RESPONSE TO REVIEWER #1

In this document, the reviewer’s comments are in black, the authors’ responses are in red.

The authors thank the reviewer for their thoughtful comments, which helped us improve the quality of our manuscript.

The paper presents a robust measurement campaign and analysis results. The thoroughness of the various analyses is commendable. The sensitivity analysis at the end of the paper is particularly insightful as it helps shed light on the reasons for the performance of the machine-learning (ML) approach used by the authors. Indeed, the risk when using ML is to blindly depend on a black box which may, or may not, provide reliable output, especially for new situations for which no data was included in the training set.

The following questions and comments are provided in the hope of enhancing the readability and overall reach of the paper:

0. One could argue that power law and log law are also machine learning approaches - even though they are simple regressions!
   Fair point! As the power law and log law are so well-known and broadly used in the wind energy community, we think referring to them as “conventional techniques” will be of easier understanding for the general reader of the paper.

1. In the intro, low-level jets (LLJ) are mentioned. Provide some more background as they are not ubiquitously present, nor relevant. Or specify that "in some regions ...".
   We have added “in some regions” in the introduction sentence. Also, we have extensively studied ML extrapolation for LLJ events in a companion conference paper which is currently in review. We have added the following sentence to the Results section, after the analysis of the ML extrapolation performance with height: “As an application of the performance of the random forest in predicting wind speed at higher heights, we present the case study of a LLJ in a companion paper (Bodini and Optis, in review).”

2. Provide a better presentation of the measurement campaign - notably, do not forget to add the missing paragraph which was posted: - Site description - Typical wind regime description - Lidar precision/accuracy/validation/testing discussion as the wind industry is still considering scanning lidars with a lot of caution. Or, provide discussion that high lidar accuracy is irrelevant in this context because ... - Provide an idea of the total number of data samples used. - Any data quality applied?
   We have included the paragraph that was missing in the first draft, and added details across Section 2 to include the suggestions of the reviewer. Section 2 now reads as follows:
2 Data: The Southern Great Plains (SGP) Atmospheric Observatory

We use observations collected at the Southern Great Plains (SGP) atmospheric observatory, a field measurement site in north-central Oklahoma, managed by the Atmospheric Radiation Measurement (ARM) Research Facility. To assess the variability in space of the performance of machine-learning-based wind speed vertical extrapolation, we focus on four different locations at the site (Figure 1), over a region about 100 km wide. The site is primarily flat, and its land use is characterized by cattle pasture and wheat fields. Winds mostly flow from the South, with more variability observed in the winter. For our analysis, we use 30-minute average data from 13 November 2017 to 23 July 2019 (for a total of over 29,000 timestamps).

2.1 Lidars

At each of the four locations considered in our study, a Halo Streamline lidar (main technical specifications in Table 1) was deployed. A preliminary intercomparison study of the lidars performed by Atmospheric Radiation Measurement (ARM) research confirmed that all the lidars produce consistent measurements, with correlation coefficients greater than 0.9, and precision less than 0.1 m/s (Newsom, 2012). The lidars performed a variety of scan strategies. For this analysis, we retrieved horizontal wind speed from the full 360° conical scans, which were performed every ~10-15 minutes and took about 1 minute to complete. We use the velocity-azimuth-display approach in Frehlich et al. (2006) to retrieve the horizontal wind speed from the line-of-sight velocity recorded in the scans. To do so, we assume that the horizontal wind field is homogeneous over the scan volume, and that the average vertical velocity is zero (Browning and Wexler, 1968). We discard from the analysis measurements with a signal-to-noise ratio lower than −21 dB or higher than +5 dB (to filter out fog events), along with periods of precipitation, as recorded by a disdrometer at the C1 site. Finally, processed data were averaged over 30-minute periods. For this study, data from five range gates are used, corresponding to heights of 65, 91, 117, 143, and 169 m AGL. Data recorded at two lowest heights (13 and 39 m AGL) could not be used because of their poor quality, as they lie in the lidar blind zone.

<table>
<thead>
<tr>
<th>Table 1. Main Technical Specifications of the ARM Halo Lidars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength</td>
</tr>
<tr>
<td>Laser pulse width</td>
</tr>
<tr>
<td>Pulse rate</td>
</tr>
<tr>
<td>Pulses averaged</td>
</tr>
<tr>
<td>Points per range gate</td>
</tr>
<tr>
<td>Range-gate resolution</td>
</tr>
<tr>
<td>Minimum range gate</td>
</tr>
<tr>
<td>Number of range gates</td>
</tr>
</tbody>
</table>
3. The wind industry also uses by-sector and/or by-hour-of-day vertical extrapolation. These are targeting a couple of shortcomings the authors note, namely: stability and terrain complexity. It would be useful to add this in the discussion - or even better, in the analysis.

We have added the following analysis to the results section:

“In addition, it is important to check whether the results of the performance comparison are affected by the time resolution at which the shear exponent $\alpha$ is calculated. Wind energy consultants apply a variety of methods to calculate shear (Brower, 2012): one could calculate shear values at each timestamp (as done in our analysis), or use a single average shear exponent, or consider various shear values based on bins of wind direction and/or time of day. To compare the time series-based shear calculation with its most different approach, we test the performance of the power law in extrapolating the average wind resource from 65 m AGL to 143 m AGL using only a single mean value for the shear exponent, calculated as the average of the $\alpha$ values at each considered timestamp. We find that the average extrapolated wind speed from the random forest approach still has a smaller error compared to the average extrapolated wind speed using the mean shear value, at all the considered sites (across-site MAE for random forest is 0.01 m s$^{-1}$, for power law is 0.13 m s$^{-1}$). Given the overall small MAE values found for both methods, we can also conclude that machine-learning-based extrapolation approaches are most beneficial for time series-based extrapolations, as deficiencies in conventional approaches tend to average out more when considering the long-term average results.”

4. My understanding is that the authors optimized the hyper-parameters by making use of available target-height measurements. So what is the authors’ suggestion to fine-tune these parameters in the absence of target-height measurements? Could we contemplate a
database of parameters for specific site conditions? Other? More generally, how their round-robin results could be leveraged, used on site?

We have added the following sentence to the Conclusions of the paper: “In real world applications, a machine learning algorithm could be trained on observations collected by a single lidar, and then used to extrapolate wind speed at nearby locations, where only much cheaper short meteorological masts would need to be installed”.

5. Lines 192 and following: any particular reason comparison results for the specific use case under discussion were not more thoroughly reported?

We have added the following table to the Supplement (and added reference to it in this paragraph in the main paper) to support our description of the comparison between ML and power law performance when data at 91 m AGL are included in both methods:

Table 1: Percentage reduction in wind-speed extrapolation MAE from the random forest approach over the power law when wind shear is calculated using data at 4 m and 65 m AGL versus at 65 m and 91 m AGL. In the latter case, wind speed at 91 m AGL is included as input feature for the random forest model.

<table>
<thead>
<tr>
<th>Error reduction relative to POWER LAW</th>
<th>Training - testing site</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C1</td>
<td>E37</td>
</tr>
<tr>
<td>Shear from 4 m and 65 m AGL</td>
<td>−25%</td>
<td>−36%</td>
</tr>
<tr>
<td>Shear from 65 m and 91 m AGL</td>
<td>−15%</td>
<td>−22%</td>
</tr>
</tbody>
</table>

6. Personally, I find the last sections of the paper to be the most valuable ones! Without suggesting to re-write the whole paper, I submit the following ideas for author’s consideration:

- Put the emphasis on the fact that more physical parameters where included in a data-driven model, and their impact on model performance was investigated and fully understood (cf. sensitivities).
- The model seems to out-perform standard models, even under round-robin conditions (which is indeed a better way of assessing the model).
- The model could be used for a given site as follows (might need more thought to be put here ...)

In the Results section, we have added an extensive discussion of feature importance to further emphasize the importance of being able to understand and quantify the different input features used in the machine learning model:
The results of the analysis of the predictor performance are listed in Table 5. As already suggested by the partial dependence analysis, wind speed at 65 m AGL is the predictor with the largest importance in extrapolating wind speed at 143 m AGL. However, all the considered surface observations account for over 30% of the overall performance of the random forest. In particular, the addition of the Obukhov length to include direct atmospheric stability information in the algorithm has a not-negligible 8% importance.

We have also added the following sentences to the Conclusions:

“The benefit of including more physical parameters in a data-driven model clearly demonstrates its importance.”

“In real world applications, a machine learning algorithm could be trained on observations collected by a single lidar, and then used to extrapolate wind speed at nearby locations, where only much cheaper short meteorological masts would need to be installed.”

We have also rephrased the following sentence in the Conclusions to further emphasize that the round-robin validation still outperforms conventional techniques:

“Therefore, we have confirmed that the random-forest approach outperforms conventional techniques for wind-speed vertical extrapolation, even under a more robust round-robin validation, which we recommend to avoid overestimating the potential performance of machine-learning techniques, which could lead to underestimation of the uncertainty in wind speed estimates.”

Thank you for having submitted a paper which makes a balanced and useful use of ML!

Thank you for taking the time to review our manuscript!
RESPONSE TO REVIEWER #2

In this document, the reviewer's comments are in black, the authors' responses are in red.

The authors thank the reviewer for their thoughtful comments, which helped us improve the quality of our manuscript.

The article “The importance of round-robin validation when assessing machine-learning-based vertical extrapolation of wind speeds” by Bodini & Optis details a round robin approach to vertical extrapolation from the 4 ARM SGP Doppler lidars using a random forest algorithm. The paper is well written and the reviewer agrees the necessity of a round-robin type approach to assess the accuracy of machine learning algorithms and make it more universal. Below are some comments/questions which probe into some of the details of the paper and would improve the paper if addressed in the next version.

1. Line 61: Extrapolation is not only generally done up to Hub-height but through the rotor swept area. So, I am not sure I follow the author’s argument here, that if hub-height winds are available extrapolation is unnecessary. The approach to go above hub-height can also be treated as a “Gap filling” approach for met-masts (when Lidars are moved around from one location to the other for a short period). Please clarify.
   We agree with the reviewer that the approach should not be limited to hub-height wind speed extrapolation, but can rather be used to obtain wind resource at any height of interest for wind energy production. To make this clear, we have changed the wording “hub-height wind speed” to expressions such as “heights relevant for wind energy production” or “heights of the rotor swept area” throughout the manuscript.

2. For power law type extrapolations, measurements not only at the surface but at multiple heights is needed to estimate the dynamic power law exponent. So please define what you mean by near-surface in the paper? Is it within surface layer or also above surface layer?
   We have rephrased the sentence in the introduction as “By contrast, conventional extrapolation approaches do not have nor require knowledge of hub-height wind speeds and therefore can generalize to any location where measurements are available at a single level near the surface (for the logarithmic law) or at two levels in the lower part of the boundary layer (for the power law).”.

3. The authors mention LLJs, frequently observed in the ARM site, how does this effect the ML output at higher heights?
   We have extensively studied ML extrapolation for LLJ events in a companion conference paper which is currently in review. We have added the following sentence to the Results section, after the analysis of the ML extrapolation performance with height: “As an application of the performance of the random forest in predicting wind speed at higher heights, we present the case study of a LLJ in a companion paper (Bodini and Optis, in review).” We will update the reference if the conference paper is reviewed before this manuscript is accepted for publication.
4. The idea of round-robin is fair for machine-learning based extrapolation, but only if the training has been done accounting for all atmospheric conditions that would be representative of other sites. As you know, ML models can only learn what is in their training dataset. Therefore, the round-robin type approaches come with a caveat that the search space of the variables expands to many of the common conditions (including external forcings specific to each site) observed in the atmosphere and at all the evaluated sites. This comment needs to be addressed in the paper with supporting evidence. See answer to comment 10.

5. For the SNR filtering, not only precipitation, but fog is also prevalent at SGP and it diminishes the range considerably at lower heights. Therefore, an upper limit on SNR could be important to filter out any abnormalities in radial velocity data. We have re-done our analysis by setting an upper limit on SNR, chosen after inspecting the data. We have rephrased the sentence in Section 2.1 as: “We discard from the analysis measurements measurements with a signal-to-noise ratio lower than −21 dB or higher than +5 dB (to filter out fog events), along with periods of precipitation, as recorded by a disdrometer at the C1 site.”.

6. Line 94: Maybe I am picky, but the poor data quality is because those measurements fall within the lidar blind zone? The Blind zone is generally 2 times the range-gate size, which fits the heights. If yes, please mention that for clarity. We have rephrased the sentence as follows: “Data recorded at two lowest heights (13 and 39 m AGL) could not be used because of their poor quality, as they lie in the lidar blind zone.”

7. Equation 2: The temperature used was from the sonic or from the cup anemometer for the fluxes? Sonic anemometer temperature measurements have significant biases and are not considered very accurate (Berg et al., 2017). This would cause errors in classifying stability or $L$. We have discussed with the instrument mentor at ANL, who confirmed that the flux data provided on the ARM website have been linearly corrected to account for the instrument issues the reviewer is mentioning. On the other hand, for the average temperature data, which were not corrected, we have now switched to use data from the 2-m temperature and humidity probe as done in Berg et al. 2017. Section 2.2 now reads:
8. How is atmospheric stability defined? Based on Richardson number of MO length? Please provide the thresholds or a reference from which you picked the thresholds for classifying stability for the MO type extrapolation.

We have added the following sentence in Section 2.2: “We consider stable conditions for $L > 0 \ m$, and unstable conditions for $L < 0 \ m$.”.

9. MO length is not known to be valid for complex terrain (Fernando et al., 2015), therefore these parameters would not fit well for all types of terrain/sites. Therefore, a note about applicability of the chosen parameters to different conditions/terrains would be needed to address the universality of these parameters for such an approach.

We have added the following sentence to Section 3.3: “We note that when similar techniques are applied to more complex sites, the Obukhov length might not be well-suited to capture atmospheric stability in complex terrain (Fernando et al., 2015), and therefore an accurate choice of the input variables as a function of the specific topography is recommended.”.

10. The effect of external forcings at different ARM sites are not considered, which is important in this context of machine learning (comment #4 above). The wakes from wind turbines have major impact on the hub-height winds at some of these sites. Sites E37 and E39 are far away from turbines or wind farms, while C1 and E41 are relatively closer and have considerable impact on the winds at hub-height in certain predominant wind directions. Please see attached the wind directions and distance from wind turbines at each of these sites and something similar must be included in your analysis. Therefore, I would recommend you can either discard the below sectors from your analysis or test the accuracy in waked conditions.
We agree with the reviewer that different forcings experienced at different sites have an importance when assessing the round-robin validation of the proposed machine learning method, and that explicit emphasis on this caveat should be included in the analysis. For the specific comment about the impact of wind farms, we have extensively studied this topic in the aforementioned companion conference paper.

We have added the following discussion paragraph to the Results section to make all these thoughts explicit to the reader:

“Moreover, we can expect the performance comparison to be influenced not only by the pure separation between training and testing sites, but also by the different forcings that each specific site experiences. Notably, Bodini and Optis (in review) compared the extrapolation performance of the proposed random forest approach before and after a wind farm was built in the vicinity of site C1, and found an increase in MAE up to 10% if waked data are not included in the training set. Therefore, to fully exploit the performance of the proposed machine learning approach in extrapolating the wind resource at sites different from the training one it is essential to build a training set of observations which can encompass the specific atmospheric conditions representative of the desired testing site.”

11. How much of these chosen parameters (TKE, L, WS4, WS65) explain the variance in the RF model? What is the unbiased predictor importance estimates of the chosen variables?

We have added the predictor importance analysis as suggested by the reviewer. The following paragraph has been added:

“The results of the analysis of the predictor performance are listed in Table 5. As already suggested by the partial dependence analysis, wind speed at 65 m AGL is the predictor with the largest importance in extrapolating wind speed at 143 m AGL. However, all the considered surface observations account for over 30% of the overall performance of the random forest. In particular, the addition of the Obukhov length to include direct atmospheric stability information in the algorithm has a not-negligible 8% importance.”

The following table has also been included in the manuscript:

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Relative importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 65 m</td>
<td>68%</td>
</tr>
<tr>
<td>WS 4 m</td>
<td>18%</td>
</tr>
<tr>
<td>time</td>
<td>3%</td>
</tr>
<tr>
<td>L</td>
<td>8%</td>
</tr>
<tr>
<td>TKE</td>
<td>3%</td>
</tr>
</tbody>
</table>

12. Figure 7: Maybe some additional explanation is required on how the dependence is calculated. It’s not very clear if it’s just a correlation type analysis or something else. Please provide more details here. Also, the extrapolated wind speeds (Y-axis) for all plots are not same and it’s not very clear why.

We have improved our introduction to Figure 7 in the results section, and added a reference where more information on partial dependence analysis can be found. The paragraph now reads: “Figure 7 shows the partial dependence plots, which show the marginal effect of
each input feature on the predicted extrapolated wind speed (Friedman, 2001). We note that the values on the y-axes have not been normalized, so that large ranges indicate strong dependence of extrapolated wind speed on the feature, whereas small ranges show weaker dependence.”.

Very Minor comment: The language is a bit colloquial for a journal and would urge the authors to take that into consideration for their revised manuscript. For example: Line 225: Maybe you can but I am not sure if it’s formal to end a sentence with “are”: please rephrase. Similar sentence structuring needs to be considered throughout the document. We have rephrased the sentence as “Distributions of the input features are also shown, which help distinguish densely populated regions, with strong statistical relationships, and sparsely populated regions, with weaker statistical relationships.” The whole manuscript has undergone editorial review by a professional native English-speaking editor.
The authors thank the reviewer for their thoughtful comments, which helped us improve the quality of our manuscript.

The authors present a machine learning approach to vertical extrapolation of wind speeds compared to standard approaches. The research is quite robust, described in detail and well written. The conclusion that the machine learning approach, a random forest, can be extrapolated to other sites as shown by this round robin evaluation is an important scientific discovery.

There are a few areas that can be further described or clarified to make this an excellent paper.

1.) Page 5 line 108 - it is stated that precipitation periods were excluded from the analysis. Please explain why and what impact this has on the analysis. We have rephrased the sentence and added a reference to a study on the impact of precipitation on the accuracy of sonic anemometer data. It now reads: “precipitation periods were excluded from the analysis to discard inaccurate measurements (Zhang et al. 2016).”

2.) Page 5 Line 11 - it is stated that a 30-min average is used. Is there a reason why 30-min was chosen and would that averaging period affect the results? No further analysis is needed - just an explanation or including in the results discussion how the averaging period may impact the analysis.

Because of the wrong line number listed, we could not determine whether the reviewer is referring to the 30-minute average period used for the lidar and sonic anemometer data, or for the 30-minute average period used for the Reynolds decomposition to calculate Obukhov length. In any case:

1) For the 30-minute average period used as resolution for the main data used in the analysis, the choice was due to the fact the sonic anemometer data were only publicly available at that time resolution. We have added the following sentence to Section 2.2 “processed data are available as 30-minute averages”. We have also added the following comment to the beginning of Section 3: “We acknowledge that the resolution of the data used will have an impact on the magnitude of the error values shown in the analysis (as observations at a higher time resolution would likely cause larger extrapolation errors). However, we do not expect the relative comparison between the different extrapolation techniques and the analysis of the predictor importance to be strongly affected by the resolution of the input features used.”

2) For the 30-minute average period used for the Reynolds decomposition, as stated in the paragraph (with appropriate references listed), 30-minute is the most common averaging period used to calculate fluxes for boundary layer processes, as it is considered to be shorter than the period of large-scale fluctuations, but longer than the period of short-term turbulence fluctuations, following considerations related to the spectral gap (Van Der Hoven, 1957).
We have added the suggested reference.

4.) Page 7 Lines 155-157 - the explanation of training, testing and cross-validation is not clear. Is the 5-fold cross validation performed on the 80% training data and the 20% testing data is held out for independent validation after the hyperparameters are chosen? Please describe so that it is clear the testing data was not used in the choosing of the hyperparameters.
We have rephrased the paragraph as: “We use a five-fold cross validation to evaluate different combinations of the hyperparameters, with 30 sets randomly sampled at each site. We use 80% of the data in the cross-validation, while the remaining 20% (selected without shuffling the original data set to avoid unfair predicting performance improvement because of auto-correlation in the data) is held out for independent testing.”

5.) Figure 7 are the partial dependence plots for the random forest, which are an important aspect of the interpretability of the machine learning models. However, it is better to show both predictor importance and partial dependence plots so that the relative importance of each variable and its associated partial dependence is known. Recommend adding in predictor importance plots or list to add value to the interpretability.
We have added the predictor performance analysis as suggested by the reviewer. The following paragraph has been added:
“The results of the analysis of the predictor performance are listed in Table 5. As already suggested by the partial dependence analysis, wind speed at 65 m AGL is the predictor with the largest importance in extrapolating wind speed at 143 m AGL. However, all the considered surface observations account for over 30% of the overall performance of the random forest. In particular, the addition of the Obukhov length to include direct atmospheric stability information in the algorithm has a not-negligible 8% importance.”
The following table has also been included in the manuscript:

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Relative importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 65 m</td>
<td>68%</td>
</tr>
<tr>
<td>WS 4 m</td>
<td>18%</td>
</tr>
<tr>
<td>time</td>
<td>3%</td>
</tr>
<tr>
<td>L</td>
<td>8%</td>
</tr>
<tr>
<td>TKE</td>
<td>3%</td>
</tr>
</tbody>
</table>
The importance of round-robin validation when assessing machine-learning-based vertical extrapolation of wind speeds

Nicola Bodini ¹ and Mike Optis ¹

¹National Renewable Energy Laboratory, Golden, Colorado, USA

Correspondence: Nicola Bodini (nicola.bodini@nrel.gov)

Abstract.

The extrapolation of wind speeds measured at a meteorological mast to wind turbine hub-height rotor-heights is a key component in a bankable wind farm energy assessment and a significant source of uncertainty. Industry-standard methods for extrapolation include the power law and logarithmic profile. The emergence of machine-learning applications in wind energy has led to several studies demonstrating substantial improvements in vertical extrapolation accuracy in machine-learning methods over these conventional power law and logarithmic profile methods. In all cases, these studies assess relative model performance at a measurement site where, critically, the machine-learning algorithm requires knowledge of the hub-height rotor-height wind speeds in order to train the model. This prior knowledge provides fundamental advantages to the site-specific machine-learning model over the power law and log profile, which, by contrast, are not highly tuned to hub-height rotor-height measurements but rather can generalize to any site. Furthermore, there is no practical benefit in applying a machine-learning model at a site where hub-height winds at the heights relevant for wind energy production are known; rather, its performance at nearby locations (i.e., across a wind farm site) without hub-height rotor-height measurements is of most practical interest. To more fairly and practically compare machine-learning-based extrapolation to standard approaches, we implemented a round-robin extrapolation model comparison, in which a random forest machine-learning model is trained and evaluated at different sites and then compared against the power law and logarithmic profile. We consider 20 months of lidar and sonic anemometer data collected at four sites between 50-100 kilometers apart in the central United States. We find that the random forest outperforms the standard extrapolation approaches, especially when incorporating surface measurements as inputs to include the influence of atmospheric stability. When compared at a single site (the traditional comparison approach), the machine-learning improvement in mean absolute error was 28% and 23% over the power law and logarithmic profile, respectively. Using the round-robin approach proposed here, this improvement drops to 19% and 14%, respectively. These latter values better represent practical model performance, and we conclude that round-robin validation should be the standard for machine-learning-based wind-speed extrapolation methods.

Copyright statement. This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Wind Energy Technologies Office. The views expressed in the article do
1 Introduction

Both the preconstruction and operational phases of wind farm projects require an accurate assessment of the wind resource at hub height—the heights of the rotor swept area—to forecast generated power (Brower, 2012). With the constant increase of the size of commercial wind turbines, the direct measurement of hub height wind speed—wind speed at heights relevant for wind energy production—is becoming more and more challenging because installing tall meteorological masts requires significant costs. Acquiring and deploying remote-sensing instruments, such as wind Doppler lidars, also involve substantial economic and technical investments. Therefore, it is common practice to obtain the desired characterization of the wind resource at hub height—the desired heights by vertically extrapolating the wind measurements available at lower levels (Landberg, 2015).

One of the most widely used methods to extrapolate wind speed from the measurement height to hub height—turbine rotor heights is by using a power law (Peterson and Hennessey Jr, 1978). Despite not having a physical basis in the theory of meteorology, this simple relationship can provide agreement with measured wind profiles, especially on monthly or annual timescales, thus justifying its popularity in the wind energy industry. A second commonly used relationship to represent wind profiles is based on a logarithmic law, more firmly based on the Monin-Obukhov Similarity Theory (MOST, Monin and Obukhov (1954)). While both these techniques allow for a simple and to a given extent adequate representation of wind profiles, the limits in their accuracy, especially under conditions of stable stratification, have been shown in various studies (Lubitz, 2009; Optis et al., 2016). Both stable stratification and wind flow in complex terrain violate the homogeneity assumption of the MOST theory, thus often deviating from a logarithmic profile and from the empirical power law profile (Ray et al., 2006). Moreover, neither law is capable of representing specific phenomena that typically occur in the nocturnal stable boundary layer in some regions, such as low-level jets (Sisterson et al., 1983), whose strong winds are of great benefit for wind energy production (Cosack et al., 2007). Offshore wind profiles have also been shown to significantly deviate from power law and logarithmic profiles (Högström et al., 2006).

Significant research has been conducted to overcome the limitations of the conventional methods used to vertically extrapolate the wind resource (Emeis, 2012; Optis et al., 2014; Badger et al., 2016; Optis and Monahan, 2017). More recently, machine-learning techniques have been applied to explore their potential in predicting wind speed aloft. Türkan et al. (2016) compared the performance of seven machine-learning algorithms in extrapolating the wind resource from 10 m to 30 m above ground level (AGL) at a wind farm in Turkey. Mohandes and Rehman (2018) applied deep neural networks to predict wind speed up to 120 m AGL using lidar measurements in a flat terrain site in Saudi Arabia. Finally, Vassallo et al. (in review) tested the performance of deep neural networks in extrapolating wind speed as a function of different input features, both in complex terrain and offshore, using lidar data. In all cases, the machine-learning models are compared against traditional extrapolation
techniques like the power or logarithmic law, and considerable improvements in extrapolation accuracy using machine-learning techniques have generally been found.

However, these recent studies assess machine-learning model performance at the site at which the model is trained, an approach that we believe is fundamentally biased. During the model training phase, machine-learning models benefit from having knowledge of the hub-height rotor-height wind speeds and are therefore highly tuned to the site at which they are trained. By contrast, conventional extrapolation approaches do not have nor require knowledge of hub-height rotor-height wind speeds and therefore can generalize to any location where near-surface measurements are available at a single level near the surface (for the logarithmic law) or at two levels in the lower part of the boundary layer (for the power law). Furthermore, the evaluation of machine-learning model performance at the site at which it is trained is not practical: if hub-height winds winds at the heights relevant for wind energy production are already known and measured, there is no need for an extrapolation.

To more fairly and practically validate machine-learning-based vertical extrapolation of wind speeds against conventional methods, a "round-robin" approach should be used. Such an approach involves training the model at a given site and then assessing its performance at other sites where hub-height rotor-height wind speeds are unknown to the model. This approach would provide a more meaningful and fair comparison against conventional extrapolation methods and would more accurately quantify the advantage of machine-learning-based approaches. To our knowledge, however, no such round-robin validation has been performed in the literature; therefore, the improved performance of machine-learning algorithms over conventional extrapolation methods might currently be overestimated.

In this study, we implement a round-robin validation approach to assess the performance of machine-learning-based vertical extrapolation of wind speeds against conventional methods. Specifically, we contrast a traditional random forest machine-learning algorithm against the power law and logarithmic law. We consider four measurement sites in the central United States located within 50-100 km of each other for the round-robin validation. In Section 2, we describe the lidar and surface measurements used in our analysis. Details on the extrapolation techniques are presented in Section 3. In Section 4, we apply a round-robin approach to test how the predictive performance of the random forest varies with distance, when the learning algorithm is used to predict wind speed at a location different from the training site, and contrast relative performance when implementing a round-robin comparison versus a single-site comparison. We also compare the predictive performance of machine learning with the power law and logarithmic profile. Finally, we analyze how the error in wind-speed vertical extrapolation by the learning algorithm varies with different input features and with height of predicted wind speed. We conclude and suggest future work in Section 5.

2 Data: The Southern Great Plains (SGP) Atmospheric Observatory

We use observations collected at the Southern Great Plains (SGP) atmospheric observatory, a field measurement site in north-central Oklahoma, managed by the Atmospheric Radiation Measurement (ARM) Research Facility. To assess the variability in space of the performance of machine-learning-based wind speed vertical extrapolation, we focus on four different locations at the site (Figure 1), over a region about 100 km wide. The site is primarily flat, and its land use is characterized by cattle
pasture and wheat fields. Winds mostly flow from the South, with more variability observed in the winter. For our analysis, we use 30-minute average data from 13 November 2017 to 23 July 2019 (for a total of over 29,000 timestamps).

2.1 Lidars

At each of the four locations considered in our study, a Halo Streamline lidar (main technical specifications in Table 1) was deployed. A preliminary intercomparison study of the lidars performed by Atmospheric Radiation Measurement (ARM) research confirmed that all the lidars produce consistent measurements, with correlation coefficients greater than 0.9, and precision less than 0.1 m/s (Newsom, 2012). The lidars performed a variety of scan strategies. For this analysis, we retrieved horizontal wind speed from the full 360° conical scans, which were performed every ~10-15 minutes and took about 1 minute to complete. We use the velocity-azimuth-display approach in Frehlich et al. (2006) to retrieve the horizontal wind speed from
Table 1. Main Technical Specifications of the ARM Halo Lidars

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength</td>
<td>1.5 µm</td>
</tr>
<tr>
<td>Laser pulse width</td>
<td>150 ns</td>
</tr>
<tr>
<td>Pulse rate</td>
<td>15 kHz</td>
</tr>
<tr>
<td>Pulses averaged</td>
<td>20,000</td>
</tr>
<tr>
<td>Points per range gate</td>
<td>10</td>
</tr>
<tr>
<td>Range-gate resolution</td>
<td>30 m</td>
</tr>
<tr>
<td>Minimum range gate</td>
<td>15 m</td>
</tr>
<tr>
<td>Number of range gates</td>
<td>200</td>
</tr>
</tbody>
</table>

the line-of-sight velocity recorded in the scans. To do so, we assume that the horizontal wind field is homogeneous over the scan volume, and that the average vertical velocity is zero (Browning and Wexler, 1968). Measurements. We discard from the analysis measurements with a signal-to-noise ratio lower than –21 dB were discarded from analysis or higher than +5 dB (to filter out fog events), along with periods of precipitation, as recorded by a disdrometer at the C1 site. Finally, processed data were averaged over 30-minute periods. For this study, data from five range gates are used, corresponding to heights of 65, 91, 117, 143, and 169 m AGL. Data recorded at two lowest heights (13 and 39 m AGL) could not be used because of their poor quality, as they lie in the lidar blind zone.

2.2 Surface Measurements

Surface data were collected by sonic anemometers on flux measurement systems and temperature probes, which were deployed at each of the four considered sites. The sonic anemometer measured the three wind components at a 10-Hz resolution; processed data are provided as 30-minute averages. We use wind speed at 4 m AGL, and turbulent kinetic energy (TKE) calculated from the variance of the three components of the wind flow as:

\[ TKE = \frac{1}{2} (\sigma_u^2 + \sigma_v^2 + \sigma_w^2) \]  

(1)

Also, at each site we calculate the Obukhov length, \( L \), to quantify atmospheric stability:

\[ L = -\frac{T_v \cdot u_*^3}{k \cdot g \cdot w \cdot T_v} \]  

(2)

where \( k = 0.4 \) is the von Kármán constant; \( g = 9.81 \text{ m s}^{-2} \) is the gravity acceleration; \( T_v \) is the virtual temperature (K); \( u_* = (\overline{u'v'^2} + \overline{v'w'^2})^{1/4} \) is the friction velocity (m s\(^{-1}\)); and \( \overline{w'T'_v} \) is the kinematic virtual temperature flux (K m s\(^{-1}\)). A linear correction (Pekour, 2004) has been applied to the flux processing to account for sonic anemometer deficiencies in measuring temperature at sites E37, E39, and E41. For the same reason, at these sites, we use \( T_v \) from temperature and humidity probes at 2 m AGL. Reynolds decomposition for turbulence fluxes has been applied using a 30-minute averaging period, as commonly chosen for boundary-layer processes (De Franceschi and Zardi, 2003; Babić et al., 2012). We consider stable
conditions for $L > 0\text{m}$, and unstable conditions for $L < 0\text{m}$.

Data have been quality-controlled, and precipitation periods were excluded from the analysis to discard inaccurate measurements (Zhang et al., 2016).

3 Wind-Speed Extrapolation Techniques

In our analysis, we compare the conventional techniques of power law and logarithmic profile for wind-speed extrapolation with a machine-learning random forest. The standard output or "response" variable in our analysis is the 30-minute average wind speed at 143 m AGL. We acknowledge that the resolution of the data used will have an impact on the magnitude of the error values shown in the analysis (as observations at a higher time resolution would likely cause larger extrapolation errors). However, we do not expect the relative comparison between the different extrapolation techniques and the analysis of the predictor importance to be strongly affected by the resolution of the input features used.

3.1 Power Law

The first traditional technique we consider assumes a power law to model the wind vertical profile and extrapolate wind speed, $U$, from a height, $z_1$ to $z_2$:

$$U(z_2) = U(z_1) \left( \frac{z_2}{z_1} \right)^\alpha$$

(3)

where $\alpha$ is the shear exponent. At each site we calculate a time series of $\alpha$ values by inverting Eq. (3), using data at 4 and 65 m AGL. We then use the power-law profile to extrapolate wind speed measured at 65 m AGL up to 143 m AGL.

3.2 Logarithmic Law

The second traditional technique we consider assumes a logarithmic profile (Stull, 2012) for the wind speed, $U$, as a function of height, $z$:

$$U(z) = \frac{u_*}{\kappa} \left[ \ln \left( \frac{z}{z_0} \right) - \Psi_m \left( \frac{z}{L}, \frac{z_0}{L} \right) \right]$$

(4)

where $u_*$ is friction velocity, $\kappa = 0.41$ is the von Kármán constant, $z_0$ is the roughness length, $L$ is the Obukhov length, and $\Psi_m$ is a function to include a correction based on atmospheric stability. The roughness length, $z_0$, is usually somewhat arbitrarily chosen based on tabulated values, depending on the land cover at the site of interest. To avoid issues connected to the choice of $z_0$ and the large sensitivity of the logarithmic wind profile to it (Optis et al., 2016), we use the following expression that relates wind speed at two levels, $z_1$ (the height where the wind speed is known) and $z_2$ (the height where extrapolated winds are needed):

$$U(z_2) - U(z_1) = \frac{u_*}{\kappa} \left[ \ln \left( \frac{z_2}{z_1} \right) - \Psi_m \left( \frac{z_2}{L}, \frac{z_1}{L} \right) \right]$$

(5)
The stability correction, $\Psi_m$, is calculated from an integral over the vertical dimension between the two considered heights, $z_1$ and $z_2$:

$$
\Psi_m \left( \frac{z_2}{L}, \frac{z_1}{L} \right) = \int_{z_1/L}^{z_2/L} \frac{1 - \phi_m(\xi)}{\xi} d\xi
$$

(6)

where the stability function, $\phi_m$, can be chosen from the different formulations recommended in the literature. For stable conditions, we follow the expression proposed by Beljaars and Holtslag (1991), one of the most commonly used in the wind energy community:

$$
\phi_{m,\text{stable}}(\xi) = 1 + a \xi + b \xi (1 + c - d \xi) \exp[-d \xi]
$$

(7)

where $a = 1$, $b = 2/3$, $c = 5$, and $d = 0.35$. For unstable conditions, we use the widely accepted formulation by Dyer and Hicks (1970):

$$
\phi_{m,\text{unstable}}(\xi) = (1 - 16 \xi)^{-1/4}
$$

(8)

In neutral conditions, $\Psi_m = 0$.

### 3.3 Random Forest

The main focus of this study is to contrast the validation of machine-learning-based wind-speed extrapolation using a single-site versus a round-robin approach. Therefore, we defer an exhaustive comparison of different machine-learning algorithms to a later study and only consider a relatively simple random forest in this analysis. A random forest is an ensemble of regression trees, which are trained on different random subsets of the training set. The final prediction is then calculated as the average from the single trees. For the analysis, we used the RandomForestRegressor module in Python’s Scikit-learn (Pedregosa et al., 2011). Additional details on random forests can be found in machine-learning textbooks (e.g. Hastie et al. 2005).

The input features used for the wind-speed extrapolation are listed in Table 2. As wind speeds often show a diurnal cycle in response to atmospheric stability (Barthelmie et al., 1996; Zhang and Zheng, 2004), we have included multiple variables to capture the diurnal variability in the atmospheric boundary layer: Obukhov length, TKE, and time of day. To preserve the cyclical nature of time of day (i.e., hour 23 and hour 0 being close to each other), we calculate the sine and cosine\(^1\) of the normalized time of day and include these two input features to represent time in the learning algorithm. We note that when similar techniques are applied to more complex sites, the Obukhov length might not be well-suited to capture atmospheric stability in complex terrain (Fernando et al., 2015), and therefore an accurate choice of the input variables as a function of the specific topography is recommended.

---

\(^1\)both needed because each value of sine only (or cosine only) is linked to two different times.
Table 2. Input Features Considered in the Analysis for the Random Forest Algorithm

<table>
<thead>
<tr>
<th>Input feature</th>
<th>Acronym</th>
<th>Measurement height (m AGL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-minute average wind speed from lidar at 65 m AGL</td>
<td>WS 65 m</td>
<td>65</td>
</tr>
<tr>
<td>(\sin) of time of the day</td>
<td>time</td>
<td>-</td>
</tr>
<tr>
<td>(\cos) of time of the day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-minute average wind speed from sonic anemometer at 4 m AGL</td>
<td>WS 4 m</td>
<td>4</td>
</tr>
<tr>
<td>Turbulent kinetic energy</td>
<td>TKE</td>
<td>4</td>
</tr>
<tr>
<td>Obukhov–Obukhov length</td>
<td>L</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 3. Algorithm Hyperparameters Considered for the Random Forest and Their Considered Values in the Cross Validation

<table>
<thead>
<tr>
<th>Hyperparameter</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of estimators</td>
<td>10–800</td>
</tr>
<tr>
<td>Maximum depth</td>
<td>4–40</td>
</tr>
<tr>
<td>Maximum number of features</td>
<td>1–6</td>
</tr>
<tr>
<td>Minimum number of samples to split</td>
<td>2–11</td>
</tr>
<tr>
<td>Minimum number of samples for a leaf</td>
<td>1–15</td>
</tr>
</tbody>
</table>

3.3.1 Hyperparameter Selection

To create a more accurate algorithm, hyperparameters need to be set before the learning process starts. For the random forest, we consider the hyperparameters listed in Table 3, which also shows the values sampled. We use a five-fold cross validation to evaluate different combinations of the hyperparameters, with 30 sets randomly sampled at each site. We use 80% of the data to train the random forest in the cross-validation, while the remaining 20% are kept for testing (selected without shuffling the original data set to avoid unfair predicting performance improvement because of auto-correlation in the data) is held out for independent testing. The performance of the model is evaluated based on the root-mean-squared error between measured and predicted wind speed at 143 m AGL. The set of hyperparameters that leads to the lowest root-mean-squared error is selected and used to assess the final performance of the learning algorithm, described in Section 4. A table with the selected sets of hyperparameters at each site is shown in the Appendix.

4 Results

A robust validation of the proposed machine-learning approach for wind-speed vertical extrapolation requires testing the method at sites different from the one used for training. We therefore apply a round-robin approach to train a random forest at each of the four sites, using the input features listed in Table 2, and then test it to extrapolate 30-minute wind-speed data.
Figure 2. Testing mean absolute error (MAE) in predicting 30-minute average wind speed at 143 m AGL for the different sites, as a function of the site used to train the random forest at 143 m AGL at the remaining three sites. Figure 2 shows a heat map of the testing MAE found from this round-robin validation. As expected, the random forest provides the most accurate results when it is tested at the site where it is also trained. For all the considered cases, we find a larger MAE when considering the more practical application of a learning algorithm used to extrapolate winds at a site where it has no knowledge of the winds at the desired height. For all of the considered sites, the MAE increases about 10–15% when the algorithm has no prior knowledge of measured hub-height wind speeds. Different results can be expected when considering sites with a more complex topography, or when performing the round-robin approach over different spatial separations. Moreover, we can expect the performance comparison to be influenced not only by the pure separation between training and testing sites, but also by the different forcings that each specific site experiences. Notably, Bodini and Optis (in review) compared the extrapolation performance of the proposed random forest approach before and after a wind farm was built in the vicinity of site C1, and found an increase in MAE up to 10% if waked data are not included in the training set. Therefore, to fully exploit the performance of the proposed machine learning approach in extrapolating the wind resource at sites different from the training one it is essential to build a training set of observations which can encompass the specific atmospheric conditions representative of the desired testing site.

The round-robin validation of the machine-learning approach can be completed by comparing the proposed approach with the predictions from conventional techniques for wind-speed vertical extrapolation. In fact, the considered traditional extrapolation laws have a "universal" nature because they can be applied at any site without requiring knowledge of the wind speed at

<table>
<thead>
<tr>
<th></th>
<th>Site C1</th>
<th>Site E37</th>
<th>Site E39</th>
<th>Site E41</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site C1</td>
<td>0.66</td>
<td>0.82</td>
<td>0.80</td>
<td>0.79</td>
</tr>
<tr>
<td>Site E37</td>
<td>0.75</td>
<td>0.75</td>
<td>0.77</td>
<td>0.76</td>
</tr>
<tr>
<td>Site E39</td>
<td>0.72</td>
<td>0.83</td>
<td>0.71</td>
<td>0.76</td>
</tr>
<tr>
<td>Site E41</td>
<td>0.79</td>
<td>0.85</td>
<td>0.79</td>
<td>0.69</td>
</tr>
</tbody>
</table>
Figure 3. Testing MAE in predicting 30-minute average wind speed at 143 m AGL for the different sites, and the different techniques considered in the study.

The extrapolation height. Therefore, a fair comparison with the proposed machine-learning approach needs to include a learning algorithm tested at a site where it has no previous knowledge of the wind speed at the desired height. Following the round-robin validation described earlier in this section, we summarize the testing MAE values for all of the approaches we considered in this study, at the four sites, in Figure 3. For the random forest, we include the MAE obtained both when training and testing sites coincide as well as the average results from the round-robin validation. We find that the random-forest approach outperforms the conventional techniques, even when the training and testing sites are different (at the distances sampled in our analysis), although with a reduced decrease in MAE. The percentage reduction in MAE achieved by the random forest over conventional techniques is summarized in Table 4. When evaluated at a single site, we find that the random-forest approach achieves a 23% reduction in MAE compared to the logarithmic law, and a 28% reduction with respect to the power law. However, when the round-robin validation is taken into account, the reduction in MAE decreases to 14% and 20%, respectively.

For the comparison with the power-law predictions, additional caveats are needed. While we acknowledge that determining \( \alpha \) using wind-speed data at 4 and 65 m AGL is not ideal and does not realistically reproduce the standard industry approach (where the lower height is typically around 40 m), wind-speed measurements at other heights below 65 m AGL were not available for the considered lidar data set. To assess
the lidars were available: 91, 117, 143, and 169 m AGL. We then extrapolated wind speeds at the same four levels, using both

evaluations, MAE error considered::

Percentage Reduction in Wind-Speed Extrapolation MAE from the Random Forest Approach Over the Logarithmic Law and Power Law.

<table>
<thead>
<tr>
<th>Error reduction relative to LOGARITHMIC LAW</th>
<th>C1</th>
<th>E37</th>
<th>E39</th>
<th>E41</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning algorithm trained at the same site</td>
<td>-2422%</td>
<td>-2321%</td>
<td>-23%</td>
<td>-25%</td>
<td>-23%</td>
</tr>
<tr>
<td>Learning algorithm trained at a different site</td>
<td>-1411%</td>
<td>-1412%</td>
<td>-1715%</td>
<td>-1617%</td>
<td>-14%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Error reduction relative to POWER LAW</th>
<th>C1</th>
<th>E37</th>
<th>E39</th>
<th>E41</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning algorithm trained at the same site</td>
<td>-2524%</td>
<td>-36%</td>
<td>-27%</td>
<td>-2425%</td>
<td>-28%</td>
</tr>
<tr>
<td>Learning algorithm trained at a different site</td>
<td>-1413%</td>
<td>-2830%</td>
<td>-2019%</td>
<td>-1516%</td>
<td>-2520%</td>
</tr>
</tbody>
</table>

whether this choice is responsible for the difference in performance between power law and random forest, we calculated a
second set of \( \alpha \) values by using wind-speed data at 65 m and 91 m AGL, and then extrapolated wind speed from 91 m AGL
up to 143 m AGL. We then compared the power-law prediction with the results from a random forest used to predict wind
speed at 143 m AGL and trained by adding wind speed at 91 m AGL to the input feature set described in Table 2. We find
that the random forest still outperforms the power law, although with a reduced difference in MAE between the two methods
(results shown in the Supplement), even under the round-robin approach. The need for considering the spatial variability of the
machine learning approach to avoid overestimating its performance is therefore demonstrated.

In addition, it is important to check whether the results of the performance comparison are affected by the time resolution at
which the shear exponent \( \alpha \) is calculated. Wind energy consultants apply a variety of methods to calculate shear (Brower, 2012):
one could calculate shear values at each timestamp (as done in our analysis), or use a single average shear exponent, or consider
various shear values based on bins of wind direction and/or time of day. To compare the time series-based shear calculation
with its most different approach, we test the performance of the power law in extrapolating the average wind resource from 65
m AGL to 143 m AGL using only a single mean value for the shear exponent, calculated as the average of the \( \alpha \) values at each
considered timestamp. We find that the average extrapolated wind speed from the random forest approach still has a smaller
error compared to the average extrapolated wind speed using the mean shear value, at all the considered sites (across-site
MAE for random forest is 0.01 m s\(^{-1}\), for power law is 0.13 m s\(^{-1}\)). Given the overall small MAE values found for both
methods, we can also conclude that machine-learning-based extrapolation approaches are most beneficial for time series-based
extrapolations, as deficiencies in conventional approaches tend to average out more when considering the long-term average
results.

To further validate our performance comparison, it is important to assess whether our results hold when wind speed is
extrapolated to different heights. To assess this dependence, at each site we tested and trained four random forests using all the
input features in Table 2 to predict the 30-minute average wind speed at each of the four heights where measurements from
the lidars were available: 91, 117, 143, and 169 m AGL. We then extrapolated wind speeds at the same four levels, using both
Figure 4. Testing $R^2$ and MAE as a function of the height of the extrapolated predicted wind speed, for the three considered techniques the power law and the logarithmic profile. Figure 4 shows how the testing $R^2$ and MAE, vary with the height of the target wind speed, as across-site average, for the three considered extrapolation techniques. The predicting performance of all three methods degrades with height; however, the random forest outperforms the conventional techniques at each of the considered levels. Notably, we find that the performance of the random forest degrades more slowly with height than the conventional extrapolation methods, highlighting the limitations of these conventional methods over large vertical extrapolation ranges. As an application of the performance of the random forest in predicting wind speed at higher heights, we present the case study of a LLJ in a companion paper (Bodini and Optis, in review).

Finally, it is important to determine whether the machine-learning-based approach outperforms the conventional techniques in all atmospheric stability conditions, and, if so, in which conditions the proposed approach is more beneficial. To complete this analysis, we bin the MAE for the three techniques, based on the inverse of the Obukhov length (Figure 5). Data were divided into 12 equally populated groups, based on $L$, and the MAE was calculated for each group and each technique. The random forest shows the lowest error across all considered stability bins. Moreover, we see that the machine-learning-based approach provides the largest reduction in MAE over the conventional techniques under strongly stable conditions.

To better understand the strong performance of the random forest in stable conditions, we examine its performance as a function of the set of input features used in the algorithm. Figure 6 shows the testing $R^2$ coefficient and MAE in predicting wind speed at 143 m AGL for different sets of input features at each site and averaged across the four sites. To investigate the potential benefit of including the effects of atmospheric turbulence and stability, we first consider as a base case a random forest that only uses wind speed at 65 m AGL to predict wind speed at 143 m AGL. Then, we progressively add surface winds,
Figure 5. Testing MAE in predicting wind speed at 143 m AGL as a function of atmospheric stability, measured in terms of the inverse of the Obukhov length, for the random forest, power law, and logarithmic law, at the C1 site. The distribution of $L^{-1}$ is shown in light blue.

Figure 6. Testing $R^2$ and MAE in predicting the 30-minute average wind speed at 143 m AGL for the different sites and input feature combinations of time of day (the simplest proxy to include information connected to atmospheric stability), Obukhov length, and finally, TKE. When the random forest is trained using only wind speed at 65 m and 4 m, AGL provides a mean absolute error of 0.88-0.86 m s$^{-1}$. Critically, this value is approximately the same magnitude of the power law and logarithmic profile performance. When the time of day, Obukhov length, and TKE are added as input features to the random forest, we find a 20% improvement in the
predictive performance, with a further reduction in MAE of 20% (0.70 m s\(^{-1}\) on average). Therefore, the machine-learning-based approach shows improved predictive performance, thanks to its ability to account for atmospheric stability without the need of explicit physical parameterizations, as in the case of the logarithmic profile.

Additional information on the sensitivity of the extrapolated wind speed on the different input features can be provided by considering the partial dependence plots and the predictor performance from the random forest used to predict wind speed at 143 m AGL at site C1 (Figure 7; similar results found at the other sites are not shown). Large ranges in the Figure 7 shows the partial dependence plots, which show the marginal effect of each input feature on the predicted extrapolated wind speed (Friedman, 2001). We note that the values on the y-axis-y-axes have not been normalized, so that large ranges indicate strong dependence of extrapolated wind speed on the feature, whereas small ranges show weaker dependence. Distributions of the input features are also shown, which help determine where the relationship shown by the partial dependence plots can be considered statistically significant, based on how densely populated the different ranges of input values are distinguish densely populated regions, with strong statistical relationships, and sparsely populated regions, with weaker statistical relationships.  

Figure 7. Extrapolated wind-speed dependence on individual features for the C1 site. The distribution of each feature is shown in light blue.
### Table 5. Predictor importance for the random forest used to extrapolate winds at 143 m AGL at site C1

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Relative importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 65 m</td>
<td>68%</td>
</tr>
<tr>
<td>WS 4 m</td>
<td>18%</td>
</tr>
<tr>
<td>time</td>
<td>3%</td>
</tr>
<tr>
<td>L</td>
<td>8%</td>
</tr>
<tr>
<td>TKE</td>
<td>3%</td>
</tr>
</tbody>
</table>

For time of day, the one-dimensional plot shown is derived as a subsample of the two-dimensional partial dependence plot, which was obtained by evaluating the sensitivity of extrapolated wind speed on both the sine and cosine of the normalized time. The key relationships shown in Figure 7 can be summarized as follows:

- Wind speed at 65 m AGL shows a strong positive relationship with extrapolated wind speed at 143 m AGL, with the largest sensitivity among all of the input features, as shown in the plot by the large range of values in wind speed at 143 m AGL.

- Extrapolated wind speed has a clear dependence on time of day, with a distinct diurnal cycle and a peak at approximately 10 UTC (4 a.m. local standard time), and a minimum at 23 UTC (5 p.m. local standard time).

- Surface wind speed has a moderate impact on extrapolated wind speed. A minimum in predicted wind speed at 143 m AGL is found for relatively low wind speed at 4 m AGL ($\sim 4 \text{ m s}^{-1}$), followed by a systematic increase of extrapolated winds with surface winds. We interpret the negative trend observed for low surface winds as an effect of the fact that very stable conditions are often associated to decoupling, with very low surface wind speeds and increased winds aloft, due to suppressed turbulent mixing.

- Extrapolated winds consistently show, per time of day, a strong relationship with atmospheric stability when quantified by the Obukhov length (whose inverse is shown in the plot to avoid discontinuities). Stable conditions show stronger winds compared to unstable conditions, with a sharp increase under neutral conditions.

- TKE has a smaller impact on extrapolated winds, with a peak for $\text{TKE} \sim 0.5 \text{ m}^2\text{s}^{-2}$ and a subsequent decrease in extrapolated wind speed as TKE increases, again consistent with what we found in terms of atmospheric stability.

The results of the analysis of the predictor performance are listed in Table 5. As already suggested by the partial dependence analysis, wind speed at 65 m AGL is the predictor with the largest importance in extrapolating wind speed at 143 m AGL. However, all the considered surface observations account for over 30% of the overall performance of the random forest. In particular, the addition of the Obukhov length to include direct atmospheric stability information in the algorithm has a not-negligible 8% importance. Overall, the results show the importance of including surface data, especially information...
connected to atmospheric stability, when vertically extrapolating wind speed, together with the more conventional use of wind-speed aloft.

5 Conclusions

Vertically extrapolating wind speeds is often required to obtain a quantitative assessment of the wind resource available at the hub height of commercial wind turbines. Conventional techniques traditionally used for this purpose, namely a power law and a logarithmic profile, suffer limitations that increase project uncertainty, ultimately leading to increased financial risks for wind energy production. To overcome these drawbacks, machine-learning techniques have been proposed as a novel and alternative approach for wind-speed extrapolation. A fair and practically useful evaluation of the performance of machine-learning-based approaches needs to extrapolate wind speed at a site where the algorithm has no prior knowledge of the wind speed at the desired height (i.e., at a testing site different than the training one). However, the literature on the topic does not include such validation.

In our analysis, we have performed the first round-robin validation of a random-forest approach to extrapolate wind speed, using 20 months of lidar and sonic anemometer observations from four locations, spanning a 100-km-wide region in the central United States. For the performance of the learning algorithm, we find that including surface atmospheric measurements, and atmospheric stability in particular, reduces the mean absolute error in extrapolated winds by over 30%, compared to including a learning algorithm that only uses wind-speed aloft as input. The benefit of including more physical parameters in a data-driven model clearly demonstrates its importance. Moreover, using a constant set of input features, we find that the accuracy of the random forest decreases as the height of the extrapolated winds increases.

Although our proposed approach achieves, on average, a 25%-accuracy improvement over the use of conventional power law and logarithmic profile for wind-speed extrapolation when the algorithm is trained and tested at the same site, this improvement is reduced to 17% when considering the round-robin validation. We therefore recommend that a, even under a more robust round-robin validation be applied, which we recommend to avoid overestimating the potential performance of machine-learning techniques, which could lead to underestimation of the uncertainty in wind speed estimates. In real world applications, a machine learning algorithm could be trained on observations collected by a single lidar, and then used to extrapolate wind speed at nearby locations, where only much cheaper short meteorological masts would need to be installed.

Future work can expand our round-robin approach by considering different machine-learning algorithms. In addition, the influence of different topographic conditions on the performance of machine-learning-based approaches for wind-speed vertical extrapolation can be considered. Finally, a similar analysis using offshore data could be replicated to help further foster the offshore wind energy industry, specifically the extrapolation of buoy-based, near-surface measurements of wind speed.
Code and data availability. Data from the Southern Great Plains atmospheric observatory are publicly available at https://www.arm.gov/capabilities/observatories/sgp.

Appendix A: Optimized Hyperparameter Values

Table A1 shows the optimized values of the random forest hyperparameters for each site, as a result of the cross validation.

Table A1. Algorithm Hyperparameters Considered for the Random Forest and Their Selected Values for Each Site as a Result of Cross Validation

<table>
<thead>
<tr>
<th>Hyperparameter</th>
<th>Possible values</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of estimators</td>
<td>10 - 800</td>
<td>578</td>
<td>679</td>
<td>614</td>
</tr>
<tr>
<td>Maximum depth</td>
<td>4 - 40</td>
<td>27</td>
<td>40</td>
<td>36</td>
</tr>
<tr>
<td>Maximum number of features</td>
<td>1 - 6</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Minimum number of samples to split</td>
<td>2 - 11</td>
<td>8</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>Minimum number of samples for a leaf</td>
<td>1 - 15</td>
<td>40</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

Author contributions. NB performed the analysis on the Southern Great Plains data, in close consultation with MO. NB wrote the manuscript, with significant contributions by MO.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. Data were obtained from the Atmospheric Radiation Measurement (ARM) Program sponsored by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division. We thank Dr. Paytsar Muradyan for giving us insights on how to use ARM data.
References

Babić, K., Bencetić Klaić, Z., and Većenaj, Ž.: Determining a turbulence averaging time scale by Fourier analysis for the nocturnal boundary layer, Geofizika, 29, 35–51, 2012.


