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Abstract. Design of an optimal wind farm topology and wind farm control scheduling depends on the chosen metric. The 5 

objective of this paper is to investigate the influence of optimal wind farm control on the optimal wind farm layout in terms 

of power production. A successful fulfilment of this goal requires: 1) an accurate and fast flow model; 2) selection of the 

minimum set of design parameters that rules the problem; and 3) selection of an optimization algorithm with good scaling 

properties. 

For control of the individual wind farm turbines, the two most obvious strategies are wake steering based on active wind 10 

turbine yaw control and wind turbine derating. The present investigation is a priori limited to wind turbine derating. 

A high-speed linearized CFD RANS solver models the flow field and the crucial wind turbine wake interactions inside the 

wind farm. The actuator disk method is used to model the wind turbines, and utilizing an aerodynamic model, the design 

space of the optimization problem is reduced to only three variables per turbine – two geometric and one carefully selected 

variable specifying the individual wind turbine derating setting for each mean wind speed and direction. 15 

The full design space spanned by these (2N+Nd Ns N) parameters, where N is the number of wind farm turbines, Nd is the 

number of direction bins, and Ns is the number of mean wind speed bins. This design space is decomposed in two subsets, 

which in turn define a nested set of optimization problems to achieve the fastest possible optimization procedure. Following 

a simplistic sanity check of the platform functionality regarding wind farm layout and control optimization, the capabilities 

of the developed optimization platform is demonstrated on the Swedish offshore wind farm. For this particular wind farm, 20 

the analysis demonstrates that the expected annual energy production can be increased by 4% by integrating the wind farm 

control in the design of the wind farm layout, which is 1.2% higher than what is achieved by optimizing the layout only.  

1. Introduction 

The large-scale global deployment of wind energy is highly dependent on the cost of energy (COE), i.e. the profit of a wind 

power plant (WPP) over its lifetime as seen from an investor’s perspective. Lowering the COE was previously addressed 25 

with the Topfarm WPP layout optimization platform (Réthoré et al., 2013; Larsen and Réthoré, 2013). The platform is used 

to design a WPP with minimal COE, given number of a predefined wind turbine (WT) type and an allowable area with an a 

priori known wind climate. Hence, it determines the optimal balance between WPP power production revenue on the one 

hand, and, on the other hand, all relevant expenses. The considered expenses include; WPP variable capital costs (i.e. capital 

costs that depends on the WPP layout); WPP operation and maintenance (O&M) costs, and cost of fatigue degradation of the 30 

individual components of all WTs in the WPP. The basic functionality of the Topfarm platform was later extended by also 

including the number of WPP WTs as a design variable, and the performance of surrogate models, needed to facilitate the 

used optimization algorithm, was moreover improved (Mahulja et al., 2018). Because WT loading is included, the WPP WTs 

must be modelled as aero-elastic models (including individual WT control), and the inflow conditions to these are tightly 

coupled to the complex in-stationary wake affected WPP flow field, which – for each iterative topology configuration – has 35 

to be simulated for all the considered ambient wind speeds- and directions. The optimization workflow – i.e. the iterative 

repetition of WPP flow field and corresponding aero-elastic simulations – is costly in terms of computational efforts, and the 

reason why surrogate models are needed to link ambient WPP inflow conditions, WT location within the WPP, and WT 

response in terms of power production and (fatigue) loading.  

https://doi.org/10.5194/wes-2020-31
Preprint. Discussion started: 24 February 2020
c© Author(s) 2020. CC BY 4.0 License.



2 

 

However, WPP control aspects were not considered in the aforementioned WPP layout optimization platform. Fathy et al., 

(2001) presents a pure theoretical analysis of coupled design and control of general physical systems. It was found that 

conventional sequential optimization processes are not guaranteed to find system-optimal designs. In this theoretical 

framework, a coupling term is introduced, which reflects the influence of plant dynamics/control on plant design. The 

necessary conditions for the combined plant design and controller optimality was investigated, and it was concluded that this 5 

term depends strictly on the gradients of the coupling constraints with respect to the plant design variables, which is also 

intuitively clear. Therefore, for weak/no coupling – i.e. neglectable coupling constraint gradients – the plant design and 

controller optimization problems become separable, and their sequential solution will thus in turn furnish the combined 

optimum. In case of a strong coupling, design methods that include this interaction explicitly can produce system-optimal 

designs contrary to the sequential approach. A priory, it is not possible to evaluate whether the coupling between system 10 

design variables and system control variables is weak or strong for a complicated physical system like a WPP.  

Fleming et al. (2016) and Gebraad et. al (2017) study optimization of layout and active wake control in terms of WT yaw 

dictated wake deflection on a WPP with 60 WTs. In these studies, the wake effects are modelled with an augmented version 

of the N. O. Jensen model (Jensen 1984) extended with an engineering model for wake deflection as caused by WT yaw 

misalignment. Fleming et al. (2016) consider an inflow wind speed of 8 m s-1, only, and report a power gain of 2.3% for the 15 

optimized layout; 7.6% for the optimized yaw control; and 8.5% for the integrated layout and yaw control optimization 

result. From the paper it is not clear whether power losses of yawed WTs are accounted for and if so then how. Finally, 

Fleming et al. (2016) compares the integrated result, which requires 6900 CPU hours, with a sequential approach, which can 

be performed in “several hours by a single computer”. They find that the integrated result is around 0.5% better than the 

results originating from the sequential approach. Gebraad et. al (2017) perform a three-step optimization: first the AEP is 20 

increased by 1.5% by optimizing the layout considering one wind speed per wind direction, only; then the WT positions and 

the yaw angle are optimized, again based on one wind speed per wind direction, which increases the AEP to 5.2% above the 

base line. Finally, the WT yaw angles are optimized for all relevant wind speeds raising the AEP to 5.3% above the base 

line. 

Another integrated approach is taken in (Deshmukh and Allison, 2017), in which the optimal layout of a WPP system is 25 

investigated including both WPP topology and WPP control facilitated by active wake control over the entire lifetime of the 

WPP. The optimal WPP system design is pursued using a quasi-steady empirical wake model (i.e. a deterministic wake, 

which expands downstream). The quasi-steady wake model is linearly superimposed on the undisturbed ambient flow fields 

including both mean wind shear and turbulence (presumably using only one turbulence seed and thereby one realization of 

the ambient stochastic turbulence field) to obtain a description of the WPP flow field. Surprisingly, a relationship between 30 

the atmospheric boundary layer (ABL) turbulence field and the introduced wake expansion factor is not established, although 

there is evidence that wake meandering, which depends on the site ambient turbulence field, is dictating the static 

downstream wake ‘envelope’ (Machefaux et al., 2015). Deshmukh and Allison (2017) take a model predictive control 

(MPC) approach that is specifically implemented using reduced-order state-space models of the individual WTs, which 

account for the tower for-aft bending dynamics, the rotor rotational speed dynamics and the blade pitch dynamics. The active 35 

wake control includes both WT derating and wake deflection by WT yawing. The objective function is the WPP annual 

energy production (AEP), and two case studies indicate a significant improvement of the integrated system design compared 

to layout design only. No attempt was done to compare the full integrated system design approach with a sequential 

approach, in which first the layout was optimized and then, subsequently, the WPP control. Such a comparison would have 

contributed to quantification of the coupling terms, elaborated on in (Fathy et al., 2001), and, in case of weak coupling, 40 

facilitated a reduction the computational efforts needed to perform the system design optimization. The paper is ended with a 

comparison of the relative AEP effect of, respectively, the derating and the yaw-wake-deflection strategy. It is concluded 

that wake deflection is of marginal importance compared to WT derating. 
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The same conclusion was reached by Andersen (2019) based on a two-WT case analyzed in detail using a high-fidelity CFD 

LES solver, fully coupled with a modal-based aero-elastic tool including a full dynamic WT controller. Comparing a 35° 

yaw case with the corresponding derating case, this study concludes that, for a given reduction of the upstream WT thrust, 

the yaw wake deflection strategy is penalized more severely than the derating strategy measured in terms of aggregated 

power production of the investigated two-WT system. It is further concluded that the overall benefit of active wake control 5 

for a two-WT system is largely uncertain. 

This is opposite to the findings in Gebraad et. al (2015). Like Andersen (2019), they analyzed a two-WT case by means of 

high-fidelity CFD simulations of the wind farm flow field coupled with simulations of the WT dynamics, using the National 

Renewable Energy Laboratory’s simulator for wind farm applications (SOWFA). Investigating two different derating 

strategies – 1) changing the collective blade pitch setting; and 2) changing the tip speed ration – they found out, that what is 10 

gained by the wake affected WT is, on the whole, lost by the derated WT. This lead to the conclusion, that yaw wake 

deflection is more efficient than derating when quantified in terms of power production gain. Unfortunately, both of the 

investigated derating strategies are sub-optimal as shown in (Vitulli et al. 2019). The optimal derating strategy is the 

particular combination of collective pitch- and tip speed setting yielding the lowest rotor thrust for a given derated power 

production. Using this optimal derating strategy, considerable gains in power can be achieved as shown in (Vitulli et al. 15 

2019). 

Large uncertainties, associated with both active wake control strategies (i.e. derating and yaw-based wake deflection) and, 

not least, among various simulation approaches as well as measurements, were also reported in (Kheirabadi and Nagamune, 

2019). Important conclusions from this study is further, that 1) full-scale tests provide the most conservative evaluations of 

the potential of active wake control; and consistently 2) “added layers of realism in terms of simulated wind conditions tend 20 

to deteriorate the performance of wind farm controllers”. 

Guided by 2), the present contribution to WPP system design optimization (i.e. WPP topology- and control optimization) 

will seek to describe the complex inter-turbine aerodynamic interactions within a WPP using a full-blown CDF solver in an 

attempt to get realistic results. We will limit the scope to AEP1 system optimization, which is considered imperative for 

direct (i.e. without the use of surrogates) use of CFD simulated WPP flow fields. In this context, WT loading is excluded, 25 

and we consider, and will consequently assume, that WT characteristics for aggregated AEP estimates are sufficiently 

described in terms of their power- and thrust coefficients, which implicitly include the relevant structural dynamics of a 

particular WT as e.g. crucial blade bending- and torsion dynamics for big modern WTs with flexible blades. Based on the 

results obtained in (Deshmukh and Allison, 2017; Andersen, 2019) we will further concentrate on WPP active wake control 

in terms of WT derating.  30 

The research challenges dealt with in the present paper can be summarized as:  

1) Is it possible to conduct WPP system optimization based on a full-blown CDF simulation of the complex WPP flow 

field with its complicated WT wakes interactions? 

2) Analyze and indicate the importance/size of the system coupling terms mentioned in (Fathy, 2001) – or more 

specifically their gradients with respect to the WT positions; and  35 

3) Evaluate the AEP improvement potential accompanying the integrated system approach with a focus on WT 

derating based on analysis of an existing offshore WPP.  

                                                           
1 Restricting the objective function to power production is a major simplification compared to approach taken in (Réthoré et 

al, 2013; Larsen and Réthoré, 2013; Mahulja et al., 2018) because: 1) aeroelastic modelling of the WPP WTs are 

circumvented; 2) a stationary description of the wake affected WPP flow field suffices; and 3) no cost models are needed. 
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Sect. 2 describes the simulation platform including all relevant models while Sect. 3 presents a simple and illustrative 

application example as a sanity check. The Lillgrund case study is described in Section 4. First the layout/control coupling is 

analyzed by a one-row WPP example. Based on the results of this study, a system optimization of the Lillgrund WPP is 

subsequently performed. The paper is concluded in Section 5, where also future work is identified.  

2. The platform 5 

Overall, the integrated layout and WPP control optimization platform is based on a fusion of Topfarm2 (2019), the DTU 

wake framework, PyWake (2019), and a dedicated aerodynamic rotor model. Topfarm2, which is the DTU open source WPP 

optimization framework, utilizes the open-source framework for multidisciplinary design, analysis and optimization, 

OpenMDAO (Gray et al. 2019), to find the optimal set of design variables, i.e. WT positions and control settings in a 

sequential or nested workflow. PyWake is the DTU open source AEP calculator including a collection of stationary wake 10 

models. PyWake is used to establish the AEP objective function needed in Topfarm2, which in this study is based on the 

linearized CFD RANS wake model, Fuga (Ott et al. 2011).  

A simplified version of the present platform, excluding WPP topology optimization and thus only including WPP control 

optimization, is described in (Vitulli et al. 2019). In its most general formulation, this open-loop WPP control optimization 

platform deals with two design parameters per WT – the tip speed ratio, λ, and the collective pitch angle, α, both conditioned 15 

on the wind direction and -speed. However, using a show case Vitulli et al. (2019) justify that the design space, without loss 

of generality, consistently can be collapsed to only one parameter for each WT. This parameter reflects the desired derating 

and maps to a unique combination of collective pitch and tip speed ratio, (αCt, λCt), which results in the smallest thrust 

coefficient, Ct , that is possible for at the requested power coefficient, Cp . For the sake of efficiency, we will take advantage 

of this finding in designing the present platform, thus resulting in three design parameters for each WT – two topology 20 

coordinates and the unique set (αCt, λCt) resulting from the unique functional relationship αCt(λCt). 

In summary, the present integrated system optimization platform consist of four main components:  

1) A CFD solver modelling the steady flow field within a WPP. The ambient mean wind shear and turbulence 

characteristics are specified in terms of a terrain roughness height conditioned on wind direction, which in turn 

implicitly dictates the ambient turbulence conditions via the turbulence closure of the CFD model;  25 

2) An aerodynamic part that models the WT power- and thrust characteristics based on a detailed aero-servo-elastic 

model of the WT, describing its structural- and aerodynamic properties as well as the rotor speed and the collective 

pitch angle. These are in turn used to establish an accurate and fast surrogate model to facilitate an efficient 

optimization process; 

3) A WPP AEP performance metric defining the optimization objective based on a priori available information on the 30 

mean wind direction probability density function (pdf) and the mean wind speed pdf conditioned on the wind 

direction of the site; and 

4) An optimization platform that computes the optimal system performance in terms of WPP AEP metric while 

satisfying the site area and minimum wind turbine separation constraints. 

In the following each of these four key elements are described in some detail. 35 

2.1. The CFD solver 

Typically, an optimization of the control settings for a WPP requires 200 - 1000 power evaluations for each mean wind 

speed and –direction. To calculate a proper AEP metric, we use 23 speeds and 360 directions; i.e. 1.6 – 8.2 million flow field 

computations is needed to optimize the control settings for a given WPP layout. Obviously, this puts excessively high 

demands on the computational speed of the flow solver.  40 
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The linear CFD RANS solver, Fuga (Ott et al., 2011), is extremely fast and thus appropriate for this task. The governing 

Navier-Stokes equations, neglecting the Coriolis forcing, are consistently linearized using a formal perturbation expansion 

and subsequently retaining only the first order perturbation terms. Thus, mass conservation is identically satisfied, 

momentum conservation is satisfied to first order, and the resulting WPP fields are divergence free, as they should be for an 

assumed in-compressible flow. The resulting equations are in turn conveniently formulated and solved in a mixed-spectral 5 

domain for efficiency reasons. The velocity perturbation around a single WT in the physical domain is derived from Fourier 

components of the mixed-spectral solution using a fast inverse Fourier integral transform and stored in a system of both 

general and WT-specific look-up tables, which facilitates the extreme computational speed of the solver. Because of the 

linearity of the model, wakes from multiple upstream WTs can consistently be superimposed to construct the flow field 

further downstream. From an efficiency perspective, this is a big advantage.  10 

The WTs are modelled as actuator discs, which in general can be vertically inhomogeneous, but often is assumed uniform. 

The WPP wind field, impinging at an arbitrary WT in the WPP, depends on the ambient wind field and wakes from relevant 

upstream WTs linearly superimposed. The inflow conditions, i.e. mean wind speed and direction, are assumed spatially 

homogeneous. 

For each wind direction, the local wind speed, i.e. ambient wind speed minus the sum of deficits from upstream turbines, the 15 

power production and the thrust coefficient as well as the wake deficits at downstream WT positions are evaluated starting 

with the most upstream WT position and continuing in the downstream order.  

2.2. The aerodynamic WT model 

As mentioned, we consider detailed aerodynamic rotor performance expressed in terms of power- and thrust coefficients as 

fully satisfactory for WT AEP simulations. 20 

Initially, the power- and thrust coefficients of the rotor is modelled using HAWCStab2 – a linearized aero-servo-elastic code 

designed for stability analysis and steady-state simulation of WTs (Hansen et al., 2017). HAWCStab2 relies an extended 

formulation of the traditional blade element momentum (BEM) approach (Madsen et al., 2007), and consequently detailed 

geometric- and aerodynamic input is required – e.g. the blade planform and twist distribution as well as blade aerodynamic 

properties in terms of aerodynamic coefficients over the blade length. In the present application, HAWCStab2 uses a fully 25 

flexible WT model formulation to account for the equilibrium-static wind speed dependent deflections of the WT main 

components, and thus the potential effects on the WT thrust- and power performance. 

For traditional layout optimization without WPP control, the WPP production is implicitly based on WTs running at 

maximum Cp . For the present application, which aims at system optimal design, the aerodynamic modelling must include a 

WT derating feature. As mentioned, this feature links to a unique set of tip speed ratio and collective pitch angle, (αCt, λCt). 30 

Consequently, the aerodynamic WT model must facilitate computation of Ct and Cp conditioned on these design variables. 

Assuming zero yaw error, the tip speed ratio, λ, is defined as 

𝜆 ≡
𝑅Ω

𝑈
 

(1) 

where R is the rotor radius, Ω denotes the rotor speed, and U is the hub height mean wind speed.  

The conditional dimensionless rotor thrust and power coefficients are defined as respectively 

𝐶𝑡(𝑈|𝛼, 𝜆) ≡
𝑇𝑊𝑇(𝑈|𝛼, 𝜆)

½𝜌𝐴𝑈2
 

(2) 

and  35 

𝐶𝑝(𝑈|𝛼, 𝜆) ≡
𝑃𝑊𝑇(𝑈|𝛼, 𝜆)

½𝜌𝐴𝑈3
 

(3) 
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where TWT is the rotor thrust force, PWT is WT power production, ρ is the air density, and A is the rotor area, which depends 

on both the rotor tilt (θt) and the blade coning (θc) angles 

𝐴 = 𝜋(𝑅 cos 𝜃𝑐 cos𝜃𝑡)
2 (4) 

In this context, PWT and TWT is the output from HAWCStab2 simulations of the Siemens SWT-2.3-93 WT, which is operating 

at the Lillgrund WPP; see Sect. 4. The steady-state power and thrust have been simulated for a range of collective pitch and 

rotor-speed settings in a uniform flow field of 8 m s-1. Note from eq. (1) that for a fixed wind speed, a variation in rotor speed 5 

corresponds to a variation of λ.  

From these outputs, the power- and thrust coefficients have been calculated as a function of the tip speed ratio and the 

collective pitch via equations (1) - (4); see Figure 1. 

 

 10 

Figure 1. Power- and thrust coefficients as a function of tip speed ratio and collective pitch angle, based on HAWCStab2 

simulations of a Siemens SWT-2.3-93 WT.  

The results shown in Figure 1 can be used for the entire range of mean wind speeds requested for the system optimization, 

cf. eq. (1). This is convenient from a computational point of view, and thus consolidates the tip speed ratio as design variable 

as an appropriate choice. 15 

Another important computational simplification is, as previously mentioned, the reduction from two- to one control design 

variables per WT. This reduction is based on the previously mentioned findings in (Vitulli et al. 2019) showing that optimal 

derating is obtained by selecting the unique set of design variables, (αCt , λCt) which, for a given derating (i.e. power 

production reduction), corresponds to the smallest possible thrust. This condition, which is also intuitively clear, provides a 

unique relationship between αCt and λCt and justifies the reduction in design space to one control variable per WT, 20 

conditioned on ambient mean direction and -speed. 

As a consequence of the control design space collapse, a specific derating factor corresponds to a deterministic path through 

the original (α , λ) design space, where the points on this path correspond to certain mean wind speeds. Note, that these paths 

are constrained by the minimum and maximum rotor speed limits as well as the maximum power limit, see Figure 2. 

  25 
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Figure 2. Left: Cp, (background colour and blue contours) and Ct (orange contours) plotted as a function of tip speed ratio, λ, and 

collective pitch setting, α. The green, red and purple lines expose the (αCt, λCt)-relation for 0%, 10% and 50% derating, repectively. 

These relations are plotted for a range of wind speeds (3, 10 and 15 m s-1 is marked) satisfying the rotor speed limits (indicated in 

the left-hand side of the figure for 3, 10 and 15 m s-1) as well as the maximum power limit. Right: The corresponding power (solid) 5 

and Ct (dashed) curves plotted as a function of wind speed. These figures are based on HAWCStab2 simulations of a Siemens 

SWT-2.3-93 WT model. 

The last step needed to prepare for an efficient optimization procedure is to transform the above described aerodynamic rotor 

computations into a surrogate model, which maps mean hub wind speed and the requested derating factor into a power 

production- and a thrust coefficient conditioned on the operational settings; i.e. Cp (U ǀ α ,λ) and Ct (U ǀ α ,λ). The surrogate 10 

thereby establishes the link between the derating settings, to be specified by the control optimizer, and the characteristics of 

the uniformly loaded actuator discs needed by the flow solver. At present, it was not found essential to model the actuator 

discs as vertically in-homogeneous, although possible within the framework.  

2.3. The AEP performance metric 

In each iteration of the optimization procedure, the objective function – in this case the AEP performance metric – must be 15 

computed. Computational efficiency is in particular needed for the present CFD-based approach, and this is assured to the 

highest possible degree through implementation the ‘shortcuts’ described in section 2.2. 

For a given topology (i.e. associated with a given iterative step in the topology optimization process), the WPP AEP, PAEP, is 

estimated from 

𝑃𝐴𝐸𝑃 = 𝑇∑∫ ∫ 𝑃𝑖(𝑈|𝜃)𝑓𝑈(𝑈|𝜃)𝑓𝜃(𝜃)𝑑𝑈𝑑𝜃
𝑈𝑜𝑢𝑡

𝑈𝑖𝑛

2𝜋

0

𝑁

𝑖=1

 (5) 

in which U denotes the undisturbed ambient hub-height mean wind speed and Pi (U|Ɵ) is the production (in watt) of the ith 20 

WT at ambient hub-height mean wind speed, U, and associated operating conditions dictated by the internal WPP flow field. 

fU (U|Ɵ) is the ambient hub-height mean wind speed pdf, conditioned on the ambient mean wind direction (i.e. often a two 

parameter Weibull distribution), and fƟ (Ɵ) is the ambient mean wind direction pdf. Assuming SI units, T is the number of 

seconds corresponding to one year, and N is the pre-defined number of WTs within the WPP considered. 

In practice, eq (5) is discretized to facilitate evaluation of the involved integrals. In the succeeding study cases, a directional 25 

discretization of 1° was used combined with an ambient mean wind speed discretization of 1 m s-1. 
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2.4. Optimization setup 

Overall, there is three ways to design the WPP system optimization. The most elaborate of these is to design the full 

integrated approach by involving all design variables simultaneously. The topology optimization related design variables 

amount to two (i.e. the WT position coordinates) per WT. The WPP control optimization, conditioned on ambient mean 

wind direction and mean wind speed, requires, utilizing the design space collapse described in section 2.2, one design 5 

variable per WT. However, because the AEP computation requires all wind directions and all wind speeds to be accounted 

for, the control-related design variables amounts to Nd Ns per WT. Here Nd is the number of ambient inflow directions, and Ns 

is the number of ambient mean wind speeds considered in the discrete version of eq (5). Thus, in total the number of design 

variables amounts to N(2+Nd Ns). This is clearly infeasible within the present framework – even when utilising a high-

performance-computing cluster. 10 

An alternative and more efficient strategy for a full integrated system optimization is a two-step nested approach, in which, 

for each optimization step, first the topology is advanced and then, based on this iteration of the topology, the associated 

optimal control schedule, conditioned on ambient mean wind speed and direction, is determined. Merging the sequentially 

determined topology and associated optimal control schedule, the AEP estimate, associated with the actual iterative step, can 

be evaluated. The associated workflow is illustrated in Figure 3. 15 

AEP

x,y

PyWake

Power

x, y, cp, ct
Control 

optimizer
Layout 

optimizer

Optimized layout 
and control

 

Figure 3. Nested optimization workflow. The control settings are optimized in every layout iteration. 

Both of the above-sketched optimization strategies are fully integrated strategies, which eventually will lead to the same 

result. If the optimal system design is separable, in the sense that only a weak coupling exists between the topology- and the 

WPP control optimization, the problem can be significantly simplified. This will be quantified in section 3.3 and section 4.1 20 

using two demonstration cases. The significant reduction in computational complexity is obtained taking a sequential 

approach by approximating a weak system coupling with no system coupling. The sequential workflow, in which the 

conventional ‘greedy’ individual WT control settings are used for the WPP layout optimization, is succeeded by an 

optimization of the WPP control scheduling conditioned on both ambient mean wind speed and direction. Thereby, the 

‘greedy’ WT control settings are replaced by optimized ‘collaborative’ WT settings to the benefit of the WPP AEP. The 25 

workflow associated with this sequential strategy is shown in Figure 4.  

AEP

x,y

PyWake
Layout 

optimizer

Optimized layout
x,y

PyWake

Power

x, y, cp, ct
Control 

optimizer

Sequentially optimized layout and control
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Figure 4. Sequential optimization workflow. The control settings are optimized one time only, after the optimal layout is found. 

 

The merger of these two optimization steps make up the optimized system design and is in essence a sequential application 

of the Topfarm2 (2019) layout platform and the open-loop WPP control scheduling platform described by (Vitulli et al. 

2019). 5 

The layout is optimized using a combination of random search and gradient-based optimization. The random search 

algorithm does not get stuck at local optima and is consequently suitable to find a good global solution, while the gradient-

based optimizer, applied subsequently, is used to trim the random-search solution to the nearest optima. In this setup, the 

gradients are approximated by a finite difference approach. 

The WPP control scheduling optimization problem has in general only a few local optima and can therefore easily be solved 10 

by the gradient-based optimizer using gradients computed via finite difference. This control optimization is, however, rather 

time consuming, as the WT control settings must be optimized for all 360 x 23 combinations of wind directions and wind 

speeds; see Table 1. These combinations are, fortunately, independent, and the workflow therefore suitable for parallel 

computation. For the current study, a parallel workflow utilizing 360 CPUs (i.e. corresponding to a 1° mean wind direction 

resolution) has been setup, where each CPU optimizes all WT control settings for one wind direction. Table 1 gives an idea 15 

of the computational resources needed for the case studies performed in section 3 and section 4. 

 Row of 8 WT 

(1D layout 1 WD, 23 WS) 

Lillgrund, 48 WT,  

(2D layout, 360 WD, 23 WS) 

PyWake, AEP calculation 0.002s 0.52s 

Control optimization 3.5s 15h (1 CPU) 

4 min (360 CPU)  

Layout optimization 3.4s 2.8h (random search; 1 CPU) +  

1.2h (gradient based; 1 CPU)  

Table 1. Overview of time consumption of the AEP calculation, control and layout optimization 

3. Sanity check 

To check the overall behaviour of the optimizers, a sanity check on a simple illustrative example, consisting of a row with 

three Siemens SWT-2.3-93 WTs, has been performed. This case is selected, because it can be solved via ‘brute force’, and 20 

because the results are easily visualized.  

3.1. Control optimization 

The sanity check of the control optimization is performed on a simple example consisting of three WTs on a row, separated 

by 4D, where D denotes the rotor diameter, and with a uniform inflow of 10 m s-1 aligned with the row; see Figure 5. 

 25 
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Figure 5. Three-WT row used for sanity check of the control optimization. 

Figure 6 shows the power produced by the three WTs as a function of the derating of the two upstream WTs. In the left plot, 

it is seen that the power for the most upstream WT, WT1, only depends on its own derating setting. The power of WT2, on 

the other hand, depends on the derating of both itself and of WT1. Finally, it is seen that WT3, obviously, produces the most, 5 

if both WT1 and WT2 is derated 100%.   

 

Figure 6. Power produced by the three WTs as a function of WT1- and WT2 derating. 

The total power produced by the three WTs is seen in Figure 7, and it appears that the total power can be increased by 4.01% 

if WT1 is derated by 7%, and WT2 is derated by 5%. 10 

 

Figure 7. Total power of the three-WT row as a function of the derating of WT1 and WT2. The power can be increased by 4.01% 

when WT1 is derated by 7% and WT2 is derated by 5%. 

WT2 WT3 WT1 

4D 4D 

10 m s-1 
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3.2. Layout optimization 

A sanity check of the layout optimizer is also performed on the three-WT row. In this case, the position of WT2 is allowed to 

vary between 2D and 6D behind WT1. Figure 8 shows the individual relative power production of the three WTs as well as 

the total power production as a function of the position of WT2 in a uniform flow of 10 m s-1 aligned with the row. As 

expected, WT1 is unaffected by the position of WT2, while the power production of WT2 increases with the distance to 5 

WT1, and vice versa for the power of WT3. Finally, the total power production is seen to increase slightly, when WT2 is 

moved downstream. 

  

 

Figure 8. Relative power produced by the three individual WTs as well as the total relative power plotted as a function of the 10 
position of WT2. 

For other wind speeds, however, the picture is quite different, as seen in Figure 9. The optimal position thereby depends on 

the wind speed distribution, which links to the Cp- and the Ct dependence with the hub-height mean wind speed. Plotting the 

relative AEP computed using the Weibull distribution associated with westerly winds at the Lillgrund wind farm (c.f. the 

wind rose shown in Figure 12) reveals, that the optimal spacing, under these conditions, is very close to 4D. 15 

 

 

Figure 9. Relative total power production of the three WTs plotted as a function of the position of WT2 for different wind speeds.  

3.3. Combined layout and control optimization 

The performance of integrated layout- and control optimization is illustrated in Figure 10. The blue line indicates the relative 20 

AEP of the three WTs as a function of the position of WT2 in case all WTs are operated ‘greedy’ (i.e. no derating). This is 

the base case. The optimal position of WT2 is found to be 3.96D downstream of WT1. Applying layout dependent optimal 
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derating of WT1 and WT2 (orange curve) sequentially increases the AEP of the initial layout by 2.221%. Finally, the AEP is 

seen to increase only infinitesimally (i.e. increasing from +2.221% to +2.226%), when applying integrated two-step nested 

system optimization. For the investigated simplistic case, this result indicates a very weak system coupling between WPP 

topology- and control optimization. 

  5 

Figure 10. Relative AEP plotted as a function of the position of WT2 for both greedy and optimized control.  

4. The Lillgrund showcase 

The Lillgrund WPP is located in Øresund between Denmark and Sweden and consists of 48 Siemens SWT-2.3-93 WTs with 

a rotor diameter of 93 m. The WPP is known for its very small WT interspacings, down to 3.3D and associated pronounced 

wake effects. This makes this WPP especially suited for studies of WPP performance. The layout is shown in Figure 11. 10 

 

Figure 11. WT positions in the offshore Lillgrund WPP. 

The Lillgrund wind climate is outlined in Appendix A in terms of ambient mean wind speed pdfs (i.e. two-parameter 

Weibull), conditioned on the ambient mean wind direction as well as an ambient mean wind direction pdf. For the sake of 

illustration, the applied wind climate information is condensed in the wind rose shown in Figure 12, which reveals 15 

predominant winds from west and south. 
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Figure 12. Wind rose characterizing the wind climate at the Lillgrund wind farm. Mean wind speed bins are shown in different 

colours, and their occurrence probabilities (conditioned on the respective inflow sectors) are proportional to their respective radial 

extend. 

First, we will focus on a subset of the Lillgrund WPP consisting of a row of eight WTs with along-row inflow conditions 5 

covering the entire relevant wind speed regime – i.e. the wind speed regime within which these WTs are in normal operation. 

Using this simplified case study, we will investigate the system coupling between WPP topology- and WPP control 

optimization. Based on the results from this study, we will next perform a system optimization of the Lillgrund WPP and 

thereby quantify its potential in terms of increased AEP compared to the base case, which is the present layout (cf. Figure 

11) without coordinated WPP control – i.e. only conventional ‘greedy’ control of the individual WTs.    10 

4.1. Eight-WT row 

This case study basically consist of one of the three Lillgrund WWP rows with eight WTs, meaning that the WT interspacing 

in the base case is 3.3D (cf. Figure 11), and that the WTs are Siemens SWT-2.3-93. The wind climate is fictitious, as only an 

along row inflow direction is considered, which assures largest possible mutual WT wake interactions. Within this 

framework we have, without loss of generality, assumed Weibull distributed mean wind speeds corresponding to the 270° 15 

site condition (however, truncated to the relevant wind speed regime [3 m s-1; 25 m s-1]) although the ‘true’ inflow direction 

associated with this row is 300°. 

With the purpose of investigating the strength of the system coupling, we have optimized: 1) the WPP topology; 2) the WPP 

control; 3) the integrated WPP topology and WPP control based on the sequential approach (cf. section 2.4); and 4) the 

integrated WPP topology and WPP control based on the two-step nested approach (cf. section 2.4). Based on a pre-20 

investigation of optimizers, where the ‘random search’ approach was compared to the SLSQP gradient-based optimization 

algorithm, the latter was found clearly superior and consequently used in this study. 

The results of the investigation are, together with the base case (0), summarized in Table 2. 

Case Layout Control AEP [Gwh]  

0 Initial Greedy 40.85 
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1 Initial Optimized 44.10 (+8.0%) 

 

2 Optimized Greedy 41.44 (+1.4%) 

 

3 Optimized Optimized 

(sequential) 

44.558 (+9.1%) 

 

4 Optimized Optimized 

(nested) 

44.560 (+9.1%) 

 

Table 2. AEP results of various optimization approached applied on the eight-WT row. The figures in the rightmost column show 

the position of the eight turbines. The derating settings of the WTs are indicated by the colour of the turbine symbol and 

quantified in percentage by the number above the WT symbols. 

The base case, case(0), represents the existing layout with conventional greedy control of the individual WTs. Case(1) 

represents the base case topology with the WPP control optimized. The associated increase in AEP, relative to the base case, 5 

is significant and amounts 8.0%. In case(2) the WT applies greedy control, and the WT row topology is optimized. The 

increase in AEP, relative to the base case, amounts to 1.4%, which is considerable less than achieved in case(1). Case(3) 

represents one of two system optimization approaches. Here we assume that the system optimization is separable and 

consequently can be performed by first optimizing the topology and subsequently the WPP control. The combined effect is 

an increase in AEP amounting to 9.1%, which is significant and exceeds what was obtained by only optimizing the WPP 10 

control (i.e. case(1)). In the second and last system optimization strategy, case(4), a the integrated nested approach is taken. 

Although being more complex and time consuming than the case(3) strategy, the outcome is only insignificantly improved 

(cf. Table 2). 

In conclusion, we have shown that the strength of the system coupling between WPP topology- and WPP control 

optimization is only marginal for the considered eight-WT case study characterized by ‘heavy’ mutual WT wake 15 

interactions. 

4.2. Full Lillgrund wind farm 

This case study comprises the entire Lillgrund WPP, and it eventually aims at quantifying the potential of an integrated 

system optimization of WPP topology and WPP control.  

In analogy with section 4.1, we will investigate a variety of WPP topology and WPP control optimization strategies. The 20 

control optimization schedule and the associated results appears from Table 3.  

Case Layout Control AEP [Gwh] 

0 Initial Greedy 345.2 

1 Initial Optimized 349.5 (+1.3%) 

2 Optimized Greedy 354.9 (+2.8%) 

3 Optimized Optimized(sequential) 358.7 (+4.0%) 

4 Optimized Optimized(nested) - 
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Table 3. AEP results of various optimization approached applied on the full Lillgrund WPP. 

The investigated cases are analogue to the cases investigated for the eight-WT case in section 4.1. As for case(1) we see a 

considerable drop in performance increase compared to the eight-WT situation, which is due to the persistently more severe 

mutual WT wake interactions in the fictitious eight-WT situation compared to the full Lillgrund WPP, where WT wake 

interactions for some inflow directions are limited (cf. Figure 14). With less wake interaction follows intuitively less 5 

potential for WPP control. Case(2) represent an isolated WPP layout optimization retaining the ‘greedy’ individual WT 

control performance. The associated increase in AEP performance amounts to 2.8% – or more than doubled compared to the 

WPP control optimization, case(1). The last case, case(3), represents a system optimization approach. Based on the 

investigations performed in both section 3.3 and section 4.1, we assume that the system optimization is separable in the 

sense described in section 4.1. The rationale justifying this assumption is, that the system coupling between WPP topology- 10 

and WPP control optimization was shown to be marginal in the eight-WT case, in which the overall WT wake interaction, 

over all inflow directions, are significantly more pronounced than for the full Lillgrund case. Taking the sequential approach, 

the combined Lillgrund WPP optimization results in an AEP improvement of 4.0%, which is significantly more than each of 

the individual topology and WPP control optimization approaches. Finally, it should be noted that, although possible, the 

two-step nested approach will require horrendous CPU resources and even on a cluster take in the order of a few months to 15 

conduct.  

The layout resulting from the Lillgrund WPP system optimization is shown in Figure 13 together with the base line layout.   

 

 

 20 

Figure 13. The base line Lillgrund WPP layout (left) and optimized Lillgrund WPP layout (right). The two figures show the flow 

case associated with 10 m s-1 inflow from direction 223°. The derating settings of the individual WTs are indicated by the colour of 

the WT symbols and quantified in percentage by the number above the WT symbols. The background colours illustrate the 

increase in wind speed from the individual ‘greedy’ to the ‘collaborative’ optimized control situation.  

From a pure production perspective, it makes sense to locate WTs densely at the boundary of the ‘admitted area’ for the 25 

WPP, because it intuitively will reduce the WT wake interactions. Notable is also that the individual WT deratings for the 

shown example, except for one row, is considerable less than for the base line case. 

The results for all the investigated optimization strategies are summarized in Figure 14 and Figure 15. Figure 14 shows the 

increase in AEP conditioned on the inflow mean wind direction. As expected, the AEP gains vary with the wind direction 

with huge increases, up to 50%, for the optimized layout for the wind directions that is parallel to the rows of the original 30 
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layout, i.e. 120°/300°, 42°/222° and 0°/180°. These increases, however, are almost balanced out by the decrease at other 

directions resulting in the average increase of the 2.8% and 4% increase that is reported in Table 3. 

 

   

    5 

 

Figure 14. Increase in AEP due to layout and/or control optimization plotted as a function of inflow wind direction. 

In Figure 15, the AEP gains are shown as a function of the mean inflow wind speed. The largest increases are seen below 10-

11 m s-1 where all WTs operate below rated power. At higher wind speed, the WPP production wake losses decreases, as 

more and more WT reaches rated power, thus completely eliminating any WPP control potential.  10 
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Figure 15. Increase in AEP due to layout and/or control optimization plotted as a function of wind speed. 

5. Conclusions 

This paper describes a platform for integrated WPP topology- and derating-based WPP-control optimization. The objective 

function for the optimization is the AEP of the WPP without considering financial costs of internal WPP grid etc. This means 5 

that the positions of the individual WPP WTs are only constrained by a minimum allowable distance to the nearest 

neighboring WT, in this case 2D, and the convex boundary around the initial WPP layout. 

 As WPP loading is excluded, stationary modeling of the complex WPP flow field suffices, which is a considerable 

simplification. Contrary to other known WPP optimization platforms, the present approach is based on a consistent and very 

fast CFD solver, whereby the inherit uncertainties associated with simple empirical algebraic wake models, including their 10 

often debatable wake summation ‘receipt’, is avoided. This strategy is consistent with a recent review of WPP optimization 

approaches (Kheirabadi and Nagamune, 2019), where one of the conclusions is that “added layers of realism in terms of 

simulated wind conditions tend to deteriorate the performance of wind farm controllers”, thus stressing the importance of 

carefully and realistically simulated WPP flow fields. 

The platform has initially successfully been subjected to a simplistic sanity check. Subsequently, the platform has been used 15 

to analyze the potential of an integrated WPP topology and WPP control optimization of the offshore WPP Lillgrund, which 

consists of 48 closely spaced WTs.  Introductory, an analysis of the system coupling between WPP topology optimization 

and WPP control optimization is performed as based on a subset of this WPP exposed to inflow conditions clearly 

exaggerating the overall complex inter-WT aerodynamic interactions within a traditional WPP. The study demonstrates an 

inferior system coupling only, thus justifying separation of the present optimal system design. Based on this learning, a full 20 

system optimization of the Lillgrund WPP is performed, resulting in a gain amounting to 4.0% in AEP relative to the base 

line case, which is the present Lillgrund layout without WPP control. 

In a future perspective, the platform will be extended to also include active wake control in terms of WT yaw dictated wake 

deflection. This requires a generalization of the applied linearized CFD flow solver Fuga – a work that is in progress. 

6. Data availability 25 

Simulation data not available due to confidentiality of the Siemens WT model. 
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Appendix A 

 

Wind sector (centered) 

[deg] 

Frequency  

[%] 

Weibull scale (A) Weibull shape (k) 

0 3.8 4.5 1.69 

30 4.5 4.7 1.78 

60 0.4 3. 1.82 

90 2.8 7.2 1.7 

120 8.3 8.8 1.97 

150 7.5 8.2 2.49 

180 9.9 8.4 2.72 

210 14.8 9.5 2.7 

240 14.3 9.2 2.88 

270 17. 9.9 3.34 

300 12.6 10.3 2.84 

330 4.1 6.7 2.23 
 15 

Table 4. Sector probability and Weibull shape and scale parameters for the Lillgrund site. Data obtained from the study of 

Göçmen and Giebel (2016) 
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