

:::::::
intends

::
to

:::::::
analyze

:::
the

:::::
effects

:::
of

:::::::::
shortening

:::
the

:::::::::::
measurement

::::::::
campaign

:::
for

:::::
MCP

::::::::::
approaches.

:::::::::
Therefore,

:::::::
periods

::::
with

:::
low

::::::::::
correlation

::::::::::
coefficients

:::
are

:::
not

::::::::
excluded

:::
but

:::
the

::::::
effects

:::
of

:::
the

:::::::::
correlation

:::::::::
coefficient

::
are

::::::::
explored

::
in

::::::
several

:::::::
sections

:::::
(Sect.

::::
4.3,

:::
5.2

:::
and

:::::
5.4.2

::
in

:::::::::
particular).170

time of year

variation of the start of the
measurement

measurement
period

correlation MCP predictions

benchmark 𝑈meas

measurement data 𝑢meas

reanalysis data 𝑈ref
corrected data 𝑈corr

𝑢ref

Figure 1.
:::::::

Illustration
::

of
:::

the
::::::
general

::::::::
procedure

::::
used

::
in

:::
this

::::
study

::::::::
regarding

:::
the

::::
MCP

:::::::::
predictions.

::
In

:::
the

::::::::
short-term

:::::::::::
(measurement)

::::::
period,

:
a
::::::::
correlation

:::::::
function

::
of

:::
the

:::::::
measured

::::::
(umeas):::

and
::::::::
reanalysis

::::
data

::::
(uref )::

is
:::::::::
determined.

::::
This

:::::::::
relationship

::
is

::::
used

::
to

:::::
correct

:::
the

::::::::
reanalysis

:::
data

::
in

::
the

:::::
entire

:::::::
one-year

:::::
period,

:::::
Uref .

::::::
Finally,

::
the

:::::::
obtained

:::::::
corrected

::::
data

::::
Ucorr::

is
:::::::
compared

::
to

:::
the

::::::
actually

:::::::
measured

:::::
values

::::::::::
(benchmark)

:::::
Umeas :

in
:::::
order

:
to
:::::::

estimate
:::
the

:::::::
accuracy.

3.2 Long-term correction: Measure-Correlate-Predict (MCP) approaches

In this section, a short
::::
brief overview of the two MCP methods is given which are used in this study

:
is

:::::
given. Both implement

a linear model to derive a relation between measurement
::::::
(umeas) and reference wind speed (umeas and uref )

::::
uref ):::

in
:::
the

:::::::::::
measurement

:::::
period. This linear relationship generally is

:
is
::::::::
generally

:
expressed in the form

umeasmeas
:::

= β0 +β1 ·uref ref
::

+ ε, (1)175

where β0 and β1 represent the main regression parameters. ε indicates the residuals (deviations from data points to fitting

line, see e.g., Ellison et al. (2009)).
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3.2.1 Linear regression with residuals

The probably most widely used linear model is simple linear regression. In this approach the respective regression parameters

β0,LR and β1,LR ::::
β0,LR::::

and
:::::
β1,LR:

are calculated via the linear least squares method which minimizes the average squared180

deviation of the data points from the fitting line (see e.g., Draper and Smith, 1998). This results in

β1,LR1,LR
:::

= rref,measref,meas
:::::

· σmeas
σref

σmeas

σref
:::::

(2)

and

β0,LR0,LR
:::

= ūmeasmeas
:::
−β1,LR1,LR

:::
· ūref ref

::
, (3)

where σmeas and σref ::::
σmeas::::

and
::::
σref represent the standard deviation of reference and measurement data in the measure-185

ment period, and rref,meas :::::::
rref,meas the Pearson correlation coefficient of the respective data. The bar denotes the mean. In

the correction period, the relationship is applied to each of the time-series values of the reference data Uref ::::
Uref yielding the

corrected wind speed values Ucorr ::::
Ucorr:

U corrcorr
::

= β0,LR0,LR
:::

+β1,LR1,LR
:::
·Uref ref

::
. (4)

A disadvantage of this model is that the variance of the corrected data ucorr ::::
ucorr:

is reduced in comparison to the measured190

data umeas:::::
umeas:

Var(ucorr) = β2
1,LR ·Var(uref)

= r2
ref,meas ·

σ2
meas

σ2
ref

·Var(uref)

= r2
ref,meas ·Var(umeas) (5)

This yields V ar(ucorr)< V ar(umeas) ::::::::::::::::::::
Var(ucorr)<Var(umeas):as, in practical applications, the correlation coefficient

rref,meas < 1
::::::::::
rref,meas < 1. Therefore, simple linear regression can be considered a method which generally yields accurate

mean wind speeds (Romo Perea et al., 2011; Jie Zhang et al., 2014; Weekes and Tomlin, 2014a; Rogers et al., 2005a; Bass et al., 2000)195

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Bass et al., 2000; Rogers et al., 2005a; Romo Perea et al., 2011; Weekes and Tomlin, 2014a; Jie Zhang et al., 2014) but not ac-

curate variances; hence, biased estimates of wind speed distribution and energy production can be expected.
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A model which addresses this shortcoming and further develops the simple linear regression approach is the Linear Regres-

sion With Residuals (LR) method discussed in Weekes and Tomlin (2014a). In contrast to simple linear regression, the residuals

ε are explicitly considered
:
, giving the missing variance to the corrected data:200

U corrcorr
::

= β0,LR0,LR
:::

+β1,LR1,LR
:::
·Uref ref

::
+ εrand

:::
. (6)

ε
::::
εrand:

is randomly drawn from a normal distribution ε ∼ N (µ= 0,σε) :::::::::::::::
εrand ∼ N (µ,σε):with mean µ and standard

deviation σε. :
µ
::
is
:::
set

::
to

::::::
µ= 0

::
so

::::
that

:::
the

:::::
mean

:::::
value

::
of

:::
the

::::::::
corrected

:::::
wind

::::::
speeds

:::::
Ucorr ::

is
:::
not

::::::::
changed.

:::
The

:::::::::
parameter

:
σε

defines the amount of additional scatter and, therefore, inserts small deviations from the fitting line . It is estimated from the

data
:::
can

::
be

::::::::
estimated

:::::
using

:::
the

::::
data

::::
from

:::
the

:::::::::::
measurement

::::::
period

:::::::::::::::::::::::
(Weekes and Tomlin, 2014a)

:
.
::
In

:::
this

:::::::
context,

:::
the

:::::::::
deviations205

::
of

:::
the

::::
data

:::::
points

:::::
from

:::
the

:::::::::
regression

:::
line

:::::::::
(applying

::::::
simple

:::::
linear

::::::::::
regression)

:::
are

::::::::::
determined;

::::
their

::::::::
standard

::::::::
deviation

::::
then

:::::
yields

:::
σε.::::::

Hence,
:::
the

:::::::
induced

::::::
scatter

::::::::
resembles

:::
the

::::::
scatter

:::::
which

::
is
::::::::
observed in the measurement period. Weekes and Tomlin

(2014a) show that the LR method yields precise mean wind speeds as well as accurate mean wind power densities.

3.2.2 Variance Ratio

In Rogers et al. (2005a), the Variance Ratio (VR) method
:
is

::::::::
proposed as an alternative to the classical linear regression meth-210

odsis proposed. This approach is closely related to (simple) linear regression; in contrast, however, the regression parameters

β0,V R and β1,V R:::::
β0,VR::::

and
:::::
β1,VR are not calculated using the linear least square method. Instead, β1,V R :::::

β1,VR is defined as

β1,V R1,VR
:::

=
σmeas
σref

σmeas

σref
:::::

. (7)

which resembles the particular case of a simple linear regression with correlation coefficient rref,meas = 1
:::::::::::
rref,meas = 1

(compare Eq. (2)). This choice of β1,V R:::::
β1,VR:

ensures that the variance is maintained, in terms of equal variances of measured215

data umeas:::::
umeas:and corrected data ucorr ::::

ucorr in the measurement period.

β0,V R :::::
β0,VR is then computed using Eq. (3) accordingly. This, in turn, ensures that the mean values of measured and

corrected data (in the measurement period) are equal. The VR approach therefore maintains both the first and the second order

statistical moment of the measured time series in the LTC. Correction is performed via Eq. (4) using the respective regression

parameters β0,V R and β1,V R:::::
β0,VR:::

and
::::::
β1,VR.220

In Rogers et al. (2005a) the authors found that the VR method yielded accurate predictions of all investigated metrics

including mean wind speed and wind speed distribution. Other studies confirm the suitability of the VR method in the context

of long-term correction of wind measurements (see e.g., Weekes and Tomlin, 2014a; Weekes et al., 2015).

3.3 Statistical analysis and definition of error scores

For each MCP calculation according to Sect. 3.1, a one-year time series is generated. Based on comparison with the measured225

one-year data, the following error scores are derived to evaluate the accuracy of these time series:
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1. Bias in (annual) mean wind speed, Errmean :::::::::::::::::::
Errmean = Ūcorr−Ūmeas

Ūmeas ::::::
(where

:::
the

:::
bar

:::::::
denotes

:::
the

:::::::::
respective

::::::::
one-year

::::
mean

:::::
wind

:::::::
speeds).

2. Bias in variance of
::
the (one-year) time series, Errvar:::::::::::::::::::::::::::

Errvar = V ar(Ucorr)−V ar(Umeas)
V ar(Umeas)

.

3. Bias in energy density, ErrED ::::::
ErrED:

230

As relative values are addressed only, the bias in energy density is simply based on the bias in cubed wind speed u3 here.

The exact procedure of calculation is given in the text of the respective section (Sect. 5.4.3).

4. Bias in theoretical annual energy production of a wind turbine, Errturbine :::::::::
Errturbine

To derive this error score, the theoretical one-year energy production of a wind turbine is calculated using the power

curve of a 3.2 MW wind turbine (see Enercon, 2019). This power curve has a cut-in wind speed at 2 m/s and the nominal235

power is reached at wind speeds of 14 m/s. When the winds are stronger than 25 m/s, no energy is converted (cut-out wind

speed). Errturbine ::::::::
Errturbine:

is given by the relative deviation of the energy values calculated from the corrected and

the measured one-year time series .
::::
(i.e.,

::::::
similar

::
to

::::::::
Errmean:::

and
::::::::
Errvar).::::

Two
::::::
further

:::::
power

::::::
curves

::::
with

:::::::::::
significantly

:::::
lower

:::
and

::::::
higher

:::::
cut-in

:::
and

::::::
cut-out

:::::
wind

::::::
speeds

:::::::
(nominal

:::::::
power:

:::
1.8

::::
MW

:::
and

:::
4.2

:::::
MW)

::::
were

:::::
used

::
in

::::
order

:::
to

:::::::
quantify

::
the

:::::::::
variability

:::
for

:::::::
different

::::::
power

::::::
curves.

::
As

:::
the

::::::
results

::::
only

:::::::
differed

::::::
slightly

::::
and

:::
the

:::::::
essential

::::::::::
conclusions

::::::::
remained

:::
the240

:::::
same,

::::
only

:::
the

:::::
results

:::
for

::::
this

:::
3.2

::::
MW

::::::
turbine

:::::
power

:::::
curve

:::
are

::::::::
presented

::
in
::::
this

:::::
study.

:

4 Theoretical considerations

Before experimental analysis is presented,
::
in

:::
this

::::::
section

:
theoretical aspects are discussed. It should be noted that the findings

here
::::
these

:::::::::
theoretical

:::::::::::::
considerations are, to some extend

:::::
extent, also valid for a long-term assessment which is based on an

entire year of measurement data .
::::
(i.e.,

::
as

::::
most

::::::::::
commonly

::::
done

::
in
:::::

wind
:::::::
resource

::::::::::
assessment

::::::
today).

:
In this case, the inter-245

annual variations of the wind conditions represent the key factor. However, these are usually smaller than the seasonal variations

during the year
:
,
:::::
which

:::
are

::::::::
discussed

:::::
below.

4.1 Influence of mean and variance on the estimate of energy

Both mean and variance of the predicted wind speed distribution have an impact on the estimate of the wind power
:::::
power

:::::::::
production

::
of

:
a
:::::
wind

::::::
turbine

:
which is, eventually, the target value of a wind resource assessment when planning a wind park.250

In this section, the importance of an error in each of the two statistical metrics is analyzed
:::::::::
investigated.

It is known that
:::
For

::::
this

:::::::
purpose,

:
the power in wind P

:
is
:::::::::
analyzed.

:
It
::
is
::::::
known

::::
that

::
P

:
scales with the wind speed in third

power (u3). Hence, the expected value E[P ] of a wind speed distribution is mainly characterized by (
:
is proportional to) E[u3].
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Romo Perea et al. (2011) give an approximation for E[u3] based on the first three statistical moments of the wind speed

distribution,255

E[u3] = ū3 + 3 · ū ·σ2
u + γ ·σ3

u, (8)

with σu representing the sample standard deviation of wind speeds u and γ the skewness coefficient. The bar denotes the

mean. Generally, γ is rather small (Romo Perea et al., 2011) and the term γ ·σ3
u therefore will be neglected in the following.

Applying the (simplified) formula of the Taylor series method for propagation of error (see e.g., Coleman, 2009),

∆E[u3] =
∂E[u3]

∂ū
·∆ū+

∂E[u3]

∂σ2
u

·∆σ2
u, (9)260

with ∆ symbolizing the error of the respective parameter, yields

∆E[u3]

E[u3]
= (1 +

2

1 + 3
A

) · ∆ū
ū

+
1

1 + A
3

· ∆σ
2
u

σ2
u

(10)

as a formula for the overall relative error of E[u3]. The substitution A= ū2/σ2
u was introduced for means of readability.

The available one-year measurement data (see Sect. 2) were used to derive values for A which are typically present
:::::::
typically

::::
occur

:
at the investigated sites. It was found that A= 5.0± 0.8 (mean ± 1 standard deviation). Inserting in Eq. (10) shows that265

the effect of a relative error in mean wind speed is weighted six times as strong as the relative error in variance σ2
u.

Note that simplifications were applied (e.g., neglection of the skewness of the distribution) and that the output of Eq. (10)

varies from site to site (due to a site-dependence of the parameter A). However, a clear impression of a much larger importance

of a high accuracy in mean than in the variance of the wind speed distribution is obtained. As will be shown in the experimental

section (Sect. 5), the errors in variance can be quite large when a long-term correction of short-term wind measurements is270

performed and, hence, should not be neglected nevertheless.

Following these considerations, the sections below address the question which factors influence the accuracy of the estima-

tion of the mean and the variance when a long-term correction is performed based on one of the two linear MCP approaches.

4.2 Considerations on seasonal bias in mean wind speed

In both cases of the VR and the LR method, the mean value of the corrected wind speed data is given by275

Ū corrcorr
::

= β0 +β1 · Ūref ref
::
, (11)

with the respective values of
::::::::
regression

::::::::::
parameters β0 and β1.
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Using the definition of β0 (see Eq. (3)) leads to

Ū corrcorr
::

= ūmeasmeas
:::
−β1 · (ūref ref

::
− Ūref ref

::
). (12)

The error in mean wind speed usually is
:
is
:::::::
usually defined as the deviation of the calculated mean wind speed from the "true"280

value. Hence, the difference Ūcorr − Ūmeas::::::::::::
Ūcorr− Ūmeas provides a convenient formula for the theoretical

::::::::
(absolute) bias in

mean wind speed

Errmean,theo = Ūcorr− Ūmeas

= (ūmeas− Ūmeas)−β1 · (ūref − Ūref). (13)

This formula is valid for both the LR and VR method (with respective regression parameter β1,LR or β1,V R:::::
β1,LR::

or
::::::
β1,VR).

285

Therefore, three factors have a direct impact on the accuracy in mean wind speed when applying either the VR or LR method:

(I) ūmeas− Ūmeas :::::::::::
ūmeas− Ūmeas: Deviation of "true" mean wind conditions (measured data) in measurement and

long-term period

This part of Eq. (13) denotes the difference of mean wind speeds in measurement and long-term period. It, hence, is

::::::::
Therefore,

::
it
:::
can

:::
be

:::::::::
interpreted

::
as

:
a measure for the representativity

:::::::::::::::
representativeness of the period in which the mea-290

surement is carried out. In case of periods of lower wind speeds, this quantity is negative (ūmeas < Ūmeas::::::::::::
ūmeas < Ūmeas)

while positive values occur in case of periods with strong winds (ūmeas > Ūmeas::::::::::::
ūmeas > Ūmeas).

(II) ūref − Ūref :::::::::
ūref − Ūref : Deviation of the mean wind speeds of the reanalysis data in measurement and long-term

period

Similarly to term (I) but related to the reanalysis data, this term reflects the differences of wind conditions in measurement295

and long-term period given by the reanalysis data.

(III) Regression parameter β1

The regression parameter β1 weights term (II) and, therefore, determines whether the first or the second part of Eq.

(13) dominates. As β1 is different for the LR and the VR method, the respective results of an LTC will inevitably show

differences, accordingly.300

Obviously, the value ofErrmean,theo :::::::::::
Errmean,theo is zero when the terms ūmeas− Ūmeas and β1 · (ūref − Ūref )

::::::::::::
ūmeas− Ūmeas

:::
and

::::::::::::::
β1 · (ūref − Ūref) cancel out. While ūmeas− Ūmeas :::::::::::

ūmeas− Ūmeas:
solely depends on the selected measurement period and

the specific site, ūref − Ūref :::::::::
ūref − Ūref is, additionally, highly sensitive to the selected reference data set (reanalysis data in

this study) and its capability to reflect the measured seasonal course
:::::
annual

:::::
cycle

:
on site. β1, in turn, is dependent on the

selected MCP method and can vary in time. In case of representative wind conditions (i.e., small values of terms (I) and (II)),305

the exact value of β1 is of minor importance.
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4.3 Considerations on seasonal bias in variance

Similarly to the considerations on mean wind speed above, in this section a theoretical perspective on the accuracy in variance

is given. For the variance of the corrected data V ar(Ucorr)::::::::::
V ar(Ucorr) the following relationship is valid for both VR and LR:

:::::::
obtained

:::
for

:::
the

:::
VR

:::::::
method:310

V ar(Ucorr) = β2
1 ·V ar(Uref )

(with the respective values β1,V R and β1,LR for the VR and LR approach, respectively; cmp. Eq. (5)). As stated above, β1

differs for the two MCP methods by the correlation coefficient. For the VR methodone obtains

V arVar
:::

(U corrcorr
::

) =
V ar(umeas)

V ar(uref )
β2

1,VR
::::

·V arVar
:::

(Uref ref
::

)= Var(umeas) ·
Var(Uref)

Var(uref)
:::::::::::::::::::::

. (14)

The accuracy of the LTC in variance, therefore, directly depends on how the reanalysis data reproduce the "true" variance315

both in the correlation (measurement) period as well as the
:::
the

:::::::::::::::
representativeness

::
of

:::
the

::::::::
measured

:::::::
variance

:::
for

:::
the

:
long-term

correction period. In other words
::::::
period.

::::::::::
Furthermore, the ratio of the variances

:::::
given

::
by

:::
the

:::::::::
reanalysis

:::
data

:
needs to be similar

in the correlation and the correction period to yield accurate results.
:::
The

::::::
general

::::::::
accuracy

::
of

:::
the

:::::::::
reanalysis

::::
data

::::::::
regarding

:::
the

:::::::
variance,

::
in

::::::::
contrast,

:
is
:::
of

:::::
minor

::::::::::
importance.

320

When the LR method is applied, the respective formula reads:

V arVar
:::

(U corrcorr
::

) = rref,measref,meas
:::::

2 · V ar(umeas)
V ar(uref )

·V arVar
:::

(Urefumeas
::::

)·Var(Uref)

Var(uref)
:::::::::

+V arVar
:::

(εrand
:::

). (15)

Hence, the variance of the output data is mainly influenced by three factors here:

1. the accuracy of the reanalysis data in reproducing the
:::::
annual

:::::::::
variability

::
of

:
variance (similarly as discussed for the VR

method)325

2. the correlation coefficient (in the context of β1,LR, cmp
::::::
β1,LR,

::
cf. Eq. (2))

3. the residuals determined in the measurement period (s. Sect. 3.2.1) and their representativity
::
or,

:::::
more

::::::::::
specifically,

:::
the

:::::::::::::::
representativeness

::
of

::::
their

:::::::::
measured

:::::::
standard

::::::::
deviation

::::::::::::::::
σε =

√
Var(εrand)

:
for the entire correction period

:::
(see

:::::
Sect.

:::::
3.2.1)

:
It
::::::
should

::
be

:::::
noted

::::
that,

:::::
from

:
a
:::::::::::
mathematical

:::::
point

::
of

:::::
view,

::::::
factors

::
2.

:::
and

::
3.

:::
are

:::::::
strongly

:::::::::
connected

::::
(e.g.,

::
a

:::::
lower

:::::::::
correlation330

::::::::
coefficient

:::::::
implies

::::::
higher

::::::
scatter

::::::
around

:::
the

:::::
linear

:::
fit

::::
and,

:::::
hence,

::::::::
variance

::
of

:::
the

:::::::::
residuals).

:::::::::
Therefore,

:::
in

:::
the

:::::::::::
experimental

::::::
section,

:::
the

:::::::
analysis

::
is

:::::::
focused

::
on

::::::
factors

::
1.
::::
and

::
2.

::::
(note

::::
that

:::
the

:::::::::
correlation

:::::::::
coefficient

::::::::::
contributes

::
as

:
a
::::::::
quadratic

::::
term

::
to
::::

Eq.

::::
(15)).

:
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5 Experimental Results

In the following sections, the theoretically derived aspects are further explored and tested experimentally. Afterwards, MCP335

calculations are presented. Systematic biases are described and discussed. In a last section, the variation of the results between

the different sites is explicitly considered.

5.1 Annual course
::::::::
Seasonal

:::::
cycle of mean wind speed in measurement and reanalysis data

Equation (13) in Sect. 4.2 constitutes the essential basis for the understanding of seasonal biases in mean wind speed in the

context of long-term correction of wind measurements. According to that formula, both the annual course
:::::::
seasonal

::::
cycle

:
of340

measured wind speed as well as the capability of the reanalysis data to reproduce this course are decisive.

In Central Europe –the region under investigation in this paper– the wind conditions usually show lower mean wind speeds

in summer and stronger winds in winter periods (Pryor et al., 2006). The exact seasonal pattern will be different from site

to site, depending on site-related properties (e.g., proximity to sea or topographical conditions). In Fig. 2 the average annual

course
:::::::
seasonal

:::::
cycle at the 18 sites as given by the different reanalysis data sets is presented. Additionally, the measured345

annual course
::::::
seasonal

:::::
cycle is shown (black dashed line). In all cases, relative values were used, i.e., the mean wind speeds in

the different 90-days
::::::
90-day periods (see Sect. 3.1) were divided by the annual means of the respective data sets.

Figure 2. Annual
::::::
Average

:::::
annual

:
course of (normalized) wind speed in reanalysis and measurement data(relative

:
.
:::::::::::
Normalization

:::
was

::::
done

::
by

::::::
dividing

:::
the mean values

:::
wind

::::::
speeds

:::::::
observed in 90-days

::
the

::::::
90-day periods , arithmetically averaged over all

::
by

:::
the

:::::::
respective

::::::
annual

::::
mean.

::::
The

:::::::
individual

:::::
results

:::::::
obtained

::
at

:::
the

::
18 sites )

::::
were

:::
then

:::::::
averaged

:::::::::::
arithmetically.

All data confirm the typical seasonal pattern described above. Hence, both terms (I) and (II) in Eq. (13) (i.e., the deviations

of the mean wind speeds in short-term and long-term period in measurement or reanalysis data, respectively) will be negative

in summer and positive in winter.350
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For all reanalysis data sets, however, the seasonal course is
::::::::
variations

:::
are

:
over-pronounced in comparison to the measured

one
::::
ones. In the transitional seasons (spring, fall), the deviations of (relative) reanalysis and measured wind speeds are smallest

on average. Differences occur in the amplitudes
:::
The

:::::::::
amplitudes

:::
of

:::
the

::::::
curves

::
in
::::

Fig.
::

2
::::::
differ,

::::::::
indicating

:::::
clear

::::::::::
differences

:::::::
between

:::
the

::::::::
reanalysis

::::
data

:::
sets.

In order to further analyze this aspect, a parameter dmean :::::
dmean:

was calculated aiming to display the deviations from355

reanalysis to measured data in the seasonal course. dmean :::::
dmean is derived based on mean values of reanalysis (ūref::::

ūref ) and

measurement data (ūmeas:::::
ūmeas) during the 90-days

::::::
90-day

:
periods in relation to their overall annual mean values (Ūref and

Ūmeas::::
Ūref :::

and
:::::
Ūmeas, respectively):

dmeanmean
:::

=
ūref
Ūref

ūref

Ūref
:::

− ūmeas
Ūmeas

ūmeas

Ūmeas
:::::

. (16)

This quantity, therefore, represents the difference between the colored lines and the measured seasonal course (black line)360

in Fig. 2. For each short-term period, one value of dmean:::::
dmean:per site and reanalysis data set is derived. Afterwards, values

averaged over all sites are calculated resulting in one set of dmean :::::
dmean:

values for each reanalysis data set.

Figure 3. Deviation between reanalysis and measurement data in (normalized) mean wind speed (period of 90 days, arithmetically averaged

over all sites).

Figure 3 shows the seasonal course of dmean:::::
dmean. Relatively large differences among the different reanalysis data sets can

be observed. The aforementioned over-pronounced seasonal course leads to negative deviations in summer and positive values

in winter periods for all reanalysis data sets. Comparing the global reanalysis data sets MERRA-2 and ERA5 with respect to the365

accuracy in seasonal course shows advantages for the "older" MERRA-2 data set, as a lower amplitude in Fig. 3 is present. This

holds true despite or because of the fact that the MERRA-2 data are provided at lower heights (50 m, s.
:::
see Sect. 2). This could

generally be expected to yield in a lower representativity
:::::::::::::::
representativeness regarding the seasonal course at the measurement
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height. However, the ERA5-based anemosE5 data give better results than the MERRA-2 based anemosM2 data. This might be

caused by the further developments by anemos when generating the anemosE5 model (e.g., the additional seasonal correction370

or the remodeling, see Sect. 2).

5.2 Seasonal course
:::::::::
variations

:
of regression parameter β1 :::

and
::::::::::
correlation

::::::::::
coefficient

::::::::
rref ,meas

In addition to the aspects regarding the seasonal course of the wind, Eq. (13) underlines that the magnitude of the regression

parameter β1 plays a significant role.
::::::::
Therefore,

::
in

::::
this

::::::
section

::
β1::::

and,
::
in

:::::::::
particular,

::
its

:::::::::
differences

::::
with

::::::
regard

::
to

:::
the

:::
two

:::::
MCP

:::::::
methods,

:::
are

::::::::::
investigated

::
in

:::::
more

:::::
detail.

:
375

Comparing the respective definitions of β1 (Eq. (2) and Eq. (7)) reveals that
:::::
shows

::::
that,

::
as

:::::::::
mentioned

::::::
above,

:
the VR method

always produces larger slopes than the LR method. Fig. 4 (a) and (b) show
:::::
depict average regression parameters β1,V R and

β1,LR:::::
β1,VR::::

and
:::::
β1,LR:

and their temporal variation during the year. The respective values were calculated during 90-days

::::::
90-day periods and arithmetically averaged over all sites.

In contrast to β1,V R, β1,LR ::::::
β1,VR,

:::::
β1,LR is subject to clear temporal variations showing lower values in summer and higher380

values in winter. This, again, reflects the influence of the correlation coefficient
:::::::
rref,meas which is only considered explicitly

in the LR method and which exhibits a seasonal pattern itself(this will be shown in a later section) .
::::
This

:::::::
pattern

:
is
::::::::
depicted

::
in

:::
Fig.

::
5

:::::
where

::::::::::
normalized

:::::
values

::
of

::::::::
rref,meas :::

are
:::::
shown

:::::::::
(similarly

::
to

:::
the

::
β1::::::

values
::
in

:::
Fig.

::
4,
:::::
these

::::
were

::::::::
averaged

::::::::::::
arithmetically

:::
over

:::
all

:::::
sites).

::::
The

::::::::::
correlation

:::::::::
coefficient

:::::
shows

::
a

::::
clear

::::::::
seasonal

:::::::
variation

:::
for

:::
all

::::::::
reanalysis

::::
data

::::
and

::::::::
decreases

:::::::::::
significantly

::::::
towards

:::
the

:::::::
summer

:::::::
periods.

:::::
More

::::::::
unstable

::::::::::
stratification

::::
and

::::::::
generally

:::::
lower

:::::
wind

::::::
speeds

:::
(see

:::::
Sect.

::::
5.1)

:::::
might

:::
be

:::::::
possible385

::::::
reasons.

Figure 5.
:::::::::
Normalized

:::::
linear

::::::::
correlation

::::::::
coefficient

:::::::
between

::::::::::
measurement

:::
and

::::::::
reanalysis

:::
data

:::::::
(periods

::
of

::
90

::::
days,

:::::::::::
arithmetically

:::::::
averaged

:::
over

::
all

:::::
sites).

::
In

::
the

::::::
context

::
of

::::::::::
normalization

:::
the

:::::
curves

::::
were

:::::
shifted

::
to

:
a
::::
mean

::
of
::
1

:
to
:::::
better

::::::
identify

::
the

:::::::
(relative)

:::::::
temporal

::::::::
variations

:::::
during

::
the

::::
year.
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Figure 4. Temporal variation of the regression parameter (a) β1,V R :::::
β1,VR for the Variance Ratio and (b) β1,LR ::::

β1,LR for the Linear Re-

gression with Residuals method. The respective values were determined using a 90-days
:::::
90-day sliding window and arithmetically averaged

over all sites.

According to Eq. (13), the respective β1 value weights the seasonal course of the reanalysis data in the determination of the

bias in mean wind speed. As a consequence of the findings here, the over-pronounced seasonal cycle of the reanalysis data

as depicted above is weighted stronger in winter than in summer periods when the LR approach is applied. Moreover, lower

weighting (in comparison to the VR method) occurs throughout - i. e., β1,V R > β1,LR.
::
as

::::::::::::
β1,VR > β1,LR.

:
390

5.3 Reproduction of the temporal variation of variance in the reanalysis data

As was shown above, the capability of the reanalysis data in reproducing the
:::::::
seasonal

::::::
course

::
of variance correctly is decisive

for an accurate variance of the generated time series. According to the considerations in Sect. 4.3, this is important in case of

both MCP methods. Therefore, this aspect is briefly addressed here and a measure dvar is calculatedto investigate this aspect.
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Similarly to dmean ::
As

::::::::::::
β1,VR = σmeas

σref ::::
(see

:::
Eq.

::::
(7)),

:::
the

::::::::
seasonal

::::::
course

::
of

:::
the

:::::::::
regression

::::::::
parameter

::::::
β1,VR :::::::

depicted
::
in

::::
Fig.395

:
4
:::
(a)

:::::
gives

::
an

::::::::::
impression

::
of

::::
how

::::
the

::::::::
reanalysis

::::
data

:::::::::
reproduce

:::
the

::::::::
variance

:::
and

:::
its

::::::::
temporal

::::::::
variation.

::
In

:::::
order

:::
to

::::::
further

:::::::::
investigate

:::
this

::::::
aspect,

::
a

:::::::
measure

::::
dvar ::

is
:::::::::
calculated.

::::::::
Similarly

::
to

:::::
dmean:

in Sect. 5.1, dvar ::::
dvar is defined via the difference of

relative values in the 90-days
:::::
90-day

:
periods,

dvarvar
::

=
V ar(uref )

V ar(Uref )

Var(uref)

Var(Uref)
::::::::

− V ar(utar)

V ar(Utar)

Var(umeas)

Var(Umeas)
::::::::::

. (17)

Figure 6 shows how the temporal variation of the measured variance throughout the year is reproduced by the different400

reanalysis data sets.

Figure 6. Deviation from reanalysis to measurement data in (normalized) variance (period of 90 days, arithmetically averaged over all sites).

The deviations
:::::::::
differences in variance reach values of up to± 10 % and are, therefore, generally higher than the deviations in

mean wind speed (see Fig. 3). No universal seasonal dependence can be determined as it was observed for the mean wind speed.

Some curves in Fig. 6 show minima in summer and high values in winter or spring while others show contrary characteristics.

5.4 MCP calculations: Seasonal bias in mean, variance, and energy405

MCP calculations based on 90 days of measurement are now presented. For each reanalysis data set, an average value of

the individual error scores related to one measurement period is calculated by arithmetically averaging over all sites. Due to

their importance in the theoretical considerations the focus of the analysis is put on mean and variance of wind speed first.

Afterwards, seasonal biases in energy density as well as the (theoretical) energy production of a wind turbine are analyzed. In

this context, the influence of the systematic biases in both mean and variance on the accuracy in energy is investigated on an410

experimental level.
:::
The

:::::::
analysis

::
in

:::::
these

:::::::
sections

::
is

:::::::
focused

::
on

:::
the

:::::::::
systematic

::::::
biases.

::::
The

:::::::::
variability

::
of

:::
the

::::::
results

::::::::
(standard

::::::::
deviation)

::
is

::::::::
presented

:::
and

:::::::::
discussed

::
in

:
a
::::::::
dedicated

::::::
section

:::::::::
afterwards

:::::
(Sect.

::::::
5.4.4).

:
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5.4.1 Seasonal bias in mean wind speed

Figure 7 (a) shows the experimentally obtained error score Errmean :::
bias

::
in
:::::
mean

:::::
wind

:::::
speed

:::::
(error

:::::
score

::::::::
Errmean) using the

VR method. An inverse shape to the curves of dmean:::::
dmean:

(i.e., the "error" of the reanalysis data in the seasonal course, see415

Fig. 3) can be observed: A measurement in summer months results in a positive bias in the corrected wind-speed time series

while a negative bias is produced when the measurement is conducted in winter. Thus, a positive bias is produced when the

reanalysis data underestimate the (relative) mean wind conditions which prevail in the measurement period and vice versa.

These findings are valid for all reanalysis data sets although it should be noted that the shapes of the related curves in dmean

:::::
dmean are not transformed in the (inverse) course of Errmean :::::::

Errmean:
in exactly the same way.420

Figure 7. Seasonal
:::::::
Temporal

:::::::
variation

:::::
during

:::
the

::::
year

::
of

::
the

:
bias in mean wind speed using the (a) Variance Ratio, (b) Linear Regression

with Residuals method.

Strong differences to these observations and even contrary behaviour can be found when the LR method is used (Fig. 7

(b)). For all reanalysis data sets except ERA5, the mean of the corrected wind speed time series is underestimated in case
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of measurements in summer, while overestimations prevail for winter measurements. The patterns seem not to be directly

related to how the reanalysis data reproduce the measured seasonal course of the mean wind speed. Above that
::::::::
Moreover, the

ERA5 data gives an inverse curve to all the other reanalysis data sets despite of a high similarity in dmean :::::
dmean:

(Fig. 3). The425

amplitude of the respective curve is very small indicating a small dependence of the result on the measurement period and,

hence, only small seasonal biases.

For most other data sets, the amplitudes of the curves in Fig. 7 (a) and (b) are of comparable magnitude with a slight

advantage for the LR method in predicting the mean of the corrected wind-speed time series.

Despite a high similarity in mathematical prospect, the two linear MCP methods yield significantly different results in430

Errmean :::::::
Errmean. The theoretical analysis of the bias in mean wind speed (Sect. 4.3) yielded a theoretical dependence of

Errmean :::::::
Errmean:

on 1.) the representativity
::::::::::::::
representativeness

:
of the measurement period for the long-term wind conditions,

2.) connected to that, the similarity of the seasonal course in reanalysis data to the measured one, and 3.) the regression

parameter β1. As 1.) and 2.) are similar for each reanalysis data set, the differences of the results in Fig. 7 (a) and (b), therefore,

must have their reasons in differences in β1.435

As stated above, the VR method provides larger values here than the LR approach (see Sect. 5.2). This leads to the fact that,

generally, the seasonal course of the reanalysis data (term ūref − Ūref :::::::::
ūref − Ūref:

in Eq. (13)) is weighted stronger when the

VR method is used. As a consequence, the effect of the over-pronounced seasonal course of the reanalysis data (s.
:::
see

:
Fig.

2 and 3) dominates here. This is underlined by the fact that Errmean and dmean :::::::
Errmean :::

and
::::::
dmean roughly show inverse

shapes. For the LR approach, in contrast, the seasonal course of the reanalysis data is weighted less due to smaller β1,LR :::::
β1,LR440

values. Therefore, in most instances the seasonal pattern measured on site (term ūmeas− Ūmeas ::::::::::::
ūmeas− Ūmeas in Eq. (13))

dominates the overall result. Consequently, most curves of Errmean::::::::
Errmean show a high degree of similarity to the patterns

observed in Fig. 2.

As was shown in Fig. 4, in case of the ERA5 data relatively high β1,LR ::::
β1,LR:

values were obtained. For the LR method

this causes a balancing effect (even slightly "overbalanced"). Thus, a relatively small amplitude of Errmean :::::::
Errmean:

can be445

observed in Fig. 7 (b) despite, or rather because of the erroneous seasonal course
:::::::::::::
overpronounced

::::::
annual

:::::
cycle of the ERA5

data. With regard to the VR method, again, highest slopes (β1,V R ::::
β1,VR:

values) were observed for ERA5 compared to the

other reanalysis data sets. As a direct consequence, the product of regression parameter β1 and (over-pronounced) seasonal

course in the reanalysis data clearly dominates the result of Eq. (13) and the highest amplitude can be observed in Fig. 7 (a).

One further example is analyzed briefly here. The largest deviation in the seasonal course dmean :::::
dmean was found for the450

EMD-Wrf Europe+ data set (see Fig. 3). In contrast to the ERA5 data, though, remarkably lower β1,LR ::::
β1,LR:

values are present

for this reanalysis data set (see Fig. 4 (b)). Eventually, the product of (small) regression parameter and (large) deviation of the

reanalysis data in the seasonal course in Eq. (13) results in a relatively small amplitude of Errmean :::::::
Errmean.

In summary, it can be stated that the capability of the reanalysis data in reproducing the seasonal course of the "true" wind

conditions on site is an important aspect when considering the bias in mean wind speed. However, positive (or negative)455

deviations in seasonal course do not transform to negative (or positive) biases directly. The regression parameter, depending on

both the MCP method and the selected reanalysis data set, strongly influences the outcome additionally.
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Note that the influence of the seasonality in β1,LR :::::
β1,LR as shown in Fig. 4 (b) can not be determined exactly here, as the

lower values in summer coincide with a stronger effect of the over-pronounced seasonal cycle of the reanalysis data (lower

dmean :::::
dmean values). However, the authors expect it to be rather small.460

In a study of Bass et al. (2000), long-term measurements instead of reanalyses were used as reference data. 41 pairs of site

and reference data in Europe and the US with different terrain types were deployed to test a variety of MCP methods including

linear models like linear regression as well as a neural network approach. Hence, long-term corrections of one-year on-site

data were performed. Regarding the bias in mean wind speed they found that none of the investigated methods stood out in

comparison to the others. It was concluded that the success of the methods "is less to do with the mechanics of the methodology465

itself, and more to do with facets of the data being analysed”. Carta et al. (2013) confirms that the uncertainty of the long-term

predictions depends much more on the (reference) data than on the MCP method.

With regard to an LTC of short-term wind measurements, the results of this work only partly agree with these findings
::::
from

:::::::
literature. It was shown both theoretically and experimentally that, concerning systematic, seasonal biases, a strong dependence

on the selected MCP method occurs. The results above show that very different outcomes can be observed when relatively470

similar, linear MCP approaches are applied even when the same reference data set is used. In this context, it should be noted

that when a long-term correction of entire one-year measurement data is performed, the seasonal aspects discussed here can be

replaced by inter-annual variations (which are, however, much smaller); Eq. (13) retains its validity in this case.

In a study of Weekes and Tomlin (2014a) seasonal patterns in the long-term correction of short-term wind measurements

are addressed briefly. For both LR and VR, larger biases in mean wind speed were observed when measuring in summer while475

smaller (more negative) values were obtained for winter measurements. The VR method yielded a smaller amplitude and, in

contrast to the LR approach, resulted in negative biases throughout. Furthermore, it was concluded that the sign of the bias

varied depending on the specific site when the VR method was applied.

Weekes and Tomlin (2014a) related these seasonal effects to temporal changes in synoptic weather patterns and, connected

to that, seasonal patterns in wind direction. It has to be noted that Weekes and Tomlin (2014a) used measurements instead of480

reanalysis data as reference and all data were collected at heights of around 10 to 20 m. The theoretical background derived

in Sect. 4.2 is, however, independent of height and origin of the wind data and can be seen valid universally and applicable

also under these conditions. From that
:::::::
Against

:::
this

:::::::::::
background, it is likely that not all the reference data used in Weekes and

Tomlin (2014a) exhibited an over-pronounced seasonal cycle as present for the reanalysis data used in the study here.

Saarnak et al. (2014) applied a linear regression approach to wind data from a site on a Swedish island using MERRA485

reanalysis (predecessor of MERRA-2). Systematic underestimations in a long-term correction were found when short-term

data of three-months winter periods were used. Summer measurements, in turn, resulted in positive biases in mean wind speed.

Hence, results similar to the ERA5 curve in Fig. 7 were obtained. Explanations for this seasonality were not given in the study.

5.4.2 Seasonal bias in variance

In this section, the bias of the MCP predictions with respect to variance is analyzed. Fig. 8 (a) and (b) show the respective error490

score Errvar ::::::
Errvar.
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Figure 8. Seasonal
:::::::
Temporal

:::::::
variation

:::::
during

::
the

::::
year

::
of

::
the

:
bias in varianceErrvar::::::

Errvar using (a) Variance Ratio, (b) Linear Regression

with Residuals method.

The curves displayed in Fig. 8 (a) for the VR method resemble the inverse course of that observed in Fig. 6, thus, the patterns

in the deviations
:::::::::
differences in variance. This is not surprising, as the ratio of variances of measurement and reference data is

used as a regression parameter in the VR method. Therefore, an error in the
:::::::
temporal

:::::::
variation

:::
of

:::
the variance given by the

reanalysis data has a strong impact on Errvar::::::
Errvar. In summary, the theoretical analysis presented in Sect. 4.3 is confirmed495

by these experimental results. Connected to that, no clear overall
:::::
mean seasonal course can be observed when the VR method

is used. The amplitudes of the variations, however, are of distinct magnitude and remarkable errors can be observed.

As shown in Fig. 8 (b) a clear seasonal cycle ofErrvar ::::::
Errvar is obtained when the LR method is applied. Lower values are

present when measuring in summer and higher values can be found in case of winter measurements. This effect can be observed

for all reanalysis data sets. In Sect. 4.3 three parameters were identified which have a notable impact on Errvar ::::::
Errvar using500

the LR method. The authors suggest
:
It

:::
can

::
be

::::::::
expected

:
that the most important factor is the correlation coefficient

:::::::
rref,meas as
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this parameter is known to exhibit
::::::
exhibits

:
a strong seasonal cycle and, above that, goes squared in

:::
(see

:::::
Sect.

::::
5.2).

:::::::::
Moreover,

:::::::
rref,meas:::::::::

contributes
:::

as
::
a

::::::::
quadratic

::::
term

::
to
:

the theoretical calculation of Errvar ::::::
Errvar:

(Eq. (15)). Fig. 5 underlines this

assumption showing a clear seasonal variation of the correlation coefficient for all reanalysis data. Furthermore, this explains

the substantial differences between Fig. 8 (a) and (b), i.e., between the results of the VR and the LR method.505

Normalized linear correlation coefficient between measurement and reanalysis data (periods of 90 days, arithmetically

averaged over all sites). In the context of normalization the curves were shifted to a mean of 1 to better identify the (relative)

temporal variations during the year.

In summary, the amplitudes in Fig. 8 (b) are generally of slightly larger magnitude than those of the variations produced by

the VR method. This indicates that the VR method enables to obtain a more accurate variance of the corrected data on average.510

Differences occur regarding the type of reanalysis data. Similar to the bias in mean wind speed, ERA5 gives the lowest bias in

variance when the LR method is used while large biases are obtained when the VR method is applied on the ERA5 data.

5.4.3 Seasonal bias in energy

In Sect. 4.1 a much higher importance of an accuracy in mean than in variance was obtained when aiming for a precise estimate

of the energy in the wind. This contrasts with the finding of significantly higher biases in variance than in mean wind speed. In515

this section, the bias both in energy density (ErrED::::::
ErrED) as well as in the theoretical energy production of a wind turbine

(Errturbine ::::::::
Errturbine) is investigated based on experimental analysis. Emphasis is put on the eventual overall influence of

Errmean and Errvar :::::::
Errmean :::

and
::::::
Errvar, respectively.

Figure 9 (a) and (b) show the error score ErrED ::::::
ErrED. The respective values were obtained according to Eq. (10) using

the experimentally derived error values of Errmean and Errvar :::::::
Errmean::::

and
::::::
Errvar:

as presented in Sect. 5.4.1 and 5.4.2,520

respectively. For A the experimentally obtained average value of A= 5.0 was used (see Sect. 4.1). Hence, the diagram was

produced by a weighted sum of Errmean and Errvar:::::::
Errmean::::

and
::::::
Errvar.

Additionally, the biases in u3 based on the time-series values were evaluated experimentally (not shown here). These gave

very similar results to that presented in Fig. 9 (a) and (b) indicating that Eq. (8) contains a high validity despite the applied

simplifications.525

Comparison of Fig. 9 with the plots of Errmean and Errvar ::::::::
Errmean :::

and
::::::
Errvar:

(Fig. 7 and 8) reveals the influence of

the biases in variance and mean wind speed on the bias in energy (density or production). Periods of contrary behaviour of

Errmean and Errvar ::::::::
Errmean :::

and
::::::
Errvar:

(e.g., opposite sign or individual peaks) are most suitable to analyze this aspect

here.

Generally, the influence of the bias in mean dominates (compare the considerations presented in Sect. 4.1). In some cases,530

however, the influence of the bias in variance is visible. E.g., in Fig. 9 (b) the sky-blue curve associated to the ERA5 data gives

negative values in summer although the related Errmean :::::::
Errmean:

curve remains positive in this period. This can be traced to

the strongly negative Errvar :::::
Errvar:values here. When the VR method is used (Fig. 9 (a)), the effect of erroneous variance is

even more clearly visible, due to different courses of the respective Errmean and Errvar :::::::
Errmean::::

and
::::::
Errvar values, e.g., in

case of the EMD-ConWx or the anemosE5 data.535
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The bias in the theoretical energy production of a wind turbine Errturbine:::::::::
Errturbine:

is shown directly below in Fig. 9 (c)

and (d) allowing a good comparison of the two error scores. The courses of Errturbine :::::::::
Errturbine show striking differences

to the curves of ErrED indicating a large influence of the power curve on the respective results. Comparison with the patterns

of Errmean and Errvar ::::::::
Errmean :::

and
::::::
Errvar:

reveals that the error in mean wind speed is even more decisive for the error in

energy production than the theoretical considerations suggest. The seasonal courses in Errturbine :::::::::
Errturbine are very similar540

to the seasonal biases in mean wind speed Errmean::::::::
Errmean (see Fig. 7). Its values are approximately twice the ones for the

bias in mean wind speed. The influence of the bias in variance obviously is decreased by the power curve and barely visible.

This is caused by the effect that variations of very large wind speed values exceeding the rated wind speed of the turbine

contribute strongly to variance but do not affect the energy output. However, in specific periods when Errvar :::::
Errvar:is large

and its seasonal course does not follow the pattern of Errmean:::::::
Errmean, the influence of Errvar :::::

Errvar:
can be seen. Again,545

this is most clearly visible in case of the VR method (see, e.g., the data points related to the MERRA-2 or ERA5 data in the

mid of August or to the anemosE5 data in fall in Fig. 9 c) in comparison to Fig. 7 a)).

A further difference between ErrED and Errturbine ::::::
ErrED:::

and
::::::::::
Errturbine stands out when the VR method is applied.

Some curves in Fig. 9 (c) mostly lie above or below zero for the entire year. Such "overall biases" are present especially in the

case of the EMD-ConWx (positive overall bias) and the MERRA-2 data (negative overall bias). When applying the LR method550

(Fig. 9 (d)), hardly any overall bias can be found.

Towards an explanation approach for these overall biases it should be noted that, again, the VR method produces higher

values for the slope (β1) than the LR approach. For the offset (β0), the same formula is used in both MCP methods, relating

offset to slope (see Eq. (3)). As a direct consequence, lower values for the offset are obtained when the VR method is applied.

For the VR method, hence, smaller wind speed values generally are
::
are

:::::::::
generally corrected towards smaller values, while555

higher values are increased compared to the correction applied in the LR method. This is visualized in the scatter plot in

Fig. 10 where distinct differences between the regression lines can be observed. Hence, wind speeds of small or rather large

magnitude are corrected differently. Similar correction is performed for wind speeds near the mean (i.e., values close to 1 in

Fig. 10).

This aspect can be expected to average out when considering mean wind speeds. However, it apparently becomes important560

in case of energy production estimation where the cubic dependence on wind speed as well as the shape of the power curve lead

to a different importance (or weighting) of different wind speed values. Eventual wind-speed dependent errors of the reanalysis

data can further contribute to this issue.

The reasons for the overall biases, therefore, shows
::::
show

:
to be connected to characteristics of both

::::
both,

::::::::::::
characteristics

:::
of

the MCP method and the reanalysis data set. Again, the combination of both these facets prove to be decisive with regard to565

the accuracy of an LTC.

5.4.4 Variation between the sites

Bias values of mean, variance or energy production should not be regarded as the only key figure to describe the accuracy of a

long-term correction procedure as it does not represent the overall uncertainty. In addition, the scatter, i.e., standard deviation
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Figure 9. Seasonal
:::::::
Temporal

:::::::
variation

:::::
during

:::
the

::::
year

::
of

::
the

:
bias in the prediction of the energy density ErrED :::::

ErrED:
((a) and (b)) and

the theoretical annual energy production of a wind turbine Errturbine::::::::
Errturbine:((c) and (d)). The figures on the left ((a) and (c)) refer to

the VR method while in figures (b) and (d) the results produced by the LR method are shown.

of the individual biases (in terms of variation between the sites) can be judged an important measure as it characterizes the570

reliability of the results. Therefore, the standard deviation of Errturbine ::::::::
deviations

::
of
::::::::
Errmean::::

and
:::::::::
Errturbine in dependence

of the measurement period is briefly
::
are

:
addressed here and shown in Fig. 11. The analysis is restricted to Errturbine as this

parameter is
::::::::
Errmean :::

and
:::::::::
Errturbine::

as
:::::
these

:::::::::
parameters

:::
are

:
expected most useful for the wind industry.

The
:::::
Similar

::
to
:::
the

::::::
biases,

:::
the variations (standard deviations) are of comparable magnitude for both methods but

::::::::::
significantly

:::::
higher

:::
for

:::::::::
Errturbine::::

than
:::

for
:::::::::
Errmean.

::
In

:::::::
general,

:::::
both

:::::::
methods

::::
(VR

::::
and

::::
LR)

:::::::
produce

::::::::::
comparable

::::::::::
magnitudes

:::::
while

:::
the575

:::::
results, again,

::::::
strongly

:
depend on the selected reanalysis dataset. .

::::
The

:::::::::
maximum

:::::
values

:::
for

:::::::::
individual

::::::::
reanalysis

::::
data

::::
sets

::
in

:::
Fig.

:::
11

:::
are

:::::
lowest

:::
for

:::
the

:::::::
anemos

::::
data

:::
sets

::::
and

:::::
range

::::
from

::::::::::::
approximately

::
1

::
to

:
5
::
%

::
in
::::
case

:::
of

::::::::
Errmean.

::::::::::
Differences

::::::::
regarding

::
the

:::::
MCP

:::::::
method

:::::
occur

::
in

:::::
winter

:::::::
periods

:::::
when

:::::::::
considering

::::::::::
Errturbine ::

(9
::
%

::
in

:::::::::
maximum

:::::
values

:::
for

:::
the

:::
VR

:::::::
method

:::
and

:::::
more
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Figure 10. Scatter plot of normalized measured and MERRA-2 data and regression lines to these data using either the VR or the LR method.

Normalization was performed by dividing all wind speed values by the overall measured mean. The diagram was produced using the entire

measurement data of the 18 sites and the related MERRA-2 data.

:::
than

:::
11

::
%

:::
for

:::
the

:::
LR

:::::::
method).

:::
In

::::::::
summary,

:::
the

:::::::
variation

:::::::
between

:::
the

::::
sites

::
is
:::::::
roughly

::
of

:::
the

:::::
same

::::::::
magnitude

:::
as

::
the

::::
bias

::::::
values

:::::::::
themselves

::::
(see

:::
Fig.

:::
9).580

On average, smallest values can be observed in the beginning of the year and in fall (i.e., measurement period starting

in January/February or September/October)
::
for

::::
both

::::::::
Errmean::::

and
:::::::::
Errturbine. This indicates that not only strong biases are

present when the measurement is conducted in summer or winter but also higher variations, hence, smaller reliability of these

biases can be expected. Once more, this underlines the significance and importance of a sorrow selection of the measurement

period, with transitional seasons (spring, fall) to be recommended in Central Europe.585

The maximum values for individual reanalysis data sets in Fig. 11 range from almost 6 to 9 % in case of the VR method and

from almost 6 to more than 11 % when the LR method is applied. The variation between the sites, therefore, is roughly of the

same magnitude as the bias values themselves (see Fig. 9).

6 Conclusions and outlook

This study delivered in-depth analysis of seasonal effects in the long-term correction of short-term wind measurements. The590

provided findings can contribute to a further development of reanalysis data as well as improved MCP methods in this respect.

In a first step, the importance of the accuracy in mean and variance
:
of
:::::

wind
:::::
speed

:
was analyzed with regard to a precise

estimate of the energy in the wind. It was shown
::
on

:
a
:::::::::
theoretical

:::::
level,

:
that the relative error in mean is weighted

:::::::::
contributes

six times as strong
:::::
much as the relative error in variance in this context. Experimental analysis, in contrast, yielded

::::::
showed

::::
that

much larger biases of the MCP predictions in variance than in mean
::::::
prevail

::::
when

:::::
MCP

::::::::::
predictions

:::
are

:::::::::
performed (absolute595

values of more than 15 %
::::
were

::::::::
obtained in comparison to values of± 4 %, respectively). Analyzing the biases in the theoretical
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Figure 11. Bias variation between the sites (1 standard deviation) with regard to the accuracy of predicting the
::::
mean

::::
wind

::::
speed

::::
((a)

:::
and

:::
(b))

:::
and

::
the

:
theoretical energy production of a wind turbine

:::
((c)

:::
and

:::
(d)).

:::
The

:::::
figures

::
on

:::
the

:::
left ((a) Variance Ratio,

::
and

:
(
::
c))

::::
refer

::
to

:::
the

:::
VR

:::::
method

:::::
while

::
in

:::::
figures

:
(b) Linear Regression with Residuals

::
and

:::
(d)

:::
the

:::::
results

:::::::
produced

::
by

:::
the

::
LR

:
method

::
are

:::::
shown.

energy production of a wind turbine showed
:
It
::::
was

:::::::::::
demonstrated

:
that –apart from "overall biases"– the shape of the seasonal

course of the bias in mean
::::
wind

:::::
speed

:
was more or less replicated here. It was concluded that the bias in variance should not be

neglected, though; however, a much larger importance should be attached on
::
in

:::
the

::::
bias

::
of

:::
the

:::::::::
theoretical

::::::
energy

::::::::::
production.

::::::::
Therefore,

::
it
:::
can

:::
be

:::::::::
concluded

:::
that

:
a precise estimate of the mean

::
is

:::::
much

::::::::
important

::::
than

:::
the

::::::
correct

:::::::
estimate

::
of
:::

the
::::::::
variance600

::::
when

::::::::
assessing

:::
the

::::::
energy

:::::::::
production

::
of

::
a
::::
wind

:::::::
turbine.

A formula was derived which delivered the explanation for the seasonal biases in mean wind speed when applying either the

VR or LR
:::::::
Variance

:::::
Ratio

::
or

::::::
Linear

:::::::::
Regression

::::
with

::::::::
Residuals method. It was shown that the representativity

:::::::::::::::
representativeness

of the measurement
::::::
period,

::
i.e., hence, the similarity of the wind conditions of

:
in
:
correlation and correction period, is important.

Moreover, the capability of the reference data to reproduce the seasonal course is significant. Lastly, the regression parameter605
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β1:::::::::
(computed

:::::::::
differently

:::
for

:::
the

:::
two

:::::
MCP

:::::::
methods

::::
used

::
in

::::
this

:::::
study) showed to be decisive for the magnitude of the seasonal

biases.
:::
This

:::::::::
theoretical

::::::::::
framework

:::
was

::::
used

:::
for

:::::::::
explaining

:::
the

:::::::::::
observations.

:

These findings were confirmed experimentally. The largest biases were observed in
:::::::
obtained

::
in

::::
case

::
of

:::::::::::
measurement

:::::::
periods

::::
with non-representative wind conditions (i.e., summer or winter) with the magnitude depending

::::::::::
significantly

:::::
lower

::
or

::::::
higher

::::
mean

:::::
wind

::::::
speeds

:::::::::
compared

::
to

:::
the

::::::
annual

:::::
mean

::
–

::::::
usually

:::::::
summer

::::
and

::::::
winter

::::::
periods

:::
in

::::::
Central

::::::::
Europe).

::::
The

:::::::::
magnitude610

::::::
showed

::
to

::::::
depend

:
on the reference data set. Furthermore, a strong dependence on the MCP method was determined

:::::::
identified;

very different, partly even contrary characteristics in the seasonal biases were found for the VR and LR methods. In contrast

to findings of existing publications, hence, this study showed that the biases in mean wind speed
:::::::
obtained

:::::
from

:
a
:::::::::
long-term

::::::::
correction

::
of

:::::::::
short-term

::::
wind

::::::::::::
measurements

::
(a
::::
few

:::::::
months) are connected to characteristics of both

::::
both,

::::::::::::
characteristics

::
of the

reference data set as well as the
::::::
selected

:
MCP method.615

For the error in energy production, in
::
In general, measurement periods in transitional seasons (spring, fall) not only resulted

in smallest biases but also gave smallest variation between the sites, hence
::::
thus, the highest reliability of the results. The am-

plitudes of seasonal bias and standard deviation
::
of

:::
the

::::::
results

:::::::
obtained

::
at

:::
the

::::::::
individual

::::
sites

:
were roughly of same magnitude.

Short-term
:
If
:::::::::
short-term

:
wind measurements are ,

::::
used

:::
for

::::
wind

:::::::
resource

:::::::::::
assessments,

::
it

::
is,

:
therefore, highly recommended to

be conducted in periods of
::::::
conduct

:::::
these

::::::::::::
measurements

::
in

::::::
periods

:::::
which

:::
are

:::::
likely

:::
to

::
be

:::::::::::
characterized

:::
by representative wind620

conditions (with respect to mean wind speed).

It should be noted, that the findings of the theoretical considerations can be seen valid independently of the chosen reference

data as well as of the measurement duration. I.e., they are applicable on the case of a long-term correction of one-year wind

data also.

Further research is necessary on how the systematic biases and, finally, the uncertainty
:
of

::::
the

::::::::
long-term

:::::::::
correction

:::
of625

::::::::
short-term

:::::
wind

::::::::::::
measurements

:
can be reduced in an efficient and expedient way. The authors suggest that this could be ap-

proached in different ways. On the one hand, a manual correction based on the experiences
:::::::
described

:
above would reduce the

biases. However, the reliability (standard deviation) would not change. A statistics-based approach (e.g., averaging the results

of different MCP approaches and/or reference data) can be expected to
:
as

::::
well

:::
as

:::::::
machine

:::::::
learning

::::::::::
approaches

::::
(e.g,

:::::::
learning

::
the

::::::::
seasonal

:::::
effects

:::::
from

::::
other

::::
data

::::
sets)

:::::
might

:
result in larger improvements. On the other hand, the shortcomings of the refer-630

ence (here: reanalysis) data in reproducing the seasonal course could be addressed. Discrepancies regarding temporal changes

in synoptic weather patterns or atmospheric stability processes can be named as possible examples for such weaknesses. The

inclusion of further meteorological data reflecting these characteristics could form the basis of a physically motivated approach

here. The usefulness of removing seasonal biases in e.g., wind profile extrapolation by including additional parameters like

relative humidity was demonstrated in Basse et al. (2020). This approach could also be taken here.635
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