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Abstract.

This paper presents the field validation of a method to estimate the local wind speed on different sectors of a turbine rotor

disk. Each rotating blade is used as a scanning sensor that, travelling across the rotor disk, samples the inflow. From the local

speed estimates, the method can reconstruct the vertical wind shear and detect the presence and location on an impinging wake

shed by an upstream wind turbine. Shear and wake awareness have multiple uses, from turbine and farm control to monitoring5

and forecasting.

This validation study is conducted with an experimental data set obtained with two multi-MW wind turbines and a hub-tall

met-mast. Practical and simple procedures are presented and demonstrated to correct for the possible miscalibration of sensors.

Results indicate a very good correlation between the estimated vertical shear and the one measured by the met-mast. Addi-

tionally, the proposed method exhibits a remarkable ability to locate and track the motion of an impinging wake on an affected10

rotor.

1 Introduction

Knowledge of the wind turbine inflow can empower several applications. For example, a turbine controller can be improved

when scheduled as a function of wind speed (Østergaard et al., 2007). Similarly, a farm controller benefits from knowledge

of the atmospheric stability, with its strong effect on wake recovery, and from an improved understanding of wake position15

(Vollmer et al., 2017), with its crucial implications on power output and loading. Apart from control applications, other usage

scenarios include lifetime assessment and fatigue consumption estimation, which are clearly dictated by the inflow conditions

experienced by each turbine (Ziegler and Muskulus, 2016). Moreover, wind farm power and wind forecasting, site assessment

for wind farm extensions, sector management triggered by wake detection for closely spaced turbines, and estimation of

available wind farm power are all additional applications that can profit from knowledge of the inflow affecting each single20

turbine. Unfortunately, this information is not available on today’s wind turbines that, as a consequence, operate “in the dark”

based only on a limited awareness of the environment in which they are immersed.

Indeed, turbines are equipped with wind sensors, typically located on the nacelle or the spinner, which are used for aligning

the rotor axis into the wind and for identifying whether the cut-in or cut-out wind speeds have been reached. Even though

these measurements might be accurate enough for these simple tasks, the actual complexity of the turbine inflow remains25

completely beyond the reach of such sensors. In addition, wind vanes and anemometers provide pointwise information, while
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wind conditions exhibit significant spatial variability not only at the large scale of the farm, as in off-shore plants (Peña et al.,

2018) and at complex terrain sites (Lange et al., 2017; Schreiber et al., 2019), but also at the smaller scale of the individual

turbine rotor disk (Murphy et al., 2019). More sophisticated measurements can be provided by lidars (Held and Mann, 2019)

and other remote sensing technologies, which are however still costly and —being mostly used for assessment, validation and

research— are not yet commonly used for production installations.5

The concept of using the wind turbine rotor as a wind sensor has been proposed to improve wind condition awareness

(Bottasso et al., 2010; Simley and Pao, 2016; Bertelè et al., 2017). In a nutshell, wind sensing uses the response of the rotor

—in the form of loads, accelerations and other operational data— to infer the characteristics of the wind blowing on the turbine.

Therefore, wind sensing is a sort of model inversion, where the response of the system is used to estimate the disturbance (in

this case, the wind). The simplest and probably most widely used wind sensing technique is torque-balance estimation (Ma10

et al., 1995; Soltani et al., 2013). Thereby, turbine power or torque are used to estimate the rotor-effective wind speed by the

power curve or power coefficient. The concept has been more recently extended to estimate other characteristics of the inflow,

notably the wind directions and shears, as reviewed in Bertelè et al. (2017).

This paper considers the approach first formulated by Bottasso et al. (2018). Through an aerodynamic “cone” coefficient,

this method uses the blade out-of-plane bending moment to estimate the local wind speed at the position occupied by a blade.15

The method is very similar to the torque-balance estimation of the wind speed, with the important difference that it produces

a localized speed estimate instead of a rotor-effective one. The rotating blades therefore operate as scanning sensors that,

travelling across the rotor disk, sample the local variability of the inflow. In turn, the local wind speed estimates are used for

obtaining two key pieces of information on the inflow: the vertical shear, which is an important load-driver and an indicator of

atmospheric stability, and the horizontal shear, which can be used to detect the presence and location of an impinging wake.20

Today, only a scanning lidar would be able to provide similar information on the inflow, albeit not exactly at the rotor disk —as

done here, as the rotor itself is the sensor in this case— and with a very different level of complexity and cost.

The present method has some very interesting features. First, it is model-based, and therefore it does not necessitate of

extensive data sets for its training. Second, it is based on an extremely simple model of the rotor (expressed through the

cone coefficient), which can be readily computed from a standard aeroelastic model of a wind turbine. Third, the resulting25

estimator is in the form of a simple look-up-table that is computed off-line, resulting in an on-line on-board implementation

of negligible computational cost. Fourth, when load sensors are already installed on the turbine for load-alleviating control or

monitoring, this wind sensing technique requires no additional hardware, and therefore its implementation simply amounts to

a software upgrade. The wind sensing method considered here has already been tested with Blade Element Momentum (BEM)

aeroelastic simulations (Bottasso et al., 2018), large eddy simulations (Schreiber and Wang, 2018), and scaled wind tunnel tests30

(Campagnolo et al., 2017). Applications related to wake position tracking within a wind farm have been presented in Schreiber

et al. (2016) and Bottasso and Schreiber (2018).

Goal of the present paper is to validate the wind sensing approach of Bottasso et al. (2018) in the field. To this end, the

method is exercised on a data set obtained with two 3.5 MW turbines, one of which has two blades equipped with load sensors,
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and a meteorological mast (met-mast). Since a perfect calibration of the sensors cannot always be guaranteed, another goal of

the paper is to present and demonstrate simple and effective methods to correct the measurements and improve accuracy.

The paper is organized as follows. First, the formulation of the wind sensing method is reviewed, including the estimation

of rotor-effective and sector-effective wind speeds, as well as of horizontal and vertical shears. Next, the experimental setup

is described, including the site layout and the available measurements. The results section represents the core of the paper,5

and illustrates in detail the performance of the wind sensing technique. A first part of the analysis is concerned with the

validation of the vertical shear estimates. Then, the attention is turned to the detection of wake impingement, which is studied

by exploiting the waking induced at the site for some wind directions by a neighboring turbine. Finally, the effects of cross-

flow are considered, demonstrating that the typical inevitable misalignments between turbine and wind vector do not pollute

the estimates. Conclusions and an outlook on future work are given in the last section.10

2 Methods

2.1 Rotor and blade-effective wind speed estimation

Considering a steady and uniform wind speed V , the power Cp and cone Cm coefficients are defined as

Cp(β,λ,q) =
TaeroΩ

0.5ρAV 3
, (1a)

Cm(β,λ,q,ψi) =
mi

0.5ρARV 2
, (1b)15

where β is the blade pitch angle, λ= ΩR/V the tip speed ratio, Ω the rotor speed,R is the rotor radius andA= πR2 the swept

disk area, ρ is the air density and q = 1/2ρAV 2 the dynamic pressure, while Taero is the aerodynamic torque. The azimuthal

position of the ith blade is given by ψi, while mi is its out-of-plane root bending moment. Coefficients Cp and Cm are readily

computed using an aeroelastic model of the turbine, today customarily based on a BEM method that, in the present work, is

the one implemented in the FAST code (Jonkman and Jonkman, 2018).20

Different approaches to estimate wind speed from the power coefficient are reviewed in detail by Soltani et al. (2013).

However, following Bottasso et al. (2018), here we use both the power and the cone coefficients: while the former yields a

rotor-effective wind speed (i.e., an average quantity over the entire rotor disk), the latter is used to sample the local wind speed

at the azimuthal position occupied by a blade. Given coefficients Cp and Cm computed for a reference air density ρref , look-

up-tables (LUTs) are generated that return wind speeds given measured loads Taero and mi, blade pitch β, rotor speed Ω and25

air density ρ. Noting the rotor-effective wind speed estimated from the torque balance equilibrium as VTB and the one from

blade loads as Vi, the inversion of Eqs. (1) yields

VTB = LUTCp(β,Ω,Taero,
ρ

ρref
), (2a)

Vi = LUTCm(β,Ω,ψ,mi,
ρ

ρref
). (2b)
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Instead of the simple non-linear model inversion adopted here for simplicity, more sophisticated methods can be used, for

example based on Kalman filters or input observers (Soltani et al., 2013), which may slightly improve the results at the cost on

an increased complexity. A rotor-effective wind speed can also be obtained from the blade-effective ones by simple averaging

over all (three) blades:

VB = 1/3
3∑

i=1

Vi. (3)5

Although in a non-uniform inflow the two rotor-effective speeds VTB and VB are not necessarily identical, they are in practice

very similar, as shown later on in the results section. The redundancy offered by VTB and VB offers opportunities for sensor

calibration, as also described later on.

In Eq. (2a), Taero is computed from the dynamic torque balance equilibrium JΩ̇ = Taero−Tmeas−Tloss, where J is the

total rotor, drive-train and generator rotational inertia, while Ω̇ is the rotor acceleration and Tmeas is the measured torque at10

the generator. Mechanical losses in the whole drive-train are taken into account by the term Tloss (Soltani et al., 2013). Here,

for the accuracy of the wind speed estimate, a dynamic model is used to compute the aerodynamic torque. In fact, the energy

converted into rotor acceleration or deceleration is typically large, given the large rotational inertia of the system.

A simpler approach is used for Eq. (2b), where the blade dynamic equilibrium is neglected. This way, the out-of-plane

bending moment is directly set to the corresponding measured load, i.e. mi =mi,meas, where mi,meas is provided by blade-15

mounted strain gages, optical sensors or similar devices. Although even in this case one could include a flapwise dynamic

equilibrium equation, similarly to what done for the torque balance case, the smaller inertia and high damping of this degree

of freedom makes this more sophisticated approach superfluous.

The power and cone coefficients of Eqs. (1) are computed when the rotor axis is aligned with the ambient wind direction.

Hence, strictly speaking, Eqs. (2) can be used to estimate wind speeds only in the same aligned conditions. However, this is20

typically not the case in practice, as turbines are often misaligned with respect to the wind by several degrees. It will be shown

later on that moderate misalignments do not significantly affect the estimation of wind speeds, and that the effects of larger

misalignments can be corrected for.

2.2 Sector-effective wind speed estimation

An average wind speed over a rotor sector can be readily computed by averaging the blade-effective estimate Vi between two25

azimuthal angles ψa and ψb:

VS =
∫

AS

Vi(ψ)dAS, (4)

where AS = (ψb−ψa)R2/2 is the area of the sector. A new sector-effective speed estimate is generated as soon as a blade

leaves the sector.

The sector width can be arbitrarily defined. Figure 1 shows the case of the four equally-sized 90-degree-wide sectors used in30

this work, yielding the four sector-effective wind speed estimates VS,left, VS,right, VS,up, and VS,down. Clearly, a finer sampling
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of the inflow over the rotor disk can be achieved by using smaller sectors. With three blades, each of the sectors is updated

three times per rotor revolution. With one single instrumented blade, the update frequency reduces to once per revolution.

Figure 1. Wind turbine rotor disk with sectors and inflow coordinate system. This naming convention is in the downstream viewing direction.

It was shown in Bottasso et al. (2018) that, for a linear inflow shear and a 90-degree-wide sector, the sector-effective wind

speed corresponds to the inflow speed at a distance of approximately 2/3R from the hub center.

2.3 Shear estimation5

The vertical wind shear is modeled as a power law profile with exponent α, while the horizontal shear is assumed to be linear

with coefficient κ. The inflow wind speed V can therefore be written as

V (z,y) = VH

((
z

zH

)α
+κ

y

R

)
, (5)

where z and y are the vertical and lateral coordinates, respectively, with origin at the turbine foundation, as shown in Fig. 1.

Furthermore, VH is the speed at the hub center, which is located at z = zH and y = 0.10

Assuming that the sector-effective speed samples the inflow profile at ±2/3R along the z and y axes, according to Bottasso

et al. (2018), the shear coefficients can be estimated from the sector-effective wind speeds by using Eq. (5), which yields

αB = ln
(

VS,up

VS,down

)(
ln
(
zH + 2/3R
zH− 2/3R

))−1

, (6a)

κB =
3
2
VS,right−VS,left

VS,right +VS,left
. (6b)

This way, the vertical shear is estimated by using the top and bottom sectors, while the horizontal shear by using the two lateral15

sectors. One could also use all four sectors together, and solve Eq. (5) simultaneously in a least squares sense for both αB and

κB. However, this does not lead to appreciable differences in the results of this paper.

The vertical shear estimate is validated in this work by comparison with an IEC-compliant met-mast, reaching up to hub

height. However, shears computed over the whole rotor or over only its lower half can be significantly different; therefore, one

should not compare the full-rotor shear obtained by Eq. (6a) with a lower-half-rotor shear provided by a hub-tall met-mast. To20
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address this issue, a lower-half-rotor shear estimate is defined here. This quantity is computed by first averaging the two lateral

(left and right) sectors to provide a hub-height speed that, together with the lower sector, is then used to estimate the shear on

the sole lower portion of the rotor disk. Using Eq. (5), the lower-half-rotor shear estimate is obtained as

αlower,B = ln
(
VS,left +VS,right

2VS,down

)(
ln
(

zH
zH− 2/3R

))−1

. (7)

3 Results5

3.1 Experimental setup

This validation study is conducted using an eno114 wind turbine manufactured by eno energy systems GmbH. This turbine,

in the following named WT1, has a rated power of 3.5 MW, a rotor diameter D = 114.9 m, a hub height zH = 92 m and it is

equipped with blade load sensors on two of its three blades. The turbine is installed close to Brusow (Germany), in a flat terrain

site approximatively 10 km south of the Western Baltic Sea, characterized by prevailing westerly wind directions. At the site, a10

second turbine of the same type, named WT2, and a meteorological mast are also installed. Figure 2 shows a satellite image of

the site, including the waking directions and distances among the three installations. WT1 is downstream of the met-mast for a

wind direction ΓMM−>WT1 = 192.5◦, while WT1 is waked by WT2 for ΓWT2−>WT1 = 145◦. The met-mast is equipped with

anemometers at three different heights, the topmost reaching 91.5 m, which is just half a meter shy of the turbine hub height.

The relevant heights of the turbine and met-mast are shown in Fig. 3.15

3.2 Measurements

Synchronized measurements of WT1 and the met-mast were made available by the turbine manufacturer and operator for 41

days from October 19 to November 29, 2017. The measurements include main shaft torsion Tmeas, blade root out-of-plane

bending moments for two blades m1,2, rotor speed Ω, blade pitch β, and rotor azimuth position ψ. The air density ρ was

computed by the ideal gas law using measured air pressure and temperature. Met-mast measurements include wind speed20

VMM,1−3 at the three heights zMM,1−3, and wind direction ΓMM at the single height zMM,2.

All measurements are sampled at 10 Hz. To eliminate higher frequency turbine dynamics and measurement noise, the rotor

speed and torque signals were low pass filtered using a fifth order Butterworth filter with a −3 db cut-off frequency of 6 rpm.

The long-term average readings of the two blade load sensors are expected to be equal. However, when comparing the mean

sensor values for any of the available days, the relative difference between the two blades was found to be between 4.8 and25

5.8%, whereas the absolute differences varied between −100 and −300 kNm. This mismatch between the two blades suggests

a consistent miscalibration of the sensors. To correct for this, the first 24 hours of data were used to identify a scaling factor

s= 0.0274 such that m1(1 + s) =m2(1− s), where (̄·) indicates a mean value. This scaling factor was then used to correct

the sensor readings for the whole data set. Notice that this scaling simply ensures consistent measurements between the two

sensors, but not their absolute accuracy, which is corrected later on by comparison with the rotor-effective wind speed VTB. In30
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Figure 3. Sketch (to scale) of met-mast and WT1 with relevant dimensions.

7

Figure 2. Satellite image with WT1, WT2 and met-mast, including waking directions and distances (© Google Maps).
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fact, as this quantity is based on an independent set of measurements through the torque balance equation, it provides for an

opportunity to calibrate the blade load sensors.

The data set was filtered, retaining only measurements corresponding to normal turbine operation with pitch and rotor speed

within the LUT limits (see Sect. 3.4). Measurements taken during yawing manoeuvres were also discarded, as additional

induced loads can pollute the estimates. After each discarded measurement, an interval of 1 minute for the estimator re-5

initialization was accounted for. The statistical analysis reported below is conducted with 10-minute averages. Of the initial

data set, a total of 4,279 consecutive 10-minute quantities were obtained, representing approximatively 30 days of operation.

3.3 Reference inflow

The ambient inflow measured by the met-mast is assumed to obey the vertical power law given by Eq. (5). Consequently, the

met-mast-measured hub-height reference speed Vref and power exponent αMM were computed as best fits of the mast speed10

measurements at the three different available heights, i.e.

(Vref ,α) = arg min
Vref ,α

3∑

i=1

(VPL(zMM,i,Vref ,α)−VMM,i)2. (8)

Depending on wind direction, the met-mast is located up to 288 meters upstream of WT1, as shown in Fig. 2 for ΓMM−>WT1.

To synchronize met-mast and turbine measurements, assuming Taylor’s frozen turbulence hypothesis, each 10-minute met-mast

measurement was time-shifted by ∆t= sMM−>WT1/Vref , where sMM−>WT1 is the downstream distance from met-mast to15

WT1.

3.4 Look-up-table implementation

An aeroelastic model of the turbine was provided by the turbine manufacturer, implemented in the software FAST (Jonkman

and Jonkman, 2018). To compute the power and cone coefficients of Eq. (1), a total of 10,626 dynamic simulations were

performed in steady and uniform wind conditions for all combinations of β ∈ [0 : 1 : 20]◦, Ω ∈ [3 : 0.5 : 14] rpm and V ∈ [1 :20

1 : 22] m/s, which took just a few hours on a standard desktop PC. Eliminating the tower and drive-train dynamics, a converged

periodic response was achieved in three rotor revolutions.

Considering the last revolution, the power coefficient was computed from the mean torque, while the cone coefficient was

obtained from the blade root out-of-plane bending moment of one of the blades as a function of ψ. The look-up-tables were

compiled, for each β, Ω and —if applicable— ψ, by computing speed as a function of load, including the cases where the blade25

is partially or fully stalled.

3.5 Validation of rotor-effective wind speed estimation

First, the rotor-effective speed estimates VTB (computed through the torque balance equilibrium by Eq. (2a)) and VB (computed

using blade bending moments by Eq. (3)) are compared to each other and to the reference met-mast speed given by Eq. (8).

A direct comparison between VTB and VB revealed that the latter provides systematically slightly higher wind speeds than the30
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former. This discrepancy may be caused by improper blade load sensor calibration (see Section 3.2) and/or deficiencies of the

simulation model used to compute the aerodynamic coefficients. To pragmatically correct these sources of estimation bias, all

speed estimates (VB, VS,left, VS,right, VS,up and VS,down) in the remainder of the paper are scaled by a factor c= 0.928. This

scaling ensures the best correlation between VB and VTB, and was identified based on the first 7 days of measured data. Note

that a direct scaling of the load measurements is also possible and potentially even more accurate.5

It is worth pointing out that the redundancy of the two estimates VB and VTB offers the opportunity to ensure the consistency

between different sets of sensors (the ones measuring blade loads and the ones providing rotor torque). For example, here the

torque sensors were properly calibrated, as indicated by the independent measurements of the met-mast, while the blade load

sensors were not. Therefore, the redundancy was used to calibrate the load sensors against the torque ones. Similar recalibration

procedures might be used also in situations were a met-mast is not available, if one can ensure that at least one set of sensors10

is properly calibrated.
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Figure 4. Torque-balance-based rotor-effective wind speed

VTB (Eq. (2a)) vs. met-mast reference wind speed Vref

(Eq. (8)).
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Figure 5. Bending-load-based rotor-effective wind speed VB

(Eq. (3)) vs. met-mast reference wind speed Vref (Eq. (8)).

After correction, a comparison between met-mast reference speed Vref and torque balance estimates VTB and VB is shown

in Figs. 4 and 5, respectively. These results include only 3,420 data points where the met-mast wind direction lies between

180◦ and 337.5◦, to avoid conditions where the turbine or the met-mast operate in the wake of either WT1 or WT2 (assuming

a ±35◦ margin). The Pearson correlation coefficient R is approximatively equal to 0.99, while the root mean squared error is15

εRMS ≈ 0.44 m/s and the linear best fit (y = ax+ b) has a slope a= 1.01 and an offset b≈−0.15 m/s. These results indicate

that, after calibration, the two methods correlate well with the (approximate) ground truth provided by the met-mast, and that

both yield very similar estimates.
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3.6 Validation of vertical shear estimation

After discarding waked conditions from turbine WT2 (with a±35◦ margin), an analysis of the long-term mean horizontal shear

revealed it to be non-zero. This finding is in contrast with expectations. In fact, while for a narrow wind direction sector some

horizontal shear due to local orography or vegetation can be expected, such effects should disappear considering the complete

wind rose.5

This behavior can be explained by a possible bias in the measurement of the azimuthal position of the rotor, which has

the consequence of generating a non-zero horizontal shear and reducing the vertical one. In addition, another effect should

be considered: as no blade dynamics were included in the model (see Sect. 2.1), the response of the blade is assumed to

instantaneously follow a wind speed change. This is in reality not true, and the actual response will have a phase delay, which

appears as yet another source of azimuthal bias.10

The expected behavior of the horizontal shear can be used for eliminating these effects. In fact, enforcing a null long-term

average horizontal shear corrects both for azimuth sensor bias and for having neglected blade dynamics. To this end, the vertical

and horizontal shears were rotated by ψbias, until a null mean horizontal shear was obtained. Accordingly, the mean vertical

shear also reached its maximum. Using again the first 7 days of measurements, the azimuth bias was identified as ψbias = 11.4◦.

In the remainder of this work, the sector-effective wind speeds and the two shears are computed using the corrected azimuth15

signal ψcorr = ψ+ψbias.

As previously discussed, the reference inflow profile measured by the met-mast through Eq. (8) only includes measurements

up to hub height. Accordingly, the load-based lower-half-rotor vertical shear αlower,B (computed by Eq.(7) in terms of the two

horizontal and the bottom sectors) is the only shear that can be validated with respect to met-mast measurements.

A 12-hour excerpt from the complete set of results is shown in Fig. 6, where 10-minute means of measurements and estimates20

are provided as functions of time.

The top subplot shows the wind direction ΓMM measured at the met-mast; the direction for which the met-mast is directly

upstream of the sensing turbine is ΓMM−>WT1 = 192.5◦, and it is shown by a horizontal solid line.

The second subplot from the top shows the reference wind speed Vref measured at the met-mast, together with the torque-

balance VTB and blade-load-based VB rotor-effective speeds. As already noticed, both methods provide very similar results; in25

addition, especially for wind directions where mast and turbine are nearly aligned, both follow the reference very closely.

The third subplot from the top shows again the met-mast reference wind speed at hub height (solid line) and the one at

zH− 2/3R (dashed line). The respective load-based estimates are indicated with a blue solid line and • symbols for the hub

height speed, and with a red solid line and × symbols for the lower height speed. Both estimates correlate well with their

respective references, especially when mast and turbine are aligned. The small rotor icon shows, using the color code of the30

subplot, the two horizontal sectors (used to estimate the hub height wind speed 1/2(VS,left +VS,right)) and the lower sector.

The last subplot finally shows the mast vertical shear αMM and the load-based estimate αlower,B, computed based on the

data shown in the third subplot using Eq. (7). Except for some small underestimation and noise, the load-based shear follows
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the reference quite accurately. The load-based horizontal shear κB is also reported in the same figure. Although no met-mast

reference is available in this case, as expected the horizontal shear is always essentially null.

Figure 7 shows the correlation between the lower-half-rotor shears αlower,B and αMM. Only wind directions from 190◦ up

to 200◦ are included in the figure, resulting in N = 155 10-minute data points. These conditions contain the direction where

the met-mast is directly upstream of WT1. The Pearson correlation coefficient is R= 0.92. The shear is underestimated with5

respect to the met-mast reference by a factor 1/a= 0.88, obtained by the linear best fit (y = ax+ b) shown in the figure

with a blue dashed line. By looking at the third plot from the top in Fig. 6, a comparison of the wind speed at hub height

and at zH− 2/3R with their respective met-mast references indicates that the former is quite accurate, while the latter has

a small positive bias. This difference could possibly be caused by a non-ideal power law inflow profile, leading to a biased

met-mast reference shear, although a definitive explanation of this mismatch could not be reached with the present data set.10

Figure 8 shows the correlation between the full-rotor shear αlower,B and the lower-half-rotor shear αMM. As the two shears are

computed over two different vertical distances, their correlation is lower than in the case of Fig. 7, as expected.
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Figure 7. Correlation between the lower-half-rotor vertical

shear αlower,B and the met-mast shear (up to hub height) αMM,

for wind directions from 190◦ to 200◦.
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A more complete overview of the results, including a broader range of wind directions, is shown in Fig. 9. The x-axis

reports wind directions from 180◦ to 340◦, in 10◦-wide bins. All results of Fig. 7 fall in the second bin from the left. The

number of available measurements N within each bin is shown in the first subplot from the top. The second subplot shows15

the Pearson correlation coefficient R, between the met-mast reference αMM and the load-based shear estimate αlower,B. Here

and in the other plots, a blue solid line indicates results for the lower-half-rotor shear, while a red dashed line is used for the

full-rotor shear. The best correlation is achieved for the wind direction where the met-mast is directly upstream of the turbine

(ΓMM−>WT1 = 192.5◦). For the same wind direction bin, also the minimum root mean squared error is achieved, as shown in

the third subplot from the top. Considering that all wind directions are for unwaked met-mast and turbine, these results suggest20
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the presence of a spatial shear variation, probably caused by the local vegetation. This interpretation is also confirmed by the

last two subplots, which show the linear best fit coefficients a and b. For wind directions up to 235◦, the slope coefficient a

achieves values between 1.01 and 1.16, increasing up to 1.64 in the remaining wind directions. The constant b is nearly zero

for all wind direction values.
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Figure 9. Statistics of the shear estimates as functions of wind direction. Blue solid line: lower-half-rotor shear; red dashed line: full-rotor

shear. Top subplot: number of 10-minute data points; second subplot: Pearson correlation coefficient; third subplot: root mean squared errors;

fourth and fifth subplots: linear best fit coefficients (y = ax+ b).

Looking at the plots, it appears that the full-rotor shear differs from the lower-half-rotor shear, as already reported by Murphy5

et al. (2019) and as also observed earlier here in Fig. 7. The validation of the full-rotor shear estimated by the proposed method
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would necessitate a met-mast reaching the rotor top height or a velocity-azimuth display (VAD) lidar, which however were not

available in the present research. Nonetheless, the results obtained for the lower-half-rotor shear appear to be very encouraging,

and there is no technical reason why similar results should not be achievable for shear estimates over the entire rotor disk.

3.7 Validation of wake detection

As no measured reference for the horizontal shear was available for this study, the wake of the second turbine was used for5

a qualitative validation. This wake interference study nicely illustrates the very interesting wake detection capabilities of the

proposed method.

Figure 10 reports a time series corresponding to 12 hours of operation, which experienced wind direction changes from

approximatively 100◦ to 180◦. This data subset includes a significant duration where WT1 is waked by WT2. The first subplot

from the top shows the met-mast wind direction ΓMM, where the waking direction ΓWT2−>WT1 is reported as an horizontal10

solid line (cf. also Fig. 2). The second subplot shows the reference met-mast wind speed Vref , as well as the load-based rotor-

equivalent estimates VTB and VB. The third subplot shows the sector-effective wind speeds VS,right/Vref and VS,left/Vref for

the two horizontal sectors , non-dimensionalized by the met-mast reference wind speed. The small rotor icon shows, using

the color code of the subplot, the left (red) and right (blue) sectors. The last subplot reports the horizontal shear estimate κB

computed according to Eq. (6b).15

Vertical dashed lines are used to highlight four time instants, labelled with the letters from A to D. For each of these time

instants, the position of the wakes of the two turbines is visualized in the lower part of Fig. 10 using the FLORIS wake model

(Doekemeijer and Storm, 2019). The yellow color indicates the ambient wind speed, while the blue color is used for the lower

speed in the wakes. The rotor disk of WT2 is shown with a solid black line, while a red line is used for the left sector of WT1

and a blue line for the right one. Finally, the small cross symbol indicates the met-mast (MM) position.20

At instant A (time equal to 02:05), Fig. 10 shows that the wind direction reaches 130◦ and the left sector of WT1 gets waked

by WT2, as clearly illustrated by a reduced speed in the left sector and a positive horizontal shear. At time instant B (02:35),

the wind direction has turned back to 122◦: as the turbine is not waked anymore, the estimated shear is null and an equal

wind speed is estimated on both the left and right sectors. The rotor-effective wind speed is slightly smaller than the met-mast

reference value; however, for this wind direction, the met-mast is not aligned with the turbine, which might explain this small25

discrepancy. At time instant C (03:45), the wind direction has increased and WT1 is waked again (ΓWT2−>WT1 = 145◦):

after an initial reduction in the left sector speed, also the right sector is affected (dropping below 0.7), indicating a full waked

condition. This is further confirmed by the reduction in the rotor-effective wind speeds with respect to the one measured by

the met-mast. Later, a wake impingement on the right sector is observed at time 05:00, followed by a second full waking at

time 05:30. At instant D (06:20), the wind direction has increases to 159◦ and both sectors operate again in nearly free stream.30

Accordingly, the rotor-effective wind speeds increase to reach the met-mast reference. Later again, the wind direction varies

slightly, leading to partial wake impingements on the right side until, finally (at ≈12.00), the wind direction increases further

and the horizontal shear becomes almost zero.
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different wind directions at time instants A through D.

15

https://doi.org/10.5194/wes-2020-48
Preprint. Discussion started: 11 March 2020
c© Author(s) 2020. CC BY 4.0 License.



This time series very nicely illustrates how the horizontal sector-effective wind speeds and the horizontal shear can be used

to understand the instantaneous position of a wake with respect to an affected turbine rotor disk.

Figure 11 reports extended results, showing all available 10-minute values as functions of met-mast wind direction within

the range from ΓWT2−>WT1− 45◦ = 100◦ to ΓWT2−>WT1 + 45◦ = 190◦. The waking wind direction from WT2 onto WT1

(ΓWT2−>WT1) is indicated by a vertical dashed line.5
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Figure 11. Wind speeds and shear at the WT1 rotor disk as functions of wind direction. Top subplot: non-dimensional load-based rotor-

effective wind speed. Central subplot: left and right sector-effective wind speeds. Bottom subplot: horizontal shear.

The first subplot from the top shows the rotor-effective wind speed VB/Vref , non-dimensionalized by the reference speed of

the met-mast. Values larger than one can be observed for wind directions close to 100◦, as the wake of WT2 is affecting the

met-mast (see Fig. 2). For wind directions close to 145◦, lower speeds are observed, caused by the wake of WT2 impinging on

WT1. For other wind directions, the speed stays close to one, even though some scatter can be observed.

The central subplot shows the non-dimensional sector-effective wind speeds VS,right/Vref and VS,left/Vref . The small rotor10

icon shows, using the color code of the subplot, the left (red) and right (blue) sectors. For wind directions between ≈ 125◦ and

140◦, the local wind speed is smaller in the left sector, indicating that the wake of WT2 is affecting mainly that portion of the

rotor disk. Similarly, for wind directions between 145◦ and ≈ 160◦, the right sector is affected by the presence of the wake.
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The bottom subplot shows the horizontal shear estimate. This quantity is close to zero for all wind conditions, except around

the waking direction. Positive values indicate a left-sided wake impingement, while negative values a right-sided one. Note

that the scatter observed in the first two subplots, e.g. for wind directions between 160◦ and 170◦, seems not to be caused by

wake interaction but rather by variations in the reference wind speed, as the horizontal shear is not affected.

For wind directions close to 140◦, only very few measurement points are available. This suggests that the lower-than-ambient5

wind speed within the wake of WT2 triggers frequent shutdowns of WT1. Figure 12 shows in 2◦-wide bins the probability

of the WT1 status indicating “no operation”. Wind directions were based on the met-mast, using all available days without

discarding any data point. Indeed, mean direction bins close to ΓWT2−>WT1 = 145◦ support the hypothesis of frequent wake-

induced turbine shutdowns. Additionally, Fig. 12 reports a maximum for the bin centered at 141◦. This, together with the shear

shown in Fig. 11, suggests a small bias in the met-mast wind direction measurement and/or that the wake is not developing10

exactly along the downstream direction. Indeed, the latter is a well known phenomenon observed in vertically sheared flows

(Vollmer et al., 2016).
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Figure 12. Probability of WT2 being in “no operation” state as a function of met-mast wind direction (using 10 Hz measurements of all

available days).

These results demonstrate a remarkable ability of the proposed local speed and shear estimates to identify whether and to

which extend a downstream turbine operates in the wake of an upstream machine. Note also that the met-mast reference wind

direction is just a point measurement at one single height above the ground. In addition, other unknown inflow parameters,15

such as for example veer, may affect wake development. Therefore, the scatter of some of the data points in Fig. 11 is not

necessarily due to inaccuracies of the wind estimator, but rather due to the indirect, incomplete and pointwise measurement of

the reference wake position.

3.8 Effect of turbine misalignment on estimates

As previously mentioned in Sect. 2.1, in theory the present method is formulated for turbines aligned with the ambient wind20

direction. However, in practice this happens only quite rarely, as every turbine in general operates with some degree of mis-

alignment with respect to the incoming wind vector. This is mainly due to two reasons. First, the on-board wind vane(s) may
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not always provide an exact measurement of the local wind direction. Second, yaw control strategies generally avoid an ex-

cessively aggressive tracking of changes in wind direction. In fact, a turbine will typically yaw only when its misalignment

with the wind has been above a certain threshold for a long-enough duration of time. This is done to limit duty cycle and yaw

expenditure, given the very considerable mass of the rotor-nacelle system and the rather modest power capture loss caused by

a misalignment of a few degrees.5

Since the hypothesis on which the theory is based differs from the situation encountered in practice, it is necessary to

show that the typical misalignments of normal turbine operation do not pollute the speed and shear estimates provided by the

proposed method. This is done here by showing that shears and misalignment are indeed uncorrelated.

To this end, Fig. 13 shows the rotor-effective wind speed as well as the horizontal and vertical shear estimates as functions of

the turbine-wind misalignment angle Γrel,WT1. The misalignment is measured using the on-board wind vane. As this instrument10

may be not always very precise on some turbines, the misalignment angle was also computed by using the met-mast wind

direction together with the turbine absolute orientation; however, in the present case no significant difference was observed

between these two methods of computing the misalignment angle. The results of the figure only include data points for wind

directions between 180◦ and 337.5◦, to avoid waked conditions.

The first subplot reports the non-dimensional rotor-effective wind speed VB. This quantity decreases for increasing misalign-15

ment angle, as shown by the second order polynomial fit reported with a dashed line. Such behaviour is completely expected

and can be corrected for, if the misalignment is known, by using the cosine law (Gebraad et al., 2015; Fleming et al., 2017;

Schreiber et al., 2017).

As shown, the rotor-equivalent wind speed is clearly correlated with misalignment, because the effective speed orthogonal to

the rotor plane varies as a function of this angle. However, there is no reason why the vertical and horizontal shears —which are20

physical characteristics of the inflow— should also exhibit a similar dependency. To verify this fact, the central subplot shows

the horizontal shear estimate κB, which is almost constant with respect to misalignment angle (and also very close to zero).

Finally, the bottom subplot shows the vertical shear αB. It appears that both shears have only a very marginal dependency on

wind misalignment, as shown by the parabolic best fits reported with dashed lines in the plots. The larger fluctuations of the

vertical shear compared to the horizontal one are probably caused by varying ambient inflow conditions.25

The data shows that the shears are essentially uncorrelated with misalignment. These results demonstrate that the proposed

method works without significant errors for turbine-wind misalignment angles up to ≈±10◦.

Larger turbine misalignment angles would be necessary for wake steering control (Fleming et al., 2017), where the rotor is

intentionally pointed away from the wind to deflect the wake laterally. The performance of the proposed method could not be

tested in such conditions within the present research, as no large misalignment angles were present in the available data set.30

However, even in that case, the procedure illustrated here could be used for pragmatically correcting possible errors caused

by misalignment. In fact, by plotting shears as functions of misalignment angle, a best-fit correction function could be readily

derived and used for correcting the estimates, if necessary.
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Figure 13. From top to bottom: rotor-effective wind speed VB, horizontal shear κB and vertical shear αB, all plotted as functions of wind

turbine misalignment angle Γrel,WT1.

4 Conclusions

A method to estimate the local wind speeds over sectors of the rotor disk has been tested on a 3.5 MW wind turbine. Results

have been compared to reference values obtained with a nearby met-mast. For some wind directions, the sensing turbine is

waked by a second machine. This feature of the test site has been exploited for demonstrating the ability of the proposed local

wind sensing technique to detect wake impingement.5

Based on the field test results showed herein, the following conclusions can be drawn:

– A rotor-effective wind speed can be estimated from blade out-of-plane bending moments, with a quality that is nearly

indistinguishable from the well known torque-balance method.

– The vertical wind shear estimated from out-of-plane bending moments correlates very well with the met-mast reference.

The best results were obtained when the mast is directly upstream of the turbine. This indicates that some of the scatter10
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in the results is simply due to a lack of knowledge of the exact ground truth, rather than to a lack of accuracy of the

proposed method.

– The vertical shear measured by the met-mast up to hub height differs from the shear measured over the whole rotor disk.

Clearly, this is simply a feature of the flow, and not of the method tested here.

– The local wind speeds estimated on two lateral sectors of the rotor disk show the clear fingerprint of an impinging wake5

shed by a neighbouring turbine. By looking at the two sectors, one can distinguish left, right or full wake overlaps.

– Simple and very practical techniques can be used to correct for various sources of error, including not perfectly calibrated

load or azimuth sensors, as well as model approximations.

The present load-based wind estimation method provides for a remarkably simple and effective opportunity to estimate

atmospheric inflow conditions on operating turbines. The method is based on readily-available quantities that can be easily10

computed from a standard model of a wind turbine, and does not need to be trained from extensive data sets. The on-board

implementation uses pre-computed look-up-tables. and hence has a negligible computational cost. When load sensors are

already installed on a turbine, for example for load-reducing control, this novel wind sensing capability is simply obtained as

a software upgrade. Wind sensing opens up a number of opportunities that can profit from a better knowledge of the inflow,

including turbine and wind farm control, lifetime consumption estimation, predictive maintenance and forecasting, among15

others.

Code and data availability. The operational data and turbine model used in this research are the property of eno energy systems GmbH. An

implementation of the estimator can be obtained by contacting the authors.

Nomenclature

BEM Blade Element Momentum20

LUT Look-up-table

MM Met-mast or meteorological mast

WT1 Wind turbine 1 (sensing turbine)

WT2 Wind turbine 2

25

a Linear best fit constant (y = ax+ b)

A Rotor disk area

AS Sector area

b Linear best fit constant (y = ax+ b)

Cm Cone coefficient30
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Cp Power coefficient

c Speed estimate scaling factor

D Rotor diameter

J Total rotational inertia

mi Blade root out-of-plane bending moment of blade i5

mi,meas Measured blade root out-of-plane bending moment of blade i

N Number of measurements

q Dynamic pressure

R Rotor radius or Pearson correlation coefficient

s Load scaling factor10

sMM−>WT1 Downstream distance between met-mast and wind turbine WT1

Taero Aerodynamic torque

Tmeas Measured torque

V Wind speed

VB Blade-load estimated rotor-effective wind speed15

VH Wind speed at hub height

Vi Blade-effective wind speed estimate of blade i

VMM,i Met-mast measured wind speed at height i

VPL Power law inflow profile

Vref Met-mast measured reference wind speed of inflow profile20

VS Sector-effective wind speed

VS,left/right/up/down Load-based estimation of left/right/up/down sector

VTB Torque-balance estimated rotor-effective wind speed

y Lateral position

z Height above ground25

zH Hub height

zMM,i Installation height of sensor i on met-mast

α Vertical shear exponent

αB Load-based estimated vertical shear exponent30

αlower,B Load-based estimated vertical shear exponent on lower half of rotor disk

αMM Met-mast-measured vertical shear exponent

β Blade pitch angle

Γ Wind direction (clockwise from due North)

ΓA−>B Direction of wind blowing from point A to B (clockwise from due North)35
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ΓMM Wind direction at met-mast

Γrel,WT1 Relative wind direction at nacelle of WT1

∆t Time delay between measurement at met-mast and turbine

εRMS Root mean squared error

κ Horizontal shear coefficient5

κB Load-based estimated horizontal shear coefficient

λ Tip speed ratio

ρ Air density

ρref Reference air density

ψ Blade azimuth position10

ψa Blade azimuth position, beginning of sector

ψb Blade azimuth position, end of sector

ψbias Blade azimuth measurement offset

ψcorr Corrected azimuth measurement

Ω Rotor speed15

Ω̇ Rotor acceleration
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