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Abstract.

Measure-Correlate-Predict (MCP) approaches are often used to correct wind measurements to the long-term wind conditions

on site. This paper investigates systematic errors in MCP-based long-term corrections which occur if the measurement on site

covers only a few months (seasonal biases). In this context, two common linear MCP methods are tested and compared ,

namely Variance Ratio
::::
with

::::::
regard

::
to

::::::::
accuracy

::
in

:::::
mean,

::::::::
variance,

::::
and

::::::
turbine

::::::
energy

:::::::::
production

::
–
:::::::
namely,

::::::::
Variance

:::::
Ratio5

::::
(VR)

:
and Linear Regression with Residuals

::::
(LR). Wind measurement data from 18 sites with different terrain complexity in

Germany are used (measurement heights between 100 and 140 m). Six different reanalysis data sets serve as the reference

(long-term) wind data in the MCP calculations. Besides experimental results, theoretical considerations are presented which

provide the mathematical background for understanding the observations. General relationships are derived which can be used

:::
All

::::
these

:::::::::
reanalysis

::::
data

:::
sets

:::::::
showed

:::
an

::::::::::::::
over-pronounced

::::::
annual

:::::
course

:::
of

::::
wind

:::::
speed

:::::
(i.e.,

::::
wind

::::::
speeds

:::
too

::::
high

:::
in

::::::
winter,10

:::
too

:::
low

::
in

::::::::
summer).

:::::::::
However,

::::::
despite

:::
the

:::::::::::
mathematical

::::::::
similarity

:::
of

:::
the

:::
two

:::::
MCP

::::::::
methods,

:::::
these

:::::
errors

::
in

:::
the

::::
data

:::::::
resulted

::
in

::::
very

:::::::
different

:::::::
seasonal

::::::
biases

:::::
when

:::::
either

:::
the

:::
VR

:::
or

:::
LR

:::::::
methods

:::::
were

::::
used

:::
for

:::
the

:::::
MCP

::::::::::
calculations.

::
In

:::::::
general,

:::
the

::::
VR

::::::
method

::::::::
produced

:::::::::::::
overestimations

::
of

:::
the

:::::
mean

:::::
wind

:::::
speed

::::
when

:::::::::
measuring

::
in
:::::::
summer

::::
and

::::::::::::::
underestimations

::
in

::::
case

::
of

::::::
winter

::::::::::::
measurements.

::::
The

:::
LR

:::::::
method,

::
in

:::::::
contrast,

::::::::::::
predominantly

:::
led

:::
to

:::::::
opposite

::::::
results.

:::
An

:::::::
analysis

::
of

:::
the

::::
bias

::
in

::::::::
variance

:::
did

:::
not

::::
show

::::
such

::
a
::::
clear

::::::::
seasonal

::::::::
variation.

:::::::
Overall,

:::
the

:::::::
variance

::::
error

:::::
plays

::::
only

::
a
:::::
minor

::::
role

:::
for

:::
the

:::::::
accuracy

::
in

::::::
energy

:::::::::
compared15

::
to

:::
the

::::
error

::
in

:::::
mean

::::
wind

::::::
speed.

:::::::
Besides

:::
the

:::::::::::
experimental

:::::::
analysis,

:
a
:::::::::
theoretical

::::::::::
framework

:
is
:::::::::
presented

:::::
which

:::::::
explains

:::::
these

::::::::::
phenomena.

::::
This

:::::::::
framework

:::::::
enables

:
to trace the seasonal biases to the mechanics of the methods and the properties of the

reanalysis data sets. This allows the transfer of the results of this study to
::
In

::::::::
summary,

:::::
three

:::::::
aspects

:::
are

::::::::
identified

:::
as

:::
the

::::
main

:::::::::
influential

::::::
factors

:::
for

::
the

::::::::
seasonal

:::::
biases

::
in

:::::
mean

:::::
wind

:::::
speed:

:::
1.)

:::
the

:::::::::::::
(dis-)similarity

::
of

:::
the

:::
real

:::::
wind

:::::::::
conditions

::
on

::::
site

::
in

:::::::::
correlation

:::
and

:::::::::
correction

:::::
period

::::::::::::::::
(representativeness

::
of
:::

the
::::::::::::
measurement

::::::
period),

:::
2.)

:::
the

:::::::::
capability

::
of

:::
the

::::::::
reference

::::
data

::
to20

::::::::
reproduce

:::
the

:::::::
seasonal

::::::
course

::
of

::::
wind

::::::
speed,

::
3.)

:::
the

:::::::::
regression

::::::::
parameter

::
β1::::::

(slope)
:::
of

::
the

:::::
linear

:::::
MCP

:::::::
method.

::::
This

:::::::::
theoretical

:::::::::
framework

:::
can

::::
also

:::
be

:::::::::
considered

::::
valid

:::
for

:
different measurement durations, other reference data sets

:
, and other regions of

the world. In this context, it is shown both theoretically and experimentally that the results do not only depend on the selected

reference data set but also significantly change with the choice of the MCP method.
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1 Introduction25

An extensive measurement campaign generally constitutes an essential part of wind resource assessment and, therefore, of a

successful wind energy project. In most cases, these measurements provide around one year of wind data at the site of interest

(Lackner et al., 2008). Inter-annual variations in wind speed are reported to vary by between 4 % and up to 10 % (e.g., Corotis,

1976; Justus et al., 1979; Klink, 2002), depending on the respective site; hence, the measured wind data usually do not represent

the long-term wind conditions. This aspect becomes even more momentous when the energy in the wind is considered which30

has been reported to vary by 6 % (Pryor et al., 2018) up to 20 or even 30 % (Corotis, 1976; Albrecht and Klesitz, 2006; Pryor

et al., 2006) from year to year. To account for this issue, a long-term correction is performed.

For this purpose, reference data are needed which should be available for a long-term period of one to two decades (Lackner

et al., 2008; Carta et al., 2013; Liléo et al., 2013) and show a high degree of similarity to the measured wind data (e.g., a high

correlation coefficient of measured and reference data).35

Over the recent past, reanalysis data gained more and more popularity in the wind industry and are now used extensively

in wind resource assessment (Miguel et al., 2019; Ramon et al., 2019). Reanalysis data sets are produced using numerical

weather simulations with a fixed state-of-the art model and assimilating historical weather data. In contrast to models used for

weather prediction, which are often updated and changed during operations, they therefore provide temporally consistent data

sets over periods of up to several decades. Different types of reanalysis data are available, ranging from (often freely available)40

global data sets (e.g., MERRA-2 by NASA (NASA, 2019), ERA5 by ECMWF (CDS, 2018)) to mesoscale reanalyses, which

are generally not free of charge but provide higher spatial resolution.

A statistical procedure relating the reference data to the measured data is performed to derive a correction function. In this

context Measure-Correlate-Predict (MCP) approaches have evolved to become a standard tool for wind farm developers (Carta

et al., 2013). These methods model a statistical relationship between the time series of the reference and the measurement45

data. Afterwards, the relationship is applied to the long-term reference data, providing the long-term wind conditions. The

relationship between reference and target data, therefore, is assumed not to be time-dependent, i.e., valid in the correlation

period as well as in the correction period.

Numerous MCP methods are used in modern wind resource assessment applications. They range from simple linear models

(e.g., García-Rojo, 2004; Rogers et al., 2005a; Romo Perea et al., 2011; Weekes and Tomlin, 2014a) to complex machine50

learning approaches like neural networks (e.g., Bass et al., 2000; Albrecht and Klesitz, 2006; Bilgili et al., 2007; Velázquez

et al., 2011; Jie Zhang et al., 2014). The investigation and comparison of different MCP approaches has been subject to a

large amount of scientific publications. In Carta et al. (2013)
::::::
studies.

:::::::::::::::
Carta et al. (2013)

::::::
present

:
an extensive review is given

on existing MCP methods applied in wind resource assessment and related research fields. It is
::::
They concluded that, by far, the

most commonly used MCP methods in the wind industry are based on linear approaches. Other studies confirm this observation55

and underline the benefit of the simplicity of linear MCP methods for use in wind energy applications (e.g., Sørensen et al.,

2011; Weekes and Tomlin, 2014c; Weekes et al., 2015). In a round-robin experiment in Germany in 2018 it was found that
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24 of 29 consultants used linear correlation methods, which mostly outperformed more complicated approaches (Basse et al.,

2018).

In order to enable a precise determination of the relationship between measurement and reference data, a sufficient amount60

of measurement data is necessary, that is, the concurrent period needs to be "long enough"“long enough”. Various studies

have been presented in which the question is addressed of how long the time span covered by the measurement should be. In

general, it is recommended to be at least one year (Carta et al., 2013), while the use of complete years is important as an uneven

representation of different months increases the uncertainty (Taylor et al., 2004; Liléo et al., 2013). As a consequence of such

studies, an amount of 12 months of measurement is recommended or even a mandatory minimum duration due to technical65

guidelines and standards such as FGW e.V. (2020), IEC (2017) or MEASNET (2016).

From an economic perspective, though, there is a strong desire to reduce the duration of the measurement in order to save

time and money (Carta et al., 2013). This is especially true with the increasing popularity of lidar measurements, which have

a high mobility and low installation costs compared to classical measurement masts while comparatively high running costs.

Moreover, an estimate of the wind conditions on site is often of interest for the wind park planner before the measurement70

campaign is completed. In all such cases, a smaller amount of wind data needs to be dealt with and a long-term correction is

performed based on wind measurement data which comprise much less than a year.

However, seasonal effects occur when the measurement does not cover all seasons (Rogers et al., 2005a; Saarnak et al.,

2014; Weekes and Tomlin, 2014a,b,c) resulting in a dependence of the estimated energy yield on the period in which the

measurement is conducted. These can induce systematic deviations and, thus, increase the uncertainty of the resource assess-75

ment significantly. Therefore, understanding seasonal patterns in long-term correction and their relation to data sources and the

choice of the MCP method is of high interest for the wind industry.

Several studies have investigated the accuracy of a long-term correction (LTC) of short-term wind measurements in depen-

dence of the measurement duration (e.g., Taylor et al., 2004; Rogers et al., 2005a,b; Romo Perea et al., 2011; Weekes and

Tomlin, 2014c; Weekes et al., 2015; Miguel et al., 2019). While in some of these, seasonal effects are broadly addressed, to the80

authors’ knowledge there is a lack of scientific publications which give profound explanations for seasonal patterns in biases of

the LTC. This paper investigates seasonal effects and related biases in wind speed (mean and variance) and annual energy yield

in the LTC induced by short (three months) measurement periods. Motivated by their relevance for practical use, two linear

MCP methods are applied and compared: Linear Regression with Residuals (Weekes and Tomlin, 2014a) and the Variance

Ratio method (Rogers et al., 2005a). First, theoretical considerations are developed to assess the impact of varying statistical85

relationships between the measurement and the reference data in the short-term period when compared to the long-term period.

In a second step, wind measurement data from 18 sites in Germany and six different reanalysis data sets are used to assess the

significance and magnitude of seasonal effects in the LTC. Interrelations of the seasonal effects with properties of the reference

data and the correlation method are analyzed both theoretically and experimentally.

2 Measurement and reanalysis data used in this study90
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Table 1. Details of the measurement sites. The duration of the individual measurements is exactly one year. The measurements were carried

out between May 2013 and April 2019.

Site No. orography and surface cover measurement height [m] measurement device

1 hilly, forested 140 Lidar (WindCube V2)

2 slightly hilly, forested 140 Lidar (WindCube V2)

3 mainly flat, forested 140 Lidar (WindCube V2)

4 hilly, sparsely forested 140 Lidar (WindCube V1)

5 slightly hilly, barely forested 140 Lidar (WindCube V1)

6 slightly hilly, forested 140 Lidar (WindCube V2)

7 hilly, forested 140 Lidar (WindCube V1)

8 slightly hilly, no trees 140 Lidar (WindCube V1)

9 slightly hilly, sparsely forested 140 Lidar (WindCube V1)

10 mainly flat, buildings nearby 135 Lidar (WindCube V2)

11 mainly flat, small town nearby 140 Lidar (WindCube V2)

12 hilly, forested 135 Mast

13 slightly hilly, forested 140 Mast

14 rather flat, forested 130 Mast

15 flat, close to a city 110 Mast

16 flat, agricultural area 100 Mast

17 rather flat, forest nearby 140 Sodar

18 slightly hilly, forested 140 Sodar

An
::::
Table

::
1
:::::::
presents

::
an

:
overview of the measurement campaigns is given in Tab. 1.

:::
used

::
in
::::

this
:::::
study.

:
All sites are located in

Germany; the complexity of the sites ranges from flat agricultural areas to the hilly low mountain ranges in Central Germany

(one of the complex sites is described in Pauscher et al. (2018)). For all sites a time series of an entire year for a height level

between 100 and 140 m is available, representing typical hub heights of modern wind turbines. The data were collected by pro-

filing lidar (Light Detection And Ranging, see e.g., Emeis et al. (2007)) of type Leosphere WindCube V1 & V2 (Leleu, 2019),95

sodar (Sound Detection And Ranging, see e.g., Bradley (2008)) or mast measurements. The one-year periods are distributed

relatively homogeneously between May 2013 and April 2019; only the year 2016 may be judged slightly over-representated

(with eight of the 18 sites covering at least a few months of the year 2016). The measurement data were collected at a temporal

resolution of 10 minutes and then averaged to hourly values (centered at the full hour) to comply with the typical temporal

resolution of the reanalysis data (see below). The availability of the measurement data is higher than 80 % at all sites with more100

than 90 % data availability at 14 sites. All data gaps are smaller than 100 consecutive hours except for a single site (Site 17 in

Tab. 1), where approx. 10 days of data are missing in winter (overall data availability for this site: 95 %).

The following six different reanalysis data sets serve as reference data in the MCP calculations:
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1. MERRA-2 (GMAO, 2015). The Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-

2) is based on global numerical weather analyzes of the U.S. National Aeronautics and Space Agency (NASA). The data105

are available as one-hour time series since 1980 for a height of 50 m and a spatial resolution of 0.5° x 0.66°. The time

stamps refer to average hourly values centered at 00:30 h, 01:30 h etc. In order to obtain comparability with the other

reanalysis data sets and consistency in temporal terms, these were interpolated to values centered at the full hour.

2. ERA5 (Hersbach et al., 2020). The data set is calculated at the European Centre for Medium-Range Weather Forecasts

(ECMWF) and provided by the Copernicus Climate Change Service. The ERA5 data represent the follow-up data set to110

the ERA-Interim reanalyses of the ECMWF. The spatial resolution of the ERA5 data is approx. 31 km (≈ 0.28°). Long-

term series of this data set are available for 100 m above ground in an hourly resolution. In contrast to the MERRA-2

data, these data are instantaneous values instead of averaged wind speeds (centered at the full hour).

3. EMD-ConWx (EMD, 2020a). This data set is created using the WRF model (Weather Research & Forecasting Model,

seeWRF (2020),
::::
e.g.,

:::::::::::::::::
Powers et al. (2017)) and is provided by EMD International A/S from Denmark. It is based on the115

ERA-Interim reanalysis data of the ECMWF, refined to a resolution of 3 km. The temporal resolution of the long-term

time series is 1 h (instantaneous values centered at the full hour). Wind data are provided at heights of 10, 25, 50, 75,

100, 150, and 200 m.

4. EMD-WRF Europe+ (EMD, 2020b). This dataset is a further development of the EMD-ConWx data. The ERA5 re-

analysis data have replaced the ERA-Interim data, while spatial resolution and temporal properties have not changed.120

Wind data are provided at the same heights as in EMD-ConWx and six additional heights up to 4000 m.

5. anemosM2: anemos Windatlas based on MERRA-2 (anemos, 2020a,c). Similar to the EMD data sets, these data are

created based on a downscaling of global reanalysis data (here: MERRA-2) using the WRF model (version 3.7.1) to a

resolution of 3 km. In contrast to the other models, anemos uses statistical post-processing based on measurement data,

known as remodeling, to improve the simulation results. Furthermore, additional downscaling of the data from the 3 km125

grid to the specific site is applied. The heights of the wind data are generally freely selectable between 40 and 200 m; for

the analysis in this study, wind data at 100 and 140 m were provided.

6. anemosE5: anemos Windatlas based on ERA5 (anemos, 2020b,c). This data set is similar to the anemosM2 but uses

ERA5 data. Furthermore, in the course of the remodeling, a seasonal correction is performed, i.e., biases in the annual

cycle of the ERA5 data are corrected before the statistical downscaling is implemented. The goal is to better capture the130

seasonal behaviour of the wind conditions. Additionally, a more precise consideration of the roughness at the respective

site represents a further difference to the anemosM2 data. Both the magnitude of the seasonal corrections as well as the

modifications on roughness constitute a trade secret of anemos (anemos, 2021).

It should be noted that both the anemosM2 and anemosE5 models generally provide a temporal resolution of 10 minutes.

In order to guarantee comparability of the results, these were averaged to 1 h ensuring the same temporal resolution for all135

reanalysis data sets.
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In general, reanalysis data are modeled for different locations on a geographical grid. In this study, data were selected from

the grid point closest to the respective site. For data sets 3. - 6. data at more than one height level were provided. In these cases,

the data at the height closest to the measurement were used (i.e., 100 and 150 m for EMD-ConWx and Emd-Wrf Europe+,

100 and 140 m for the two anemos data sets). For the MERRA-2 and ERA5 data sets the data at the given height (i.e., 50 and140

100 m, respectively) were used, i.e., no vertical extrapolation (or interpolation) was performed in this study.

3 Methodology

This study compares
::::
wind

:::::
speed

:
statistics as observed over different periods in the investigated data - namely short-term data

and long-term data. For this purpose, the convention is applied that capital letters are used for long-term variables (e.g., the

long-term corrected wind speed) while parameters in lower case letters represent data from the short-term period. The indices145

"meas", "ref", and "corr" “meas”,
:
“rea”

:
,
:::
and

:
“corr” refer to measurement, reference (i.e., reanalysis )

::::::::
reanalysis and corrected

data, respectively.

3.1 Selection of short-term periods and procedure of long-term correction

Short-term
::
In

:::
this

:::::
study,

:::::::::
short-term

:
periods with a duration of 90 consecutive days are selected starting at the first day of year

and running through the data
::::::::::
investigated.

::::
For

:::
the

:::::::
selection

:::
of

::::
these

:::::::::
short-term

:::::::
periods,

::
a

::::::
sliding

:::::::
window

::::::::
algorithm

:
with an150

increment of three days ("sliding window", e.g.
:
is

:::::
used;

:::
i.e., the first

::::::
90-day period starts on January 1, the second on January 4

etc. ). When
:::::
When

:::
this

::::::
sliding

:::::::
window

:::::::
reaches the end of the data is reached

:::::
period

::
of

:::
the

:::::::
original

:::::::::::
measurement

::::::::
campaign, the

data from the beginning of the data set is appendedensuring that
:
.
::::
This

::::::
ensures

::::
that

::
all

:::::::
seasons

:::
are

:::::::::
considered

:::::::
equally.

::
In

::::
this

::::
way, 122 90-day measurement periods can be

::::
were investigated for all reanalysis data sets and all sites

::::
sites.

::::
This

:::::::::
procedure

::
is

::::::
applied

::::::
equally

::
to

:::::::::::
measurement

::::
and

::::::::
reanalysis

::::
data

:::::::::::
guaranteeing

::::
that

::
the

:::::::::
respective

::::
time

:::::
series

::::::
values

:::::
match

::::::::::
consistently.155

In a first step, the data in these three-month data portions are analyzed
::::
each

::
of

:::
the

:::::::
90-day

::::::
periods

:::
are

::::::::::
investigated

:
with

respect to, e.g., mean and variance of wind speed (Sect. 5.1, 5.2 and 5.3).
:
In

::::
this

::::
way,

:::
the

::::::::
temporal

:::::::::
variations

::
of

:::
the

:::::
wind

::::::
climate

:::
can

:::
be

::::::::
analyzed.

:::::::::::
Furthermore,

:::
the

::::::::::
performance

:::
of

:::
the

::::::::
reanalysis

::::
data

::
in

::::::::::
reproducing

:::
the

::::::::
measured

:::::
wind

:::::::::
conditions

::
is

::::::::
evaluated.

:::::::
Overall,

::::
this

:::::::
provides

:::
the

:::::
basis

:::
for

:::
the

::::::
further

:::::::::::
investigations

:::
of

:::
the

:::::::
seasonal

::::::
effects

::
in

:::
the

:::::::::
long-term

::::::::
correction

:::
of

::::::::
short-term

:::::
wind

::::::::::::
measurements.

:
160

Secondly, MCP predictions are performed. Regression parameters are derived using the
::::::::
Applying

:::
the

:::::
linear

::::
MCP

::::::::
methods

::::::::
described

:::::
below

::
in

::::
Sect.

::::
3.2,

::::::::
regression

:::::::::
parameters

:::
are

:::::::::
determined

:::
by

:::::::
deriving

:
a
::::::::
statistical

::::::::::
relationship

:::::::
between

:::
the

:::::::::::
measurement

:::
and

:::::::::
reanalysis

:::::
wind

:::::
speed

::::
time

::::::
series

:::::
from

:::
the

:
short-term data and , afterwards, correction is performed in the

::::::
period.

:::::::::
Afterwards,

:::
the

:::::::::
reanalysis

::::
data

:::
are

:::::::
adjusted

::
to

:::
the

:
entire one-year period in

::
for

:
which measurement data are available.

::::
This

::
is

::::
done

::
by

:::::
using

:::
the

:::::::::
previously

::::::
derived

::::::::
statistical

:::::::::::
relationship. Finally, the corrected data are compared to the measured one-year165

data (benchmark) and error scores are derived (see Sect. 3.3). The general procedure is illustrated in Fig. 1.

The results, therefore, do not represent the overall errors (or uncertainty) of an LTC in general, which is usually performed

over a period of ten years or more (Lackner et al., 2008; Carta et al., 2013; Liléo et al., 2013). Instead, the analysis provides
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findings on systematic errors (seasonal biases) which emerge due to the reduction of the measurement duration from one year

to three months.170

:::
The

:::::::::
procedure

::
as

:::::::
depicted

::
in
::::
Fig.

::
1

::
is

::::::
carried

:::
out

:::
for

::::
each

:::::::::::
measurement

::::
site

:::
and

:::
for

::::
each

:::::::::
reanalysis

::::
data

::
set

:::::::::
separately.

:::
In

::::
order

::
to

::::::
derive

:::::
robust,

:::::::::
conclusive

::::::::
findings,

:::
the

::::::::
individual

::::::
results

:::::::
obtained

::
at

:::
the

::
18

::::
sites

:::::
were

:::::::
averaged

::::::::::::
arithmetically,

::::::::
resulting

::
in

:::
one

:::
set

::
of

:::::::
statistics

:::::
(e.g.,

::::
error

::::::
scores)

:::
for

::::
each

:::::::::
reanalysis

::::
data

::
set

::::
and

::::
each

::::::
90-day

:::::::::::
measurement

::::::
period.

:

1. Extract short-term data from 90-day period: 
Measurement data 𝑢meas, reanalysis data 𝑢rea

2. Correlation:
Calculate regression parameters according to

Eqs. (2), (3), (7) using 𝑢meas and 𝑢rea

3. MCP prediction: 
Correct the reanalysis data 𝑈rea in entire one-year period

using the regression parameters derived in 2. 
Output: corrected wind speed time series 𝑈corr

4. Error calculation: 
Compute error scores according to Sect. 3.3 by comparing
𝑈corr with the original one-year measurement time series
𝑈meas (benchmark). Afterwards, average over all sites.

Repeat 1.-4. with different 
short-term period
(„sliding window“)

Figure 1.
::::::::
Illustration

::
of

:::
the

:::::
general

::::::::
procedure

::::
used

::
in
:::
this

:::::
study

:::::::
regarding

:::
the

:::::
MCP

:::::::::
predictions.

::::
After

::::::::
extracting

:::
the

::::::::
short-term

::::
data

::
of

:::::::
measured

::::::
(umeas):::

and
::::::::
reanalysis

:::
data

::::::
(urea),

:
a
::::::::
correlation

:::::::
function

::
of

::::
these

:::
two

::::
wind

:::::
speed

::::
time

::::
series

::
is
:::::::::
determined.

::::
This

:::::::::
relationship

::
is

:::
used

::
to
::::::
correct

::
the

::::::::
reanalysis

::::
data

::
in

::
the

:::::
entire

:::::::
one-year

:::::
period

::::
Urea.

::::::
Finally,

:::
the

::::::
obtained

::::::::
corrected

:::
data

:::::
Ucorr :

is
::::::::
compared

::
to

:::
the

::::::
actually

:::::::
measured

:::::
values

::::::::::
(benchmark)

:::::
Umeas ::

in
::::
order

::
to

::::::
estimate

:::
the

:::::::
accuracy.

::::
This

::::::::
procedure

:
is
::::
done

::::
with

::
all

::::
122

:::::
90-day

::::::
periods,

:::
all

:::
sites

:::
and

:::
all

:::::::
reanalysis

::::
data

:::
sets

::::::::
separately.

It should be noted that in practical applications, a sector-wise regression is often performed for an LTC of measurement data

comprising a whole year. This means, that the regression parameters are calculated separately for different wind direction bins175

which allows to take the effects of terrain on wind flow into account. This can be important especially in a complex environment

(López et al., 2008). For the shorter three-month periods, sectorwise binning, however, generally yielded slightly worse results

in this study (presumably due to low data coverage in the different direction sectors). This procedure is, therefore, not applied

here. It is acknowledged, though, that in some specific cases a sectorwise approach can be a reasonable choice for an LTC of

short-term measurements nevertheless.180

When a correction is performed,
::
the

:::::
MCP

:::::::
methods

::::
may

:::::::
generate

::
a few negative wind speed valuescan occur. In this study,

these values were set to zero. In order to derive robust, conclusive findings, the individual results obtained at the 18 sites

7



were averaged arithmetically, resulting in one set of statistics (e.g., error scores) for each reanalysis data set and each 90-day

measurement period.

As mentioned in the introduction, the correlation coefficient of site and reference data should be evaluated before a long-185

term correction is performed. It is obvious that the correlation coefficient is lower when considering short-term periods (this

will shortly be addressed in Sect. 5.4.2). In most combinations of reanalysis and site data, the correlation coefficient was

rref,meas > 0.65
:::::::::::::
rrea,meas > 0.65 throughout, despite the small amount of only 90 days of data. Only in case of the EMD-

ConWx and EMDWrf Europe+ datasets, values of less than 0.5 were observed in summer periods at some sites. This should be

considered when assessing the results. However, it should be noted that this work intends to analyze the effects of shortening190

the measurement campaign for MCP approaches. Therefore, periods with low correlation coefficients are not excluded but the

effects of the correlation coefficient are explored in several sections (Sect. 4.3, 5.2 and 5.4.2 in particular).

Illustration of the general procedure used in this study regarding the MCP predictions. In the short-term (measurement)

period, a correlation function of the measured (umeas) and reanalysis data (uref ) is determined. This relationship is used to

correct the reanalysis data in the entire one-year period, Uref . Finally, the obtained corrected data Ucorr is compared to the195

actually measured values (benchmark) Umeas in order to estimate the accuracy.

3.2 Long-term correction: Measure-Correlate-Predict (MCP) approaches

In this section, a brief overview of the two MCP methods used in this study is given. Both implement a linear model to derive

a relation between measurement (umeas) and reference wind speed (uref ::::
here:

::::::::
reanalysis

:::::
wind

:::::
speed,

::::
urea) in the measurement

period. This linear relationship is generally expressed in the form200

umeas = β0 +β1 ·uref rea
::

+ ε, (1)

where β0 and β1 represent the main regression parameters. ε indicates the residuals (deviations from data points to fitting

line, see e.g., Ellison et al. (2009)).

3.2.1 Linear regression with residuals

The probably most widely used linear model is simple linear regression. In this approach the respective regression parameters205

β0,LR and β1,LR are calculated via the linear least squares method which minimizes the average squared deviation of the data

points from the fitting line (see e.g., Draper and Smith, 1998). This results in

β1,LR = rref,measrea,meas
::::::

· σmeas

σref

σmeas

σrea
:::::

(2)
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and

β0,LR = ūmeas−β1,LR · ūref rea
::
, (3)210

where σmeas and σref :::
σrea:

represent the standard deviation of reference and measurement
:::::::::::
measurement

:::
and

:::::::::
reference

:::::::::
(reanalysis)

:
data in the measurement period, and rref,meas :::::::

rrea,meas:
the Pearson correlation coefficient of the respective data.

The bar denotes the mean;
:::
the

::::::::
subscript

:::
LR

::::::
stands

::
for

:::::
linear

:::::::::
regression. In the correction period, the relationship is applied to

each of the time-series values of the reference data Uref ::::::::
reanalysis

::::
data

::::
Urea yielding the corrected wind speed values Ucorr:

Ucorr = β0,LR +β1,LR ·U ref rea
::
. (4)215

A disadvantage of this model is that the variance of the corrected data ucorr is reduced in comparison to the measured data

umeas:

Var(ucorr) = β2
1,LR ·Var(urea)

= r2
rea,meas ·

σ2
meas

σ2
rea

·Var(urea)

= r2
rea,meas ·Var(umeas) (5)

This yields Var(ucorr)<Var(umeas) as, in practical applications, the correlation coefficient rref,meas < 1
::::::::::
rrea,meas < 1.

Therefore, simple linear regression can be considered a method which generally yields accurate mean wind speeds (Bass220

et al., 2000; Rogers et al., 2005a; Romo Perea et al., 2011; Weekes and Tomlin, 2014a; Jie Zhang et al., 2014) but not accurate

variances; hence, biased estimates of wind speed distribution and energy production can be expected.

A model which addresses this shortcoming and further develops the simple linear regression approach is the Linear Regres-

sion With Residuals (LR) method discussed in Weekes and Tomlin (2014a). In contrast to simple linear regression, the residuals

are explicitly considered, giving the missing variance to the corrected data:225

Ucorr = β0,LR +β1,LR ·U ref rea
::

+ εrand. (6)

εrand is randomly drawn from a normal distribution εrand ∼ N (µ,σε) with mean µ and standard deviation σε. µ is set

to µ= 0 so that the mean value of the corrected wind speeds Ucorr ::::
Ucorr:

is not changed. The parameter σε can be estimated

using the data from the measurement period (Weekes and Tomlin, 2014a). In this context, the deviations of the data points

from the regression line (applying simple linear regression) are determined; their standard deviation then yields σε. Hence, the230

induced scatter resembles the scatter which is observed in the measurement period. Weekes and Tomlin (2014a) show that the

LR method yields precise mean wind speeds as well as accurate mean wind power densities.
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3.2.2 Variance Ratio

In Rogers et al. (2005a), the Variance Ratio (VR) method is proposed as an alternative to the classical linear regression methods.

This approach is closely related to (simple) linear regression; in contrast, however, the regression parameters β0,VR and β1,VR235

are not calculated using the linear least square method. Instead, β1,VR is defined as

β1,VR =
σmeas

σref

σmeas

σrea
:::::

. (7)

which resembles the particular case of a simple linear regression with correlation coefficient rref,meas = 1
:::::::::::
rrea,meas = 1

(compare Eq. (2)). This choice of β1,VR ensures that the variance is maintained, in terms of equal variances of measured data

umeas and corrected data ucorr in the measurement period. β0,VR is then computed using Eq. (3) accordingly. This, in turn,240

ensures that the mean values of measured and corrected data (in the measurement period) are equal. The VR approach therefore

maintains both the first and the second order statistical moment of the measured time series in the LTC. Correction is performed

via Eq. (4) using the respective regression parameters β0,VR and β1,VR.

In Rogers et al. (2005a) the authors found that the VR method yielded accurate predictions of all investigated metrics

including mean wind speed and wind speed distribution. Other studies confirm the suitability of the VR method in the context245

of long-term correction of wind measurements (see e.g., Weekes and Tomlin, 2014a; Weekes et al., 2015).

3.3 Statistical analysis and definition of error scores

For each MCP calculation according to Sect. 3.1, a one-year time series is generated
::::::::
(temporal

:::::::::
resolution:

::::
one

:::::
hour). Based

on comparison with the measured one-year data, the following error scores are derived to evaluate the accuracy of these time

series:250

1. Bias in (annual) mean wind speed, Errmean = Ūcorr−Ūmeas

Ūmeas
(where the bar denotes the respective one-year mean wind

speeds).

2. Bias in variance of the (one-year) time series, Errvar = V ar(Ucorr)−V ar(Umeas)
V ar(Umeas)

.

3. Bias in energy density, ErrED

As relative values are addressed only, the bias in energy density is simply based on the bias in cubed wind speed u3 here.255

The exact procedure of calculation is given in the text of the respective section (Sect. 5.4.3).

4. Bias in theoretical annual energy production of a wind turbine, Errturbine:
.

To derive this error score, the theoretical one-year energy production of a wind turbine is calculated using the power

curve of a 3.2 MW wind turbine (see Enercon, 2019). This power curve has a cut-in wind speed at 2 m/s and the nominal

power is reached at wind speeds of 14 m/s. When the winds are stronger than 25 m/s, no energy is converted (cut-out260
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wind speed). Errturbine is given by the relative deviation of the energy values calculated from the corrected and the

measured one-year time series (i.e., similar to Errmean and Errvar). Two further power curves with significantly lower

and higher cut-in and cut-out wind speeds (nominal power: 1.8 MW and 4.2 MW) were used in order to quantify the

variability for different power curves. As the results only differed slightly and the essential conclusions remained the

same, only the results for this 3.2 MW turbine power curve are presented in this study.265

4 Theoretical considerations

Before experimental analysis is presented, in this section theoretical aspects are discussed. It should be noted that these theoret-

ical considerations are, to some extent, also valid for a long-term assessment which is based on an entire year of measurement

data (i.e., as most commonly done in wind resource assessment today). In this case, the inter-annual variations of the wind

conditions represent the key factor. However, these are usually smaller than the seasonal variations during the year, which are270

discussed below.

4.1 Influence of mean and variance on the estimate of energy

Both mean and variance of the predicted wind speed distribution have an impact on the estimate of the power production of

a wind turbine which is, eventually, the
::::
main target value of a wind resource assessmentwhen planning a wind park. In this

section, the importance of an error in each of the two statistical metrics is investigated.275

For this purpose,
::
It

::
is

::::::
known

:::
that

:
the power in wind P is analyzed. It is known that P scales with

:
is

::::::::::
proportional

:::
to the

wind speed in third power (u3). Hence, the expected value E[P ] of a wind speed distribution is mainly characterized by (is

proportional to) E[u3]. Romo Perea et al. (2011) give an approximation for
::
the

::::::::
expected

::::
value

:
E[u3] based on the first three

statistical moments of the wind speed distribution,

E[u3] = ū3 + 3 · ū ·σ2
u + γ ·σ3

u, (8)280

with σu representing the sample standard deviation of wind speeds u and γ the skewness coefficient. The bar denotes the

mean. Generally, γ is rather small (Romo Perea et al., 2011) and the term γ ·σ3
u therefore will be neglected in the following.

Applying the (simplified) formula of the Taylor series method for propagation of error (see e.g., Coleman, 2009),

∆E[u3] =
∂E[u3]

∂ū
·∆ū+

∂E[u3]

∂σ2
u

·∆σ2
u, (9)

with ∆ symbolizing the error of the respective parameter, yields285

∆E[u3]

E[u3]
= (1 +

2

1 + 3
A

) · ∆ū
ū

+
1

1 + A
3

· ∆σ
2
u

σ2
u

(10)
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as a formula for the overall relative error of E[u3]. The substitution A= ū2/σ2
u was introduced for means of readability.

The available one-year measurement data (see Sect. 2) were used to derive values for A which typically occur at the in-

vestigated sites. It was found that A= 5.0± 0.8 (mean ± 1 standard deviation). Inserting
:::
this

:::::
mean

:::::
value

::
of

::
A

:
in Eq. (10)

shows that the effect of a relative error in mean wind speed,
::::

∆ū
ū ,

:
is weighted six times as strong

::::
much

:
as the relative error in290

varianceσ2
u,
:::::

∆σ2
u

σ2
u

.

Note that simplifications were applied (e.g., neglection of the skewness of the distribution) and that the output of Eq. (10)

varies from site to site (due to a site-dependence of the parameter A). However, a clear impression of a much larger importance

of a high accuracy in mean than in the variance of the wind speed distribution is obtained. As will be shown in the experimental

section (Sect. 5), the errors in variance can be quite large when a long-term correction of short-term wind measurements is295

performed and, hence, should not be neglected nevertheless.

Following these considerations, the sections below address the question
:::::::
questions

:
which factors influence the accuracy of

the estimation of the mean and the variance when a long-term correction is performed based on one of the two linear MCP

approaches.

4.2 Considerations on seasonal bias in mean wind speed300

In both cases of the VR and the LR method, the mean value of the corrected wind speed data is given by

Ūcorr = β0 +β1 · Ū ref rea
::
, (11)

with the respective values of regression parameters β0 and β1 :::::
(again,

:::
the

:::
bar

:::::::
denotes

:::
the

:::::
mean).

Using the definition of β0 (see Eq. (3)) leads to

Ūcorr = ūmeas−β1 · (ūref rea
::
− Ū ref rea

::
). (12)305

The error in mean wind speed is usually defined as the deviation of the calculated mean wind speed from the "true" value.

Hence, the difference Ūcorr− Ūmeas provides a convenient formula for the theoretical
::
For

:::
the

:
(absolute) bias in mean wind

speed
:::
this

::::::
results

::
in:

:

Errmean,abs = Ūcorr− Ūmeas

= (ūmeas− Ūmeas)−β1 · (ūrea− Ūrea). (13)

This formula is valid for both the LR and VR method (with respective regression parameter β1,LR or β1,VR).310

Therefore, three factors have a direct impact on
::::
From

:::
Eq.

:::
13

::
it

:::
can

:::
be

::::
seen

::::
that the accuracy in mean wind speed when

applying either the VR or LR method
:
is
:::::::::
influenced

:::
by

::::
three

::::::
factors:
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(I) ūmeas− Ūmeas: Deviation of "true" “true” mean wind conditions (measured data) in measurement and long-term

period315

This part of Eq. (13) denotes the difference of mean wind speeds in measurement and long-term period. Therefore, it

can be interpreted as a measure for the representativeness of the period in which the measurement is carried out. In case

of periods of lower wind speeds, this quantity is negative (ūmeas < Ūmeas) while positive values occur in case of periods

with strong winds (ūmeas > Ūmeas).

(II) ūref − Ūref :::::::::
ūrea− Ūrea: Deviation of the mean wind speeds of the reanalysis data in measurement and long-term320

period

Similarly to term (I) but related to the reanalysis data, this term reflects the differences of wind conditions in measurement

and long-term period given by the reanalysis data.

(III) Regression parameter β1

The regression parameter β1 weights term (II)and, therefore, determines whether the first or the second part of Eq. (13)325

dominates.
:
.
:
As β1 is different for the LR and the VR method, the respective results of an LTC will inevitably show

differences, accordingly.

Obviously, the value of Errmean,theo is zero when the terms ūmeas− Ūmeas ::::
Note

:::
that

::::
Eq.

::
13

::
is

:::::
valid

:::::::::::
independently

:::
of

:::
the

:::::::
duration

::
of

:::::::::::
measurement

:
and β1 · (ūref − Ūref) cancel out. While ūmeas− Ūmeas solely depends on the selected measurement

period and the specific site, ūref − Ūref is, additionally, highly sensitive to the selected
::::::::
correction

::::::
period

::
as

::::
well

::
as

::
the

:::::::::
long-term330

reference data set(reanalysis data in this study) and its capability to reflect the measured annual cycle on site. β1, in turn, is

dependent on the selected MCP method and can vary in time. In case of representative wind conditions (i.e., small values of

terms (I) and (II)), the exact value of β1 is of minor importance. .
:

4.3 Considerations on seasonal bias in variance

Similarly to the considerations on mean wind speed above, in this section a theoretical perspective on the accuracy in variance335

is given. For the variance of the corrected data V ar(Ucorr) ::::::::
Var(Ucorr):the following relationship is obtained for

::::
when

:
the VR

method :
:
is

:::::::
applied:

Var(Ucorr) = β2
1,VR ·Var(U ref rea

::
) = Var(umeas) ·

Var(Uref)

Var(uref)

Var(Urea)

Var(urea)
::::::::

. (14)

The accuracy of the LTC in variance, therefore, directly depends on the representativeness of the measured variance
:
,

::::::::::
Var(umeas),

:
for the long-term period. Furthermore, the ratio of the variances

::
in

:::::::::
short-term

:::
and

:::::::::
correction

::::::
period

:
given by340

the reanalysis data needs to be similar in the correlation and the correction period to yield accurate results
:::
(i.e.,

:::::::::

Var(Urea)
Var(urea) )

::
is

:::::::
decisive.

::::
This

::::::
means

:::
that

:::
the

::::::::
accuracy

::
of

:::
the

::::::::
reanalysis

::::
data

::
in

::::::::
reflecting

:::
the

::::::::
(relative)

:::::::
seasonal

::::::::
variation

::
of

:::
the

:::::::
variance

:::::
plays

::
an

::::::::
important

::::
role. The general accuracy of the reanalysis data regarding the variance, in contrast, is of minor importance.
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When
::
In

::::
case

::
of

:
the LR methodis applied, the respective formula reads

:::
(cf.

::::
Eqs.

:::
(2)

:::
and

::::
(6)):345

Var(Ucorr) = rref,measrea,meas
::::::

2 ·Var(umeas) ·
Var(Uref)

Var(uref)

Var(Urea)

Var(urea)
::::::::

+ Var(εrand). (15)

Hence, the variance
::::::
besides

:::
the

::::::::::::::::
representativeness

::
of

:::
the

:::::::::
measured

::::::::
variance,

:::
the

::::::::
variance of the output data is mainly

influenced by three factors here:

1. the accuracy of the reanalysis data in reproducing the annual variability of variance (similarly as discussed for the VR

method)350

2. the correlation coefficient (in the context of β1,LR, cf. Eq. (2))

3. the residuals determined in the measurement period or, more specifically, the representativeness of their measured stan-

dard deviation σε =
√

Var(εrand) for the entire correction period (see Sect. 3.2.1)

It should be noted that, from a mathematical point of view, factors 2. and 3.
:
2
::::

and
::
3 are strongly connected (e.g., a lower

correlation coefficient implies higher scatter around the linear fit and, hence, variance of the residuals). Therefore, in the355

experimental section, the analysis is focused on factors 1. and 2. (note that the correlation coefficient contributes as a quadratic

term to Eq. (15)).
:
1
::::
and

::
2.

5 Experimental Results

In the
:::::::::
theoretical

:::::::
analysis,

:::::::
different

::::::
factors

:::::
were

::::::::
identified

:::::
which

:::::
have

::
an

::::::
impact

:::
on

:::
the

:::::::
accuracy

::
in

:::::
mean

::::
and

:::::::
variance

:::::
when

::
an

::::
LTC

::
is
::::::::::

performed.
::
In

:::
the

:
following sections, the theoretically derived aspects are further explored and tested

:::::
these

:::
are360

::::::::::
investigated experimentally. Afterwards, MCP calculations are presented. Systematic biases are described and discussed. In a

last section, the variation of the results between the different sites is explicitly considered.

5.1 Seasonal cycle of mean wind speed in measurement and reanalysis data

Equation (13) in Sect. 4.2 constitutes the essential basis for the understanding of seasonal biases in mean wind speed in the

context of long-term correction of wind measurements. According to that formula, both the seasonal cycle of measured wind365

speed as well as the capability of the reanalysis data to reproduce this course are decisive.

In Central Europe –the region under investigation in this paper– the wind conditions usually show lower mean wind speeds in

summer and stronger winds in winter periods (Pryor et al., 2006). The exact seasonal pattern will be different from site to site,

depending on site-related properties (e.g., proximity to sea or topographical conditions). In
:
In

:
Fig. 2 the average seasonal cycle

::
of

::::
wind

:::::
speed

:
at the 18 sites as given by the different reanalysis data sets is presented. Additionally, the measured seasonal370
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Figure 2. Average annual course of (normalized) wind speed in reanalysis and measurement data. Normalization was done by dividing the

mean wind speeds observed in the 90-day periods by the respective annual mean. The individual results obtained at the 18 sites were then

averaged arithmetically.

cycle is shown (black dashed line). In all cases, relative values were used, i.e., the mean wind speeds in the different 90-day

periods (see Sect. 3.1) were divided by the annual means of the respective data sets.

All data confirm the typical seasonal pattern described above. Hence, both terms (I) and (II) in Eq. (13) (i.e., the deviations of

::
As

:::
the

:::::::
diagram

::::::
shows,

:
the

:::::
annual

::::::
course

::
of

::::
wind

:::::::::
conditions

::
is
:::::::
marked

::
by

:::::::::::
significantly

:::::
lower mean wind speeds in short-term

::::::
summer

:
and long-term period in measurement or reanalysis data, respectively) will be negative in summer and positive in375

winter .

:::::::
stronger

:::::
winds

::
in

::::::
winter

:::::::
periods.

::::
This

:::::::
pattern

:::::::
typically

:::::::
prevails

:::
in

::::::
Central

:::::::
Europe

:::::::::::::::
(Pryor et al., 2006)

:
.
:
For all reanalysis

data sets, however, the seasonal variations are over-pronounced in comparison to the measured ones. In the transitional seasons

(spring, fall), the deviations of (relative) reanalysis and measured wind speeds are smallest on average. The amplitudes of the

curves in Fig. 2 differ, indicating clear differences between the reanalysis data sets.380

In order to further analyze this aspect, a parameter dmean was calculated aiming to display the deviations from reanalysis to

measured data in the seasonal course. dmean is derived based on mean values of reanalysis (ūref:::
ūrea) and measurement data

(ūmeas) during the 90-day periods in relation to their overall annual mean values (Ūref ::::
Ūrea and Ūmeas, respectively):

dmean =
ūref

Ūref

ūrea

Ūrea
::::

− ūmeas

Ūmeas
. (16)

This quantity, therefore,
:::::
Hence,

::::
this

:::::::
quantity represents the difference between the colored lines and the measured seasonal385

course (black line) in Fig.2.
::
2.

::
It

:::::::
therefore

::::::::
indicates

:::
the

::::::
average

:
“error”

:
of

:::
the

::::::::
reanalysis

::::
data

::::
sets

::
in

::::::::
reflecting

::
the

::::::
annual

::::::
course

::
of

::::
wind

::::::
speed.

::::::::
According

::
to
:::
the

:::::::::
theoretical

::::::::::::
considerations

::
in

:::::
Sect.

:::
4.2,

:::
this

::
is
:::
an

::::::::
important

:::::
aspect

::::::::
regarding

:::
the

:::::::
seasonal

::::::
biases

::
of

::
an

::::
LTC

::::
(cf.

::::
term

:::
(I)

:::
and

::::
(II)

::
in

:::
Eq.

::::
13). For each short-term period, one value of dmean per site and reanalysis data set is
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derived. Afterwards, values averaged over all sites are calculated resulting in one set of dmean values for each reanalysis data

set.390

Figure 3. Deviation between reanalysis and measurement data in (normalized) mean wind speed (period of 90 days, arithmetically averaged

over all sites).

Figure 3 shows the seasonal
:::::
annual course of dmean. Relatively large differences among the different reanalysis data sets can

be observed. The aforementioned over-pronounced seasonal course
::
of

:::::
mean

::::
wind

:::::
speed

:
leads to negative deviations

::::::
values

::
of

:::::
dmean in summer and positive values in winter periods for all reanalysis data sets. Comparing the global reanalysis data sets

MERRA-2 and ERA5 with respect to the accuracy in seasonal course shows advantages for the "older" “older” MERRA-2

data set, as a lower amplitude in Fig. 3 is present. This holds true despite or because of the fact that the MERRA-2 data395

are provided at lower heights (50 m, see Sect. 2). This could generally be expected to yield in a lower representativeness

regarding the seasonal course at the measurement height. However, the ERA5-based anemosE5 data give better results than

the MERRA-2 based anemosM2 data
:::
and,

::::::::
generally,

::::::
shows

:::
the

::::::
highest

::::::::
accuracy

::::::::
regarding

:::
the

:::::::
seasonal

::::::
course. This might be

caused by the further developments by anemos when generating the anemosE5 model (e.g., the additional seasonal correction

or the remodeling, see Sect. 2).
:::
The

::::::
largest

:::::::::
amplitude

:::::::
prevails

::
for

:::
the

::::::::::
EMD-WRF

::::::::
Europe+

:::
data

::::
set.400

5.2 Seasonal variations of regression parameter β1 and correlation coefficient rref ,meas::::::::
rrea,meas

In addition to the aspects regarding the seasonal course of the wind,

::::::::
Motivated

:::
by

::::
their

::::::::
relevance

::
in

:::
Eq.

:::
13,

:::::::
average

:::::::::
regression

:::::::::
parameters

:::::
β1,VR::::

and
:::::
β1,LR::::

and
::::
their

:::::::
temporal

::::::::
variation

::::::
during

::
the

::::
year

:::
are

:::::::::::
investigated.

:::::
These

:::
are

:::::
shown

::
in

::::
Fig.

:
4
:::
(a)

:::
and

:::
(b).

::::
The

::::::::
respective

::::::
values

::::
were

:::::::::
calculated

:::::
during

::::::
90-day

::::::
periods

::::
and

:::::::::::
arithmetically

::::::::
averaged

::::
over

::
all

:::::
sites.

::::
Note

::::
that,

::
as

:::::::::::::
β1,VR = σmeas

σrea :::
(see

:
Eq. (13)underlines that the magnitude of the regression405

parameter β1 plays a significant role. Therefore, in this section β1 and, in particular, its differences with regard to the two
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MCP methods, are investigated in more detail
:::
7)),

:::
Fig.

::
4
:::
(a)

:::
also

:::::
gives

::
an

::::::::::
impression

::
of

::::
how

:::
the

::::::::
reanalysis

::::
data

:::::::::
reproduce

:::
the

:::::::
variance

::
of

::::
wind

:::::
speed

::::
and

::
its

::::::::
temporal

:::::::
variation

::::::
(Sect.

:::
5.3

:::
will

:::::::
address

:::
this

:::::
aspect

:::
in

::::
more

::::::
detail).

Figure 4.
:::::::
Temporal

:::::::
variations

:::
of

::::::::
regression

::::::::
parameter

::
(a)

::::::
β1,VR ::

for
:::

the
:::::::

Variance
:::::

Ratio
:::
and

:::
(b)

:::::
β1,LR:::

for
:::
the

:::::
Linear

:::::::::
Regression

::::
with

:::::::
Residuals

:::::::
methods.

:::
The

::::::::
respective

:::::
values

::::
were

::::::::
determined

:::::
using

:
a
:::::
90-day

::::::
sliding

::::::
window

:::
and

:::::::::::
arithmetically

::::::
averaged

::::
over

::
all

::::
sites.

Comparing the respective definitions of β1 (Eq
:::
Eqs. (2) and Eq. (7)) shows that, as mentioned above, the VR

::
for

::::
one

::::
pair

::
of

::::
data

::::
sets,

:::
the

:::
LR

:
method always produces larger

::::::
smaller

:
slopes than the LR method.

:::
VR

:::::::
method.

:::
In Fig. 4 (a) and (b)410

depict average regression parameters β1,VR and β1,LR and their temporal variation during the year. The respective values were

calculated during 90-day periods and arithmetically averaged over all sites.

Temporal variation of the regression parameter (a) β1,VR for the Variance Ratio and (b) β1,LR for the Linear Regression with

Residuals method. The respective values were determined using a 90-day sliding window and arithmetically averaged over all

sites.415
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:::
this

::
is

::::::
clearly

::::::::
reflected. In contrast to β1,VR,

::::::::
moreover, β1,LR is subject to clear temporal variations showing lower values

in summer and higher values in winter. This , again, reflects the influence of the correlation coefficient rref,meas which is only

considered explicitly in the LR method
:::::::
rrea,meas::::::

which
::
is

::::
part

::
of

:::
the

:::::::::::
mathematical

::::::::::
formulation

:::
of

:::::
β1,LR and which exhibits

a seasonal pattern itself. This pattern is depicted in Fig. 5 where normalized values of rref,meas :::::::
rrea,meas are shown (similarly

to the β1 values in Fig. 4, these were averaged arithmetically over all sites). The correlation coefficient shows a clear seasonal420

variation for all reanalysis data
:::
sets and decreases significantly towards the summer periods. More unstable stratification and

generally lower wind speeds (see Sect. 5.1) might be possible reasons.

Figure 5. Normalized linear correlation coefficient between measurement and reanalysis data (periods of 90 days, arithmetically averaged

over all sites). In the context of normalization the curves were shifted to a mean of 1 to better identify the (relative) temporal variations during

the year.

According to Eq. (13), the respective β1 value weights the seasonal course of the reanalysis data in the determination of the

bias in mean wind speed. As a consequence of the findings here, the over-pronounced seasonal cycle of the reanalysis data

as depicted above is weighted stronger in winter than in summer periods when the LR approach is applied. Moreover, lower425

weighting (in comparison to the VR method) occurs throughout as β1,VR > β1,LR.

5.3 Reproduction of the temporal variation of variance in the reanalysis data

As was shown above,
:
In

:::::
order

::
to

::::::
further

:::::::::
investigate

:
the capability of the reanalysis data in reproducing the seasonal course of

variancecorrectly is decisive for an accurate variance of the generated time series. According to the considerations in Sect. 4.3,

this is important in case of both MCP methods. As β1,VR = σmeas

σref
(see Eq. (7)), the seasonal course of the regression parameter430

β1,VR depicted in Fig. 4 (a ) gives an impression of how the reanalysis data reproduce the variance and its temporal variation.
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In order to further investigate this aspect, a
:
,
:
a
:
measure dvar is calculated. Similarly to dmean in Sect. 5.1, dvar is defined via

the difference of relative values in the 90-day periods,

dvar =
Var(uref)

Var(Uref)

Var(urea)

Var(Urea)
::::::::

− Var(umeas)

Var(Umeas)
. (17)

Figure 6 shows how the temporal variation of the measured variance throughout the year is reproduced by the different435

reanalysis data sets.

Figure 6. Deviation from reanalysis to measurement data in (normalized) variance (period of 90 days, arithmetically averaged over all sites).

The differences in variance reach values of up to ± 10 % and are, therefore, generally higher than the deviations in mean

wind speed (see Fig. 3). No universal seasonal dependence can be determined as it was observed for the mean wind speed.

Some curves in Fig. 6 show minima in summer and high values in winter or spring while others show contrary characteristics.

5.4 MCP calculations: Seasonal bias in mean, variance, and energy440

MCP calculations based on 90 days of measurement are now presented. For each reanalysis data set, an average value of the

individual error scores related to one measurement period is calculated by arithmetically averaging over all sites. Due to their

importance in the theoretical considerations the
:::::
First,

:::
the focus of the analysis is put on mean and variance of wind speedfirst.

Afterwards, seasonal biases in energy density as well as the (theoretical) energy production of a wind turbine are analyzed.

In this context, the influence of the systematic biases in both mean and variance on the accuracy in energy
:::::::::
production is445

investigated on an experimental level. The analysis in these sections is focused on the systematic biases
::::::::
systematic

::::::
biases

:::
first.

The variability of the results (standard deviation) is presented and discussed in a dedicated section afterwards (Sect. 5.4.4).

19



5.4.1 Seasonal bias in mean wind speed

Figure 7 (a) shows the experimentally obtained bias in mean wind speed (error score Errmean) using the VR method. An

inverse shape to the curves of dmean (i.e., the "error" “error” of the reanalysis data in the seasonal course, see Fig. 3) can be450

observed: A measurement in summer months results in a positive bias in the corrected wind-speed time series while a negative

bias is produced when the measurement is conducted in winter. Thus, a positive bias is produced
::::::
obtained

:
when the reanalysis

data underestimate the (relative) mean wind conditions which prevail in the measurement period and vice versa. These findings

are valid for all reanalysis data sets although it should be noted that the shapes of the related curves in dmean are not transformed

in the (inverse) course of Errmean in exactly the same way.455

Figure 7. Temporal variation
:::::::
variations during the year of the bias in mean wind speed using the (a) Variance Ratio, (b) Linear Regression

with Residuals method
::::::

methods.

Strong differences to these observations and even contrary behaviour can be found when the LR method is used (Fig. 7

(b)). For all reanalysis data sets except ERA5, the mean of the corrected wind speed time series is underestimated in case of
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measurements in summer, while overestimations prevail for winter measurements. The patterns seem not to be directly related

to how the reanalysis data reproduce the measured seasonal course of the mean wind speed. Moreover, the ERA5 data gives

:::
give

:
an inverse curve to all the other reanalysis data sets despite of a high similarity in dmean (Fig. 3). The amplitude of the460

respective curve is very small indicating a small dependence of the result on the measurement period and, hence,
:::::
rather

:::::
small

::::::::
indicating only small seasonal biases.

For most other data sets, the amplitudes of the curves in Fig. 7 (a) and (b) are of comparable magnitude with a slight

advantage for the LR method in predicting the mean of the corrected wind-speed time series.

Despite a high similarity in mathematical prospect, the two linear MCP methods yield significantly different results in465

Errmean. The theoretical analysis of the bias in mean wind speed (Sect. 4.3) yielded a theoretical dependence of Errmean on

1.) the representativeness of the measurement period for the long-term wind conditions, 2.) connected to that, the similarity of

the seasonal course in reanalysis data to the measured one, and 3.) the regression parameter β1. As 1.) and 2.) are similar for

each reanalysis data set, the differences of the results in
::
In

:::
line

::::
with

:::
the

:::::::::
theoretical

::::::::::::
considerations

::
in
:::::
Sect.

:::
4.2,

:::
the

::::::::::
differences

:::::::
between Fig. 7 (a) and (b) , therefore, must have their reasons in

:::
can

::
be

::::::::
attributed

::
to

:
differences in β1.470

As stated above, the VR method provides larger values here
::
β1::::::

values than the LR approach(see Sect. 5.2).
:
. This leads to

the fact that, generally, the seasonal course of the reanalysis data (term ūref − Ūref::::::::::
ūrea− Ūrea in Eq. (13)) is weighted stronger

when the VR method is used. As a consequence, the effect of the over-pronounced seasonal course of the reanalysis data(see

Fig. 2 and 3) dominates here
:
,
::
as

::::::::
presented

::
in

:::::
Sect.

:::
5.1,

:::::::::
dominates

:::
the

:::::
result. This is underlined by the fact that Errmean and

dmean roughly show inverse shapes .
:::::::
(compare

::::
Fig.

:
7
:::
(a)

::::
with

::::
Fig.

:::
3). For the LR approach, in contrast, the seasonal course of475

the reanalysis data is weighted less due to smaller β1,LR ::
β1:

values. Therefore, in most instances the seasonal pattern measured

on site (term ūmeas−Ūmeas in Eq. (13)) dominatesthe overall result. Consequently, most curves ofErrmean show a high degree

of similarity to the patterns observed in
:::::
annual

::::::
course

::
of

:::::
wind

:::::
speed

:
(Fig. 2).

As was shown in Fig. 4, in case of the ERA5 data relatively high β1,LR values were obtained. For the LR method this

causes a balancing effect (even slightly "overbalanced"“overbalanced”). Thus, a relatively small amplitude of Errmean can be480

observed in Fig. 7 (b) despite, or rather because of the overpronounced
::::::::::::::
over-pronounced annual cycle of the ERA5 data. With

regard to the VR method, again, highest slopes (β1,VR values) were observed for ERA5 compared to the other reanalysis data

sets. As a direct consequence, the product of regression parameter β1 and (over-pronounced) seasonal course in the reanalysis

data clearly dominates the result of Eq.
:
(13) and the highest amplitude can be observed in Fig. 7 (a).

One further example is analyzed briefly here. The largest deviation in the seasonal course dmean ::::::::::::
overestimation

:::
of

:::
the485

:::::
annual

::::::
course

::
of

:::::
wind

:::::
speed was found for the EMD-Wrf Europe+ data set (see Fig. 3). In contrast to the ERA5 data, though,

remarkably lower β1,LR values are present for
:::::::
obtained

:::::
when this reanalysis data set

::
is

::::
used (see Fig. 4 (b)). Eventually, the

product of (small) regression parameter and (large) deviation of the reanalysis data in the seasonal course in Eq. (13) results in

a relatively small amplitude of Errmean.

In summary, it can be stated that the capability of the reanalysis data in reproducing the seasonal course of the "true" “true”490

wind conditions on site is an important aspect when considering the bias in mean wind speed. However, positive (or negative)
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deviations in seasonal course do not transform to negative (or positive) biases directly. The regression parameter
::
β1, depending

on both the MCP method and the selected reanalysis data set, strongly influences the outcome additionally.

Note that the influence of the seasonality in β1,LR as shown in Fig. 4 (b) can not be determined exactly here, as the lower

values in summer coincide with a stronger effect of the over-pronounced seasonal cycle of the reanalysis data (lower dmean495

values).

In a study of Bass et al. (2000), long-term measurements instead of reanalyses were used as reference data. 41 pairs of site

and reference data in
:::::::::
Long-term

:::::::::
corrections

::
of

::::::::
one-year

::::::
on-site

::::
data

::::
from Europe and the US with different terrain types were

deployed to test
::::
were

::::::::::
performed,

:::::
testing

:
a variety of MCP methods including linear models like linear regression as well as a

neural network approach. Hence, long-term corrections of one-year on-site data were performed. Regarding the bias in mean500

wind speed they found that none of the investigated methods stood out in comparison to the others. It was concluded that the

success of the methods "is less to do with the mechanics of the methodology itself, and more to do with facets of the data being

analysed”. Carta et al. (2013) confirms “is less to do with the mechanics of the methodology itself, and more to do with facets

of the data being analysed”.
::::::::::::::::
Carta et al. (2013)

::::::::
confirmed that the uncertainty of the long-term predictions depends much more

on the (reference) data than on the MCP method.505

With regard to an LTC of short-term wind measurements, the results of this work only partly agree with these findings from

literature. It was shown both theoretically and experimentally that, concerning systematic, seasonal biases, a strong dependence

on the selected MCP method occurs. The results above show that very different outcomes can be observed when relatively

similar, linear MCP approaches are applied even when the same reference data set is used. In this context, it should be noted

that when a long-term correction of entire one-year measurement data is performed, the seasonal aspects discussed here can be510

replaced by inter-annual variations (which are, however, much smaller); Eq. (13) retains its validity in this case.

In a study of Weekes and Tomlin (2014a) seasonal patterns in the long-term correction of short-term wind measurements

are addressed briefly. For both LR and VR, larger biases
:::::
higher

:::::
(more

::::::::
positive)

:::::
values

::
of
::::

the
:::
bias

:
in mean wind speed were

observed when measuring in summer while smaller (more negative) values were obtained for winter measurements. The VR

method yielded a smaller amplitude and, in contrast to the LR approach, resulted in negative biases throughout. Furthermore,515

it was concluded that the sign of the bias varied depending on the specific site when the VR method was applied.

Weekes and Tomlin (2014a) related these seasonal effects to temporal changes in synoptic weather patterns and, connected

to that, seasonal patterns in wind direction.
:::
No

::::::
specific

:::::::::::
explanations

::::
were

:::::
given

:::
for

:::
the

:::::::::
differences

:::::::
between

:::
the

:::::
results

::::::::
obtained

::::
with

:::
the

:::
VR

::
or

:::
the

:::
LR

::::::::
method. It has to be noted that Weekes and Tomlin (2014a) used measurements instead of reanalysis

data as reference and all data were collected at heights of around 10 to 20 m. The theoretical background derived in Sect. 4.2is,520

however,
:
is

::::
valid

:
independent of height and origin of the wind data and can be seen valid universally and applicable also under

these conditions
::::::::
reference

::::
wind

::::
data. Against this background, it is likely that not all the reference data used in Weekes and

Tomlin (2014a) exhibited an over-pronounced seasonal cycle as present
:::
this

::
is

:::
the

::::
case for the reanalysis data used in the study

here.

Saarnak et al. (2014) applied a linear regression approach to wind data from a site on a Swedish island using MERRA525

reanalysis (predecessor of MERRA-2). Systematic underestimations in a long-term correction were found when short-term
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data of three-months winter periods were used. Summer measurements, in turn, resulted in positive biases in mean wind speed.

Hence, results similar to the ERA5 curve in Fig. 7 were obtained. Explanations for this seasonality were not given in the study.

::
In

:::::::
contrast

::
to

:::::::
existing

::::::::::::
publications,

::::::::
therefore,

::::
this

:::::
study

:::::::
delivers

::::::::
in-depth

:::::::::::
explanations

::
of

:::
the

::::::::
seasonal

::::::
biases

:::
and

::::
the

:::::::::
differences

:::::
when

:::::::
applying

:::::
either

:::
the

:::
VR

:::
or

:::
the

:::
LR

::::::
method

:::
for

::
an

:::::
LTC.

::::
The

::::::::::::
considerations

::
in

::::
Sect.

:::
4.2

:::::::
provide

:::
the

:::::::::
theoretical530

:::::::::
framework

:::
for

:::
this.

:::
In

:::
this

:::::::
context,

:
it
::::
was

::::::
shown

:::
that

:::
the

:::::
biases

:::
are

:::::::::
connected

::
to

::::::::
properties

:::
of

::
the

:::::::::
reanalysis

::::
data

::
set

:::
as

::::
well

::
as

:::::::::::
characteristics

:::
of

:::
the

::::
MCP

:::::::
method.

:

5.4.2 Seasonal bias in variance

In this section, the bias of the MCP predictions with respect to variance is analyzed
:::::::
presented

::::
and

::::::::
discussed. Fig. 8 (a) and (b)

show the respective error score Errvar.535

Figure 8. Temporal variation
:::::::
variations

:
during the year of the bias in varianceErrvar using

::
the (a) Variance Ratio ,

:::
and (b) Linear Regression

with Residuals method
::::::

methods.
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The curves displayed in Fig. 8 (a) for the VR method resemble the inverse course of that observed in Fig. 6, thus, the patterns

in the differences in variance . This is not surprising, as the ratio of variances of measurement and reference datais used as a

regression parameter in the VR method. Therefore, an error in the temporal variation of the variance given by the reanalysis

data has a strong impact on Errvar. In summary, the theoretical analysis
:
of

:::::::::
reanalysis

::::
and

:::::::
actually

::::::::
measured

::::
data.

:::::
This

::
is

::::::::
consistent

::::
with

:::
the

:::::::::
theoretical

::::::::::::
considerations

:
presented in Sect. 4.3 is confirmed by these experimental results.

::
(in

:::::::::
particular,540

:::
see

:::
Eq.

:::::
(14)). Connected to that, no clear mean seasonal course can be observed when the VR method is used. The amplitudes

of the variations, however, are of distinct magnitude and remarkable errors can be observed.

As shown in Fig. 8 (b)
:
,
::::
there

::
is

:
a clear seasonal cycle of Errvar is obtained when

::::
when

::::::::
applying the LR methodis applied.

Lower values are present when measuring
::::
found

:::
for

::::::::::::
measurements

:
in summer and higher values can be found in case of

:::
for

winter measurements. This effect can be observed for all reanalysis data sets. In Sect. 4.3 three parameters were identified545

which have a notable impact on Errvar :::::
when using the LR method. It can be

:
is expected that the most important factor is the

correlation coefficient rref,meas as this parameter exhibits a strong seasonal cycle (see Sect. 5.2). Moreover, rref,meas ::::::::
rrea,meas,

::::
since

::
it contributes as a quadratic term to the theoretical calculation of Errvar (

::
see

:
Eq. (15)). Furthermore, this explains the

substantial differences between
:::::::::
Moreover,

:::
this

::::::::
parameter

:::::::
exhibits

::
a

:::::
strong

:::::::
seasonal

:::::
cycle

::::::
similar

::
to

:::
the

::::::
course

::
in Fig. 8 (a) and

(b) , i.e., between the results of the VR and the LR method.
:::
(see

:::::
Sect.

::::
5.2).550

In summary, the amplitudes in Fig. 8 (b) are generally of slightly larger magnitude than those of the variations produced by

the VR method. This indicates that the VR method enables to obtain a more accurate variance of the corrected data on average.

Differences occur regarding the type of reanalysis data. Similar to the bias in mean wind speed, ERA5 gives the lowest bias

in variance when the LR method is used while large biases are obtained when the VR method is applied on the ERA5 data.
::
In

::::::
contrast

::
to

:::
the

:::::
mean

:::::
wind

:::::
speed,

::
to

:::
the

:::::::
authors’

:::::::::
knowledge

:::
the

::::::::
accuracy

::
in

:::::::
variance

:::
has

:::
not

::::
been

::::::::::
investigated

::
in

:::
the

::::::::
literature.

:
555

5.4.3 Seasonal bias in
:::
the energy

::::::::::
production

::
of

::
a

::::
wind

:::::::
turbine

In Sect. 4.1 a much higher importance of an
:::::
greater

:::::::::
importance

:::
of

:
a
::::
high accuracy in mean than in variance was obtained

::::::
derived

::::::::::
theoretically

:
when aiming for a precise estimate of the energy in the wind. This contrasts with the finding of significantly

higher biases in variance than in mean wind speed. In this section, the bias both in energy density (ErrED) as well as in
::
in the

theoretical energy production of a wind turbine(,
:
Errturbine) is investigated based on experimental analysis. Emphasis is put560

on the eventual overall influence of Errmean and Errvar, respectively.

Figure 9 (a) and (b) show the error score ErrED. The respective values were obtained according to Eq. (10) using the

experimentally derived error values of Errmean and Errvar as presented in Sect. 5.4.1 and 5.4.2, respectively. For A the

experimentally obtained average value of A= 5.0 was used (see Sect. 4.1). Hence, the diagram was produced by a weighted

sum of Errmean and Errvar.565

Additionally, the biases in u3 based on ,
::
is

::::::::
discussed

:::
and

:::::::::
compared

::
to the time-series values were evaluated experimentally

(not shown here). These gave very similar results to that presented in Fig. 9 (a) and (b) indicating that Eq. (8) contains a high

validity despite the applied simplifications.
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Comparison of Fig. 9 with the plots of Errmean and Errvar (Fig. 7 and 8) reveals the influence of the biases in variance and

mean wind speed on the bias in energy (density or production). Periods of contrary behaviour of Errmean and Errvar (e.g.,570

opposite sign or individual peaks) are most suitable to analyze this aspect here.

Generally, the influence of the bias in mean dominates (compare the considerations presented in
:::::
other

::::
error

::::::
scores.

::::::
Going

::::::
beyond

:::
the

:::::::::
theoretical

:::::::::::::
considerations

::
on

::::::
energy

:::::::
density

::
in

:
Sect. 4.1). In some cases, however, ,

::::
this

:::::::
quantity

::::::::
involves the

influence of the bias in variance is visible. E.g., in Fig. 9 (b) the sky-blue curve associated to the ERA5 data gives negative

values in summer although the relatedErrmean curve remains positive in this period. This can be traced to the strongly negative575

Errvar values here. When the VR method is used (Fig. 9 (a)), the effect of erroneous variance is even more clearly visible, due

to different courses of the respective Errmean andErrvar values, e.g., in case of the EMD-ConWx or the anemosE5 data
:::::
power

::::
curve

::::
and,

:::::::::
therefore,

::::::
reflects

:
a
::::::::
practical

:::::::
measure

:::
for

:
a
::::::
central

:::::
target

:::::
value

::
of

::::
wind

::::::::
resource

:::::::::
assessment.

The bias in the theoretical energy production of a wind turbine

Errturbine is shown directly below
::
as

:::::::
obtained

:::::
when

:::::
using

:::::
either

:::
the

::::
VR

::
or

:::
the

:::
LR

:::::::
method

::
is

::::::
shown in Fig.9 (c) and (d)580

allowing a good comparison of the two error scores. The courses of Errturbine show striking differences to the curves of

ErrED indicating a large influence of the power curve on the respective results.
::
9.

:
Comparison with the patterns

::::
plots

:
of

Errmean and Errvar ::::
(Fig.

:
7
::::
and

::
8)

:
reveals that the error in mean wind speed is even more decisive for the error in energy

production than the theoretical considerations suggest. The seasonal courses inErrturbine :::::
curves

:::::::
obtained

::::
here are very similar

to the seasonal biases
::::
those

::
of

:::
the

::::
bias in mean wind speed Errmean (see Fig. 7). Its values are approximately twice the ones585

for the bias in mean wind speed.
::::
(with

:::::
about

:::::::
doubled

::::::::::
amplitude). The influence of the bias in varianceobviously is decreased

by the power curve and ,
::
in

::::::::
contrast,

:
is
:
barely visible. This is caused by the effect that variations of very large wind speed values

exceeding the rated wind speed of the turbine contribute strongly to variance but do not affect the energy output. However,

::::
Only

:
in specific periods when Errvar is large and its seasonal course does not follow the pattern of Errmean, the influence

of Errvar can be seen. Again, this
:::
This

:
is most clearly visible in case of the VR method (see, e.g., the data points related to590

the MERRA-2 or ERA5 data in the mid of August or to the anemosE5 data in fall in Fig. 9 c
:
a) in comparison to Fig. 7 a)).

:
It

:::
can

::
be

:::::::::
concluded

::::
that

::
the

::::::
biases

::
in

:::::::
variance

::
as
::::::::

depicted
::
in

::::
Sect.

:::::
5.4.2

:::
are

::::
even

::::
less

:::::::
relevant

::
for

:::
the

::::::
energy

::::::::
estimate

::
of

:
a
:::::
wind

::::::
turbine

::::
than

:::
the

:::::::::
theoretical

::::::::::::
considerations

::
in
:::::

Sect.
:::
4.1

:::::::
suggest.

::::
One

:::::::::::
explanatory

:::::
aspect

::::
here

::::
may

:::
be

::::
that

::::::::
variations

:::
of

::::
very

::::
large

:::::
wind

:::::
speed

:::::
values

::::::::::
(exceeding

:::
the

::::
rated

:::::
wind

:::::
speed

::
of

:::
the

:::::::
turbine)

::::::::
contribute

::::::::
strongly

::
to

:::::::
variance

:::
but

::::
have

:::
no

::::::::
influence

::
on

:::
the

::::::
energy

::::::
output.595

A further difference between ErrED and

::::::
Besides

::::
that,

::::
one

:::::::
specific

:::::::::::
characteristic

::
of
:
Errturbine stands out when the VR method is applied . Some curves in

:
(Fig.

9 (c)
:::
a)):

:::::
Some

::::::
curves mostly lie above or below zero for the entire year. Such "overall biases" “overall biases” are present

especially in the case of the EMD-ConWx (positive overall bias) and the MERRA-2 data (negative overall bias). When applying

the LR method (Fig. 9 (d
:
b)), hardly any overall bias can be found.600

Towards an explanation approach for these overall biases it should be noted that, again, the VR method produces higher

values for the slope (
:::
this

::::::::::
observation,

:::
the

:::::::::
regression

::::::::::
parameters

::
β0:::::::

(offset)
:::
and

:
β1 ) than the LR approach

::::::
(slope)

::::
have

::
to

:::
be

:::::::::
considered. For the offset (

::
VR

:::::::
method,

::::::
higher

:::
β1 :::::

values
::::
and,

::::
due

::
to

:::
the

::::::::::
relationship

::
of

::
β1::::

and β0 ), the same formula is used
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Figure 9. Temporal variation
:::::::
variations

:
during the year of the bias in the prediction of the energy density ErrED ((a) and (b)) and the

theoretical annual energy production of a wind turbine Errturbine ((c) and (d)). The figures on
::::
using

:
the left ((a)

::::::
Variance

::::
Ratio

:
and (c))

refer to the VR method while in figures (b) and (d) the results produced by the LR method are shown
:::::
Linear

::::::::
Regression

::::
with

::::::::
Residuals

::::::
methods.

in both MCP methods, relating offset to slope (see Eq. (3)). As a direct consequence, lower values for the offset are obtained

when the VR method is applied. For the VR method, hence, smaller wind speed values are generally corrected towards smaller605

values, while higher values are increased
::
in

:::
Eq.

::
3,

:::::
lower

:::
β0::::::

values
:::
are

:::::::
obtained compared to the correction applied in the LR

method
:::
LR

::::::::
approach. This is visualized in the scatter plot in Fig. 10 where distinct differences between the regression lines

can be observed. Hence, wind speeds of small or rather large magnitude are corrected differently
::
As

::
a
:::::::::::
consequence,

:::::::
smaller

::::
wind

:::::
speed

:::::
values

:::
are

::::::::
generally

::::::::
corrected

:::::::
towards

::::::
smaller

::::::
values,

:::::
while

::::::
higher

:::::
values

:::
are

::::::::
increased

::::::::
compared

::
to

:::
the

:::::::::
correction

::::::
applied

::
in

:::
the

:::
LR

::::::
method. Similar correction is performed for wind speeds near the mean (i.e., values close to 1 in Fig. 10).610
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Figure 10. Scatter plot of normalized measured and MERRA-2 data and regression lines to these data using either the VR or the LR method.

Normalization was performed by dividing all wind speed values by the overall measured mean. The diagram was produced using the entire

measurement data of the 18 sites
::
(at

:::
the

:::::
heights

:::::::
specified

::
in

:::
Tab.

::
1)
:
and the related MERRA-2 data

:::
(see

:::
Sect.

::
2).

This aspect can be expected to average out when considering mean wind speeds. However, it apparently becomes important

in case of energy production estimation where the cubic dependence on wind speed as well as the shape of the power curve lead

::::
leads

:
to a different importance (or weighting) of different wind speed values . Eventual

::
of

::::::::
different

::::::
ranges.

::::
Any

:
wind-speed

dependent errors of the reanalysis data can further contribute to this issue.

The reasons for the overall biases, therefore, show to be connected to both, characteristics of the MCP method and the615

reanalysis data set. Again, the combination of both these facets prove to be decisive with regard to the accuracy of an LTC.

5.4.4 Variation
::::::::
Variations

:
between the sites

Bias values of mean, variance or energy production should not be regarded as the only key figure to describe the accuracy

of a long-term correction procedure as it does not represent the overall uncertainty. In addition, the scatter, i.e., standard

deviation of the individual biases (in terms of variation
::::
The

::::::::
variations between the sites ) can be judged an important measure620

as it characterizes
::
to

::::::::::
characterize the reliability of the results.

::::::::::
Furthermore,

::::
they

::::
give

:::
an

::::::::
indication

:::
for

:::
the

::::::::::
uncertainty

::
if

:::
the

:::::::::
systematic,

:::::::
seasonal

::::::
biases

:::::
could

::
be

::::::::
removed

:::::
(e.g.,

::
by

::::::::
applying

:
a
:::::::::
correction

::::::::
function).

:
Therefore, the standard deviations of

Errmean and Errturbine in dependence of the measurement period are addressed here and shown in Fig. 11. The analysis

is restricted to Errmean and Errturbine as these parameters
::::
these

:::::
error

:::::
scores

::
as

::::
they

:
are expected most useful for the wind

industry.625

Similar to the biases, the variations (standard deviations) are significantly higher forErrturbine than forErrmean. In general,

both methods (VR and LR) produce comparable magnitudes while the results, again, strongly depend on the selected reanalysis

data. The maximum values for individual reanalysis data sets in Fig. 11 are lowest for the anemos data sets and range from
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Figure 11. Bias variation
:::::::
variations between the sites (1 standard deviation) with regard to the accuracy of predicting the mean wind speed

((a) and (b)) and the theoretical energy production of a wind turbine ((c) and (d)). The figures on the left ((a) and (c)) refer to the VR method

while in figures (b) and (d) the results produced by the LR method are shown.

approximately 1 to 5 % in case of Errmean. Differences regarding the MCP method occur in winter periods when considering

Errturbine (9 % in maximum values for the VR method and more than 11 % for the LR method). In summary, the variation630

between the sites is roughly of the same magnitude as the bias values themselves (see Fig. 9).

On average, smallest values can be observed in the beginning of the year and in fall (i.e., measurement period
::::::
periods

:
starting

in January/February or September/October) for both Errmean and Errturbine. This indicates that not only strong biases are

present when the measurement is conducted in summer or winter but also higher variations, hence, smaller reliability of these

biases can be expected. Once more, this underlines the significance and importance of a sorrow selection of the measurement635

period, with transitional seasons (spring, fall) to be recommended in Central Europe.
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6 Conclusions and outlook

This study delivered in-depth analysis of seasonal effects in the long-term correction of short-term wind measurements. The

provided findings can contribute to a further development of reanalysis data as well as improved MCP methods in this respect.

In a first step, the importance of the accuracy in mean and variance of wind speed was analyzed
::::::::
evaluated with regard to640

a precise estimate of the energy in the wind. It was shown on a theoretical level, that the relative error in mean contributes

six times as much as the relative error in variance in this context. Experimental analysis, in contrast, showed that much larger

biases in variance than in mean prevail when MCP predictions are performed (absolute values of more than 15 % were obtained

in comparison to values of ± 4 %, respectively). It was demonstrated that –apart from "overall biases"“overall biases”– the

shape of the seasonal course of the bias in mean wind speed was more or less replicated in the bias of the theoretical energy645

production. Therefore, it can be concluded that a precise estimate of the mean is much
::::
more important than the correct estimate

of the variance when assessing the energy production of a wind turbine.

A formula was derived which delivered the explanation for the seasonal biases in mean wind speed when applying either

the Variance Ratio or Linear Regression with Residuals method. It was shown that the representativeness of the measurement

period, i.e., the similarity of the wind conditions in correlation and correction period, is important. Moreover, the capability of650

the reference
:::::
(here:

:::::::::
reanalysis)

:
data to reproduce the seasonal course is significant

::::::
proved

::
to

::
be

::
a
:::::::
decisive

:::::
factor. Lastly, the

regression parameter β1 (computed differently for the two MCP methods used in this study) showed to be decisive for
::::::::
influence

the magnitude of the seasonal biases
:::::::::::
significantly.

::::
With

::::
this

::::::::
theoretical

::::::::::
framework,

::
it

:::
was

:::::::
possible

:::
for

:::
the

::::
first

::::
time

::
to

:::::::
attribute

:::::
errors

::
in

:::
the

::::::::
long-term

:::::::::
correction

::
to

::::::::::::
characteristics

:::
of

:::
the

::::
MCP

:::::::
method

::
as

::::
well

:::
as

::::::::
properties

:::
of

:::
the

::::::::
reanalysis

::::
data

:::
set. This

theoretical frameworkwas used for explaining the observations.655

The largest biases were obtained in case of measurement periods with non-representative wind conditions (i.e., significantly

lower or higher mean wind speeds compared to the annual mean – usually summer and winter periods in Central Europe). The

magnitude showed to depend on the reference
::::::::
reanalysis

:
data set. Furthermore, a strong dependence on the MCP method was

identified; very different, partly even contrary characteristics in the seasonal biases were found for the VR and LR methods.

In contrast to findings of existing publications, hence, this study showed that the biases obtained from a long-term correction660

of short-term wind measurements (a few months) are connected to both, characteristics of the reference data set as well as the

selected MCP method.

In general, measurement periods in transitional seasons (spring, fall) not only resulted in smallest biases but also gave

smallest variation between the sites, thus, the highest reliability of the results. The amplitudes of seasonal bias and standard

deviation of the results obtained at the individual sites were roughly of same magnitude. If short-term wind measurements are665

used for wind resource assessments, it is, therefore, highly recommended to conduct these measurements in periods which are

likely to be characterized by representative wind conditions (with respect to mean wind speed).

Further research is necessary on how the systematic biases and, finally, the uncertainty of the long-term correction of short-

term wind measurements can be reduced in an efficient and expedient way. The authors suggest that this could be approached

in different ways. On the one hand, a manual correction based on the experiences described above would reduce the biases.670
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However, the reliability (standard deviation) would not change. A statistics-based approach (e.g., averaging the results of

different MCP approaches and/or reference data) as well as machine learning approaches (e.g, learning the seasonal effects from

other data sets) might result in larger improvements. On the other hand, the shortcomings of the reference (here: reanalysis)

data in reproducing the seasonal course could be addressed. Discrepancies regarding temporal changes in synoptic weather

patterns or atmospheric stability processes can be named as possible examples for such weaknesses. The inclusion of further675

meteorological data reflecting these characteristics could form the basis of a physically motivated approach here. The usefulness

of removing seasonal biases in e.g., wind profile extrapolation by including additional parameters like relative humidity was

demonstrated in Basse et al. (2020). This approach could also be taken here.
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