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Abstract. Full-scale structural tests enable us to monitor the mechanical response of the blades under various loading scenarios. 

Yet these tests must be accompanied by numerical simulations so that the physical basis of the progressive damage 

development can be better interpreted and understood. In this work, finite element analysis is utilized to investigate the strength 10 

characteristics of an existing 5-meter RUZGEM composite wind turbine blade under extreme flap-wise, edgewise and 

combined flap-wise plus edgewise loading conditions. For this purpose, in addition to a linear buckling analysis, Puck’s (2D) 

physically based phenomenological model progressive damage analysis of the blade is performed. The 5-m RUZGEM blade 

is found to exhibit sufficient resistance against buckling. However, Puck’s damage model indicates that laminate failure plays 

a major role for the ultimate blade failure.  Under extreme flap-wise and combined load cases, the internal flange at the leading 15 

edge and the trailing edge are identified as the mainly damaged regions. Under edge-wise loading, leading edge close to root 

is the failure region. When extreme load case is applied as a combination of edgewise and flap-wise loading cases, less damage 

is observed compared to the pure flap-wise loading case.  

1 Introduction 

As fundamental eco-friendly renewable energy resources, wind turbines are designed to operate over a lifespan of 20 years. 20 

According to Holmes et al. (2007), long-term structural reliability of wind turbine components is vital when the high cost of 

manufacturing, inspection, and repair, especially for turbines located in remote regions, are considered. Composite blades are 

among the most critical components of a wind turbine, which are subjected to complex loading conditions. A rotor blade failure 

can have a significant impact on turbine downtime and safety. In order to assure sufficient mechanical resistance, structural 

testing and analysis must be conducted. However, structural testing methods such as full-scale testing of the blade are 25 

expensive and troublesome due to the construction of a test set-up. For a better understanding and interpretation of the the 

progressive damage development, tests are needed to be accompanied by numerical analysis methods (Chen et al., 2017). 

Moreover, structural analyses are utilized to calibrate structural blade test set-ups for different loading conditions. 
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In the literature, many studies on the structural behavior of composite turbine blades have been published in the past two 

decades with most of the studies conducted for large wind turbine blades. Jensen et al. (2006) carried out full-scale tests and 30 

nonlinear FE simulations of a 34-meter composite wind turbine blade under flap-wise loading. In both the tests and the 

simulations, they noted that spar cap (suction side) deflected nonlinearly and observed cross-sectional ovalisation, i.e. Brazier 

effect, arguing that Brazier effect is the main reason for the blade collapse. Overgaard et al. (2010) reported on testing and 

numerical analysis of the collapse of a 25-meter composite wind turbine blade subjected to static flap-wise loading. In the 

study, in contrast to Jensen et al. (2006), the main failure mechanism which leads to blade collapse is argued to be delamination 35 

and its interaction with local buckling. It is stated that nonlinear strain behavior, i.e. local buckling is triggered by geometrical 

imperfections. According to Overgaard et al. (2010) delamination and local buckling occur prior to the Brazier effect observed 

in spar caps. Once the blade is weakened by the aforementioned failure mechanisms, blade collapses due to the compressive 

strains in fiber directions. 

Yang et al. (2013) investigated the structural collapse of a 40 m blade and based on full-scale test results showed that debonding 40 

was the root cause of rotor blade collapse. Kim et al. (2014) studied the structural response of a Multi-MW class wind turbine 

blade using Puck’s 3D damage model and linear buckling analysis. According to the results, blade shows sufficient structural 

strength and resistance against buckling. When laminate failure is of concern, the major weak point of the blade is located on 

the skin at the maximum chord. In another study, Chen et al. (2014) conducted a full-scale bending test of a 52.3 m wind 

turbine blade. Delamination in the spar cap and shear web failure at the root transition region were found to be the main failure 45 

mechanisms for the blade collapse. Local buckling contributed to the main failure mechanism by facilitating local out-of-plane 

deformation. They conclude that for large blades, through-the-thickness stresses which cause debonding and delamination at 

the blade root transition region need to be considered in the FEA. In another study, Chen et al. (2017) stated that 3D 

stresses/strains are important in the failure of a 52.3-meter blade and recommended use of solid elements in the FE simulation 

when debonding failure is of concern. 3-D strains and Yeh-Stratton failure criterion were used to calculate delamination and 50 

debonding failures in the blade utilizing sub-modeling technique. 

Haselbach and Branner (2016) discuss the initiation and development of trailing edge failure in the full-scale test of a 34-m 

wind turbine blade. They highlight the influence of buckling on the damage onset in the trailing edge and sandwich panel 

failure. As a further outcome of the study, they show that modeling technique utilizing fracture mechanics approach for the 

failure in trailing edge delivers good agreement with experiments. Later, Haselbach (2017) investigated different trailing edge 55 

modeling methods in his work. He analyzed the trailing edge failure under edgewise and flap-wise loading conditions. He 

concluded that modeling the adhesive bonding in the trailing edge with solid brick elements and connecting them to the shell 

elements of the skin with Multi-Point Constraints (MPC) shows the best agreement with experiments. Recently, Castelos and 

Balzani (2016) studied the effect of geometric nonlinearities on the fatigue analysis of the trailing edge bonding in wind turbine 

blades. They point out that the superposition of stresses for the fatigue may be misleading for modern, flexible rotor blades 60 
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where geometric nonlinearities must be considered. In addition to this, they propose a novel methodology for calculating 

stresses with a new load application method that reduces geometric nonlinear behavior of the blade. 

Montesano et al. (2016), state that progressive failure models incorporating failure criteria do not consider the progressive 

nature of sub-critical microscopic intra-laminar damage, which is vital for predicting the onset of macroscopic failure modes. 

Therefore, in the study a physically based multi-scale damage model, which can account for failures of a 33.25 m rotor blade 65 

under quasi-static and fatigue loading is introduced. The simulation results show the capability of the model to predict the 

evolution of sub-critical ply cracks between spar webs located near blade root at maximum chord length. The capability of the 

model to show damage evolution in the early stages of the progressive damage analysis is important for increasing damage 

tolerance accuracy and structural health monitoring. In the follow up work by Zu et al. (2018), the multi-scale model is further 

expanded to include cohesive zone elements to predict structural debonding failure at the spar/skin interface located near blade 70 

root at maximum chord.   

In contrast to large wind turbine blades, fewer number of investigations on the structural analysis of small wind turbine blades 

exists.  Chen et al. (2015) focused on the local buckling resistance of 10.3 m wind turbine blades. FE analysis showed that 

configurations with sharp edges are susceptible to local buckling. During testing of the 10.3 m blade, although local buckling 

of shear web and flatback airfoil was observed, composite laminate failure in these locations was not observed. These results 75 

show the possibility of different mechanisms for different blade sizes. In another study, to improve the structural strength of a 

small size 9-m wind turbine blade, Paquette and Veers (2007) carried out a blade system design study (BSDS), where structural 

innovations such as flatback airfoils, thick root diameter and carbon spar caps were introduced and their advantages were 

demonstrated. The static strength of the blades was determined by measuring strains to failure by tests and using finite element 

analysis. Moreover, linear buckling analysis of the blades were conducted.  80 

Fagan et al. (2016) presented a new iterative design process and utilized failure criteria to check the structural strength of  

different blade designs under various load cases. Besides this, Fagan et al. (2017) utilized failure criteria for the structural 

design optimization of a 13m glass-fibre epoxy composite wind turbine blade. In the study, experimental testing was used to 

calibrate finite element models. In these studies, Puck’s damage model is used to determine the most suitable composite turbine 

blade design in terms of its structural behavior. 85 

Within the framework of this study, the authors of this study refer back to their previous paper concerning the strength analysis 

of an existing 5-meter GFRP turbine blade using Puck failure criteria (Ozyildiz et al., 2018). As a part of the previous study, 

the linear Puck material model was compared with the progressive damage model (Puck). They concluded that progressive 

failure analysis is necessary to capture a more realistic simulation of failure mechanisms prior to testing. 

The scope of this work is limited to the investigation of the structural response of an existing 5-meter wind turbine blade using 90 

global finite element modeling approach and progressive composite failure analysis. Hence, using the current modeling 

technique with shell elements, critical locations for failure and worst load case scenario are identified. Puck’s 2-D damage 
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model demonstrates the direction to proceed for a complete and comprehensive modeling of the failure mechanisms. 

Furthermore, differences between edgewise, flap-wise and combined flap-wise/edgewise loading conditions are discussed. In 

combined edge-wise and flap-wise loading, less damage is observed compared to the pure flap-wise loading case.  95 

The existing blade investigated in this work was designed as part of a joint-project between Core Team of the University of 

Patras and METUWIND (RUZGEM) – METU Center for Wind Energy. The blade was designed for a wind turbine that has 

30 kW nominal power capacity at 10 m/s wind speed. According to the wind turbine characteristics, optimized aerodynamic 

blade design was finalized by the blade manufacturer. The existing blade consists of five main parts: suction side, pressure 

side, internal flange, “hat-shaped” chassis/spar, and flange, as seen in Figure 1. 100 

 

Figure 1. Blade assembly for the 5-meter RUZGEM turbine blade (Philippidis and Roukis, 2013). 

2 Methodology 

For the progressive failure analysis of the blade, Puck criteria explained briefly in the following paragraphs, are used. Puck 

failure criteria (Puck and Schuermann, 1998) are one the most commonly used and well-established criteria for the assessment 105 

of composite laminate strength. In this study, Puck’s failure criteria are implemented for the evaluation of stress results of 

unidirectional and tri-axial composite laminates. 

 

For fiber failure, Puck’s criteria are as follows: 

 𝑓𝐸(𝐹𝐹)
𝑇 =

𝜎1

𝑋𝑇
= 1 if 𝜎1 > 0 (1) 

 𝑓𝐸(𝐹𝐹)
𝐶 =

𝜎1

𝑋𝐶
= 1 if 𝜎1 < 0

 

(2) 
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where 𝑓𝐸(𝐹𝐹)
𝑇  and 𝑓𝐸(𝐹𝐹)

𝑐  are stress exposures for fiber failure under tension and compression loading cases. 𝜎1 is the stress 110 

value in fiber direction, 𝑋𝑇 and 𝑋𝑐 are tensile and compressive strengths in fiber direction, respectively. Puck’s inter-fiber 

failure uses different equations depending on the failure mode, which is detected. Under two dimensional (2-D) biaxial loading, 

the failure modes, which can be detected, are summarized in Figure 2 below. In Figure 2 the transition point from failure mode 

B to failure mode C is denoted by the point (𝑅⊥⊥
𝐴 , 𝜏21𝑐) and is calculated by the ratio 𝑅⊥⊥

𝐴 /𝜏21𝑐. Their values are calculated 

by the expressions below: 115 

 𝑅⊥⊥
𝐴 =

𝑆

2𝑝⊥∥
(−)

[√1 + 2𝑝⊥∥
(−) 𝑌𝑐

𝑆
− 1] (3) 

 𝜏21𝑐
= 𝑅⊥∥√1 + 2𝑝⊥⊥

(−)

 

(4) 

 and 𝑝⊥⊥
(−)

= 𝑝⊥∥
(−) 𝑅⊥⊥

𝐴

𝑆
 (5) 

 

 
Figure 2. Failure envelope under biaxial loading (Knops, 2008). 

 

Depending on the region of the failure envelope, the following inter-fiber failure expressions are written: 120 

 𝑓𝐸(𝐼𝐹𝐹)
𝐴 = [(

𝜎6

𝑆
)

2

+ (1 − 𝑝⊥𝐼𝐼
(+) 𝑌𝑇

𝑆
)

2

(
𝜎2

𝑌𝑇
)

2

]
1/2

+ 𝑝⊥𝐼𝐼
(+) 𝜎2

𝑆
= 1 if 𝜎2 ≥ 0 (6) 

 𝑓𝐸(𝐼𝐹𝐹)
𝐵 =

1

𝑆
{[(𝜎6)2 + (𝑝⊥𝐼𝐼

(−)
𝜎2)

2
]

1/2

+ 𝑝⊥𝐼𝐼
(−)

𝜎2} = 1 if {
𝜎2 < 0

|
𝜎2

𝜎6
| ≤

𝑅⊥⊥
𝐴

𝜏21𝐶

 (7) 
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 𝑓𝐸(𝐼𝐹𝐹)
𝐶 = [(

𝜎6

2(1+𝑝⊥⊥
(−)

)𝑆
)

2

+ (
𝜎2

𝑌𝐶
)

2

]
𝑌𝐶

(−𝜎2)
= 1 if {

𝜎2 < 0

|
𝜎2

𝜎6
| ≥

𝑅⊥⊥
𝐴

𝜏21𝐶

 (8) 

In the equations above 𝑝⊥𝐼𝐼
(+)

, 𝑝⊥𝐼𝐼
(−)

 and 𝑝⊥⊥
(−)

 represent inclination parameters that control the shape of the failure envelope. 

According to Puck and Schuermann (1998), 𝑝⊥𝐼𝐼
(+)

= 0.3 and 𝑝⊥𝐼𝐼
(−)

= 0.25 are chosen for the GFRP material. 𝜎2 is the stress 

value in the transverse fiber direction, 𝑌𝑇  and 𝑌𝑐 
are tensile and compressive strengths in the transverse fiber direction. Shear 

stress and shear strength are represented by
 
𝜎6 and S, respectively. If the value of stress exposure (fE) exceeds 1, failure 

initiation occurs. Mode A is caused by tensile and shear stresses. Modes B occurs under compressive and shear stresses. Mode 125 

C is a dangerous failure mode in compressive shearing, which may lead to delamination.  

Degradation rules are applied to the elements which fail according to the specific Puck’s failure criteria that are inter-fiber 

failure (IFF) mode A, B, or C (Eq. (6), (7) and Eq. (8), respectively). As presented by Passipoularidis et al. (2011), based on 

degradation rules in Table 1, transverse elasticity and shear moduli of the damaged elements are reduced accordingly. 

Recommended parameters c, 𝜂𝑟 and 𝜉 for the degradation function of the GFRP material in Eq. (8) are taken from Knops and 130 

Bögle (2006). 𝑓𝐸(𝐼𝐹𝐹)
𝐴 ,  𝑓𝐸(𝐼𝐹𝐹)

𝐵  and 𝑓𝐸(𝐼𝐹𝐹)
𝐶  are the stress exposure values that are considered for determining the failure mode 

during the analysis.  

Table 1: Degradation rules according to the failure mode. 

Failure Mode Degradation Rule 

FF (Tension / Compression) or 

IFF(C) in at least 1/3 plies of a 

laminate 

Failure of the laminate 

IFF (A) 

𝐸2 = 𝜂𝐸2 
𝐺12 = 𝜂𝐺12 
𝜈12 = 𝜂𝜈12 

IFF (B) 

𝐸2 = 𝜂𝐸2 
𝐺12 = 𝜂𝐺12 
𝜈12 = 𝜂𝜈12 

IFF (C)  

𝐸2 = 0.1𝐸2 
𝐺12 = 0.1𝐺12 
𝜈12 = 0.1𝜈12 

 
In Eq. (8) 𝜂 is known as the degradation factor and can be expressed according to the equation below: 135 

 𝜂 =
1 − 𝜂𝑟

1 + 𝑐(𝑓𝐸(𝐼𝐹𝐹) − 1)𝜉
+ 𝜂𝑟 (9) 
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The summary of the algorithm of the FE analysis based progressive failure analysis of a composite laminate using Puck failure 

criteria is shown in Figure 3. The complete algorithm is implemented using ANSYS Parametric Design Language (APDL). 

First, using ANSYS APDL script, different material numbers are given to each lamina, which constitutes a layer of a composite 

laminate. This step is necessary because, during the execution of the progressive damage propagation, each lamina is subjected 

to different degradation rules. Then, an extreme load case is applied incrementally to the model, and static analysis is run. 140 

Afterward, in the post-processing module, stresses are read. From Puck failure criteria for FF (Eq. (1) and (2)) and IFF (Eq. 

(6), (7) and (8)), stress exposures are calculated. Depending on the rules presented in Table 1whether ply failure happens is 

checked. If ply failure occurs due to First-Fiber-Failure (FFF) or if IFF(C) is observed in at least one third of the plies of a 

laminate, laminate failure is assumed to take place. If IFF A or B or IFF C in any ply is seen, gradual degradation rules are 

applied, and after the assembly of the new constitutive material model, the load is increased, and the analysis is re-run. This 145 

calculation procedure is run until the solution does not converge. If the solution does not converge, the analysis aborted. As 

seen from the flow chart, as long as no FF or IFF failure occurs, without updating the constitutive material model, load is 

incremented, and the analysis is executed. 

 

Figure 3. Flowchart of the FE Analysis based strength analysis of a composite laminate using Puck’s damage model. 150 

Validation of the APDL Code against experimental data provided by (Hinton et al, 2002) is done for the [0/90]s GFRP 

laminate/MY750 and [0/±45/90]s CFRP laminate/AS4 3501-6 under uniaxial tension loading. As seen from Figure 4, there is 

a good agreement between APDL Code and experimental data for the progressive failure analysis of [0/90]s GFRP/MY750 

and [0/±45/90]s CFRP/AS4 3501-6 laminates. 
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 155 
Figure 4. Validation of the APDL Code for the progressive failure analysis of (a) [0/90]s GFRP/MY750 laminate under 𝜎𝑥 

uniaxial tension (b) [0/±45/90]s CFRP/AS4 3501-6 laminate under 𝜎𝑦 uniaxial tension. 

2.1 Finite Element Model of the RUZGEM Blade 

The 2D blade technical drawings, which include the blade aerodynamic design details such as chord length and twist angle 

along the blade, were provided by the blade manufacturer Compblades. By using these given 2D blade drawings, the 3D CAD 160 

model of the blade is prepared in NX 12.0 environment. In  

Table 2, the material properties and design allowables of the blade materials for static analysis is listed (Philippidis and Roukis, 

2013). Referring to Germanischer Lyod (2010), design allowables are obtained from the knockdown of the experimental 

strength values by the material safety factor 2.406.  

 165 

Table 2. Material properties and design allowables of RUZGEM blade for static analysis 
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The skin of the blade is composed of unidirectional and tri-axial laminates, whereas only tri-axial laminates are used for the 

spar. The lay-up sequence for the pressure and suction side differs only in the area from 1.25m to 2.0m, where an extra 170 

unidirectional glass fabric was placed in the suction side of the blade. The root part of the blade is composed of unidirectional 

laminate, tri-axial laminates, and steel. The outer surface of the blade is covered with transparent Gel Coat and a layer of 

chopped strand mat, 300 g/m2 CSM 300. In addition to this, the Divinycell H45 foam used in the trailing edge is of 10 mm 

thickness in the area from 0.7m to 2.0m and 5mm thickness from 2.0m to 3.0m. Since the gel coat, CSM 300, and foam do not 

have a significant contribution to the strength of the blade; these materials are not included in the finite element model. The 175 

details of the material lay-up and geometry are given in the supplement. 

After geometric modeling of the blade, the material model of the blade structure is prepared in Ansys ACP/Pre module. Plane 

stress SHELL 181 quadrilateral elements are used to mesh the blade entirely in ANSYS Workbench, as seen in Figure 5. The 

mesh density of the FE Model and the boundary conditions are depicted in Figure 5. For the blade FE model all rotational and 

translational degrees of freedom at the blade root are fixed. A total number of approximately 35,000 nodes are used in the 180 

finite element model, which is determined based on the mesh convergence study discussed later in this subsection. SHELL 

181 elements with size 15x15 mm are used for the mesh. This element size correlates to the typical element size for small scale 

wind turbine blades. Adhesive materials are used for connections: pressure side - spar - suction side, pressure side - internal 

flange - suction side along the leading edge and finally between suction side - pressure side along the trailing edge. These 

connections are modeled using bonded contact with Augmented Lagrange algorithm in the FE Model.  185 

Load displacement curves are utilized for investigating the structural response of the blade under various loading scenarios. In 

Figure 6 load and displacement measurement points are displayed. Loads are measured at the blade pitch coordinate system 

defined at the root center according GL Guidelines 2010 and displacements are measured from point P at the spar tip, which 

is highlighted in green.  The exact coordinates of the displacement point with respect to the coordinate system at blade root 

are x=-9.801, y=-4.15, z=4000. 190 
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(a) (b) 

Figure 5. (a) Boundary conditions and the mesh density of the FE Model, (b) blade detail. 

 195 

 

Figure 6. Location of the load measurement coordinate system and the deflection measurement point P. 

For the design of the RUZGEM blade, the turbine specifications are obtained from the meteorological data in Ankara, Turkey 

(Weinzierl and Pechlivanoglu, 2013). These were analyzed so that average wind speed, the occurrence of gusts, and wind 

speeds are determined. Based on this information, the turbine specifications were selected according to British Standard  IEC 200 

61400-2 standard (2006). Loads for the structural design were selected as the worst load case scenario for the complete set of 

IEC extreme loads provided from aero-elastic simulations performed at Smart Blade GmbH (Weinzierl and Pechlivanoglu, 

2013).  
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Mixture of different Design Load Cases (DLCs) and time instances are used for this study and moments are extreme for all 

positions along the blade. The extreme loads were computed using the wind turbine aero-hydro-servo-elastic software tool 205 

FAST version v7.01.00a-bjj. During the simulations, the turbine is simulated as a stall regulated constant speed turbine at 83 

rpm with a gearbox and simple induction generator. Using this input, the blade is analyzed under extreme loads in the flap-

wise and edge-wise directions. Loads are calculated at 28 stations along the blade span direction. 

According to the recommendations of IEC 61400-23:2002(2015) standard a partial safety factor of 1.35 is included in the loads 

for the FE simulations. The forces and moments are given in the blade pitch coordinate system in Figure 7 according to GL 210 

Guidelines 2010, where Fx, Fy, Fz are the forces in flap-wise, edgewise and axial directions. MX, MY, MZ are the moments in 

edgewise, flap-wise and pitch directions. After considering partial safety factors, extreme flap-wise and edge-wise external 

load distributions are plotted along the spar of the blade length in Figure 8. Similarly, Figure 9 shows the calculated values 

of the flap-wise and edge-wise bending moment in sections along the blade span length. These edgewise and flap-wise moment 

values are computed from flap-wise and edge-wise loads, respectively. As stated in IEC 61400-23 standard, for the FE 215 

simulations, external flap-wise and edge-wise loads are increased incrementally by 1% of extreme load case until the collapse 

of the blade occurs.  

Extreme external loads are given over 28 stations of the blade suction and pressure sides as displayed in Figure 10(a) for flap-

wise loading and Figure 11(a) for edgewise loading. The loads at these stations are distributed among the nodes along the spar 

width on the suction and pressure sides as shown in Figure 10(b) and Figure 11(b) for flap-wise and edgewise load applications, 220 

respectively. 

  
Figure 7. Blade pitch coordinate system (GL Guidelines 2010). 

 

 225 
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Figure 8. Extreme external load distribution along span length. 

  
Figure 9. Extreme moment distribution along span length. 230 
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 235 
(a) 

 
(b) 

Figure 10. Extreme flap-wise load application to blade FE Model: (a) side and (b) cross-section view. 

 240 

(a) 

 
 

(b) 

Figure 11. Extreme edge-wise load application to blade FE Model: (a) top and (b) cross-section view. 245 

  

 

 

 

 250 
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In order to decide for the reasonable mesh density mesh convergence study is conducted. Mesh convergence is shown for total 

displacement at blade tip under extreme flap-wise loading and first eigenfrequency as seen in Figure 12 (a) and (b) 

respectively. There are of approximately 35,000 nodes in the FE Model. The decision for the mesh refinement is based on a 

good compromise between accuracy and computing time. The analysis takes about thirty-six hours for flap-wise and combined 

load cases, whereas for edgewise loading around seventy-two hours are needed with an Intel Xeon E-5-1620 v3 Workstation 255 

PC with 64 GB RAM. 

 

Figure 12. Mesh convergence study using (a) total number of nodes vs. total displacement (flap-wise direction) at blade tip 

under flap-wise loading (b) total number of nodes vs. 1. Eigenfrequency. 

  260 
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3 Results 

This section begins with a linear buckling analysis, followed by the progressive failure analysis of the blade under extreme 

flap-wise, edgewise and combined loading conditions. This section is followed by a discussion regarding the comparative 

study of these three loading scenarios.  

3.1 Buckling Analysis 265 

Linear buckling analysis of the blade is performed in order to investigate its buckling resistance and location of buckling 

eigenmodes. The results are depicted in Figure 13, which shows the buckling modes of the blade under (a) 100% flap-

wise(max) loading case (Figure 12a) 100% edgewise(min) loading case (Figure 12b) and 100% combined edgewise(min) and 

flap-wise(max) loading (Figure 12c). Negative buckling factors correspond to the loads applied in the opposite direction, 

because no critical eigenvalue could be found in the load application direction. In other words, the blade exhibits sufficient 270 

buckling resistance in the load application direction for flap-wise, edgewise and combined edgewise plus flap-wise loading. 

According to GL 2010 the load factor should be greater than 1.25, which is fulfilled for all the load cases studied. We note that 

in other cases in the literature such as Paquette and Veers (2007) and Chen et al. (2015), local buckling of small size wind 

turbine blades is found to be a major design concern.   

 275 

Location of buckling regions are observed in the suction side and pressure side trailing edges for flap-wise, combined edgewise 

and flap-wise loading cases, respectively. For the extreme edgewise load case, buckling failure location is in the pressure side 

trailing edge towards the blade root. The buckling mode locations shows similarity with buckling mode locations of the multi-

MW blade in the study of Kim et al. (2014) and blade configurations with PVC foam in the study of Chen et al. (2014) as they 

are located in the wide trailing edge region near the maximum chord. However, in the study of Paquette and Veers (2007), 280 

buckling failure location is in the root transition region.  
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Figure 13. Buckling modes of the blade under (a) 100% flap-wise(max) loading case (b) 100% edgewise(min) loading case 

(c) 100% combined edgewise(min) and flap-wise(max) loading. (Color bar shows total deformation). 

 285 

3.2 Progressive Damage Analysis 

In this subsection results from the progressive damage analysis of the RUZGEM blade subjected to flap-wise, edgewise and 

combined loading conditions are presented.  

3.2.1 Progressive damage analysis under flap-wise (max) loading 

The total deformation of the nonlinear blade model versus the undeformed model under 100% extreme flap-wise loading is 290 

displayed in Figure 14. The maximum blade deflection at the blade tip is 121 mm. 

  
(a)  

 
(b) 

 
 (c)  

 

1. Buckling factor = -3.1 

1. Buckling factor = -2.0 

1. Buckling factor =-3.6 
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Figure 14. Total deformation of the RUZGEM blade model vs. undeformed model under 100% extreme flap-wise loading 

condition (scale factor: x2). 

Load displacement curves of the blade in the range between 10% - 120% of extreme flap-wise loading are displayed for the 295 

linear elastic model and progressive damage model (Puck) in Figure 15. Load application and displacement measurement is 

done in the flap-wise direction. Based on this load displacement curve, element failure progression in the damaged blade 

components; pressure side, internal flange and suction side at 75%, 100%, 105% and 166% is depicted in Figure 17 below. 

According to the implemented methodology, an element fails if FF or IFF(C) in at least one third of the plies of a laminate is 

detected. It can be observed from the figure that up to 75% of the extreme flap-wise loading, the stiffness for both linear elastic 300 

and progressive damage models remains almost the same. However, the analysis output data show that degradations in the 

transverse elasticity, shear moduli and Poisson’s ratio starting from 13% loading occur, but this does not play a significant role 

in the deflection of the blade as can be seen from Figure 15. According to the analysis results, element failure is observed in 

the internal flange at 75% loading. This is the first slope drop of the load displacement curve and can be considered as the first 

turning point. As seen from Figure 17, failure in the internal flange grows further as the load is increased to 100%. At 105% 305 

loading in addition to the damaged region in the internal flange, damage grows along the trailing edge and leading edge. This 

turning point can be regarded as the second slope drop in the load displacement curve. Due to the element failure, deformation 

in the form of local buckling at the trailing edge is observed in Figure 16 below.  

Shortly before collapse at 166% loading, damaged regions at the leading and trailing edges evolve further and damage close 

to the blade tip occurs. The reasons for damage initiation at the blade tip at the most extreme load level can be explained by 310 

the fact that there is although low, some loading on the blade tip as seen in Figure 8. At 166%, 1.16 times the extreme flap-

wise loading, which read is from Figure 8 is applied to the blade and the blade collapses afterwards. Moreover, blade tip 

structure is rather thin and less stiff compared to other regions of the blade. On top of this, as seen in Figure 17 (d) at 166% 

load level trailing edge and the internal flange which is used to bond the pressure and suction sides of the blade are already 

damaged. As a consequence, towards the blade tip the pressure and suction sides of the blade are detached at this load level. 315 

Under these circumstances blade tip structure is weaker and can be damaged more easily. Likewise, debonding of suction and 
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pressure sides from the adhesive joints was reported as the main failure mechanism causing a progressive collapse of the blade 

structure in Yang et al.(2013).  Finally, the blade collapses after 116% of extreme flap-wise loading  

 

Figure 15. Load displacement curves of the blade using the linear elastic model and model and progressive damage model 320 

(Puck) under extreme flap-wise loading.  

 

Figure 16. Total deformation occurring in the form of local deformation due to failed elements at 105% flap-wise(max) loading. 

(Scale factor for deformation plot: x20). 
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 325 

Figure 17. Element failure progression in the pressure side, internal flange and suction side of the blade (from top to bottom 

in a row) at (a) 75%, (b) 100%, (c) 105% and (d) %116 of extreme flap-wise loading. 
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In Figure 18 inter-fiber failure mode A (IFF(A)) and inter-fiber failure mode B (IFF(B)) distribution in pressure side, internal 

flange and suction side of the blade at 50% flap-wise loading are shown. If both stress exposures are present in an element, the 330 

higher stress exposure IFF(A) or IFF(B) is shown. Based on the output data from the FE analysis of the blade, the damage 

initiation begins at 13% of extreme flap-wise loading due to IFF(A) or IFF(B). As discussed in the methodology chapter, stress 

exposures greater than or equal to one indicate damage, and damaged regions are shown in red. The figure shows that inter-

fiber failure is present in the internal flange and the trailing edge of the blade. It is worth noting that, IFF(A) and IFF(B) do 

not lead to the element failure. When IFF(A) or IFF(B) occurs, only the transverse, shear moduli, and Poisson’s ratio are 335 

reduced according to the degradation rules. It is noted that FF and IFF(C) initiate in the same location as IFF(A) and IFF(B), 

which can be considered as subcritical cracks. Similar to our findings, Montesano et al. (2016) states that (referring to Lambert 

et al. (2012) and Sorensen et al. (2004) studies) subcritical cracks can act as precursor to more critical damage modes such as 

delamination or adhesive debonding. In this study, IFF(C), which is a dangerous failure mode indicating risk of delamination 

and FF are the critical failure modes which lead to element failure. Recently, Chen et al. (2019) reported that matrix-dominant 340 

failure and delamination occurs before fiber-dominant failure at the trailing edge. Likewise, we observe IFF(A) or IFF(B) 

failure before FF at the trailing edge. 

 

 

Figure 18. Damage evolution (IFF(A) or IFF(B)) in the pressure side, internal flange and suction side of the blade (from top 345 

to bottom in a row) at 50% of extreme flap-wise loading. 

  

 

 

 

 

 

fE(IFF(A) or IFF(B)) 
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3.2.2 Progressive damage analysis under edgewise (min) loading 

The total deformation of the nonlinear blade model versus the undeformed model under 100% extreme edgewise loading is 

displayed in Figure 19. The maximum blade deflection at the blade tip is 31 mm and much less than the deformation compared 350 

to pure flap-wise loading. 

 

 

Figure 19. Total deformation of the RUZGEM blade model vs. undeformed model under 100% extreme edge-wise loading 

condition (scale factor: x8). 355 

 

Load displacement curves in the range between 10% - 320% of extreme flap-wise loading of the blade are displayed for the 

linear elastic model and progressive damage model (Puck) in Figure 20. In the figure, the load is applied and displacement at 

the spar tip is measured in the edgewise direction. Figure 22 shows the element failure evolution in the blade components; 

pressure side, internal flange and suction side of the blade at 100%, 210%, 309%, and 314% load levels. Stress exposures 360 

fiber-failure (FF) and inter-fiber failure mode C (IFF(C)) distribution are shown on the same plot. Since element failure in spar 

is not detected within above mentioned loading range it is not shown in Figure 22. The regions where the stress exposure is 

equal to or greater than one is depicted in red. The stiffness of these failed elements is set to zero and they do not contribute to 

blade strength anymore. It is seen that at 100% loading element failure is not detected. It can further be observed from the 

figure that up to 210% of the extreme flap-wise loading, the stiffness for both models remains almost the same. After 210% 365 

loading, the stiffness is reduced slightly due to the element failures at the internal flange tip (See Figure . At %309 loading 

element failure at the leading in blade root is observed. Due to edgewise (min) loading, compressive stresses are dominant in 

this region and the blade material is weaker in compressive than in tension. This failure causes the more significant slope drop 

in the curve and at 314% loading the blade is close to collapse. At the turning point which corresponds to 309% edgewise 

loading, the stiffness of the failed elements in the leading edge towards blade root are set to zero and total deformation due 370 

element failure in the form of local buckling is observed as depicted Figure 21 below.  

Based on the results, blade design exhibits excessive safety in edgewise direction and is considered to be over-conservative 

for this type of loading. 
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 375 

Figure 20. Load displacement curves of the blade using the linear elastic model and progressive damage model (Puck) under 

extreme edgewise loading 

 

 

Figure 21. Total deformation occurring in the form of local deformation due to failed elements at 309% edgewise(min) loading. 380 

(Scale factor for deformation plot: x15). 
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Figure 22. Element failure progression in the pressure side, internal flange and suction side of the blade (from top to bottom 

in a row) at (a) 100%, (b) 210%, (c) 309% and (d) %314 of extreme edgewise loading. 385 
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In Figure 23, inter-fiber failure mode A (IFF(A)) and inter-fiber failure mode B (IFF(B)) stress exposure distribution in 

pressure side, internal flange and suction side of the blade at 140% edgewise loading are shown. Based on the output data from 

the FE analysis of the blade, the damage initiation begins at 45% of extreme flap-wise loading due to IFF(A). Stress exposures 

greater than or equal to one indicate damage, and damaged regions are shown in red. The figure shows that inter-fiber failure 390 

begins in the internal flange of the blade. IFF(A) and IFF(B) do not lead to the element failure, but causes degradation in the 

transverse, shear moduli, and Poisson’s ratio. The stress exposure at the leading edge near root and trailing are higher compared 

to other blade regions at this load level, which indicates damage growth at higher load levels in these areas. Under edgewise 

(min) loading condition leading edge close to blade root is subjected to compressive and trailing edge tensile stresses, 

respectively. Consequently IFF(A) caused by combination of tensile and shear stresses and IFF(B) caused by the combination 395 

of tensile and shear stresses is seen at the trailing edge and leading edge close to blade root, respectively. It is noted that FF 

and IFF(C) initiate also in the internal flange first but at higher load levels; 210% load. At 309% load FF and IFF(C) is seen 

at leading edge close to root, where compressive stresses are dominant. As the material has less strength under compression 

compared to tension, failure initiation begins at the leading edge close to root. These failures are in the same location as IFF(A) 

or IFF(B) which can be considered as subcritical cracks. As it was the case for flap-wise loading, this observation is similar to 400 

the statement (referring to Lambert et al. (2012) and Sorensen et al. (2004) studies) in Montesano et al. (2016) that subcritical 

cracks can act as precursor to more critical damage modes such as delamination or adhesive debonding.  

 

 

Figure 23. Damage evolution (IFF(A) or IFF(B)) in the pressure side, internal flange and suction side of the blade (from top 405 

to bottom in a row) at 140% of extreme edgewise loading. 
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3.2.3 Progressive damage analysis under combined edgewise (min) and flap-wise (max) loading 

The total deformation of the nonlinear blade model versus the undeformed model under 100% combined extreme flap-wise 

and edgewise loading is displayed in Figure 24. The maximum blade deflection at the blade tip is 104 mm and less than the 410 

deformation in pure flap-wise loading. We further note that the deflection of 8 mm in the edgewise direction is much less than 

the deflection of 103 mm in the flap-wise direction. 

 

Figure 24. Total deformation of the RUZGEM blade model vs. undeformed model under 100% combined extreme edgewise 

and extreme flap-wise loading condition (a) top view (b) side view (scale factor: x2.5). 415 

 

Load displacement curves in the range between 10% - 130% of combined extreme flap-wise and edgewise loading of the blade 

are displayed for the linear elastic model and progressive damage model (Puck) in Figure 25. In the figure, resultant edgewise 

plus flap-wise loading versus resultant edgewise plus flap-wise loading is plotted. Element failure progression in the damaged 

blade components; pressure side, internal flange and suction side of the blade is depicted in Figure 27. The regions where the 420 

stress exposure IFF(C) or FF is equal to or greater than one is depicted in red. The stiffness of these elements is set to zero and 

these elements do not contribute to blade strength anymore. In general, under combined loading element failure evolution is 

similar to pure flap-wise loading case, but failure occurs at higher load levels. Figure 25 shows that up to 85% extreme flap-

wise loading, the stiffness for both linear elastic and progressive damage models remains almost the same. After 85% loading, 

slope reduction starts in the nonlinear progressive Puck model due to the element failures at the internal flange, suction, 425 

pressure side leading edges. This point is the first turning point in the load displacement curve.  As the loading is increased to 

100% element failure at the internal flange, suction, pressure side leading edges grows further. Second slope reduction is 
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detected at 118% loading. At this load level, in addition to the damaged region in the internal flange and leading edges, element 

failure initiates at the trailing edge. This is a more obvious turning point compared to the first turning point at 85% loading. At 

this load level Figure 27 (c) shows laminate failure in the internal flange, leading and trailing edges. Due to element failure, 430 

deformation in the form of local buckling at the leading trailing edge is observed as depicted in Figure 26 below. In their study 

regarding the full-scale testing of a 34-m wind turbine blade, under combined loading Haselbach and Branner (2016) also 

observed laminate failure along the trailing edge. As the loading is further increased to 126%, element failure at the leading 

and trailing edges covers a larger area. As a consequence, suction and pressure panels are detached and the blade integrity is 

lost. Finally, after %126 loading blade is close to collapse. When the results in Figure 22 are compared with Figure 27, it can 435 

be concluded that under same load level the number of failed elements under combined loading is less than pure flap-wise 

loading case. 

 

 

Figure 25. Load displacement curves of the blade using the linear elastic model and progressive damage model (Puck) under 440 

under combined extreme edgewise (min) and extreme flap-wise (max) loading. 
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Figure 26. Total deformation occurring in the form of local deformation due to failed elements at 118% extreme combined 

edgewise and extreme flap-wise loading. (Scale factor for deformation plot: x15).  

 445 
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Figure 27. Element failure progression in the pressure side, internal flange and suction side of the blade (from top to bottom 

in a row) at (a) 85%, (b) 100%, (c) 118% and (d) %126 of combined loading. 
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4 Discussion 450 

In this section the progressive damage behavior of the blade under flap-wise (max), edgewise (min) and combined flap-

wise (max) and edgewise loading (min) is discussed. From Figure 15, Figure 20 and Figure 25 it is seen that the slope of the 

load-displacement curve is highest for edgewise loading followed by edgewise plus flap-wise loading. For flap-wise loading, 

the slope of the load-displacement curve is the lowest. The structural response of the blade under pure flap-wise versus 

combined loading is depicted in Figure 28. In the figure, instead of the resultant components of the combined loading, its flap-455 

wise components, i.e., load and displacement in flap-wise direction, are plotted. It is seen that the blade exhibits a stiffer 

behavior in flap-wise direction under combined loading condition compared to pure loading case. As a consequence, flap-wise 

deflection component under combined loading is approximately 75% of the flap-wise deflection under pure flap-wise loading.  

The blade is stronger under combined loading and at 166% loading and the damaged region is less in combined loading 

compared to flap-wise loading. as shown in Figure 29.  460 

 

In Figure 29, element failure progression is compared for edgewise, flap-wise, and combined loading scenarios under %166 

loading. It is observed that the degree of the failed region is highest for the flap-wise loading case, followed by combined 

loading, and there is no failed region in the edgewise loading case. This failure development can be explained by the 

superposition of loads and stress tensors as depicted in Figure 30. For this study points A, B and C are picked from the heavily 465 

damaged blade regions at 166% flap-wise loading. Since stresses cannot be read in regions where element failures are present, 

the study is carried out at 100% loading. Point A is picked at the pressure side, and at this point axial tensile stresses are present 

for both flap-wise and edgewise loading conditions. Hence, when these two load cases are combined there is an increase in the 

axial tensile stress level. However, stress magnitude is not high enough to cause laminate failure. Points B and C are picked 

from internal flange and suction side, respectively. Under flap-wise loading point B is subjected to tensile axial stress whereas 470 

at point C is subjected to compressive axial stresses. Under edgewise loading point B is subjected to compressive axial stress 

whereas at point C is under tensile axial stresses.  When combined loading is applied, stress components under flap-wise and 

edgewise loading are superimposed, causing an overall reduction in stress levels at these two points. The superposed stresses 

decrease the extent of damage at the specified locations. 

 475 

To summarize, finite element analysis of the RUZGEM 5-m blade using Puck’s damage model indicates that laminate failure 

plays a major role for the ultimate blade failure. Laminate failure progression observed under flap-wise, edgewise and 

combined loading conditions fall into type 4 (internal damage formation and growth in laminates in skin) and type 5 (splitting 

and fracture of separate fibers in laminates of the skin) wind blade damages as categorized in Sorensen et al. (2014). Although 

local buckling of small size wind turbine blades is found to be the major design concern in Paquette and Veers (2007) and Chen 480 

et al. (2015), the RUZGEM 5m blade is found to exhibit sufficient resistance against buckling in our investigation. 
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 485 
Figure 28. Load-displacement curves of the blade under pure flap-wise and combined loading using flap-wise components 

of the load and displacement. 
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Figure 29. Element failure progression on the suction side of the blade at (a) extreme flap-wise, (b) extreme edgewise (no 490 

element failure) and (c) combined extreme flap-wise and extreme edgewise at 166% extreme loading case.  
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Figure 30. Axial stress levels in the critical regions of blade under flap-wise, edgewise and combined (flap-wise plus edgewise) 

100% extreme loading cases. 495 
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5 Conclusions 

In this work, strength characteristics of an existing 5-meter RUZGEM composite wind turbine blade under extreme flap-wise, 

edgewise and combined flap-wise and edgewise loading conditions is investigated. For this purpose, in addition to a linear 500 

buckling analysis, progressive damage analysis of the blade using Puck’s (2D) physically based phenomenological model is 

performed. The main conclusions are as follows: 

 

• Linear buckling analysis show that blade shows sufficient strength against buckling. 

• Failure of elements due to IFF(C) or FF are observed, and a slope reduction in the load displacement is detected after 505 

the application of 75% extreme flap-wise loading and %85 combined loading cases. In contrast, under 100% edgewise 

loading element failures are not observed. 

• For flap-wise and combined loading scenarios a similar damage pattern is observed; laminate failure due to IFF(C) 

or FF in the internal flange causes the first slope reduction in load displacement curve. As the load is increased, 

damage grows along the trailing edge, which causes second slope reduction before collapse. 510 

• For edgewise loading laminate failure observed in the internal flange is the first slight slope reduction in load 

displacement curve. As the load is further increased, due to compressive stresses, damage accumulates at the leading 

edge close to blade root, which leads to second slope reduction before collapse.  

• FF and IFF(C) initiate in the same location as IFF(A) or IFF(B). IFF(A) or IFF(B) denote subcritical ply cracks which 

are precede more critical damage modes such as IFF(C) (which is an indicator of possible delamination), and FF. 515 

• Less damage is observed under combined loading compared to pure flap-wise loading.  

 

As a summary, internal flange located at the leading edge and trailing edge of the 5-m RUZGEM blade are found to be damaged 

primarily under flap-wise and combined loading conditions. For the edgewise loading, internal flange and leading edge close 

to blade root are the mainly damaged areas of the blade. The simulation results will be utilized prior to blade tests which are 520 

planned to be conducted on the existing 5-m RUZGEM wind turbine blade. 
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