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Abstract. A brimmed diffuser for a wind turbine, also known as a wind lens, is a ring-like short duct that is installed around 

a rotor. It gathers and accelerates wind to improve the power generation efficiency from the wind turbine, and this effect 

results from vortex shedding intentionally generated by the brim. However, periodic vortex shedding can induce a vibration 

in the wind lens structure, which could potentially harm it in the case where resonance occurs when the vortex shedding 10 

frequency corresponds to the natural frequency of the wind lens structure. In this study, we investigated the fundamental 

mechanism of the vortex-induced vibration (VIV) in the brimmed diffuser structure at the Reynolds number of 288. A 2D 

aeroelastic analysis was conducted, utilizing 2D computational fluid dynamics coupled with the equation of motion in modal 

space based on the 3D FEM analysis. The 2D aeroelastic analysis provided a reasonable estimation of the critical wind 

speeds for the actual VIV observed in the wind lens structure. Also, we clarified the vibrational modes critical to the VIV of 15 

the wind lens structure, which are the radial and rotational modes of the brimmed diffuser section. Both modes were 

accompanied by the circumferential bending oscillation of the support arms fixing the brimmed diffuser and were susceptible 

to the vortex shedding patterns. 

1 Introduction 

The improvement of power extraction from wind turbines is a critical issue in wind engineering. It is also an attempt to 20 

overcome the Betz limit, which defines the maximum efficiency of kinetic energy extraction from wind turbines as 16/27 

(Betz, 1928). To enhance the power efficiency of horizontal axis wind turbines (HAWTs), the concept of a diffuser was 

devised (Foreman et al., 1977; de Vries, 1979; Igra, 1980), and wind turbines with the diffuser were termed diffuser-

augmented wind turbines (DAWTs). The theory of the DAWTs is that it is possible to amplify the power output from wind 

turbines by boosting the mass flow passing through the rotor with a diffuser, based on the principle that the power output is 25 

proportional to wind speed cubed. The diffuser for DAWTs is an annular wing whose cross-section is similar to a 

streamlined airfoil for an aircraft, and the rotor is placed inside the diffuser. When wind flows into the diffuser, the 

circulation around the airfoil-shaped cross-section of the diffuser is formed into a circumferential array along with the ring-

like diffuser, causing the lift force to be generated inward. Consequently, more mass flow is induced, and wind speed 

https://doi.org/10.5194/wes-2020-29
Preprint. Discussion started: 23 March 2020
c© Author(s) 2020. CC BY 4.0 License.



2 

 

through the rotor increases. As a result, the augmented power output can be obtained in comparison with the conventional 30 

HAWTs, and the Betz limit is exceeded (Hansen et al., 2000; van Bussel, 2007). 

A brimmed diffuser, also called a wind lens, was developed to effectively accelerate the wind speed at the rotor (Ohya et 

al., 2002; Ohya et al., 2004). A wind lens turbine (WLT) denotes the wind power generation system in which the wind 

turbine is installed inside the wind lens shroud. As shown in Fig. 1a, the wind lens features a large brim at the diffuser exit. 

Unlike the diffuser for DAWTs, which has a cross-sectional shape similar to a streamlined airfoil, the cross-section of the 35 

wind lens is a cycloidal curve with a vertical straight line added at the end of the curve (illustrated in Fig. 1b). It is designed 

to intentionally disturb the airflow passing by the diffuser to generate vortex shedding behind the brim, causing the air 

pressure in the region behind the brim to decrease, and the wind passing through the rotor is drawn to the low-pressure 

region and is accelerated (Ohya et al., 2002). This effect not only contributes to enhancing the power output from the wind 

turbine but also enables the wind turbines to operate at relatively low wind speeds (Abe et al., 2005; Ohya and Karasudani, 40 

2010).  

 

Figure 1. A WLT filmed at Kasuga, Fukuoka, Japan on April 3, 2012 (a), and A schematic illustration of the principle of WLTs (b) 

 

On April 3, 2012, self-induced vibration in the brimmed diffuser for a 3 kW WLT installed at Kasuga, Fukuoka, Japan, 45 

was accidentally observed for approximately 15 minutes at 6:30 p.m. At the time of the observation, the weather was clear 

and windy, the average wind speed was 10.6 m/s, and a wind speed of 19.5 m/s was recorded as the maximum instantaneous 

wind speed (Japan Meteorological Agency, 2012). No damage was found in the wind lens after the noticeable vibration. 

However, this type of vibration caused by the wind could potentially harm the structure of the WLT system. Chou et al. 

(2013) reported that vortex shedding from composite rotor blades for an HAWT caused a local resonance vibration in the 50 

wing edge, which resulted in the unexpected delamination and cracking of the composite blades during a typhoon. The 

maximum instantaneous wind speed of the typhoon was lower than the maximum wind speed of the wind turbine design. As 

this study suggests, the wind lens would not be an exception. 

(a)  (b)  
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The interactions between fluid flow and structure have been observed in a variety of structures, including heat exchanger 

tubes, tall buildings, and large bridges. The vibration phenomena induced by the fluid flow have interested many engineers 55 

and researchers for decades, and fundamental studies on the flow-induced vibration (FIV) have been conducted for elastic or 

elastically mounted circular cylinders (Sarpkaya, 1979; Bearman, 1984; Sarpkaya, 2004; Williamson and Govardhan, 2004; 

Gabbai and Benaroya, 2005; Bearman, 2011), triangular prisms (Seyed-Aghazade et al., 2017), square prisms (Bearman, 

1984; Bearman and Luo 1988), rectangular prisms (Parkinson, 1989; Matsumoto, 2008), semi-circular cylinder (Zhao et al., 

2018), and H-beams (Schewe, 1989; Chen et al. 2012). These studies discuss the FIV for the corresponding bluff body. One 60 

concern regarding the utilization of the vortex in WLTs is the structural vibration of the wind lens caused by the vortex 

shedding. This phenomenon is known as vortex-induced vibration (VIV), which is an interaction between a structure in the 

flow and a vortex shedding behind that structure. The common issue with the VIV, regardless of the cross-section of the 

bluff body, is a lock-in phenomenon, which occurs once a vortex shedding frequency synchronizes to the natural frequency 

of the structure. During the lock-in, the resonance vibration with a large amplitude occurs within a certain range of flow 65 

velocity. For the elastic cylinders or prisms whose cross-section is non-circular, such as a square and a rectangle, there is a 

possibility of experiencing a different type of vibration, termed galloping, whose motion is transverse or torsional with a low 

frequency and large amplitude. This galloping phenomenon is velocity-dependent and has damping-controlled instability, 

and is caused by the changes in the magnitude and direction of the unsteady flow-related force acting on the bluff body in 

motion (Païdoussis et al., 2011). In the case of the single elastic circular cylinder, galloping does not occur because its 70 

geometry with rotational symmetry does not produce the unstable motion-induced aerodynamic force (Zhao et al., 2018). A 

characteristic of the galloping phenomenon is that its amplitude increases as the flow speed increases, while VIV exits the 

resonance state when the vortex shedding frequency is desynchronized with the natural frequency of the structure. In this 

respect, VIV and galloping are different; however, it is possible that these two types of FIV occur in combination (Bearman 

and Luo 1988; Parkinson, 1989; Zhao et al., 2018). An experiment of FIV for a square prism conducted by Bearman and Luo 75 

(1988) found that as the critical speed for galloping approaches the vortex resonance speed under a condition of low mass 

damping, the amplitude of the oscillation triggered by the vortex lock-in increases with the increasing flow speed. Zhao et al. 

(2018) experimentally investigated the FIV for an elastically mounted D-section cylinder whose section is semi-circular and 

observed the VIV-galloping interaction in the case where the flat side of the D-section cylinder faces upstream. The flutter 

phenomenon is also of concern. Experiments performed by Matsumoto et al. (2008) for a 2D rectangular prism, whose long 80 

side is four times as long as the short side and is placed in parallel with the flow direction, found that the rectangular prism 

experienced torsional flutter triggered by a motion-induced vortex, where the rotational axis of the prism is located at the 

leading edge and there is minimal damping. The structure of the wind lens shown in Fig. 1a is basically different from that of 

the elastically mounted cylinders or prisms mentioned above. The question posed is, “What kind of FIV did the wind lens 

undergo at that moment?” It can be presumed that the self-induced vibration in the wind lens must have been primarily 85 

involved in the vortex shedding since the geometry of the wind lens is intentionally designed to create large-scale vortices.  
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Motivated by the self-induced vibration observed in the wind lens, we initiated an investigation into FIV for the wind lens 

by numerical methods. The objective of this study is not only to simulate the realistic aerodynamic phenomenon of the actual 

wind lens but also to obtain the fundamental understanding of FIV for the wind lens. First, a 3D modal analysis of the wind 

lens structure was performed to determine the vibrational characteristics by using the finite element method (FEM). Next, 90 

representative natural modes that appear on the diffuser cross-section were extracted from the result of the 3D modal 

analysis. Then, a computational fluid dynamics (CFD) analysis for the flow around the wind lens structure and the fluid-

structure interaction was performed. Considering the average wind speed on April 3, 2012, and the size of the wind lens, the 

WLT was in operation at a Reynolds number of approximately 300,000, which is in the critical Reynolds number regime. At 

a Reynolds number near 300,000 for a cylinder, the laminar boundary layer undergoes a turbulent transition, and the wake is 95 

narrowed and disorganized (Williamson, 1996; Anderson, 2007). Furthermore, the vortex shedding frequency is sensitive to 

the surface condition of the body and the turbulence intensity of the flow (Zdravkovich, 1990). Because of the complexity of 

the turbulence, the precise 3D CFD in the large Reynolds number regime is still challenging (Sarpkaya, 2004). Additionally, 

the difficulty of the direct numerical simulation (DNS) attributed to an extremely high resolution required to express the flow 

features, which demands an exceedingly high computational cost (Nguyen and Nguyen, 2016). Due to these factors, this 100 

study concentrated on the flow around the brimmed diffuser at a lower Reynolds number in two dimensions. This was done 

to reduce the influence of instability of the turbulent flow and the computational cost of the numerical simulation. 

2 Three-dimensional structural model  

 

Figure 2．The 3D structural model of the wind lens (left) and a schematic illustration of the diffuser cross-section (right) 105 
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Table 1. The dimension of each part of the brimmed diffuser in Fig. 2 

Notation Part Dimension  Notation Part Dimension 

H Diffuser height 432 mm  ls Support arm length 1143 mm 

h Brim height 256 mm  Din Inlet diameter 2682 mm 

L Diffuser length 565 mm  Dthr Throat diameter 2560 mm 

lm Straight member length 300 mm  Dout Outlet diameter 2912 mm 

 

The object of this study is the wind lens for 3 kW wind power generators, as explained in Sect. 1. The wind lens model 

illustrated in Fig. 2 is named CiiB10 where Cii represents one of the cycloidal cross-sectional shapes for a wind lens and B10 110 

indicates that the height of the brim is 10% of the throat diameter of the wind lens (Ohya and Karasudani, 2010). The 

diffuser length, L, is the horizontal distance from the inlet to the outlet, and the diffuser height, H, is the vertical distance 

from the throat to the top of the brim tip. Both dimensions affect the flow around the wind lens; however, the diffuser height 

is treated as the reference length of this model throughout this paper because the brim, whose dimension is included in the 

diffuser height, is the key part of this brimmed diffuser. The above-mentioned dimensions of the parts are tabulated in Table 115 

1. The material of the diffuser is Al6061 (E = 68.9 GPa, ρ = 2700 kg/m3, ν = 0.33). It is supported by five support arms 

located 300 mm apart from the diffuser inlet, fixed to the nacelle. The support arms have a hollow rectangular cross-section 

(the outer size: 89 mm in the x-direction×35mm in the θ-direction, the inner size: 60 mm×25 mm) made of the same 

aluminum alloy as the diffuser shroud. The support arms are installed with the long sides of the rectangular section placed in 

parallel to the flow direction to prevent the wake generated by the arms from affecting the turbine blades. Five diffuser stays 120 

firmly connect the diffuser shroud to the support arms. The diffuser stays are made of SS400 (E = 206 GPa, ρ = 7900 kg/m3, 

ν = 0.3). They are 7.765 mm thick, and their width is 55 mm. Additionally, two types of structural reinforcements are applied 

to the diffuser shroud. As shown in Fig. 2, ribs, whose material is also the steel, are mounted at the center between the two 

neighboring diffuser stays to prevent deformation of the shape of the diffuser cross-section in the brimmed-diffuser shroud. 

The shape of the ribs is the diffuser stay absent from the straight member to connect the support arm. The second 125 

reinforcement is a two-lined corrugation added on the brim to prevent the brim from bending. The section of the corrugation 

is an isosceles triangle with a 25.6 mm base and a 10 mm altitude. 

3. Numerical methods  

The FIV is an aeroelastic phenomenon, which is a coupling between structural and fluid dynamics. The aeroelastic analysis 

consists of two steps. First, modal analysis is conducted to calculate the modal characteristics of the 3D wind lens structure, 130 

such as natural frequencies and mode shapes. Second, the 2D numerical flow simulation is performed, coupled with the 

modal equation of motion of the diffuser. 
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3.1 Modal analysis for the three-dimensional structure 

The modal analysis was conducted for the 3D structure of the wind lens model, utilizing the commercial FEM software, 

ANSYS 19.2. This analysis, based on the block Lanczos method (Rajakumar and Rogers, 1991), calculated the natural 135 

frequencies and mode shapes of the wind lens model. The 3D FEM model, presented in Fig. 3, consists of four-node 

rectangular shell elements for the diffuser shroud, diffuser stays, and ribs, and two-node beam elements for the five support 

arms. The size of the elements is 7.5 mm, which was determined after the repetitive mesh dependency check. Thus, the total 

number of elements is 192,565. The boundary condition is the bottom of the five support arms, which is fixed where the 

support arms are fastened to the nacelle. The reference cross-section on the reference plane, shown in Fig. 3, was determined 140 

to define a representative 2D mode shape of each mode for the 2D aeroelastic analysis. The reference plane is positioned at 

the cross-section where the maximum displacement of each mode appears.  

 

Figure 3. The 3D structural model for modal analysis (left) and the elements in the model (right) 

 145 

3.2 Two-dimensional aeroelastic analysis 

The 2D aeroelastic analysis was conducted utilizing the natural frequencies and the cross-sectional mode shapes on the 

reference plane calculated in the 3D FEM analysis. The displacement vector {d} of the diffuser cross-section is represented 

as a superposition of the four mode shapes as follows, 

{𝒅(𝜉, 𝑡)} = ∑{𝜱𝑘

4

𝑘=1

(𝜉)}𝑞𝑘(𝑡) (1) 

Reference 

cross-section 

Fixed 
points 
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where {Φk} is the k-th mode shape vector on the reference plane, qk is the generalized coordinate of the k-th mode, ξ is the 150 

curvilinear coordinate along the diffuser cross-section. Lagrange’s equation of motion in modal space for the k-th mode of 

the diffuser is expressed as follows, 

𝑞�̈�(𝑡) + 𝑔𝑘𝜔𝑘𝑞�̇�(𝑡) + 𝜔𝑘
2𝑞𝑘(𝑡) =

𝑄𝑘

𝑀𝑘

,          𝑄𝑘 = ∫ {𝜱𝑘(𝜉)}̇ ⋅ {𝜟𝑷(𝜉, 𝑡)}𝑑𝜉
𝑇.𝐸.

𝐿.𝐸.

 (2) 

where Mk is the generalized mass, gk is the structural damping coefficient (gk = 0.01 in this study), ωk is the natural circular 

frequency of the 𝑘-th mode, and t is time. The generalized force, Qk, is given by the integration along ξ from the leading- and 

trailing edge, where {ΔP} is the aerodynamic pressure vector on the diffuser surface obtained with the 2D-CFD at each time 155 

step. Since the dimension in the mode shapes was reduced from 3D to 2D, the stiffness of each 2D mode was consequently 

slightly less than that of the actual 3D mode, which implies safe-side estimation. The equation of motion was numerically 

time-integrated with the implicit Houbolt method. To calculate the aerodynamic pressure distribution on the diffuser surface, 

an in-house CFD program including Eqs. (1) and (2) was utilized. The 2D compressible Navier-Strokes equation was 

numerically solved with a finite difference method based on an implicit time-integration scheme (Steger, 1978) and a total 160 

diminishing variation (TVD) scheme (Yee and Harten, 1987). The detail of the computation is provided in the previously 

published studies (Isogai et al., 2004; Nagai et al., 2009). The 2D computational domain was 100L × 80L, as shown in Fig. 

4a. The inflow boundary condition with the steady uniform flow of U0 was applied to the left and top of the domain, and the 

right was in an outflow boundary condition. The bottom line, which coincides with the axis of the annular diffuser, was in a 

symmetrical boundary condition, and the no-slip condition was applied on the diffuser surface. An H-type structured grid 165 

system was employed around the diffuser cross-section as shown in Fig. 4b, and these grids fitted and moved together with 

the deformed diffuser cross-section at each time step. The two corrugations on the brim, which reinforce the brim’s bending 

stiffness, were neglected in the CFD model because they do not affect the flow around the diffuser. As explained in Sect. 1, 

the actual brimmed diffuser is 3D and is subject to the turbulent flow. To diminish the instability of turbulence, the Reynolds 

number of the current brimmed diffuser model was reduced to 288 by modifying the dynamic viscosity in the 2D numerical 170 

simulation. Zhao et al. (2014) performed the 3D numerical simulations for a circular cylinder, whose span is 9.6 times the 

section diameter, and reported that the vortex shedding from the 3D cylinder is still 2D at a Reynolds number of 250. In 

other words, the vortex shedding pattern from any circular section of the cylinder is the same at a Reynolds number of 250 

because there is no spanwise vortex shedding. Therefore, the 2D numerical simulation of the flow around the diffuser cross-

section performed for this study is valid at the low Reynolds number near 250. The similarity of the aeroelastic response is 175 

confirmed between the original and viscosity-scaled models due to the same mass ratio. A turbulence model was not 

employed in the CFD simulation at a Reynolds number equal to 288, which corresponds to a quasi-direct numerical 

simulation (QDNS) with fully fine grids and time step with a numerical dissipation from the schemes. The total number of 

the grids in the computational domain was 732,451 (1,439 in the x-direction and 509 in the r-direction), and 321 on the 

diffuser cross-section. The grid system was divided into six blocks for parallel computation. The average mesh size inside 180 
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and behind the annular diffuser was 4.9×10-3H (= 0.34η) in the x-direction and 8.8×10-3H (= 0.61η) in the r-direction, and the 

mesh size adjacent to the diffuser surface was 1.6×10-3H (= 0.11η), where η is the Kolmogorov length scale defined as η ≈ 

(ν3H/U0
3)1/4. The time step was 7.8×10-4H/U0, which corresponds to the Courant number of 0.50, 0.013 of the Kolmogorov 

time scale defined as (νH/U0
3)1/2, and 1/6580 of the first vortex period defined as the first Strouhal number, which is 

described subsequently. The calculation was conducted at each wind speed until the 80th cycle of the first vortex frequency. 185 

The aerodynamic force acting on the diffuser surface was sorted into the lift (in the negative r-direction) and drag (in the x-

direction). The time-variant forces and displacement were evaluated from 27th to 80th cycles when a limit cycle oscillation 

appears. The employed grid system and time step were confirmed to be fully converged with respect to the frequency 

spectrum of the lift and drag acting on the diffuser. Details about the mesh and time-step dependency are discussed in 

Appendix A. 190 

 

Figure 4. The grid system of the 2D CFD: (a) The schematic of the computational domain, and (b) the grid near the wind lens 

drawn in white 

4 Results and Discussion  

4.1 Modal characteristics 195 

The 3D mode shapes of the wind lens model are complicated, making them difficult to define. For this reason, the 2D mode 

shapes, which are chosen from the reference cross-section where the maximum displacement occurs in each mode, are used 

to represent each 3D mode shape, as mentioned in Sect. 3.1. The interaction between the 2D modes and the flow around the 

reference cross-section triggers FIV. From the results of the modal analysis, we classified the 2D vibrational modes for the 

wind lens structure into five basic patterns: radial, rotational, horizontal, brim-bending, and camber-bending modes, which 200 

are shown in Figs. 5–9, respectively. 
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Figure 5. Radial mode for the 1st mode (degenerate mode) 

 

Figure 6. Rotational mode for the 2nd mode (degenerate mode) 205 

 

Figure 7. Horizontal mode for the 4th mode 

(a) Front view of 3D mode (b) 3D mode around the reference cross-section (c) 2D mode shape 

x 

r 
Absolute  disp. 

(a) Front view of 3D mode (b) 3D mode around the reference cross-section (c) 2D mode shape 

x 

r 
Absolute disp.  

(a) Front view of 3D mode (b) Side view of 3D mode (c) 2D mode shape 

x 

r Absolute disp.  
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Figure 8. Camber-bending mode for the 6th mode (degenerate mode) 

 210 

 

Figure 9. Brim-bending mode for the 7th mode (degenerate mode) 

 

The descriptions of the displacements are purposely exaggerated to illuminate the behavior of each mode. The contours 

represent the absolute displacement, and the red arrows in the enlarged view indicate the direction of the motion. The 215 

reference cross-section of each 3D mode is denoted by a short purple line on the image. The radial mode shown in Fig. 5 is 

an oscillation of the reference cross-section in the radial direction, which is the typical transverse motion with respect to the 

flow direction observed in the VIV of other sectional shapes, such as circular and rectangular. This mode shape is 

accompanied by the out-of-phase oscillation of the neighboring support arms and stays in the circumferential direction. 

When the interval between the neighboring support arms becomes wider due to their opposite circumferential bending, the 220 

reference cross-section moves down and vice versa. The rotational mode, in which the reference cross-section rotates on the 

reference plane, is demonstrated in Fig. 6. The neighboring stays pivot around the r-axis at the brim in the opposite direction, 

and accordingly, the neighboring support arms undergo circumferential bending in the opposite direction. Therefore, as 

(a) Front view of 3D mode (b) 3D mode around the reference cross-section (c) 2D mode shape 

x 

r Absolute disp.  

 

(a) Front view of 3D mode (b) 3D mode around the reference cross-section (c) 2D mode shape 

x 

r Absolute disp.  

 

https://doi.org/10.5194/wes-2020-29
Preprint. Discussion started: 23 March 2020
c© Author(s) 2020. CC BY 4.0 License.



11 

 

shown in Fig. 6, the reference cross-section rotates as the interval between the leading-edges of the neighboring stays 

repeatedly becomes wider or closer. The horizontal mode shown in Fig. 7 is accompanied by all five support arms bending in 225 

the flow direction without circumferential bending. The camber-bending mode in Fig. 8 is the oscillation of the camber line 

of the diffuser cross-section, which accompanies a minimal in-phase circumferential oscillation of the neighboring support 

arms. The brim-bending mode in Fig. 9 is accompanied by the simple bending of the brim. Most of the 3D modes in the 

wind lens structure have another degenerate mode, which has a similar mode shape but has the maximum displacement at a 

different location. For this reason, in such a degenerate mode, vibration does not occur in the entire diffuser sections but a 230 

specific part of the diffuser. 

All possible mode shapes in the wind lens structure can be expressed with one or more modes out of the five basic mode 

shapes. The natural frequencies and mode shapes from the first to fourth modes of the wind lens are tabulated in Table 2. 

 

Table 2. The mode shapes and the corresponding natural frequencies of the wind lens structure  235 

 1st natural mode 2nd natural mode 3rd natural mode 4th natural mode 

Mode shape Radial Rotational 
Camber-bending 

+ Horizontal 
Horizontal 

Natural frequency 10.92 Hz 11.58 Hz 20.85 Hz 23.64 Hz 

 

The radial and rotational modes, which are accompanied by the circumferential bending of the support arms, easily occur 

at the low-order natural frequencies, as shown in Table 2. The difference between the first and second natural frequencies is 

small because both modes have a similarity in the out-of-phase oscillation of the neighboring support arms. It is noticeable 

that the occurrence of the horizontal mode distinguishes the third and fourth natural frequencies from the first and second 240 

ones. Namely, the horizontal mode accompanied by the bending of the support arms in the flow direction is less likely to 

occur than the radial and rotational mode shapes accompanied by the circumferential bending of the support arms. As 

described in Sect. 3.1, the long side of the cross-section of the support arm is installed in parallel to the flow direction so as 

not to disturb the flow into the turbine blades. Accordingly, the bending stiffness of the support arms in the flow direction 

can be raised by increasing the width in the x-direction; however, due to the limitation on the aerodynamic design and the 245 

structural weight, it is difficult to increase the thickness in the circumferential direction. The third natural mode, in which the 

camber-bending and horizontal modes are mixed, has a lower natural frequency than the fourth one because a small in-phase 

circumferential oscillation of the neighboring support arms is accompanied by the camber bending. On the other hand, there 

are no pure camber-bending (Fig. 8) and brim-bending modes (Fig. 9) in Table 2 because the ribs mounted on the diffuser 

shroud and the two-lined corrugation on the brim have a preventative effect on such diffuser deformation modes. In 250 

summary, the radial and rotational modes, which are related to the circumferential bending of the support arms, are easy to 

occur and difficult to prevent because reinforcement of the support arms in the circumferential direction is constrained by the 

aerodynamic and structural limitations. 
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4.2 Estimation of critical wind speed 

The vortex shedding behind the brim is periodic and applies a time-varied load to the wind lens structure. When the vortex 255 

shedding frequency corresponds with the natural frequency, a resonant oscillation in the wind lens structure is likely to occur. 

The wind speed at which the resonance occurs is defined as the critical wind speed. In the case where the wind lens structure 

is at rest, the vortex shedding frequency, fst, at a certain wind speed can be expressed as the non-dimensional vortex shedding 

frequency based on the diffuser height, which is termed the Strouhal number and is defined as follows:  

𝑆𝑡 =
𝑓𝑠𝑡𝐻

𝑈0

 (3) 

Once the Strouhal number, St, for the diffuser cross-section at rest is determined, Eq. (3) enables the critical wind speeds to 260 

be estimated by substituting fst with the natural frequencies presented in Table 1.  

 

Figure 10. The aerodynamic forces acting on the diffuser at rest: (a) The time history of the lift and drag coefficients, and (b) the 

frequency spectrum of the lift and drag coefficients 

The fluctuation of the lift and drag coefficients over time is shown in Fig. 10a. The mean value of the lift coefficient is 265 

2.60, and the root mean square of its amplitude is 0.249. The mean value of the drag coefficient is 1.55, and the root mean 

square of its amplitude is 0.104. The positive lift acting on the wind lens means the flow speed inside the diffuser is always 

higher than that outside. Both forces in Fig. 10a include high harmonic wave components, which imply that multiple modes 

of the periodic vortex shedding affect the pressure of the wind lens. The frequency spectrum of the lift and drag coefficients 

converted from their time histories by using Fast Fourier Transform (FFT) is shown in Fig. 10b. The three distinct peaks 270 

indicate the existence of three vortex modes, from which the Strouhal numbers were able to be determined. The vortex mode 

that appeared at the lowest frequency was defined as the first Strouhal number, St1, which is 0.194. Under the identical 

0 0.2 0.4 0.6 0.80.1 0.3 0.5 0.7

0

0.2

0.4

0.1

0.3

St

In
te

n
si

ty

Lift coeff.

Drag coeff.

Normalized time, t*

F
o
rc

e
co

ef
fi

ci
en

ts

74 74.5 75 75.5 76 76.5 77
1

1.5

2

2.5

3

3.5 Lift
Drag

(a) 
(b) 

St1 = 0.194 

St2 = 0.389 

St3 = 0.584 

t1 t2 t3 t4 t5 t6 t7 t8 

https://doi.org/10.5194/wes-2020-29
Preprint. Discussion started: 23 March 2020
c© Author(s) 2020. CC BY 4.0 License.



13 

 

Reynolds number condition, the Strouhal number of 0.194 for the wind lens is slightly smaller than that for the cylinder, 

which is 0.2016 (Norberg, 2003), and larger than that for the square cylinder, which is 0.147 (Bai and Alam, 2018). The 

second Strouhal number for the wind lens, St2, is 0.389, which is close to double that of St1. The third Strouhal number is 275 

0.584. In summary, the multiple vortex modes related to both lift and drag forces appeared around the wind lens model, and 

the Strouhal numbers are basically integer multiples of St1. Each vortex mode is associated with lift and drag forces, where 

the first vortex mode is primarily related to the lift, and the second and third vortex modes are primarily related to the drag. 

 

Figure 11. The vortex shedding behind the cross-section of the rigid wind lens model at rest during one cycle with the pressure 280 
vectors marked (t1~t8) 
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The process of the vortices generated around the brimmed diffuser is demonstrated in Fig. 11, where the contour indicates 

the positive Q-criterion. The normalized times, t* = t1 to t8, corresponds to the graph in Fig. 10a. The arrows marked along 

the wind lens cross-section are the pressure vectors normal to the diffuser surface. The drag force is chiefly attributed to the 

pressure acting on the brim, and the lift force acts on the curved line of the brimmed diffuser. At t* = t1, a clockwise vortex, 285 

V1
−, starts shedding at the brim tip, the vortex develops on the back surface of the brim as time elapses (t* = t1–t4). 

Accordingly, the drag increases with the development of V1
− and reaches the maximum at t* = t3. Then, the vortex is finally 

detached and recedes from the brim surface at t* = t5 to t8. The clockwise vortex, V1
−, induces the downward flow behind the 

brim, which generates the secondary vortex, V2
−, at the bottom edge of the brim at t* = t1 to t4. At the same time, the counter 

vortex, V2
+, is accompanied under V2

−. These secondary vortex pairs, V2
+ and V2

−, induce backflow on the bottom surface 290 

behind the throat, and the separation point of the mainstream on the bottom surface moves toward the front of the diffuser. 

At t* = t4, when the flow separation point reaches a point where it moves as far forward as possible, the lift becomes a 

minimum as shown in Fig. 10a. At t* = t5, while V2
− diminishes, V2

+ does not disappear but grows larger, which needs to be 

treated differently as another vortex, V1
+. The vortices, V1

+ and V1
−, form a primary vortex pair. At t* = t6–t8, the V1

+ travels 

upward near the back surface of the brim, developing. When V1
+ approaches the back surface of the brim at t* = t8, the drag 295 

increases to the local maximum as shown in Fig. 10a. At this moment, the maximum lift is produced because the flow inside 

the diffuser is attracted by the growing V1
+ and is accelerated. The first and second vortex frequencies shown in Fig. 10b are 

mainly attributed to the primary and secondary vortex pairs, respectively. 

Based on the Strouhal numbers determined from the multiple vortex modes, it is possible to calculate the vortex 

frequencies with respect to wind speeds, and the critical wind speed can be estimated by comparing the natural frequencies 300 

computed in the 3D modal analysis.  
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Figure 12. A Campbell diagram based on the vortex shedding frequencies calculated by the three Strouhal numbers and the 

natural frequencies of the wind lens 

Table 3. The estimated critical wind speed from the Campbell diagram 305 
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The diagram plotted in Fig. 12 is called a Campbell diagram (Campbell, 1924), which is used to estimate resonance speed 

(Ewins, 2010). The reduced velocity, U*
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0–30.67 m/s in the actual 3 kW wind lens on the top horizontal axis. The vertical axis is the normalized frequency, f 
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represents a frequency divided by the first natural frequency, fn1. The other k-th natural frequencies are expressed as fnk. The 310 

three linear slopes shown in Fig. 12 are the three vortex shedding frequencies of the diffuser at rest calculated from Eq. (3) 
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for each Strouhal number. The four horizontal lines represent the natural frequencies of the wind lens. As shown in Fig. 12, 

there are ten intersections between the vortex shedding frequencies and the natural frequencies, which indicate possible 

critical wind speeds. For instance, the first vortex mode crosses the first and second natural frequencies at U* = 5.15 and 5.46, 

which are expressed as U*
n1‐st1 and U*

n2‐st1, respectively. The other critical wind speeds are presented in Table 3. The severity 315 

of the resonance vibration depends on the relationship between the mode shape and the aerodynamic pressure distribution, 

which cannot be predicted with the Campbell diagram. Additionally, a noticeable vibration might not occur at the estimated 

critical wind speed in the case where a vortex mode does not have enough intensity to cause resonance in the structure, or, a 

severe vibration might be produced at a speed differing from the estimated critical wind speed if an aeroelastic phenomena 

other than the VIV occurs, such as galloping or flutter. 320 

4.3 Aeroelastic response 

Prior to the aeroelastic simulation, an investigation was conducted on how much the aerodynamic pressure distribution of the 

vortex shedding affects the four natural modes. The time-variant generalized force, Qk in Eq. (1), exerted on each mode was 

calculated on the condition that the wind lens section is at rest, which indicates a correlation between the aerodynamic 

pressure distribution (the pressure vectors marked in Fig. 11) and each mode shape. In this paper, Qk was evaluated with 325 

respect to its intensity in the frequency domain. Each mode shape was normalized such that the vector norm was unity. 

 

Figure 13. The peak intensity of the ratio of generalized force to mass calculated by the three vortex shedding frequencies in the 

case where the wind lens is at rest 

The peak intensities extracted from the frequency spectrum of the generalized force for the four natural modes at each 330 

Strouhal number are shown in Fig. 13. Qk/Mk on the vertical axis indicates how much each vortex mode is capable of 

exciting vibration with each natural mode under the identical natural frequency condition. It is apparent that the second 

natural mode, or the rotational mode, is most susceptible to the respective vortex modes among the four natural modes. The 

peak intensities for the other three natural modes are comparable with each other at the respective Strouhal numbers. 
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However, the first natural mode, or the radial mode, is more susceptible to the first vortex mode than the second and third 335 

vortex modes because the first vortex mode is primarily associated with the lift force acting in the radial direction.  

The aeroelastic response of the wind lens model to the vortex shedding was simulated at wind speeds of 1 to 30 m/s at an 

interval of 1 m/s, which correspond to the reduced flow velocities ranging from 0 to 6.36, and with the Reynolds number 

fixed at 288. First, the responses of the generalized coordinates of the four modes were investigated at each flow velocity. 

The generalized coordinate expressed how much each mode was excited by the external force at a certain velocity. In general, 340 

the wind load is proportional to the square of the wind speed. To remove the increase of the wind load with the wind speed 

increasing, the non-dimensional compliance, Ck
*, is defined as the ratio of the k-th generalized coordinate to the wind load, 

given by, 

𝐶𝑘
∗ =

(𝑞𝑘 − 𝑞𝑘,avg)RMS

𝐻𝑈∗2
 (4) 

 

Figure 14. Compliance of each mode with respect to wind speed in the aeroelastic analysis 345 

The non-dimensional compliances of the four modes with respect to the wind speed are shown in Fig. 14, with the 

estimated critical wind speeds marked. The second natural mode is the most dominant of the four natural modes throughout 

the flow velocity, and the first natural mode also tends to be easily affected by the vortex shedding. Therefore, the responses 

of the first and second natural modes agree with their intensities of the generalized force, as presented in Fig. 13. The dotted 

lines of the generalized coordinates between U0 = 23 and 27 m/s (U*= 4.87 and 5.72) in Fig. 14 signify the calculations were 350 
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program. The values on the dotted lines were temporarily extracted from a few cycles until the calculations ceased. Even 

though the compliances have not been calculated in a steady oscillation between the two wind speeds, it is reasonable to 

infer that the highest peak of the first and second natural modes would appear between U0 = 24 and 26 m/s (U*
 = 5.09 and 

5.51) in Fig. 14. These wind speeds are close to the critical wind speeds of U0, n1‐st1 and U0, n2‐st1, which are evaluated at the 355 

intersections between the first and second natural frequencies and the first vortex frequency shown in Fig. 12 and Table 3. 

The sharp increase in both the first and second compliances near 24 m/s is possibly caused by resonance, in which the first 

vortex frequency synchronizes with either or both the first or second natural frequencies. There are other distinct peaks in the 

first and second natural modes at 12 and 13 m/s (U*
 = 2.54 and 2.76), respectively, which are also close to the estimated 

critical wind speeds of U0, n1‐st2 and U0, n2‐st2. Similarly, there is a small rise in the third and fourth modes near U0, n3‐st2 and U0, 360 

n4‐st2, respectively, which was the result of the second vortex mode synchronizing with the third and fourth natural 

frequencies. However, the peak compliances at the critical wind speeds of the second vortex mode are low because the 

intensity of the second vortex mode is weaker than that of the first one, as shown in Fig. 10b. The third vortex mode does not 

have a prominent effect on the vibration excitation of the wind lens structure, considering that there are only tiny peaks of 

the compliances near U0, n1‐st3 and U0, n2‐st3. 365 

 

Figure 15. The displacement amplitude of the brim tip in the x-direction and the throat in the r-direction 

The displacement amplitude of the diffuser with respect to the wind speed and the reduced velocity is shown in Fig. 15. 

The vertical axis expresses the ratio of the displacement amplitude, A, to the diffuser height, H. This study focused on the 

displacement amplitude of two representative locations of the diffuser: (1) the streamwise (x) motion at the brim tip, and (2) 370 
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the transverse (r) motion at the throat. The first one is associated with the rotational, horizontal, brim-bending, and camber-

bending modes and the second one is associated with the radial, rotational, and camber-bending. As shown in Fig. 14, the 

third and fourth natural modes are excited by the weak second vortex mode only, while the responses of the first and second 

natural modes are noticeable because the radial and rotational modes are more sensitive to the three vortex modes. Thus, the 

displacement amplitudes shown in Fig. 15 are mostly attributed to the radial and rotational modes. Also, in Fig. 15, the 375 

dotted lines between and 27 m/s in the graph represent where the calculations were aborted. Even if stable oscillations were 

not obtained, it is obvious that the largest A/H at the brim tip and the throat would appear between 24 and 26 m/s. The 

similar displacement amplitudes at both locations indicate that the resonance pattern of the wind lens section is principally 

the rotational mode, which accords with the result of the generalized force shown in Fig. 13. There are the other peaks on the 

curve of the brim tip at 13 m/s and on that of the throat at 12 m/s. These peaks indicate that the second vortex mode is also 380 

influential enough to induce the radial and rotational modes as with the first vortex mode. However, the effect of the third 

vortex mode is barely identifiable in Fig. 15. The peak value of the brim tip at 13 m/s is 0.00896 (A = 3.87 mm), and that of 

the throat at 12 m/s is 0.00679 (A = 2.93 mm). In consideration of the 1 mm thick diffuser shroud, the displacement 

amplitudes of 2.93 mm and 3.87 mm are substantial. Since these critical wind speeds calculated in this simulation are close 

to the average wind speed of 10.6 m/s on April 3, 2012, the real VIV in the wind lens that was observed could have been 385 

caused by the second vortex mode. Most importantly, these critical wind speeds are in good agreement with the estimated 

critical wind speed from the Campbell diagram presented in Fig. 12. In practice, the WLTs are usually operated in the 

turbulent flow regime, where the Reynolds number is much higher than 288, and the Strouhal number varies with the 

Reynolds number. Nevertheless, the estimated critical wind speeds are reasonable. In the case of the circular cylinder, the 

Strouhal number ranges from approximately 0.18 to 0.22 at 200 < Re < 100,000 (Blevins, 1990). The Strouhal number for 390 

the square prism has a maximum of 0.16 at Re ~ 200, and it varies from 0.12 to 0.13 at Re > 1,000 (Bai and Alam, 2018). As 

mentioned in Sect. 4.2, the Strouhal number for the wind lens is 0.194 at a Reynolds number of 288; however, the Strouhal 

numbers for the wind lens section depending on the Reynolds number have not been sufficiently studied yet. Unless the 

Strouhal numbers change drastically, estimation of the critical wind speeds using the Campbell diagram is appropriate. 

Furthermore, the radial and rotational mode is a degenerate mode, which vibrates partially in the diffuser, as explained in 395 

Sect. 4.1. This fact indicates that the VIV of the wind lens, which is caused by the radial and rotational modes, may not occur 

in the entire diffuser structure but a local section of the diffuser. If so, the 2D aeroelastic simulation in this study is valid to 

predict a trigger of such a local VIV and to approximately estimate the critical wind speed, although a precise quantitative 

estimation is not provided. 

Finally, in order to investigate the influence of the vortex shedding frequencies on the aeroelastic analysis, the frequency 400 

spectrum was calculated from the time-variant lift and drag at each wind speed in the FFT analysis. The intensities of the lift 

and drag spectra with respect to the reduced velocity are expressed as a contour map in Fig. 16. As mentioned, the zone 

between 23 to 27 m/s, where the computations were aborted due to the excessive deformation, is blank. The straight 

ridgelines of the contours completely coincide with the vortex-frequency lines estimated from the Strouhal number shown in 
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the Campbell diagram (Fig. 12), which indicates that the Strouhal number is not affected by the aeroelastic vibration, except 405 

in the range over 27 m/s, where another horizontal ridgeline appears between the first and second natural frequencies. This 

fact implies that a lock-in phenomenon occurs at those wind velocities when the large vibration is excited by the first vortex 

mode. On the other hand, there is no lock-in near the intersection between the second vortex mode and the four natural 

modes because of the comparatively-small-amplitude vibration. 

 410 

 

Figure 16. Surface contour based on the frequency spectrum of lift and drag at each wind speed in the aeroelastic analysis 

5 Conclusions  

The aeroelastic simulation of the FIV for the brimmed diffuser section was performed using 3D FEM and 2D CFD at the 

wind speeds ranging from 0 to 30 m/s (U* = 0 to 6.36) under the condition of the Reynolds number of 288. The numerical 415 

results concluded that the self-induced vibration observed in the actual wind lens structure is VIV. Neither galloping nor 

flutter occurred in the wind lens structure because the five support arms restrained the wind lens from changes in the angle of 

attack, as well as prevented a large displacement. Nevertheless, the structural vibration occurred in the brimmed diffuser due 

to the mode shapes critical to VIV: the radial and rotational modes. From the results of the 3D modal analysis, the 

vibrational modes in the diffuser cross-section can be classified into five basic patterns: radial, rotational, horizontal, 420 

camber-bending, and brim-bending modes. The radial and rotational modes are subjected to the aerodynamic pressure due to 

the vortex shedding modes, compared to the other natural modes. The two critical modes, which are accompanied by the 

circumferential bending oscillation of the support arms, are difficult to prevent because of the limitation of the aerodynamic 
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design and the diffuser mass. The lift and drag acting on the brimmed diffuser have high harmonic oscillations due to 

multiple vortex modes, which are associated with vortices shed from the brimmed diffuser. In the aeroelastic analysis, the 425 

response of the elastic brimmed diffuser has peak amplitudes in the displacement at the critical wind speeds estimated from 

the Campbell diagram, which is based on the Strouhal numbers calculated in the case where the brimmed diffuser is at rest. 

The two critical modes are excited by the first vortex mode at the wind speed of 24 to 27 m/s (U*= 4.87 to 5.72), which 

results in considerably large oscillation. Also, the second vortex mode excites the radial and rotational modes at 12 and 13 

m/s (U*= 2.54 to 2.76), respectively, which causes noticeable oscillation with a relatively small amplitude. These wind 430 

speeds of 12 and 13 m/s are close to the average wind speed when the actual VIV of the brimmed diffuser was observed. 

Although the 2D aeroelastic analysis neglects some complex phenomena that occur in the actual wind lens, it provides a 

reasonable estimation of the critical wind speeds for VIV in the wind lens structure. 

Appendix A: Time-step and mesh dependency check 

Appendix A demonstrates the convergence of the numerical results with different time steps and the meshes in the CFD 435 

analysis explained in Sect. 3.2. The convergence was verified by comparing each frequency spectrum of the lift and drag 

coefficients. Figures A1 and A2 show the intensity of lift and drag in the frequency domain with the different time steps and 

with different grid systems, respectively. In Fig. A1, the numerical result with half the current time step is compared to that 

with the current time step. In Fig. A2, the numerical results in the grid systems with 0.66, 0.77, 0.88, and 1.13 times the 

current elements are compared to that with current elements. As seen in Fig. A1, the peaks occur at the same Strouhal 440 

numbers in both time steps, except for the third Strouhal number in Fig. A1b. It was confirmed that the small error in the 

third Strouhal number from the drag is inconsequential in the result, which is irrelevant as the third vortex mode is 

inconsequential in this study. Although there are small differences in the peak widths, the current time step was used in this 

study because computational time can be saved considerably, and the differences are too small to have any influence on the 

results. From Fig. A2, it is evident that the solution is converged as the number of elements increase. There are small peaks 445 

at St = 0.5St1, 1.5St1, and 2.5St1 in the grid system with fewer elements; however, they disappear when the number of 

elements exceeds 0.88 times the current elements. The reason why the grid system with 732,451 elements was chosen for 

this study is that the grid system with 0.88 times the current elements still has a small risk of the appearance of unnecessary 

peaks, and the grid system with 1.13 times the current elements requires a longer computational time. 
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 450 

Figure A 1. The frequency spectra of the force coefficients in two different time steps in the current grid system (732,451 elements) 

 

Figure A 2. The frequency spectra of the force coefficients in the current time step in six different grid systems 
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