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Abstract. Multi-rotor wind turbines (MRWT) have been suggested in literature as a solution to achieving wind turbine systems

with capacities greater than 10 MW. MRWT’s utilise a large number of small rotors connected to one support structure instead

of one large rotor, with the aim of circumventing the square cube law. Potential benefits of MRWT’s include cost and material

savings, standardisation of parts, increased control possibilities and improved logistics for assembly and maintenance. Almost

all previous work has focused on mechanical and aerodynamic feasibility, with almost no attention being paid to the electrical5

systems. In this research eight different topologies of the electrical collection network for MRWT’s are analysed to assess

which are the most economically and practically viable options. AC and DC collection networks are presented in radial, star,

cluster and DC series topologies. Mass, capital cost and losses are estimated based on scaling relationships from academic

literature and up to date commercial data. The focus of this study is the assessment of the type of electrical collector topology

so component type and voltage level are kept consistent between topology designs in order to facilitate a fair comparison.10

Topologies are compared in terms of four main criteria; capital cost, cost effectiveness, total mass, and reliability. A comparison

table is presented to summarise the findings of the research in a convenient way. It is found that the most cost effective solutions

are the AC radial and AC star topologies, with the least cost effective being the DC series/parallel and DC cluster topologies.

This is due to the high cost of DC-DC converters and DC switchgear, along with the lower efficiency of DC converters. Radial

designs perform best in terms of efficiency and annual energy capture. DC systems achieve a slightly lower nacelle mass15

compared to their equivalent AC systems. DC topologies are generally found to be more expensive when compared to their

AC counterparts due to the high cost of DC-DC converters and DC switchgear. Star topologies are considered to have the best

reliability due to having no shared equipment. The most suitable collection topology for MRWT’s is shown to be of the star

type, in which each turbine is connected to the step up transformer via its own cable.

1 Introduction20

As the wind industry tries to continue reducing the cost of energy, it is desirable to have as much rated capacity on one support

structure as possible, particularly offshore. The substructure of a wind turbine is typically a large portion of the capital cost

so increasing the size and power rating of the turbines is an obvious way to reduce the cost of energy (Manwell et al., 2014).

Additionally, there is less sites to be maintained, which can drastically reduce the O&M costs of a wind farm, particularly
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in offshore environments when access can be difficult. This has led the industry to develop very large wind turbines like the25

GE Haliade-X, with a rotor diameter of 220 m and a power rating of 12 MW. However, there is physical and economical

limits as to how large single rotor wind turbines can become. It is shown in (Sieros et al., 2012) that as the radius of a wind

turbine rotor increases, the loads due to self weight that are encountered in the blades and tower increase at a faster rate. This

implies that more and better material and hence higher capital costs are required to manufacture blades and towers as rotors

increase in diameter. There are additional practical limits as to how large wind turbine components can become. For onshore30

wind turbines, the size of components has already reached a practical limit due to difficulties involved in transportation of

large components. Larger components are possible when installed offshore, but there is still significant issues involved with

transporting and installing large components. Large components require large vessels to transport and install which come at a

significant cost to installers.

Multi-rotor wind turbines (MRWT) offer an alternative solution to achieving wind turbine systems with large scale power35

capacity. The idea is to have a large number of small turbines on one support structure instead of one very large rotor, circum-

venting the square cube law and achieving significant savings on material costs for blades and drive train components. It is

shown in (Jamieson and Branney, 2012) that the blades and major drive train components in a MRWT have 1/
√
n times the

mass of an equivalent single rotor system where n is the number of rotors, implying significant savings in material costs for

MRWT’s.40

Various studies within the literature have shown that the MRWT concept has potential and should be investigated further.

An initial investigation of support structures required for MRWT’s is conducted in (Manwell et al., 2014). Although the total

mass of the MRWT is shown to be higher than that of an equivalently sized single rotor turbine, the cost of the MRWT is

approximately 22% lower. This is due to a reduction of expensive materials required for blade and drive train components.

Various loading scenarios were investigated in the Innwind study (Jamieson et al., 2015). It was shown that MRWT’s benefit45

from reduced loading in all scenarios compared to that of an equivalently sized single rotor. A load averaging effect is also

demonstrated, which could result in increased fatigue life. Larger load variations lead to more fatigue damage, and this must be

accounted for when designing the support structure. Loading is generally highest at rated wind speed, just before blades start to

pitch. It is highly unlikely that all individual rotors in a MRWT system will be operating at rated wind speed at the same time

due to the nature of wind. This results in a load averaging effect over the MRWT support structure, meaning that loading over50

time is smoother and has less variation. Support structure elements will be subjected to smaller variations in loading over the

life time of the structure, which will lead to less degradation in the structural components and an increased fatigue life. Various

studies performed at Kyushu University in Japan (Göltenbott et al., 2017; Ohya et al., 2017; Goeltenbott et al., 2015) have

shown that clustering turbines together can result in an increase in the coefficient of power, CP , which can lead to increases in

annual energy capture. All of these studies show that clustering conventional turbines results in modest gains in CP , whereas55

clustering wind-lens turbines can produce significant increase in CP . This was also shown through simulations in the Innwind

project, where a MRWT consisting of 45 turbines is expected to have an increase in power of 8%. Operation, maintenance

and installation costs are also expected to be reduced using the MRWT concept, as components would be small enough to use

small vessels without specialist equipment required. It is proposed in the Innwind project that each MRWT platform would
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be equipped with an on-platform crane capable of removing and replacing an entire rotor assembly with no additional lifting60

equipment required. MRWT’s would also benefit significantly from an increased redundancy. If one small rotor fails only

a small portion of the total power is lost and can be replaced at the next regular service interval without significant loss of

revenue. The Innwind project also compares the levelised cost of energy (LCOE) of the conceptual 20 MW 45 rotor MRWT

with two 10 MW reference wind turbines (RWT) and estimates that the MRWT would have a reduction in LCOE of 15%.

Some disadvantages of the MRWT concept are more complex support structure design and increased component count.65

Although some work has been done to provide insight into the feasibility of MRWT’s, the electrical system has been largely

neglected. The aim of this study is to assess various electrical collection topologies that could be used in a MRWT in order

to determine the most suitable option. There are several areas that must be considered when identifying possible electrical

collection topologies for MRWT’s. The cost of the system should be minimised as to not outweigh the savings in material

costs. Mass distribution must be optimised in order to avoid unnecessary reinforcement of the support structure. The ability to70

vary rotational speed of individual rotors is an important aspect of power maximisation and load alleviation, so the independent

operation of individual rotors is an important consideration. It is desirable to maximise the built in redundancy within a MRWT

system, so reliability of components and redundancy within the electrical system is an important consideration.

This study performs an initial analysis of eight different electrical collection topologies that could be used within a 45 rotor

MRWT system. Section 2 describes the methodology used, Section 3 describes the system outline, Section 4 discusses the75

design constraints of the system, Section 5 outlines the proposed electrical collection topologies, Section 6 describes how the

mass, cost and losses of each component has been estimated, Section 7 describes how the cost effectiveness of each system is

compared, Section 8 presents the results of the analysis and conclusions are made in Section 9.

2 Methodology

In this initial analysis of different electrical systems, the emphasis is placed on determining the most suitable type of system80

so no detailed design work for each component will be conducted within this study. Instead, various AC and DC electrical

topologies are designed using realistic components that are trusted and understood by the wind industry. If the benefits of the

MRWT concept can be shown to be true while still using known and well understood components, it is more likely to be

accepted as a viable alternative to the single rotor wind turbine. Mass, cost and losses are estimated for each component using

information from industry data sheets where possible.85

A number of steps were carried out in this study:

– Design constraints were established.

– Eight collection topologies were designed. Both AC and DC topologies are included. The focus of the study is to analyse

the type of collection topology, so component type, voltage level and number of turbines in strings and clusters is kept

consistent across all designs where possible.90
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– Capital cost and mass of each collection topology were estimated using a combination of scaling relationships and up to

date commercial information.

– Loss profiles of each component were used to estimate the total losses of each collection topology over the entire

operating range of wind speeds.

– Cost effectiveness of each collection topology was assessed based on the capital cost and total losses over a 20 year95

lifetime of the project.

3 System outline

A MRWT system consisting of 45 rotors will be considered in this study. Figure 1 shows a simple representation of the physical

layout of such a system with each circle representing a single wind turbine rotor. The MRWT concept as described in (Jamieson

et al., 2015) includes a small platform situated at the bottom of the turbine array with enough space to accommodate a large step100

up transformer which is required to step up the output voltage to a suitable level for connection to a wider collection network.

For DC systems, a DC to AC power converter is also situated on the platform. Each wind turbine unit includes a nacelle which

contains all the power train components (gearbox, generator, power converters, brake system) much like a standard three bladed

variable speed wind turbine. A steel tubular lattice style space frame is used to support the 45 turbine units. Various concepts

regarding the support structure and yaw system are outlined in the Innwind report (Jamieson et al., 2015) including floating105

systems and systems with fixed base. How the space frame connects to a floating platform or traditional tower is out of the

scope of this paper, as the work focuses on the electrical system connecting the individual turbines. The reader is directed to

the Innwind report (Jamieson et al., 2015) for a detailed description of various possible design solutions.

Figure 1. Proposed layout of a 45 rotor MRWT system. Adapted from (Jamieson et al., 2015).

This number of rotors allows a balanced and compact design and is used in various studies such as (Jamieson and Branney,

2012) and (Jamieson et al., 2015). The Innwind study provides a conceptual design for such a system and also makes compar-110
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isons to an equivalent system consisting of two 10MW RWT’s from DTU to highlight the reduction in LCOE that could be

realised by the MRWT concept. It is therefore desirable to use a similar system in this study to allow for easy comparison to

both systems. Each rotor has a diameter of 41mwhich results in the same total swept area as the two 10 MW RWT’s. Although

the Innwind project uses 444 kW turbines, commercial examples of turbines with similar swept area are capable of producing

500 kW rated power. Examples are the Enercon E40 turbine with a rated power of 500 kW and a diameter of 40.3 m (Wind115

Turbine Models, a) and the Vestas V39 turbine with a rated power of 500 kW and a rotor diameter of 39 m (Wind Turbine

Models, b). In order to give a fair representation of the energy capture possible with such a MRWT system, a representative

rated power of 500 kW was selected for each turbine in this study. The characteristics of each turbine unit are shown in Table

1, along with the characteristics of the 10 MW RWT used for comparison (Bak et al., 2013). The diameter of the DTU RWT

is scaled up to 194.5 m in the Innwind report (along with the capital costs associated) in order to match swept areas of the two120

systems; this upscaled diameter is used for comparison in this paper.

Table 1. Characteristics of each individual turbine unit used in the MRWT system and the 10 MW RWT.

Characteristic Individual MRWT turbine RWT

Turbine type 3 blade, variable speed, pitch regulated 3 blade, variable speed, pitch regulated

Rated power 500 kW 10 MW

Rotor diameter 41 m 194.5 m

Rated wind speed 11.5 m/s 11.5 m/s

Maximum CP 0.45 0.48

Rated rotor speed 30 rpm 9.6 rpm

4 Design Constraints

The following design constraints have been used to design the electrical topologies:

1. The system in question must have 45 rotors: to facilitate fair comparison with results in the Innwind project.

2. Each turbine has the characteristics shown in Table 1: these values have been selected as representative values from125

available wind turbines of this scale used within the industry.

3. Each turbine must have independent speed control: This is required in order to maximise energy capture and minimise

loading on blades and drive train components.

4. It is assumed that each turbine operates in a maximum CP tracking mode below rated wind speed, and then power is

held constant at rated power above rated wind speed via pitch control.130
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5. Each topology must connect to an AC collection network at 33kV : this is a common voltage level used within the wind

industry for collection networks. DC collection networks have been discussed in literature, but there is still no real world

applications.

6. It is assumed that there is a platform as shown in Fig. 1 large enough to support a step up transformer and/or converter

as described in the Innwind report (Jamieson et al., 2015).135

5 Proposed Electrical Topology Designs

A total of eight topologies were designed and each are described in this section. Each topology is based on commonly discussed

collection network topologies for offshore wind farms as they are analogous to the electrical system required for MRWT’s.

Both have the purpose of collecting power from a number of turbines and exporting it to a wider electrical network at one

single point of connection.140

Figure 2. AC star topology.
Figure 3. DC star topology.

The AC star and DC star topologies are shown in Fig. 2 and Fig. 3 respectively. In both the AC and DC star topologies each

turbine is connected via its own cable to the converter or transformer situated on the platform shown in Fig 1. The AC star

uses a 3.3kV permanent magnet synchronous generator (PMSG) with a fully rated back-to-back IGBT based voltage source

converter (VSC). The DC star uses a 1.5 kV PMSG with controlled IGBT based VSC. Various types of DC output wind

turbines have been suggested in the literature with some utilising diode rectifiers to reduce weight and cost, and others utilising145

controlled IGBT based rectifiers. The advantage of using an IGBT based VSC is that it is able to easily control both the torque

of the generator as well as the reactive power to the generator. This allows for independent speed control of each turbine while

maintaining a constant DC output voltage, and also allows the use of any type of generator. A controlled rectifier has been
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selected for these reasons for each DC topology in this study. To allow for a fair comparison between topologies, all use a

PMSG. The DC star topology uses a lower rated generator in order to have the DC cable voltage directly comparable to the AC150

star topology, which facilitates a fair comparison between the two and keeps the emphasis on the type of system rather than

system voltage. Medium voltage (MV) generators are required to avoid high conduction losses in low voltage (LV) cables and

also to remove the need for a transformer within the nacelle. The star topologies benefit from excellent redundancy as a fault

in any one component within the array only results in the loss of 1/45th the total rated power. The disadvantage is that there

is a large total cable distance, but cables with a smaller cross sectional area (CSA) can be used compared to other topologies.155

The DC star topology also may benefit from greater efficiency and lower mass due to fewer conversion steps and the use of DC

cables (DC cables are known to be lighter and smaller compared to AC cables (Lakshmanan et al., 2015)).

Figure 4. AC cluster topology. Figure 5. DC cluster topology.

The AC and DC cluster topologies are shown in Fig. 4 and Fig. 5 respectively. The cluster topologies gather power from

a number of rotors, step up the voltage using either an AC transformer or a DC-DC converter and then transmit the power to

the converter/transformer situated on the platform. This allows for the use of industry standard 690 V generators as the cable160

distance between each rotor and the transformer or DC-DC converter is very small. Cluster topologies use much smaller cable

distances compared to the star topologies, but require cables with larger CSA to handle higher currents. DC-DC converters are

used in the DC topology and a 50/60 Hz transformer is used in the AC topology. DC-DC converters are smaller and lighter

compared to AC transformers (Lakshmanan et al., 2015) but are also significantly more expensive, so it is expected that the DC
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cluster topology be more expensive but lighter than the AC cluster topology. The main disadvantage of the cluster topologies165

is the failure of the cluster transformer/DC-DC converter would result in the loss of the entire cluster of turbines.

Figure 6. AC radial topology.

Figure 7. DC radial topology.

The AC and DC radial topologies are shown in Fig. 6 and Fig. 7 respectively. These are based on the most common type of

offshore collection network; the AC radial collection network (Bahirat et al., 2012). As it is the most common configuration,

the AC radial topology will be used as the base topology throughout this study. In the radial topologies, a number of turbines

are connected to a feeder cable which transmits the power to the transformer/converter at the base of the support structure. The170

amount of turbines connected to a feeder cable is determined by the current carrying capacity of the cable and the power output

of the turbines. For simplicity, both AC and DC radial topologies use non tapered cables in each string. Use of a 3.3kV feeder

cable in the DC radial design was originally used, but after initial assessment it was deemed unrealistic due to the large CSA

of cables required so the next standard voltage level of 6.6 kV was selected. Radial designs benefit from short cable distances,

simple design and operational experience. The main drawback is poor reliability as a fault in a feeder cable would result in175

the loss of the entire string. It should be noted that failure rates for cables are significantly lower than that of power electronic

converters or generators.

DC series and DC series/parallel connected wind farm collection networks have been discussed in the literature and show

enough promise to be included in this study (Bahirat et al., 2012; Ng and Ran, 2016; Lundberg, 2003). The main idea behind

the DC series topology is to connect DC output turbines together in series to increase the voltage of the string without the use of180

AC transformers or large DC-DC converters, resulting in a very lightweight system. Figure 8 shows the DC series topology and

Fig. 9 shows the DC series/parallel topology. In the DC series topology, a standard 690V AC PMSG is used with a controlled
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rectifier to produce a DC output of 1.5 kV. Each string contains five turbines connected in series to produce a string voltage

of 7.5 kV. Generator torque control is performed by the controlled rectifier and the string DC-DC converter maintains the DC

voltage of the string. A fault in one turbine can be isolated by using a circuit breaker that operates in short circuit, maintaining a185

path for the DC current within the string. In the case of a fault within the string, the DC-DC converter at the end of the sting can

vary its duty ratio to maintain the 11kV bus voltage. This system should have a low mass due to the small number of converters

used, but may be expensive due to the use of DC-DC converters and more expensive DC protection devices. There may also

be issues regarding insulation as some components will require an insulation level high enough to withstand the whole string

voltage to ground. This will be explored further if the topology shows promise.190

Figure 8. DC series topology.

Figure 9. DC series/parallel.

The DC series/parallel topology is similar to the DC series topology in that it utilises DC output turbines connected in series

to produce a high voltage within strings. It utilises a variable voltage output DC wind turbine where the generator is connected

to a controlled rectifier and a DC-DC converter. As multiple strings of DC series turbines are connected together in parallel, the

voltage of each string must be kept the same as the others. This is achieved by the use of the DC-DC converter at the turbine

level. If one turbine within a string fails, the voltage is maintained by the other turbines in the string increasing their output195

voltage. This topology is designed to reduce the cable distance, but will undoubtedly require heavier and more expensive cables

to utilise. Disadvantages of this topology are similar to those of the DC series topology.

6 Cost, Mass and Loss Estimation

The cost, mass and loss performance of each component used in the proposed topologies must be estimated in order to de-

termine each topologies suitability. A variety of academic literature and commercial information has been used to accurately200

estimate the properties of each component used. Information regarding cost and mass of components is rarely available in
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the public domain for the exact power rating and size of components required. It is therefore necessary to rely on scaling

relationships from the academic literature that estimate the cost and mass of generic components based on parameters like

component power rating, P , or torque rating. Within this study, these scaling relationships have been adapted where possible

to include th most up to date commercial information in order to reflect realistic components used within the wind industry.205

A summary of the relationships used to estimate the mass and cost of components in this study is presented in Table 2, along

with the valid range in which these relationships are applicable. The cost of components can often be difficult to estimate as

component producers will vary prices depending on market pressures, location of projects, availability of materials etc. It is

therefore necessary to rely on the academic literature in order to estimate the price of each component. Although the estimated

prices may not be exact, they are sufficient to compare the cost effectiveness of each topology. All cost estimates used within210

this study are presented in 2019 GBP.

Table 2. Summary of mass and cost estimations of each component for variable speed, pitch regulated wind turbines.

Description Mass (kg) Cost (2019 GBP) Valid Range

High speed PMSG 2600 (only valid for 500 kW ) 15P 0.5 - 6 MW

3 stage gearbox 70.94×LSST 0.759 18.033P 1.249 0.5− 6MW

MV back-to-back VSC 1.01P − 9.852 132P 0.5− 6MW

VSC (inv. or rec) 0.505P − 4.926 66P 0.5− 6MW

Bi-directional DC-DC converter 1.18P 110P 0.5− 4MW

Cables (per km) mass/km taken from data-sheets 1000 · (0.46×CSA+ 94.671) 95− 630mm2

Transformers 1.982× 10−3P + 481.11 −115,968 + 205.73P 0.4473 6.3− 150MVA

AC switchgear N/A 30,720 + 0.576Vrated 0− 400kV

DC Switchgear N/A 61440 + 1.152Vrated 0− 400kV

6.1 Generators

The cost scaling relationship for high speed PMSG’s used in this study is developed from an NREL study (Fingersh et al., 2006)

in which a scaling relationship is presented for medium speed PMSG’s and the relationship in cost between medium speed and

high speed PMSG’s which is presented in (Hart et al., 2014). The NREL study provides a cost scaling relationship for medium215

speed PMSG’s used with a 1 stage gearbox which is dependant on the power rating of the generator in kW . This relationship

is valid for turbines with rotor radius between 25 m and 70 m, which equates to an approximate power rating range between

0.5MW and 6MW . The Hart study shows a detailed comparison in cost between various PMSG’s and gearbox combinations.

Comparing the cost of a medium speed PMSG (used with a one stage gearbox) and a high speed PMSG (used with a three

stage gearbox), it is shown that the high speed generator is around 25% the cost of the medium speed one. Combining these220

two relationships results in the scaling relationship for the cost of a high speed PMSG that is presented in Table 2. The cost

estimations from this relationship match the costs presented in (Carroll et al., 2015), which are developed from data provided

from real offshore wind turbines from an unnamed industry parter. This study also shows the same relationship between costs
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of a medium speed and high speed PMSG’s, further improving the confidence of the scaling relationship developed for this

study. Mass of the high speed PMSG can be taken directly from a data sheet available from The Switch which lists the mass of225

a 500 kW high speed PMSG at 2600 kg (The Switch, 2019).

6.2 Gearboxes

All generators in this study are assumed to be used in connection with a three stage gearbox. This assumption is based on a

typical rated speed of a high speed PMSG of 1500 rpm and rated speed of the wind turbine rotors. This results in a required

gearbox ratio of 1:50, which is easily achievable with a three stage gearbox. The cost and mass estimation relationship for a230

three stage gearbox is taken from the same NREL study as the generator relationships. The torque density of gearbox’s may

have increased since the time of the publication, but all topologies use the same gearbox, so this mass estimation is sufficient for

comparison between the different systems. The mass of the gearbox is calculated based on the low speed shaft torque (LSST)

in kNm and the cost is based on the rated power of the gearbox in kW .

6.3 Power Electronic Converters235

The mass of low voltage (690V AC), IGBT based back-to-back VSC’s designed specifically for wind turbines are given for

units of different power ratings in a data sheet provided by ABB (ABB, 2018). The mass is given for complete units and

includes the converters, filters, circuit breakers, casings, cooling systems and any other auxiliary systems that are required for

the converters to operate. This information has been plotted and a linear approximation has been used to develop a scaling

relationship that can estimate the mass of the back-to-back converter with power rating required for the MRWT system. Figure240

10 shows that the linear approximation achieves a reasonable estimation of converter mass, particularly at lower power ratings.

Some topologies also use medium voltage converters, but little information is available on the mass of commercially available

MV converters, particularly at low power ratings. Wind turbines have traditionally used LV generators of 690V until recently

when power ratings of wind turbines have increased significantly and it became more appropriate to use MV machines. It can

be assumed that the same relationship holds for both low and medium voltage back-to-back converters. Comparing the mass245

of LV and MV back-to-back converter units of similar power ratings, both produced by ABB, it is seen that the MV converter

mass is lower compared to its LV counterpart (ABB, 2019), suggesting that the mass estimation for low power medium voltage

converters may be conservative. Mass for controlled rectifiers or inverters will be taken as half of the back-to-back converter

mass.

Due to the variety of designs present in the literature and lack of commercially available high power DC-DC converters,250

estimates of mass are tricky. Mass estimates of various converter types are given in (Chen et al., 2013) which shows a mass of

around 800kg for a buck/boost IGBT based 5 MW converter. The problem here is that this mass is solely based on the switches

and passive elements in the DC-DC converter. When a commercially produced converter is available, the mass of the unit is

likely to be considerably higher due to cooling and other auxiliary systems that are required. This lower estimate in mass could

cause an unfair comparison between AC and DC topologies. Solar PV applications utilise DC-DC converters on the same scale255

as is required for the MRWT topologies. Dynapower provide some information about a commercially available bi-directional

11



Figure 10. Scaling relationship for LV BTB converters.

DC-DC converter in (Dynapower, 2019), which lists a mass of 500 kW unit as 590 kg. Comparing this to the estimated mass

of 800 kg given in (Chen et al., 2013) for a 5 MW unit highlights the difference between academic mass estimation and

commercially available units. The Dynapower DC-DC converter can be used in a modular fashion to produce higher power

DC-DC converters, so the mass of this unit will be used to estimate the mass of DC-DC converters required for this study. Mass260

of all power electronic devices in this study are estimated based on the rated power of the devices in kW .

Costs used in two recent studies (Parker and Anaya-Lara, 2013; Lakshmanan et al., 2015) have been converted to 2019

GBP to give a cost of a back-to-back converter (regardless of type) of £132/kV A and a controlled rectifier of £66/kV A.

DC-DC converter price estimates vary significantly in the literature due to the lack of commercially available converters for

wind applications and the variety of designs suggested. It is therefore most appropriate to take a range of prices available in the265

literature for suitable DC-DC converters and take an average of this price. The studies used for this are: (Lakshmanan et al.,

2015; Fingersh et al., 2006; Max et al., 2007; Lundberg, 2003; Georgios and Wheeler, 2010). This gives an average cost of

£110/kV A.

6.4 Cables

Mass of cables can be easily assessed using mass per km values given in data sheets of cables from a variety of cable manu-270

facturers.

Cable costs are estimated from (Dicorato et al., 2011) which provides a cost function for a kilometre of cable based on the

CSA of the cables in mm2. The study uses available costs from numerous sources and averages them for each CSA then uses

a least square linear regression to produce the relationship. The paper states that this relationship is valid for medium voltage

copper conductor XLPE insulated cables. Although not stated, most offshore installations use three core cable, so it will be275

assumed that this is the cost for three core cable. Suitable cables have been selected for each topology based on the required

current carrying capacity of the cables. Cable distances have been estimated for each topology based on realistic cable layout

designs that follow the triangular lattice support structure beams as closely as possible to avoid loose hanging cables within the

structure.
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6.5 Transformers280

Mass of transformers has been estimated by using information given in (Declercq, 2003) regarding the ‘SLIM’ range of

transformers for wind turbines manufactured by Pauwels International (now ‘CG’). The mass of transformers from different

power ratings was plotted and a linear approximation for how the mass varies with power rating was developed. Additional

information from (Islam et al., 2014) was used to develop the relationship shown in Table 2, which estimates the given masses

of transformers very well. It also generally agrees with other information from data sheets for ABB distribution step down285

transformers. The mass of transformers is estimated based on the power rating of the transformer in V A.

Lundberg (Lundberg, 2003) provides a formula for estimating the cost of MV/HV transformers rated between 6.3 and 150

MVA, with low side voltage rating between 10.5 and 77 kV and high side rating between 47kV and 140kV. The transformers

required in this study do not quite fall into this category, but will be assumed to follow this cost model. This cost model provides

the base for many cost estimates of transformers in the literature, with (Parker and Anaya-Lara, 2013; Dicorato et al., 2011;290

Lakshmanan et al., 2015) all using this relationship and scaling it to present day value in the currency of the paper. The cost

estimates for transformers in this study are based on the rated power of the transformer in V A.

6.6 Switchgear

Lundberg (Lundberg, 2003) also provides a cost model for AC switchgear based on the voltage rating in V , which is commonly

used within academic literature. The cost of DC switchgear is also required for this study, which is more difficult to estimate295

due to the lack of commercially available DC switchgear. It is suggested in (Lakshmanan et al., 2015) that the cost of DC

switchgear could be as much as four times that of AC switchgear, but this figure is based on a study from 2007. Since then

advancements in DC switchgear have been made, so a relationship of two times the cost of AC switchgear will be used here

to reflect advancements in technology. The mass of switchgear is assumed to be negligible in this study as the VSC mass

estimations includes some switchgear masses.300

6.7 Losses

Losses of each individual component were estimated at each 0.5 m/s wind speed increment between cut-in and cut-out wind

speed. Mechanical power is calculated as follows

Pmech =
1

2
ρAv3CP (1)

where Pmech is the mechanical power produced by the turbine, ρ is the density of air, A is the swept area, v is the wind speed305

and CP is the coefficient of performance. Loss profiles that describe the losses of each component over the entire operating

range of wind speeds were used in order to account for varying efficiencies of components when operating at part load. For

each topology, the mechanical power was calculated using Eq (1) and losses for each component subtracted at each wind speed.

The output power of each component was used as the input power of the next component. For example, the input power of the
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generator is the mechanical power produced by the turbine minus the gearbox losses. Matlab scripts were created to calculate310

the total losses at each wind speed of each collection topology.

An equation is presented for gearbox efficiency in (Jamieson, 2011), which was developed by GL Garrad Hassan. It com-

prises of a loss that varies in proportion to the operating power level, and a constant loss that is related to the rated power and

number of stages:

Lgear =

(
10
3 + 2N

)
Pr + 5NPi

1000
(2)315

where Lgear is the losses in the gearbox in kW,N is the number of stages, Pr is the rated power of the gearbox in kW (constant)

and Pi is the input power of the gearbox in kW (variable). This equation is used to estimate losses of gearboxes in this study.

Losses for generators, power converters and DC-DC converters were estimated by using a combination of data presented in

a Lundberg study (Lundberg, 2003) and various data sheets from commercial suppliers. The Lundberg study presents losses of

various components as a percentage of rated power over a full range of wind speeds, so can be applied to a variety of different320

power ratings while the commercial data is used to ensure up to date losses at rated power of the different components are used.

This allows for a simple method suitable for early stage analysis, while allowing the loss characteristics of different components

at part load to be included. Loss data for each component was produced based on the Lundberg study and reconfigured to

reflect commercial rated efficiencies and a different rated wind speed, while maintaining the below rated characteristics of the

components.325

High speed PMSG efficiency at rated power is listed as over 98% by ABB (ABB, 2012). This is available on the ABB

website and is presented as their currently used technology. Back-to-back converter efficiency at rated power for LV converter

unit is given as 97% in (ABB, 2018). Back-to-back converter efficiency at rated power for MV converter unit is given as 98%

in (ABB, 2019). These efficiencies include back-to-back converters, filtering, cooling systems etc. and is used in this study. For

controlled rectifiers, an efficiency at rated power of 99% for MV and 98.5% for LV has been be used.330

There are a huge amount of DC-DC converters proposed and studied in the literature in recent years. The advancement of

power electronic devices and the increasing need to minimise mass in offshore applications has led to an increased interest in

DC-DC converter topologies that are suitable for use in offshore wind farms. In (Parastar et al., 2015) a multilevel modular

DC-DC converter for high voltage DC wind farm is suggested and reports efficiencies of around 97% at rated power for a small

scale prototype. In (Chen et al., 2013) various types of converters are compared in terms of mass, number of components,335

efficiency and volume. The two best candidates are a buck/boost converter based on IGBT’s with a rated efficiency of 97.5%

and a resonant switched capacitor converter with a very high efficiency of over 99%. In (Max and Lundberg, 2008) three

converter types are analysed and compared, with the author concluding that the most suited type of converter for use in a DC

wind farm is a full bridge converter based on IGBT switches. The study presents efficiencies of both a turbine level and group

level converter as 97.08% and 97.97% respectively. Finally, various topologies of DC turbine configurations are also shown in340

Lundberg’s 2003 comprehensive study which all are approximately 97% efficiency (Lundberg, 2003). The conclusion reached

is that a rated efficiency of 97% will be used for the DC-DC converters in this study, with below rated efficiencies capturing
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the characteristics of the converters presented in (Lundberg, 2003). This provides a realistic and slightly conservative estimate

of losses within a DC-DC converter suitable for the MRWT application.

Losses in cables can be approximated by345

Lcable_3Φ = 3I2
RMSRAC (3)

Lcable_DC = 2I2
DCRDC (4)

where Lcable_3Φ is the losses in the three phase AC cables in W, IRMS is the rms AC current in each phase in A, RAC is the

resistance of the AC cable in Ω, Lcable_DC is the losses in the DC cable in W, IDC is the DC current in A and RDC is the

resistance of the DC cable in Ω (Starke et al., 2008). Resistances of the cables can be calculated by considering the total length350

of cables within the topology and the given resistance per length for the cables CSA.

Transformer efficiencies are estimated using a combination of the loss profile presented by Lundberg in (Lundberg, 2003)

and full load efficiencies presented in (Islam et al., 2014). Losses in switchgear are considered negligible.

7 Cost effectiveness

In order to analyse the cost effectiveness of each topology a simplified cost of energy (COE) calculation was performed that355

considered the capital cost of the drive train and electrical components and the total electricity produced by each topology

over a 20 year lifetime of the project in net present value (NPV). Equation 5 was used to calculate the simplified COE and the

NPV of electricity produced was calculated according to Eq (6) where AEC is the annual energy capture, i is the discount rate

which is equal to 10% and n is the lifetime of the project in years. No costs associated with operations and maintenance or loss

of power due to failures were included in this calculation.360

Simplified COE =
Capital cost of electrical components and gearbox

sum of electricity produced over lifetime
(5)

NPV =
AEC

i

(
1− 1

(1 + i)n

)
(6)

The wind speed is assumed to follow a Weibull distribution with an average wind speed of 10 m/s and values of k=2 and

C=9.5 are used. Total energy capture was calculated by multiplying the output power at each wind speed by the number of

hours per year the wind will be at that speed and summing the results together.365
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8 Results and discussion

The total capital cost of each electrical topology is shown in Fig. 11. It is clear that DC topologies will incur a significantly

higher capital cost compared to AC topologies. This is due to the increased cost of DC-DC converters and DC switchgear.

The AC star and radial topologies have the lowest capital cost of topologies analysed, while the most expensive are the DC

series/parallel and DC cluster topologies.370

Figure 11. Total capital cost of electrical topologies with breakdown by component. Total capital cost is shown above each bar. Percentage of

total capital cost is also shown for each component. Taking AC star as an example, the total capital cost is £7.91 million, with the generators

accounting for 4% the total cost, gearboxes accounting for 21% and so on.

The total mass and breakdown of component mass is shown for each topology in Fig. 12. Although some topologies are

lighter than others, the difference in total weight is not significant. The system with the highest mass is the AC cluster topology,

with its high mass due to the use of AC transformers within the system. The lightest is the DC star topology, with DC radial

and AC star very close behind. Gearbox and generator mass is a significant portion of total mass, accounting for 68-81% of

the total mass in each case. This mass can be reduced by considering different generator and gearbox combinations, but has375

not been considered in this study so as to make a fair comparison of the type of electrical systems. As the large transformer

and/or inverter are situated on the build-in platform of the MRWT, the mass per nacelle is a more appropriate measure of how
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Figure 12. Total mass of electrical topologies with breakdown by component.

Table 3. Comparison of characteristics of each electrical topology.

Topology (MW) Simplified COE (£/MWh) Mass per nacelle (kg) Annual lost energy (GWh)

AC star 11.41 6634 8.70

DC star 13.3 6317 8.45

AC cluster 11.82 7876 10.59

DC cluster 17.38 6921 10.94

AC radial 11.36 7034 8.28

DC radial 13.66 6377 8.02

DC series 17.3 6917 10.98

DC series/parallel 17.82 7367 12.05

the mass of each system will effect the design of the support structure. This is shown in Table 3 and includes all components

housed within the nacelle as well as a share of the cable mass and shared components. The DC star and DC radial topologies

perform well in this category due to their low component count. The DC star achieves a 10% reduction in mass of each nacelle380

compared to the base case of the AC radial.
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Figure 13. Total losses at rated power of electrical topologies with breakdown by component.

Losses at rated power of each topology are shown in Fig. 13, with the most efficient topologies being the DC radial and

AC radial designs. The DC radial design is slightly more efficient than the AC radial due to lower losses in the DC cables.

This is due to the higher voltage level and the reduced conduction losses in DC cables. The DC cluster topology has higher

losses compared to the AC cluster topology due to the much reduced efficiency of the DC-DC converters compared to AC385

transformers.

Comparing AC to DC equivalent systems the DC systems always have higher cost due to the high cost of DC-DC converters

and switchgear, with the mass of DC systems being marginally lower and the losses between AC and DC systems being very

similar. This shows that the lower losses in DC cables at this power range and cable lengths are not large enough to make a

significant difference in the overall efficiency of the systems. Comparing the AC and DC star topology efficiencies shows this390

well. Cables do not significantly contribute to the total mass, with the lightest system simply being the one with the fewest

components.

The simplified COE of the electrical system and gearbox of each topology is shown in Table 3. Low capital cost and losses

in the AC systems results in low simplified COE for the AC star, AC cluster and AC radial topologies. High capital cost and

losses result in high simplified COE for the DC series, DC series/parallel and DC cluster topologies. AC topologies have a395
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lower capital cost and lower simplified COE compared to the DC systems analysed, showing that the proposed benefits of DC

systems in offshore collection networks do not cross over to collection systems for MRWT’s.

A comparison of each topology can be seen in Table 4. The AC radial is considered the base topology as it is the most

commonly used collection network in offshore wind farms. Base levels are marked with ‘O’ in Table 4 with ‘+’ symbols

used to indicate an improvement in the specified category compared to the base case and ‘-’ symbols used to indicate a400

decrease in performance in that category compared to the base case. Component count includes gearbox, generator, converters,

transformers and switchgear units for each topology. The reliability category is considered as a combination of component

count and amount of shared equipment. As an example, the DC cluster topology performs badly in this category as a fault

in the shared DC-DC converter would result in a loss of five turbines and the DC star topology performs excellently in this

category due to having no shared equipment and a low component count. This category is seen as an important characteristic405

of each topology as it highlights one of the key benefits of a MRWT system. Failure of components in a large single rotor

turbine will likely result in the loss of 100% of the power from that turbine, whereas a MRWT can still produce a high

percentage of power after the failure of components. Further work should be conducted in order to quantify monetary value

of this characteristic for each topology, but a first pass attempt has been made here to at least indicate which topologies will

benefit the most from this characteristic. Although cable failure rates are significantly lower than other components used in410

wind turbines, cable failures have still been included in this analysis.

The AC star topology is the best solution overall as it only performs slightly worse than the base case in the category of

efficiency and performs very well in each of the other categories, specifically reliability and mass per nacelle. The DC star

topology also performs well overall and could see an improvement in reliability compared to the AC star topology due to its

lower component count. It is recommended that more detailed design and analysis work are carried out for these two topologies.415

The basic cost estimation of electrical components made in the Innwind project (Jamieson et al., 2015) totals to £4.6 million.

This cost estimation was lacking detail and significantly underestimated the cost of electrical systems required for a MRWT,

with this study showing the cheapest system to cost in the region of £7.9 million. The capital cost of electrical components

(as well as gearbox cost) in the Innwind project is 13.3% of the capital cost of the entire system, and the simplified COE

of the electrical system and gearbox is estimated to be 10.65 £/MWh. Although lower than the simplified COE of each420

topology in this study, it is reflective of the level of detail between the two studies. Using the same methodology, the simplified

COE of the electrical system of two DTU RWT’s (inc. gearbox) is 36.85 £/MWh, showing that even the most expensive

topologies are significantly cheaper compared to a large single rotor turbine. Combined with the savings in material costs for

blades, improvements in O&M costs, reduced installation and transport costs and power increases due to clustering of turbines

it is still expected that the MWRT concept will achieve a much improved overall LCOE regardless of the increase in cost of425

electrical components.

The cost estimates presented here are highly sensitive to the cost of DC-DC converters and DC switchgear. Although these

costs may fall in the future, the reductions would have to be significant for the DC systems to be comparable in price to the AC

systems in the context of MRWT electrical systems. DC systems may be more attractive if the MRWT would connect to a DC

collection network, however there is currently no DC collection networks in operation, and the feasibility of their existence430
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within the near future is still low. DC systems could also reduce cost and mass significantly by using diode rectifier in place

of controlled rectifiers, but this would jeopardise the controllability of the entire system and in most cases lose the ability to

control the speed of the turbines individually.

Future work is recommended on further optimisation of topologies to see the effects of varying voltage level, number of

turbines in clusters and strings, different generator types, different power train configurations and different rated power levels435

of turbines used within the MRWT system.

9 Conclusions

Eight different electrical topologies have been proposed and analysed in terms of mass, cost effectiveness, component count

and reliability. There are several key findings from this study. AC topologies consistently have the lowest simplified COE of the

electrical system ranging between 11.36 to 11.82 £/MWh. DC systems have higher simplified COE of the electrical system440

between 13.3 and 17.8 £/MWh. The increased cost is attributed to the high cost of DC-DC converters and DC switchgear.

AC systems have lower capital cost and lower simplified COE compared to the equivalent DC systems. The lowest simplified

COE is seen in the AC radial system, very closely followed by the AC star and AC cluster topologies. The topologies with

the highest simplified COE are the DC series/parallel, followed by the DC cluster and DC series. The radial topologies have

the highest efficiency at rated power and the lowest annual energy loss. The difference in total mass between the systems is445

not significant, but DC systems do see a reduction in mass per nacelle. It is unclear at this point how much the mass of each

nacelle will effect the cost and complexity of the support structure required for a MRWT. Both star topologies are considered

to have the highest reliability due to having no shared equipment. Lower losses in DC cables do not result in a significant

reduction of total system losses. Reduced cost of DC cables do not outweigh the increased cost due to DC-DC converters and

DC switchgear.450

DC-DC converters and DC switchgear are still commercially unavailable and it is therefore hard to estimate the cost of such

equipment. Due to this, the results are very sensitive to the cost of DC-DC converters and switchgear. Systems that lose only a

small portion of rated power due the failure of one component are clearly more desirable than systems that will lose a higher

portion of rated power. Further work is recommended on this topic to investigate the monetary value of this characteristic of

MRWT’s.455

From the systems analysed, the most promising type of system is the AC star topology; it performs well in a large range

of categories, and has very good reliability compared to other systems. The high reliability is due to the design of the system

which has no shared equipment between turbines. The DC star topology also performs well overall and could have even higher

reliability than the AC star topology due to its lower component count. Both topologies should be considered for more detailed

design and analysis in future work.460

Data availability. No data sets were used in this study.
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