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Abstract. This paper presents a model to incorporate the secondary effects of wake steering in large arrays of turbines. Previ-

ous models have focused on the aerodynamic interaction of wake steering between two turbines. The model proposed in this

paper builds on these models to include yaw-induced wake recovery and secondary steering seen in large arrays of turbines

when wake steering is performed. Turbines operating in yaw misaligned conditions generate counter-rotating vortices that en-

train momentum and contribute to the deformation and deflection of the wake at downstream turbines. Rows of turbines can5

compound the effects of wake steering that benefit turbines far downstream. This model quantifies these effects and demon-

strates that wake steering has greater potential to increase the performance of a wind farm due to these counter-rotating vortices

especially for large rows of turbines. This is validated using numerous large eddy simulations for two-turbine, three-turbine,

five-turbine, and wind farm scenarios.

1 Introduction10

Wake steering is a type of wind farm control in which wind turbines in a wind farm operate with an intentional yaw mis-

alignment to mitigate the effects of its wake on downstream turbines in order to increase overall combined wind farm energy

production (Wagenaar et al. (2012)). To design model-based controllers for wake steering, engineering models of the aero-

dynamic interactions between turbines are needed. Engineering models, in this context, are computationally efficient models

that include enough physics to predict wake steering behavior while running fast enough to be optimized in real-time. These15

models can then be used in the design of wind farm control strategies (Simley et al. (2019); Fleming et al. (2019a)), layout

optimizations (Gebraad et al. (2017); Stanley and Ning (2019)), or real-time control (Annoni et al. (2019)).

An early model of wake steering was provided in Jiménez et al. (2010). This model was combined with the Jensen model

(Jensen (1984)) in the multi-zone wake model in FLORIS (Gebraad et al. (2016)). The model was compared with large-eddy

simulations (LES) using the Simulator for Wind Farm Applications (SOWFA, Churchfield et al. (2014)) and several additional20

corrections including division of the wake into separate zones were added to better capture the aerodynamic interactions.

Several recent papers proposed a new wake deficit and wake deflection model based on Gaussian self-similarity (Bastankhah

and Porté-Agel (2014, 2016); Niayifar and Porté-Agel (2015); Abkar and Port-Agel (2015)). This model includes added tur-

bulence due to the turbine operation that influences wake recovery. In addition, this model has minimal tuning parameters and

includes atmospheric parameters that can be measured such as turbulence intensity (Niayifar and Porté-Agel (2015)). This25

model is commonly referred to as the Bastankah model, EPFL model, or Gaussian model. We will use the term Gaussian for
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the remainder of the paper. The Gaussian model was included as a wake model within the FLORIS tool (NREL (2019)). It has

been used to design a controller for a field campaign in Fleming et al. (2019a), study wake steering robustness (Simley et al.

(2019)), and has been validated with lidar measurements (Annoni et al. (2018)). The Gaussian model is also used in wind farm

design optimization in Stanley and Ning (2019).

One of the main issues observed with the Gaussian model in FLORIS is that the model tends to under-predict gains in power5

downstream with respect to LES and field data. In addition, Fleming et al. (2016) and Schottler et al. (2016) show wake steering

is asymmetrical, i.e., clockwise and counter-clockwise yaw rotations do not produce equal benefits at the downstream turbine.

Fleming et al. (2018a) investigates the importance of considering explicitly the counter-rotating vortices generated in wake

steering (Medici and Alfredsson (2006); Howland et al. (2016); Vollmer et al. (2016)) to fully describe wake steering in

engineering models. These vortices deflect and deform the wake at the downstream turbine. It is also noted in Fleming et al.10

(2018a) that these vortices persist farther downstream and impact turbines that are third, fourth, etc. in the row. This is known

as secondary steering. It was proposed that modeling the counter-rotating vortices generated in wake steering could provide a

means to model this process and how wake steering will function when dealing with larger turbine arrays. Further, Ciri et al.

(2018), has shown that modeling/accounting for the size of these vortices versus the length-scales in the atmospheric boundary

layer explain variations of performance of wake steering for differently sized rotors.15

Martínez-Tossas et al. (2019) provides a wake model, known as the curl model, which explicitly models these vortices. The

paper shows that modeling the vortices can predict the deflection of the wake in misaligned conditions as well as the change in

wake shape and cross-stream flows observed in Medici and Alfredsson (2006); Howland et al. (2016); Vollmer et al. (2016);

Fleming et al. (2018a). However, the RANS-like implementation of the curl model, and flow-marching simulation solution

significantly increases the computation complexity (around 1000x).20

This paper presents a hybrid wake model, which modifies the Gaussian model (Bastankhah and Porté-Agel (2014, 2016);

Niayifar and Porté-Agel (2015)), with analytic approximations made of the curl model in (Martínez-Tossas et al. (2019)).

This hybrid model will be referred to as the Gauss-Curl Hybrid, or GCH model. We propose it as a compromise which

maintains the many advantages of the Gaussian model, while incorporating corrections to address the following three important

discrepancies:25

1. Vortices drive a process of added yaw-based wake recovery, which increases the gain from wake steering to match LES

and field results.

2. The interaction of the counter-rotating vortices with the atmospheric boundary layer shear layer and wake rotation

induces wake asymmetry naturally.

3. By modeling of the vortices, secondary-steering and related multi-turbine effects are included.30

In this paper, we will introduce the analytical modifications made to the Gaussian model in Section 2. We will use numerous

LES simulations to show that the the improvements made in GCH resolves the discrepancies identified above. This model will

demonstrate how it compares with LES of two-turbines (Section 3), three turbines (Section 4), five turbines (Section 5), and a

2
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38-turbine wind farm (Section 6). In addition to these simulations, the proposed model is also validated using the results of a

wake steering field campaign at a commercial wind farm (Fleming et al. (2019b)).

2 Controls-Oriented Model

This section briefly describes the Gaussian model used to describe the velocity deficit and the effects of wake steering in a

wind farm. The proposed model builds upon the Gaussian model introduced in Bastankhah and Porté-Agel (2016); Abkar and5

Porté-Agel (2014); Abkar and Port-Agel (2015); Niayifar and Porté-Agel (2015) by including entrainment, asymmetry, and

secondary wake steering effects seen in LES as well as field results.

2.1 Velocity Deficit Model

The wind turbine wake model used to characterize the velocity deficit behind a turbine in normal operation in a wind farm was

introduced by several recent papers including Bastankhah and Porté-Agel (2016); Abkar and Port-Agel (2015); Niayifar and10

Porté-Agel (2015); Bastankhah and Porté-Agel (2014). The velocity deficit of the wake is computed by assuming a Gaussian

wake, which is based on self-similarity theory often used in free shear flows (Pope (2001)). An analytical expression for the

three-dimensional velocity, uG, behind a turbine is computed as:

uG(x,y,z)
U∞

= 1−Ce−(y−δ)2/2σ2
y−(z−zh)2/2σ2

z (1)

15

C = 1−
√

1− (σy0σz0)M0

σyσz
(2)

M0 = C0 (2−C0) (3)

C0 = 1−
√

1−CT (4)20

where C is the velocity deficit at the wake center, U∞ is the freestream velocity, δ is the wake deflection (see Section 2.1.1),

zh is the hub height of the turbine, σy defines the wake width in the y direction, and sigmaz defines the wake width in the

z direction. Each of these parameters are defined with respect to each turbine. The subscript “0” refers to the initial values at

the start of the far wake, which is dependent on ambient turbulence intensity, I0, and the thrust coefficient, CT . For additional

details on near-wake calculations, the reader is referred to Bastankhah and Porté-Agel (2016). Abkar and Port-Agel (2015)25

demonstrate that σy and σz grow at different rates based on lateral wake meandering (y direction) and vertical wake meandering

(z direction). The velocity distributions σz and σy are defined as:

σz
D

= kz
(x−x0)

D
+
σz0
D

where
σz0
D

=
1
2

√
uR

U∞+u0
(5)
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σy
D

= ky
(x−x0)

D
+
σy0
D

where
σy0
D

=
σz0
D

cosγ (6)

where D is the rotor diameter, uR is the velocity at the rotor, u0 is the velocity behind the rotor, ky defines the wake expansion

in the lateral direction, and kz defines the wake expansion in the vertical direction. For this study, ky and kz are set to be equal

and the wake expands at the same rate in the lateral and vertical directions. The wakes are combined using the traditional sum5

of squares method (Katić et al. (1986)), although alternate methods are proposed in Niayifar and Porté-Agel (2015).

2.1.1 Wake Deflection

In addition to the velocity deficit, a wake deflection model is used to describe the turbine behavior in yaw misaligned conditions

which occur when performing wake steering and is also implemented based on Bastankhah and Porté-Agel (2016). The angle

of wake deflection, θ, due to yaw misalignment is defined as:10

θ ≈ 0.3γ
cosγ

(
1−

√
1−CT cosγ

)
(7)

The initial wake deflection, δ0, is then defined as:

δ0 = x0 tanθ (8)

where x0 indicates the length of the near wake, which is typically on the order of 3 rotor diameters. This can be computed

analytically based on Bastankhah and Porté-Agel (2016).15

The total deflection of the wake due to yaw misalignment is defined as:

δ = δ0 +
γE0

5.2

√
σy0σz0
kykzM0

ln




(
1.6 +

√
M0

)(
1.6
√

σyσz
σy0σz0

−√M0

)

(
1.6−√M0

)(
1.6
√

σyσz
σy0σz0

+
√
M0

)


 (9)

where E0 = C2
0 − 3e

1
12C0 + 3e

1
3 . See Bastankhah and Porté-Agel (2016) for details on the derivation.

2.2 Spanwise and Vertical Velocity Components

The spanwise and vertical velocity components are currently not computed in the Gaussian model, but they are a critical20

component for modeling the effects of wake steering. These velocity components can be computed based on wake rotation and

yaw misalignment as shown in Martínez-Tossas et al. (2019) and Bay et al. (2019).

Wake rotation is included by modeling the effects of rotation using a Lamb-Oseen vortex to de-singularize the behavior near

the center of the rotor. The circulation strength for the wake rotation vortex is now:

Γwr =
π(a− a2)U∞D

λ
(10)25

where a is the axial induction factor of the turbine and λ is the tip-speed ratio. See Martínez-Tossas et al. (2019) for additional

details.

4
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The vertical and spanwise velocities can then be computed using the strength of the vortex, Γ, by:

Vwake rotation =
Γwr(y− y0)

2π ((y− y0)2 + (z− zh)2)

(
1− e

−((y−y0)2−(z−zh))2

ε2

)
(11)

Wwake rotation =
Γwr(z− zh)

2π ((y− y0)2 + (z− zh)2)

(
1− e

−((y−y0)2−(z−zh))2

ε2

)
(12)

where y0 is the spanwise position of the turbine, ε represents the size of the vortex core. In this paper, ε= 0.3D.

In addition to the wake rotation, when a turbine is operating in yaw-misaligned conditions, the turbine generates counter-5

rotating vortices that are released at the top and the bottom of the rotor. This is an approximation to the counter-rotating vortices

defined in Martínez-Tossas et al. (2019) in that this model approximates the vortices as one at the top and bottom of the rotor

rather than a collection of smaller vortices. This is similar to what is done in Shapiro et al. (2018). The strength of these vortices

can be computed as, Γ, and is a function of the yaw angle, γ, (Martínez-Tossas et al. (2019)):

Γ(γ) =
π

8
ρDU∞CT sinγ cosγ2 (13)10

where ρ is the air density.

As is done with wake rotation, The spanwise V and vertical W velocity components can be computed based on the strength

of the wake rotation and yaw misalignment of a turbine. The spanwise velocity can be computed as:

Vtop =
Γ(y− y0)

2π ((y− y0)2 + (z− (zh +R))2)

(
1− e

−((y−y0)2−(z−(zh+R)))2

ε2

)
(14)

15

Vbottom =
Γ(y− y0)

2π ((y− y0)2 + (z− (zh−R))2)

(
1− e

−((y−y0)2−(z−(zh−R)))2

ε2

)
(15)

where R is the turbine radius and Vtop and Vbottom are the spanwise velocities generated at the top and bottom of the rotor.

The spanwise and vertical velocities are combined using a linear combination at downstream turbines as is done in Martínez-

Tossas et al. (2015); Bay et al. (2019). The total spanwise velocity is:

Vwake = Vtop +Vbottom +Vwake rotation (16)20

Similarly, the vertical velocity can be written as:

Wtop =
Γtop(z− (zh +R))

2π ((y− y0)2 + (z− (zh +R))2)

(
1− e

−((y−y0)2−(z−(zh+R)))2

ε2

)
(17)

Wbottom =
Γbottom(z− (zh−R))

2π ((y− y0)2 + (z− (zh−R))2)

(
1− e

−((y−y0)2−(z−(zh−R)))2

ε2

)
(18)
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The total vertical velocity can be computed as:

Wwake =Wtop +Wbottom +Wwake rotation (19)

Note, ground effects are included by adding mirrored vortices below the ground as is done in Martínez-Tossas et al. (2019).

Finally, the vortices generated by the turbines decay as they move downstream. The dissipation of these vortices is described

in Bay et al. (2019) and can be computed as:5

V = Vwake

(
ε2

4νT
(x−x0)
U∞

+ ε2

)
(20)

W =Wwake

(
ε2

4νT
(x−x0)
U∞

+ ε2

)
(21)

where νT is the turbulent viscosity, which is defined using a mixing length model:

νT = l2m

∣∣∣∣
∂U

∂z

∣∣∣∣ (22)10

where lm = κz
1+κz/λT

, κ= 0.41, and λT =D/8. λT is the value of the mixing length in the free atmosphere (Martínez-Tossas

et al. (2019)).

2.3 Added Wake Recovery due to Yaw Misalignment

The streamwise velocity and the wake deflection are influenced by these velocity components, V and W . First, the wake

recovers more when the turbine is operating in misaligned conditions due to the large-scale entrainment of flow into the wind15

farm domain. In this paper, we include added wake recovery that is assumed to be primarily due to added entrainment from the

presence of vertical velocity, W . Using a control volume approach for momentum conservation, the modified wake velocity,

u, can be computed by adding an additional wake recovery component to the Gaussian model:

u(x,y,z) = uG(x,y,z) +
W (x,y,z)(x−x0)(y− y0)

π
(
αr(x−x0) + D

2

)2
︸ ︷︷ ︸

added velocity from yaw

(23)

where uG is computed by (1), W is computed by (21), i.e., the vertical velocity generated by wake rotation and the counter-20

rotating vortices present when a turbine is operating in misaligned conditions, αr is a tuning parameter that dictates how much

the entrainment affects the wake recovery. For this paper, that term is set to αr = 0.03. The larger αr is the smaller the effect

of entrainment is on the streamwise velocity component.

2.3.1 Secondary Steering through Effective Yaw

In addition to added wake recovery, the model proposed in this paper is able to predict secondary steering. The wake deflection25

model described in Section 2.1.1 can be used to describe the deflection of the wake for a two turbine case. However, additional

6
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information is needed to describe the impact of yaw misalignment on turbines in large wind farms as is shown in Fleming et al.

(2018a).

Specifically, the vortices described in the previous section propagate far downstream, dissipate, and affect all turbines directly

downstream of the turbine that generated the vortices. When they reach a downstream turbine, they impact the wake of the

downstream turbine in a phenomenon called secondary steering (Fleming et al. (2018b)). The spanwise and vertical velocities5

generated by the counter-rotating vortices act like an effective yaw angle at the next turbine. In other words, the spanwise

and vertical velocities of upstream turbines affect the deformation and deflection of a wake downstream as if the downstream

turbine were implementing wake steering even when it is aligned with the flow. This can be approximated as an apparent or

effective yaw angle. To model secondary steering, an effective yaw angle is computed to describe the effect of the vortices

generated at the upstream turbine on the downstream turbine wake. The effective yaw angle is computed using the spanwise10

velocity, V , present at the turbine rotor, which contributes to an effective circulation that is responsible for deflecting and

deforming the wake. At a downstream turbine, the strength of the effective circulation, Γeff is calculated by taking the inverse

of (20):

Γeff =
1
N

N∑

i

∣∣∣∣∣∣∣∣

2πVi
(
(yi− y0)2 + (zi− zh)2

)

(yi− y0)
(

1− e
−((yi−y0)2−(zi−zh))2

ε2

)

∣∣∣∣∣∣∣∣
(24)

where V is spanwise velocities inside the rotor area and N is the number of points in the rotor area. The effective yaw angle,15

γeff, is then computed using Γeff and solving for γ in (13). The total wake deflection can be computed using (9) where the total

yaw angle, γ is:

γ = γturb + γeff (25)

where γturb is the amount of yaw offset the turbine is actually applying. This γ is used in (9) to compute the lateral deflection

of the wake.20

Due to the presence of the effective yaw angle, downstream turbines generally do not have to yaw as much as upstream

turbines to produce large gains. This phenomenon was observed in a wind tunnel study (Bastankhah and Porté-Agel (2019)).

7
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3 Two-Turbine Analysis

In this section, SOWFA simulations were run for a variety of two-turbine scenarios. Each two-turbine scenario is run using

both the Gaussian and the GCH model. Note, the effects of secondary steering will have no effect on two-turbine scenarios,

and therefore GCH is equivalent to only the yaw-added recovery (YAR) effect addressed in Section 2.3. Therefore, we will

refer to the model as YAR in this section. This analysis focuses on a wind speed of 8 m/s with turbulence intensities of 6% and5

10% TI, where spacing between the turbines is fixed at 7D. It should be noted that the Gaussian model and the GCH model

share the same tuning parameters and have been tuned to the same value, which is consistent with what has previously been

published in literature. Only turbulence intensity and freestream velocity are changed between simulations to match large eddy

simulation. Mean wind speeds vary slightly between low and high turbluence scenarios, e.g. U∞ = 8.34 m/s for low turbulence

and U∞ = 8.38 m/s for high turbulence cases.10

The first turbine is fixed at one location, while its yaw angle is varied through a range of positive (CCW) and negative (CW)

yaw offsets. The second turbine is always aligned the flow, but is moved between -R,0,+R offset laterally from the upstream

turbine. The SOWFA simulations with the front turbines yawed +20 are illustrated in Fig. 1 (right column). Fig. 1 also shows

cases with no yaw (middle column) and with -20◦ offset (left column). Simulations with +R offset are in the top row, 0R offset

are in the middle row, and -R offset are in the bottom row.15

Figure 1. Flow fields of streamwise velocity components for when the second turbine is offset +R (top), 0R or aligned (middle), and -R

(bottom). The front turbine is yawed −20◦ (left column), 0◦ (middle column), and +20◦ (right column)

The results are analyzed by considering the percentage gain (or loss) in power of the second turbine from yawing the front

turbine in each case either +20◦ (CCW) or -20◦ (CW). These results are shown in Fig. 2. Most of the improvements in GCH

are expected to mainly benefit larger arrays of turbine scenarios where secondary steering plays a role. However, the suggested

improvements in YAR can be seen in the asymmetry introduced by wake rotation and shear. This can be seen most clearly in

the aligned 0R cases (middle row of Fig. 2). The initial Gaussian model assumes the gain on the second turbine is equivalent20
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whether yawing positive or negatively, whereas YAR matches the pattern from SOWFA that the positive gains exceed the

negative.

Figure 2. Results for percent change of power in the second turbine in each offset location, for each of model, at 8 m/s and 6% turbulence

intensity (left) and 10% turbulence intensity (right). The results are shown where the second turbine is offset +R (top row), 0R (middle row),

and -R (bottom row).

The second improvement focuses on the magnitude of gains from positive yawing. For the four cases shown in Fig. 2 in

which positive yawing is beneficial according to SOWFA, the Gaussian model significantly underestimates the gain in all cases.

Further, considering the case in which positive yaw is harmful, -R, the Gaussian consistently over-estimates the loss, while the5

YAR model more closely matches SOWFA by producing less negative results. However, it is noted that YAR does not perform

as well as the Gaussian model when predicting the gains of negative yaw when the second turbine is offset by -R. This will be

subject to future research. It should also be noted that a loads study of wake steering suggested that positive yaw angles are

less harmful to turbines and thus mainly positive angles are used for wake steering (Damiani et al. (2017)).
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4 Three-Turbine Analysis

Next, the Gaussian model, GCH model, and SOWFA are compared in three-turbine array simulations. The three-turbine array

demonstrates the benefits of yaw-added recovery (YAR) effect as well as secondary steering (SS). The following plots show the

contributions of YAR and SS compared with the Gaussian model and the full GCH model, which contains both YAR and SS.

The YAR and SS models are computed by disabling the model produced in Section 2.3 and Section 2.3.1 respectively within5

the GCH model to isolate the two effects.

Figure 3. Three-turbine array in SOWFA where all turbines are aligned (top), the first turbine is yawed +20◦ (middle), and the first turbine

is yawed +20◦ and the second turbine is yawed +10◦.

The three turbine scenario was simulated at 8 m/s with 6% and 10% turbulence intensities and spaced 7D apart in the

streamwise direction. Fig. 3 shows the flow fields from the SOWFA simulations for baseline (top row), the first turbine yawed

20◦ (middle row), and the first turbine yawed 20◦ and the second turbine yawed 10◦ (bottom row). For visual comparison,
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Figure 4. FLORIS results for the three-turbine case shown for the Gaussian model (left) and the GCH model (right), where the first turbine

is yawed 20◦ (top row) and the first turbine is yawed 20◦ and the second turbine is yawed 10◦ (bottom row).

Fig. 4 shows the Gaussian model (left) and the GCH model (right) where the first turbine is yawed 20◦ (top row) and the first

turbine is yawed 20◦ and the second turbine is yawed 10◦ (bottom row). Visually, the impact of secondary steering can be

seen on the wake of the third turbine in the GCH model (right column), i.e. the wake of the third turbine is slightly deflected

(downward in this plotting orientation) even though the third turbine is not operating in misaligned conditions.

Next, several simulations were run at each turbulence intensity where the first turbine was yawed 20◦ and the second turbine5

was yawed between -20◦ and +20◦. Figure 5 and 6 shows the relative power gains of the SOWFA simulations for turbulence

intensities of 6% and 10% respectively relative to a baseline case of all turbines aligned. The SOWFA simulations are compared

with the Gaussian model, YAR, SS, and the GCH model. The turbines in the three turbine cases are labeled as Turbine 1 (most

upstream turbine), Turbine 2 (middle turbine), and Turbine 3 (most downstream). The power gains of Turbine 2 are shown in

the left plot in Figs. 5 and 6, Turbine 3 is shown in the middle plot, and the total power gains are shown in the right plot.10

The Gaussian model is not able to capture the secondary effects of wake recovery and secondary steering. The Gaussian

model is able to capture gains in low turbulence (6%) conditions, see Fig. 5. However, it does not see any gains when turbulence

intensity is higher as shown Fig. 6. It is also important to note that for Turbine 3 and the total gains, the Gaussian model forecasts

a change in power which is symmetrical about changes in Turbine 2, whereas SS and the GCH model predict that a -10◦ yaw

on a turbine, which is behind a turbine yawed +20◦ is counter-productive, while a complementary +10◦ yaw is more valuable15

than either Gauss or YAR would predict. The figures also show how the two added effects, YAR and SS, complement each

other. YAR improves the prediction of the middle Turbine 2, while SS can only improve the predictions farther downstream.

The combined GCH model is most like LES in both low and high turbulence scenarios.
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Figure 5. Comparison of changes in power when sweeping the angle of the second turbine, i.e. Turbine 2, when the angle of the first turbine,

i.e., Turbine 1 is set to +20◦ where the wind speed was 8 m/s and the turbulence intensity was 6%. The results of the change in power of the

third turbine, as well as the overall total of all three turbines, reflect the importance that the two yaw offsets are in the same direction.

Figure 6. Comparison of changes in power when sweeping the angle of the second turbine, i.e. Turbine 2, when the angle of the first turbine,

i.e., Turbine 1 is set to +20◦ where the wind speed was 8 m/s and the turbulence intensity was 10%.
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Figure 7. Flow field of 5 turbines using GCH for the baseline case (top) and the optimized case (bottom). The optimized yaw angles are

based on the values shown in Table 1.

5 Five-Turbine Analysis

Next, five turbines were simulated in SOWFA, the Gaussian model, and the GCH model for different combinations of yaw

angles, starting with all aligned, the first turbine yawed 25◦, the first and second turbine yawed 25◦, and the first three turbines

yawed 25◦. Fig. 7 shows the flow field for GCH in baseline conditions (top) and optimized conditions (bottom). The five turbine

array was simulated with a wind speed of 8 m/s and turbulence intensities of 6% (labeled as low turbulence) and 10% (labeled5

as high turbulence). The turbines are spaced 6D in the streamwise direction.

Fig. 8 shows the absolute powers of each turbine in the five turbine array, excluding the first turbine, for low turbulence

conditions. The GCH model is able to most closely capture the trends seen in SOWFA especially when evaluating total turbine

power. The power gains for each turbine are shown in Fig. 9. The Gaussian model is pessimistic about the potential gains for

the five turbine case. YAR and SS both contribute significantly to the total gains seen in the five turbine case. It should be noted10

that all models have a difficult time predicting the absolute power and the power gain of the last turbine. This may be resolved

with a more rigorous “turbulence” model than the one used in this model, see Annoni et al. (2018). In addition, this model does

not directly account for deep array effects and this may also be a source of error and is a subject of ongoing research.

Fig. 10 shows the same five turbine analysis for the high turbulence scenario (10% turbulence intensity). Again, the GCH

model most closely follows the trends seen in SOWFA. The most notable difference between GCH and the Gaussian model15

is that the Gaussian model is extremely pessimistic about wake steering in high turbulence, i.e., there are no gains to be

realized under these conditions. However, according to SOWFA, large gains are still expected from wake steering even in high

turbulence. The GCH model is able to capture the power gains seen in SOWFA at high turbulence intensities although GCH is

still slightly under-predicting the potential gains of wake steering.
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Figure 8. Absolute power values for each turbine (excluding the upstream turbine 1) in the five turbine array for a wind speed of 8 m/s and

low turbulence, i.e., 6% turbulence intensity. Total turbine power is shown in the far right plot. The x-axis shows the combination of yaw

angles plotted.

Figure 9. Power gains for each turbine (excluding the upstream turbine 0) in the five turbine array for a wind speed of 8 m/s and low

turbulence, i.e., 6% turbulence intensity. Total power gain is shown in the far right plot. The x-axis shows the combination of yaw angles

plotted.
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Figure 10. Absolute power values for each turbine (excluding the upstream turbine) in the five turbine array for a wind speed of 8 m/s and

high turbulence, i.e., 10% turbulence intensity. Total turbine power is shown in the far right plot. The x-axis shows the combination of yaw

angles plotted.

Figure 11. Power gains for each turbine (excluding the upstream turbine) in the five turbine array for a wind speed of 8 m/s and high

turbulence, i.e., 10% turbulence intensity. Total power gain is shown in the far right plot. The x-axis shows the combination of yaw angles

plotted.
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Case Turbine 1 Turbine 2 Turbine 3 Turbine 4 SOWFA Gain Gauss Gain GCH Gain

Low Turbulence

Gauss optimized angles 24.0 25.0 25.0 25.0 22.7% 9.9% 23.1%

GCH optimized angles 25.0 25.0 22.1 18.7 23.7% 9.4% 23.5%

Max yaw angles 25.0 25.0 25.0 25.0 22.9% 9.8% 23.3%

High Turbulence

Gauss optimized angles 12.9◦ 23.4◦ 19.7◦ 14.1◦ 7.5% 1.2% 9.2%

GCH optimized angles 24.2 24.4 22.7 16.5 14.3% -0.2% 11.0%

Max yaw angles 25.0 25.0 25.0 25.0 13.1% -0.9% 10.1%
Table 1. Five turbine results for low and high turbulence conditions using SOWFA, the Gaussian model, and the GCH model.

5.1 Optimization of Five Turbine Array

Engineering wake models in FLORIS are often used to determine optimal setpoints for wake steering and assess the perfor-

mance of these setpoints. The results of optimizing the Gaussian and GCH models are compared in this section. Specifically,

the Gaussian and GCH models were optimized individually for the five turbine case under low and high turbulence conditions.

These yaw angles from each optimization were simulated in SOWFA. The power predicted in SOWFA, the Gaussian model,5

and the GCH model, for each set of yaw angles, are compared in Table 1. The results are compared to 1) a baseline where the

yaw angles of all turbines in the five turbine array are zero, and 2) a naive strategy of simply maximizing yaw offsets, subject

to an upper bound of 25◦ to limit structural loads, for all turbines except the last.

In both low and high turbulence cases, the GCH optimized yaw angles produced higher power gains in SOWFA compared

with the Gaussian model, and also outperformed simply operating all turbines (except the last turbine) at a maximum yaw angle10

of 25◦. Similarly to results observed in a wind tunnel study in Bastankhah and Porté-Agel (2019), GCH produces decreasing

yaw angles at farther downstream turbines indicating that GCH is taking advantage of the effective yaw angle produced by the

counter-rotating vortices generated by upstream turbines. Note that GCH more closely predicts the gain observed in SOWFA

versus the Gaussian in all cases.
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6 Wind Farm Analysis

Figure 12. Flow field results from SOWFA where the wind direction is 270◦ (Case 2). The left plot shows the baseline case with all turbines

aligned with the flow. The middle plot shows the flow field with yaw angles from the optimized Gaussian model and the right plot shows the

flow field with the yaw angles from the optimized GCH model.

Finally, a full wind farm analysis was performed to quantify the potential of wake steering when effects such as yaw-added

recovery and secondary steering are included. For this analysis, we used a 38-turbine wind farm used as in Thomas et al.

(2019). The flow field for the baseline case is shown on the left in Fig. 12 where the wind direction is 270◦ and all turbines

are aligned with the flow. The middle plot shows the flow field with yaw angles from the optimized Gaussian model and the5

right plot shows the flow field with the yaw angles from the optimized GCH model. The analysis was performed for two wind

directions, 95◦ and 270◦, and will be referred to as Case 1 and Case 2 respectively.

Figure 13. Flow fields of the optimized Gaussian model (left) and the optimized GCH model (right) for Case 1 where the wind direction is

at 95◦.
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Figure 14. Flow fields of the optimized Gaussian model (left) and the optimized GCH model (right) for Case 2 where the wind direction is

at 270◦.

Case SOWFA Total Power Gain Gauss Total Power Gain GCH Total Power Gain

Low Turbulence

Case 1 - Gauss optimized angles 7.6% 5.2% 7.7%

Case 1 - GCH optimized angles 8.0% 4.7% 8.5%

Case 2 - Gauss optimized angles 3.8% 2.6% 5.0%

Case 2 - GCH optimized angles 4.3% 1.7% 5.8%

High Turbulence

Case 1 - Gauss optimized angles 4.4% 2.1% 5.4%

Case 1 - GCH optimized angles 4.5% 1.6% 5.8%

Case 2 - Gauss optimized angles 2.3% 0.5% 2.8%

Case 2 - GCH optimized angles 3.1% 0.0% 3.3%

Table 2. Wind farm results for low and high turbulence conditions for SOWFA, the Gaussian model, and the GCH model.
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Optimizations were performed with the Gaussian model and the GCH model for low (6%) and high (10%) turbulence

conditions. Flow fields are shown in Fig. 13 for the Gaussian model (left) and the GCH model (right) for Case 1 of 95◦ and

Fig. 14 shows the Gaussian (left) and GCH (right) model for Case 2 of 270◦ (bottom) under low turbulence conditions.

The results of the optimization are shown in Table 2. The optimized yaw angles from the Gaussian model and the GCH

model were tested in SOWFA. As with the five turbine case, the yaw angles produced in the optimization with the GCH model5

had the largest gain in SOWFA. In addition, the gains computed by the GCH model are closer to the gains in the SOWFA

results than the Gaussian model indicating that the GCH model is better able to capture the secondary effects of the large-scale

flow structures generated by misaligned turbines.

Lastly, a full optimization over a wind rose was run for the wind farm in low and high turbulence conditions. The wind rose

is shown in Fig. 15 to compute annual energy production (AEP). The Gaussian model and the GCH model were optimized for10

wake steering over this wind rose and the AEP gains are reported in . Table 3. The Gaussian model predictions of AEP gains

are less than half of the gains predicted by the GCH model under both low and high turbulence conditions. This is a promising

result for understanding the full potential of wake steering in large wind farms. By taking advantage of these large-scale flow

structures, there is more potential for increasing the power production in a wind farm.

Figure 15. Wind rose used to compute the AEP

gains from wake steering.

Annual Energy Production Results

Model Low Turbulence, TI = 6.5% High Turbulence, TI = 9%

Gauss 1.3% 0.7%

GCH 2.8% 2.1%
Table 3. Wind farm AEP results for low and high turbu-

lence.
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7 Conclusion

This paper introduces an analytical model that better captures the secondary effects of wake steering in a large wind farm. These

secondary effects include yaw-added wake recovery as well as secondary wake steering that significantly boosts the impact of

wake steering. The results of this model were compared with LES for two, three, and five turbine arrays as well as a 38-turbine

wind farm. The model compared well with results from LES and outperformed the Gaussian model in most cases. Furthermore,5

this paper demonstrated the possible gains in a large wind farm when considering these large-scale flow structures. Controllers

can be developed in the future to manipulate these flow structures to significantly improve the performance of a wind farm.
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