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Abstract. Real-time optimization (RTO) covers a family of optimization methods that incorporate process measurements in

the optimization to drive the real process (plant) to optimal performance while guaranteeing constraint satisfaction. Modifier

Adaptation (MA) introduces zeroth and first-order correction terms (bias and gradients) for the cost and constraint functions.

Instead of updating the plant model, in MA the optimization problem is updated directly from data guaranteeing to meet the

necessary condition of optimality upon convergence.5

The main burden of the MA approach is the estimation of the first-order modifiers of the cost and constraint functions at each

RTO iteration. Finite-difference approximation is the most common approach that requires at least nu + 1 steady-state operation

points to estimate the gradients, where nu is the number of control inputs. Obtaining these can require a long convergence time.

For this reason, this work considers the use of Gaussian process (GP) regression to estimate the plant-model mismatch based

on plant measurements, and replace the usual modifiers by these high order regression functions. GP is a probabilistic, non-10

parametric modelling technique well known in the machine learning community. The approach is tested on several numerical

test cases simulating wind farms. It is shown that the approach is able to correct the model and converges to the plant optimal

point. Several improvements for large inputs spaces, which is a challenging problem for the approach presented in the article,

are discussed.

1 Introduction15

Currently the wind turbines in a wind farm are operated at their individual optimal operating point. This control strategy is

called greedy wind farm control since the interactions between turbines are not taken into account. However, it is expected that

the greedy control strategy leads to sub-optimal performance of the wind farm (Steinbuch et al., 1988; Johnson and Thomas,

2009; Barthelmie et al., 2009). A coordinated wind farm controller, which takes the wake interactions between turbines in a

wind farm into account, may result in a superior performance compared to the greedy wind farm controller. The two main wind20

farm control strategies are axial induction control, e.g. Steinbuch et al. (1988); Corten and Schaak (2003); Horvat et al. (2012);

Rotea (2014); Munters and Meyers (2016) and wake steering control, e.g. Medici (2005); Adaramola and Krogstad (2011);

Wagenaar et al. (2012); Park et al. (2013); Gebraad and Van Wingerden (2014). The idea behind the former is to deviate the

blade pitch and generator torque of the upwind turbine from the greedy control settings. As a consequence, the velocity deficit

in the wake behind the turbine and the power production of the downwind turbine changes. The target net effect is an overall25
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increase of the power production and possibly an decrease of fatigue loads. However, recent studies suggest that axial induction

control using steady-state models to calculate the optimal control settings may be unable to improve the power production of a

wind farm (Schepers and Van der Pijl, 2007; Campagnolo et al., 2016; Bartl and Sætran, 2016; Annoni et al., 2016).

The currently more promising wind farm control strategy using steady-state models is wake steering. The goal of wake steering

is to deflect the wake away from the downwind turbine by using the yaw settings of the upwind turbine. Field experiments30

showing promising results were conducted by Fleming et al. (2017, 2019); Howland et al. (2019). In these experiments lookup

tables with optimal yaw settings of each turbine are created with help of an steady-state model. Hence the wind farm is operated

in an open-loop control setting.

The steady-state wake models used in model-based control are usually relatively simple. They estimate the velocity deficit in

wakes. For a long time one of the most popular wake models was the Jensen Park model (Jensen, 1983; Katic et al., 1987).35

Jiménez et al. (2010) developed one of the first steady-state wake models that described wake deflection due to yaw. A recent

wake model, which is also used in this study, was presented by Bastankhah and Porté-Agel (2016). It is based on mass and

momentum conservation and assumes a Gaussian distribution of the velocity deficit in the wake. The steady-state wake models

are able to describe the general behaviour of the wake (Barthelmie et al., 2013; Annoni et al., 2014). Nevertheless, they are just

vague approximations of a complex phenomena that is, in fact, not well understood (Veers et al., 2019). Hence, real time opti-40

mization (RTO), which incorporates plant measurements to improve the performance of the wind farm controller, is extremely

useful for this process.

Probably one of the most intuitive RTO strategies is the ”two-step” approach. Here, first the model parameters are updated,

and then new control inputs are computed based on the updated model. The two steps refer to the parameter optimization and

control input optimization, which are performed sequentially (Marchetti et al., 2016). However, the two-step approach cannot45

guarantee plant optimality upon convergence if the model is structurally incorrect (Marchetti et al., 2016). An example that an

improved parameterisation of the steady-state wake model was not able to remove the mismatch between a low order model

and a high fidelity model of wake is given in Fleming et al. (2018).

In contrast, modifier adaptation (MA) corrects the cost and constraint functions of the optimization problem directly, and

reaches, under suitable assumptions, true plant optimality upon convergence (Marchetti et al., 2009). The bottleneck of the50

MA approach is the estimation of the gradients of the objective and constraint functions at each RTO iteration. Finite differ-

ence approximation is one of the most common approaches that requires nu + 1 steady-state operation points to estimate the

gradients, where nu is the amount of control inputs. These can lead to a long convergence time, especially for processes with

high dimensional input spaces. Therefore, in this work Gaussian process (GP) regression is combined with MA (de Avila Fer-

reira et al., 2018; del Rio Chanona et al., 2019). GP is a probabilistic, non-parametric modelling technique well known in the55

machine learning community (Rasmussen and Williams, 2006). The GP regression model estimates the plant-model mismatch

using plant measurements. Then the GP model is used to correct the original optimization problem and by this improve the

optimization of the plant inputs.

The article is structured as follows: In Section 2 the optimization problem is formulated and Gaussian process regression

is explained. In Section 3 the modifier adaptation using Gaussian process regression is presented and the numerical turbine60
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and wake models introduced. The approach is tested numerically on several examples in Section 4. The article ends with a

conclusion.

2 Problem formulation

The optimization problem of the steady-state plant performance subject to constraints can be formulated as (Marchetti et al.,

2016):65

u∗p = argmin
u
φp(u,yp(u)) (1a)

s.t. Gp,j(u) := gp,j(u,yp(u))≤ 0, j = 1, . . . ,ng, (1b)

u ∈ U , (1c)

where u ∈ Rnu and yp ∈ Rny denote the plant input and output variables, respectively; u ∈ Rnu and yp ∈ Rny are the input-

output pairs of the wind farm; φp : Rnu → R is the cost function to be minimized; gp,j : Rnu ×Rny → R, j = 1, . . . ,ng, are70

the inequality constraint functions; and U ⊆ Rnu is the control domain, e.g. box constraints on the control inputs. Formulation

(1) assumes that φp and gp,j as functions of u, and yp are exactly known. However, in any practical application the exact

input-output map of the plant is unknown and instead an approximate model of the system is exploited for the optimization:

u∗ = argmin
u
φ(u,y(u)) (2a)

s.t. Gj(u) := gj(u,y(u))≤ 0, j = 1, . . . ,ng, (2b)75

u ∈ U , (2c)

where the quantities φ, gj(u,y(u)), u∗, and Gj refer to the inexact model counterparts of the true plant optimization problem

in Eq. (1).

RTO takes advantage of the available measurements to compensate for plant-model mismatch and adapt the model-based

optimization problem Eq. (2) to reach plant optimality.80

The standard MA approach applies first-order correction terms that are added to the cost and constraint functions to match the

necessary conditions of optimality upon convergence (Marchetti et al., 2009). Iteratively the following modified optimization

problem is solved:

û∗k+1 = argmin
u
φ(u,y(u)) + (λφk)Tu (3a)

s.t. Gj(u) + εj,k + (λGj

k )T (u−uk)≤ 0, j = 1, . . . ,ng, (3b)85

u ∈ U , (3c)
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where û∗k+1 is the optimal solution at iteration k+ 1, the εj,k ∈ R are the zeroth-order modifiers for the constraints, and λφk
and λGj

k are the first-order modifiers for the cost and constraints, respectively. The correction terms are given by:

εj,k :=Gp,j(uk)−Gj(uk), (4a)

(λφk)T :=
∂φp
∂u

(uk)− ∂φ

∂u
(uk), (4b)90

(λGj

k )T :=
∂Gp,j
∂u

(uk)− ∂Gj
∂u

(uk). (4c)

It is recommended to filter the input update û∗k+1 to avoid excessive correction and reduce sensitivity to noise (Marchetti et al.,

2016):

uk+1 = uk + L(ûk+1−uk), (5)

with L = diag(l1, . . . , lnu
), li ∈ (0,1] where li may be reduced to help stabilize the iterations.95

The MA scheme requires the estimation of the plant gradients at each RTO iteration, which is experimentally expensive and

the main bottleneck for MA implementation in practice (Marchetti et al., 2016).

2.1 Gaussian processes

In this section we give a brief outline of GP regression for our purposes, for more information refer to Rasmussen and Williams

(2006). GP regression aims to identify an unknown function f : Rnu → R from data. Let the noisy observation of f(·) be given100

by:

yk = f(uk) + νk (6)

where the value f(·) is perturbed by Gaussian noise νk with zero mean and variance σ2
ν , νk ∼N (0,σ2

ν).

We assume f(·) to follow a GP with a zero mean function and the squared-exponential (SE) covariance function. The choice

of the mean and covariance functions assume certain smoothness and continuity properties of the underlying function (Snelson105

and Ghahramani, 2006). The SE covariance function can be expressed as follows:

k(ui,uj) = σ2
f exp

(
−1

2
(ui−uj)TΛ−1(ui−uj)

)
(7)

where σ2
f is the covariance magnitude and Λ = diag(λ2

1, . . . ,λ
2
nu

) is a scaling matrix.

Assume we are given a training dataset D = {U,Y} of size M consisting of M input vectors U = [u1, . . . ,uM ]T and corre-

sponding observations y = [y1, . . . ,yM ]T according to Eq. (6). From the GP distribution the data then follows a joint multivari-110

ate Gaussian distribution, which can be stated as:

p(y|U) =N (0,K +σ2
νI), Kij = k (ui,uj) (8)

The hyperparameters ψ := [σf ,σν ,λ1, . . . ,λnu ]T are commonly unknown and hence need to be inferred from data. In this

article the log marginal likelihood p(y|U) is used. Ignoring constant terms and factors, this can be stated as:

L(D,Ψ) =−1
2
yT (K +σ2

νI)−1y− 1
2

ln |K +σ2
νI|. (9)115
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The required maximum likelihood estimate is then given by ψ̂ ∈ argmax
ψ

L(D,ψ).

Next we require the predictive distribution of f(u) at an arbitrary input u, which can be found by the conditional distribution

of f(u) on the data distribution p(y|U). From the GP assumption this has a closed-form solution and can be stated as:

f(u)|D,ψ̂ ∼N (µGP(u;D,ψ̂),σ2
GP(u;D,ψ̂)) (10)

µGP(u;D,ψ̂) = kT (u)(K +σ2
νI)−1y (11)120

σ2
GP(u;D,ψ̂)) = σ2

f −kT (u)(K +σ2
νI)−1k(u) (12)

where µGP(u;D,ψ̂) can be seen as the GP prediction at u and σ2
GP(u;D,ψ̂) as a corresponding measure of uncertainty to this

prediction. The GP is a non-parametric model. The training data are explicitly required to construct the predictive distribution.

For the above expression a matrix of size M ×M must be inverted, which prohibits large data sets.

3 Methodology125

3.1 Modifier Adaptation with Gaussian processes

The use of GPs in a MA approach to overcome the limitation of estimating the plant gradients was first proposed by de Avila Fer-

reira et al. (2018). The idea is to replace the zeroth- and first-order modifiers of the cost and constraints in (3) with GP regression

terms. Since the wind farms considered in this article do not have inequality constraint functions they are not included in this

section. However, inequality constraint functions can be easily incorporated into the method.130

The training set of the GP to correct the objective function are the controlled inputs of the approximate model and the plant-

model mismatch of the objective function. The new optimization problem of the MA scheme with GP modifiers (MA-GP)

is

û∗k+1 = argmin
u
φ(u,y(u)) +µ

φp−φ
GP,k (u;D0,ψ̂0), s.t. u ∈ U , (13)

where the plant-model mismatch of the cost function is modelled by µφp−φ
GP . Similar to the original MA scheme the optimal135

input of Eq. (13) may be filtered with Eq. (5) to reduce the step-size and help stabilize the MA-GP scheme (del Rio Chanona

et al., 2019). The whole MA-GP scheme is presented in Algorithm 1 and Fig. 1.

In Algorithm 1 the hyperparameters are updated if HypOpt is true. HypOpt is a user-defined condition, which allows to

update the hyperparameter. The extrema are to update the hyerparameter each iteration or never. The hyperparameter update

is usually the computational bottle-neck of the MA-GP algorithm. Especially for large data sets it can be expected that the140

hyperparameter do not change much from one iteration to the next. Therefore, it is reasonable to update the hyperparameters

less frequent.

1The wind farm picture is by Erik Wilde from Berkeley, CA, USA https://www.flickr.com/photos/dret/24110028330/, Wind turbines in southern California

2016, https://creativecommons.org/licenses/by-sa/2.0/legalcode
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Figure 1. The basic idea of the MA-GP scheme for a wind farm. The GP regression model creates an input-output map of the control inputs

to the plant-model mismatch. In the MA-GP model the GP regression model is used to correct the output of the approximate model. This

MA-GP model is used in the optimization to compute optimal control inputs for the wind farm. The inputs and the difference between the

measured and estimated output of plant and model, respectively, are used to update the data set D and the hyperparameter ψ. The measured

outputs of the plant are corrupted by noise 1

Algorithm 1: Basic MA-GP scheme (del Rio Chanona et al., 2019)

Initialisation: GP regression model µφp−φ
GP and hyperparameters ψ̂0 found with (9) and data set D0; Optimal operation point of the

approximate model u0.

for k = 0,1,. . . do

Solve modified optimization problem Eq. (13);

Filter new operating point uk+1 with Eq. (5);

Evaluate approximate model at new operating point uk+1;

Obtain measurements of cost function φp(uk+1);

Update the data set Dk+1 with input uk+1 and output yk+1 = φp(uk+1)−φ(uk+1)+ νk+1. ;

if HypOpt then

Update hyperparameters ψ̂k+1 with new data set Dk+1 and Eq. (9) ;

end

Update GP regression term µ
φp−φ
GP using Dk+1 and hyperparameters ψ̂k+1 ;

end
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3.2 Numerical turbine and wake models

The wind turbines in the wind farm are represented using the actuator disc theory, which couples the power and thrust coeffi-

cient, CP and CT (Burton et al., 2011)145

CP = 4a(1− a)2, (14)

CT = 4a(1− a), (15)

where a is the axial induction factor. The axial induction factor indicates the ratio of wind velocity reduction at the turbine disk

compared to the upstream wind velocity. The steady-state power of each turbine under yaw misalignment is given by (Gebraad

et al., 2016)150

P =
1
2
ρACP cosγpu3, (16)

where A is the rotor area, ρ the air density and p a correction factor. In actuator disc theory p= 3 (Burton et al., 2011).

However, based on large-eddy simulations, the turbine power yaw misalignment has been shown to match the output when

p= 1.88 for the NREL 5MW turbine (Annoni et al., 2018), which we will use in this article. In the numerical study it will be

important to implement a ”plant” and model, which are different from each other. Therefore, a second adjusted actuator disk155

turbine model is created. The FLORIS toolbox (NREL, 2019) contains a table with wind velocities and corresponding thrust

and power coefficients of the NREL 5MW turbine. These data are fitted to a new model based on the actuator disk model. The

equation for the thrust coefficient CT is given by Eq. (15) while for the power coefficient CP three new parameter are identified

resulting in

CP = 7.037a(0.625− a)1.364. (17)160

The model fit is visualised in Fig. 2. Important in the numerical example is the different connection between thrust and power

coefficients of both models (Fig. 2b). For the turbine dimensions the NREL 5-MW wind turbine is used (Jonkman et al., 2009).

Consequently, the rotor diameter is D = 136m and the hub height HH = 90m.

The Gaussian wake model by Bastankhah and Porté-Agel (2014, 2016) is used to model the flow in the wind farm. The

three-dimensional steady-state far wake velocity is assumed to be Gaussian distributed and can be estimated with165

v̄(x,y,z)
v̄∞

= 1−Ce−0.5((y−δ)/σy)2e−0.5((z−zh)/σz)2 , (18a)

C = 1−
√

1− CT cosγ
8(σyσz/d2)

, (18b)

where zh is the tower height, δ is the wake deflection, and σy and σz are the wake widths in lateral and vertical directions. An

important variable for the model is the skew angle of the flow past a yawed turbine. The flow skew angle is approximated by

θ ≈ α1γ

cosγ

(
1−

√
1−CT cosγ

)
, (19)170
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Figure 2. Comparison between data, the new model based on the actuator disk model and the actuator disk model. The thrust coefficients

are kept smaller than one for the actuator disk models. The models give a different connection between thrust and power coefficients.

where α1 is a parameter. Bastankhah and Porté-Agel (2016) use α1 = 0.3 and NREL (2019) uses α1 = 0.6 to better fit high-

fidelity observations. In the simulation study different values are chosen for this parameter in the plant and approximated model

resulting in different optimal operating points.

4 Numerical case study

In this section numerical results of the MA-GP approach are presented. The control inputs of the wind farms are the yaw angles175

γi and the thrust coefficients CT,i of each turbine. Hence, the wind farm has 2N control inputs, whereN is the amount of wind

turbines. The objective of the optimization is to maximize the power production Ptot =
∑
iPi of the wind farm. The control

inputs are constrained by box constraints with

0≤ CT,i ≤ 0.95, and 0°≤ γi ≤ 40°. (20)

In the MA-GP approach only measurements of the total power output of the wind farm are used. The hyperparameter op-180

timization is performed using the MATLAB optimization toolbox and the nonlinear programming solver fmincon. For the

optimization of the control inputs of the wind farm the open source software tool CasADi (Andersson et al., 2019) is used.

CasADi is a symbolic framework that provides gradients using Algorithmic Differentiation. The software package Ipopt is

used as a solver for the nonlinear program (Wächter and Biegler, 2006).
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Figure 3. The power production of plant and approximate model in dependency of the control inputs of the upwind turbine.

4.1 Two turbine case185

The operating points of two turbines in a row are optimized. The thrust and yaw angle of the downwind turbine are fixed

resulting in only two optimization variables in the MA-GP approach. The downwind turbine is operated at its greedy operation

point. The turbine row is facing the wind and the spacing between turbines is 5D. The power production of the wind farm

in dependency of the control inputs of the upwind turbine in shown in Fig. 3. The optimal operation point of the plant is

CT,p = 0.82 and γp = 31° and of the approximate model CT,p = 0.89 and γp = 29°. Indeed, the relative optimization error of190

the model is only 1.67 %. Still, the model assume that the power production is much less sensitive to changes in the yaw angle,

which should be corrected by the MA-GP approach.

Four training points atCT = [0.4,0.8]T and γ = [0°,25°]T are used to create the initial training set of the GP regression model.

The power production of the corrected model in dependency of the control inputs is shown in Fig. 4a. The contour plot of the

objective function of the plant, approximate model and MA-GP model after the initial training is shown in Fig. 4b. Clearly195

four operating points are not sufficient to correct the approximate model correctly. In fact, the optimal operating point of the

MA-GP model has an error of 2.87 %, which is larger than the original error of the approximate model.

The MA-GP approach is initialised at the optimal operating point of the approximate model. In each iteration the hyper-

parameters and the data set of the GP regression model are updated. The new operating point is filtered with Eq. (5) and

L = diag(0.4,0.4). The MA-GP approach is able to correct the approximate model and drive the process to its optimal operat-200

ing point. Fig 5 shows the operating points of the first ten iterations. After four iterations the error in power production is about

0.2 % and after ten iterations it is 0.0009 %. In addition, the contour lines of the objective function are well approximated. A

larger difference between MA-GP model and the plant can be observed at the edges away from the current operating points.

Data points at the edges are necessary to improve the identification there. However, to drive the process to its optimal operating

points a correct identification of the objective function far away from the maximum is unnecessary. Clearly the initial training205
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Figure 4. The power production of MA-GP model in dependency of the control inputs of the upwind turbine and the contour plot of plant,

approximate model and MA-GP model after the initial training.
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Figure 5. The contour plot of plant, approximate model and MA-GP model after ten iterations. The operating points of each iteration are

marked with a cross.

set with only four operating points could be increased to improve the identification of the initial model of the MA-GP approach.

In the current example it is assumed that the measurements are noise-free. If noise is added to the power measurements the

correct identification becomes more challenging and a larger training data set is necessary. A noise with a standard deviation

of 50 kW is added to the measurement. The standard deviation is of the same size as the error in the power production of

approximate model and plant at the optimal operating point. A training data set of 20 points is created. After ten iterations210

the error in the power production is about 0.6 %. The algorithm is able to converge. However, due to the measurement noise a
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Figure 6. The boxplot of the optimization results for the differently long wind turbine rows on the left. The red line indicates the median. The

bottom and top edges of the blue box indicate the 25th and 75th percentiles, respectively. The red marker indicate outliers and the whiskers

extend to the most extreme data points not considered as outliers. The error of the MA-GP approach and the initial error dependent of the

amount of turbines in the row. The initial error in the model depending on the amount of turbines in the row on the right.

small error remains after ten iterations. The error can be easily decreased with a larger initial data set, e.g. with a training set

of 30 points the error after ten iterations is about 0.35 %.

4.2 n turbine row case

In this subsection n turbines aligned in a row are optimized with the MA-GP algorithm. The size of the initial training set215

is chosen to be nd = 10nu, where nu is the amount of control inputs. The operating points of the training set are randomly

chosen. The convergence of the MA-GP algorithm is tested on 25 Monte Carlo simulations. The difference between each run

is the initial training set.

The statistic of the error after 25 iterations is shown in Fig. 6a. The error increases with the amount of turbines while it is

almost zero for 2 to 4 turbines. Even though, the error increases with the amount of turbines the algorithm is able to reduce the220

model error significantly (Fig. 6b). It is not surprising that the error increases with the amount of control inputs. The control

inputs are mapped to the total power output of the wind farm. With a large amount of control inputs the correct identification

of this input-output map becomes more challenging, which increases the error in the MA-GP algorithm. Again, the error could

be decreased with more data in the training set. Currently, the optimization of the process and the optimization of the hyperpa-

rameters takes less than a second even for the ten turbine case. Consequently, it is possible to increase the data set. However,225

the computational time of the GP regression grows cubic with the amount of data. Therefore, at some point a trade-off between

performance and computational time is necessary.

In contrast to purely model-free approaches, e.g. extremum seeking (Johnson and Fritsch, 2012) or MPPT (Gebraad et al.,
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Figure 7. The boxplot of the optimization results for the differently large wind turbine grids. The red line indicates the median. The bottom

and top edges of the blue box indicate the 25th and 75th percentiles, respectively. The red marker indicate outliers and the whiskers extend

to the most extreme data points not considered as outliers. The error of the MA-GP approach and the initial error dependent of the amount

of turbines in the row. The difference between both runs is the size of the initial training set.

2013), is the MA-GP the algorithm able to find a near optimal point in one iteration. The MA-GP model is already a better rep-

resentation of the plant after the initial training than the approximate model. Nonetheless, measurements close to the optimum230

can help to refine the MA-GP model.

4.3 n×n turbine grid case

In this subsection the turbines in the wind farm a arranged in a n×n grid. The wind direction is aligned with the rows of the

grid. Interaction between parallel rows is neglectable. Consequently, the wind farm consist of n turbine rows each containing

n turbines. The distance between turbines is 5 D. The identification of the power production of this wind farm layout becomes235

more challenging. The input space increased and the sensitivity of inputs onto the total power production of the wind farm

become similar.

Again the size of the initial training set is chosen to depend linearly on the size of the amount of control inputs with nd = 10nu.

Otherwise the setup is the same as in the turbine row case.

The error after 25 iterations is shown in Fig. 7a. Again the algorithm converges for a small amount of turbines. However,240

the error in the optimization increases as the amount of turbine increase. Moreover, for grids with 25 and more turbines the

majority of the optimizations get stuck at the initial conditions, which is defined by the optimal operation point of the model

(Fig. 6b)2. Moreover, even in the cases where the MA-GP improves the performance of the wind farm the algorithm converges

to errors in the range of 1 % to 2 % after 25 iterations. These are much larger than observed in the turbine row case.

2The percentage in initial error of the turbine row is equal to the percentage in initial error of the grid.
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The problems to identify the plant model correctly with a larger inputs space are not surprising. The sample density decreases245

drastically for larger inputs spaces. The size of the initial training set is increased linearly while it would have to increase

exponentially to preserve the same sampling density. For the wind farm with 100 wind turbines and the current setup the

hyperparameter optimization takes usually about 15 s. In some rare cases it took about 5 min. The plant optimization takes less

than 10 s. Consequently, the initial data set could be increased to improve the performance of the larger wind farms.

The increase of the initial training set improves the convergence of the method for both small and large inputs spaces (Fig.250

7b). Nevertheless, even with the larger size of the initial training set it is challenging to converge to the correct optimum

point for cases with a large input space. A larger training set would be necessary for these cases. On the other hand, it also

has to be pointed out that the training of the hyperparameters in the GP regression scales cubic with the amount of data.

Obviously this limits the size of the initial training set. Otherwise the approach becomes quickly computational infeasible. In

case of an initial set of nd = 10nu and a wind farm with 49 turbines the median time for the hyperparameter optimization255

is about 3 s. The maximum computational time in the 625 hyperparameter optimization is about 60 s. In case of an initial set

of nd = 30nu the median optimization time is about 50 s while the maximum optimization time is about 23 min. In these

cases the optimization algorithm did not converge to an optimum and the maximum amount of iterations until termination was

performed. The optimization time could be reduces by limiting the number of iterations. It is expected that it will not influence

the performance since the objective function value in cases the optimization did not converge to an optimum did not change260

for most of the iterations.

If the MA-GP algorithm for the larger wind farms converges to an optimum it usually takes first a few iterations, where the wind

farm is operated at the model optimum point, before the error reduction begins. Obviously the algorithm needs the additional

information around the operating point. Interestingly, once the algorithm actually left the initial operating point it converges

relatively quickly to an operating point close to the actual optimum. This is a strong indication that exploration or even just265

small excitation around an operating point should be activated if the operating point does not change for some time.

Nonetheless, the results show clearly that the MA-GP is able to improve the performance of the model-based optimization

for some of the cases. It is not clear how the initial data sets differ for these successful cases. However, it is expected that a

large amount of operation points can be excluded from the initial training set of the GP regression since it is known from the

model that they are far away from the optimum operating point. Currently, the initial training set is chosen randomly by Latin270

hypercube sampling. A smarter selection with a larger density of points around the optimal operating point of the model may

improve the MA-GP approach without increasing the initial data set.

5 Conclusions

The modifier-adaptation approach with Gaussian processes applied to wind farm control is presented. It is a real-time optimiza-

tion strategy, which corrects optimization model errors by using plant measurements. In the wind farm case the total power275

production is assumed to be measured and used in the MA-GP approach. The approach works exceptionally well for small

input spaces. Here the GP regression is able to correct the model almost perfectly. Consequently, operating points very close
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to the real optimum are found in the optimization. For larger input spaces, on the other hand, the error increases. Moreover,

for the grid-type wind farm layout with more than 25 turbines convergence with the relatively small initial training sets used in

this work could not be achieved at all times.280

In future work the performance of the method for large inputs spaces has to be improved. Several ideas are possible to achieve

it:

– Increase the training set until it becomes computational unfeasible to increase the training set further.

– Choose the training data points in a smarter way such that they provide enough information about the regions around the

expected optimum.285

– Extend the algorithm with an exploration part. This can be achieved, for example, by including the variance of the GP

regression model in the optimization.

– Include the single turbine power measurements in the identification of the GP regression model. In such a multi-input and

multi-output approach the sensitivities of control inputs to the single outputs increase. The model identification should

benefit from the approach. Moreover, it is expected that a smaller data set is necessary to achieve the same performance290

as with the in the article presented multi-inputs and single-output approach. The idea is pursued in Andersson et al.

(2020a) with very promising results in increasing the accuracy of the approach with a smaller initial data set.

In addition, the sensitivity of the approach to measurements and inputs noise has to be investigated. In Andersson et al. (2020b)

a simple way how to include input noise explicitly in the MA-GP approach is presented. Finally, the model identification should

be tested on high fidelity and real data. A preliminary study on a nine turbine wind farm case using data from the high-fidelity295

simulator SOWFA (Churchfield et al., 2012) will be presented in Andersson et al. (2020c).
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