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Abstract. The most intermittent behaviour of atmospheric turbulence is found for very short time scales. Based on a concate-

nation of conditional probability density functions (cpdfs) of nested wind speeds increments, inspired by a Markov process in

scale, we derive a short-time predictor for wind speed fluctuations around a non-stationary mean value and with a correspond-

ing non-stationary variance. As a new quality this short time predictor enables a multipoint reconstruction of wind data. The

used cpdfs are (1) directly estimated from historical data from the offshore research platform FINO1 and (2) obtained from5

numerical solutions of a family of Fokker-Planck equations in the scale domain. The explicit forms of the Fokker-Planck equa-

tions are estimated from the given wind data. A good agreement between the statistics of the generated synthetic wind speed

fluctuations and the measured is found even on time scales below 1s. This shows that our approach captures the short-time

dynamics of real wind speed fluctuations very well. Our method is extended by taking the non-stationarity of the mean wind

speed and its non-stationary variance into account.10
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1 Introduction

The transition of our energy system, formerly strongly relying on gas and coal, to a decarbonized one, mainly based on wind,

solar and as well hydro power, is still ongoing work, but great progress has been made: From 2005 to 2017 the share in

installed capacity of wind (solar) has been increased from 6% (0.3%) to 18% (11.5%) in the European Union (WindEurope,15

2018). The downside of this increasing share of those fluctuating renewable energy sources is their integration into the power

grid. By analysing measurements of fed-in wind and solar power it could be shown that their fluctuations strongly deviate

from Gaussian behaviour on time scales ranging from hours to seconds (Anvari et al., 2016) and for wind power even for

scales below 1s (Haehne et al., 2018). This survival of the atmospheric intermittency in the power grid faces the grid operators

with the great challenge to ensure stable power supply, even under highly volatile conditions. Within this context the term20

intermittency is used in the spirit of Kolmogorov 62 to describe the characteristic heavy-tailed shape of pdfs often found at

small scales in time series of turbulent systems (Frisch, 2004).

To aid the design of our future energy systems, for example to size the needed energy storage or the power generation capacity

of conventional power plants, much work has been done in the field of long term wind speed/power modelling, utilizing Markov
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chain models. Whereas simple first-order Markov chain models cannot grasp the characteristics of long term correlations of25

wind speeds (Brokish and Kirtley, 2009), higher-order Markov chain models perform better, but will require more input data for

estimating the transitions matrices or some simplifications ((Pesch et al., 2015), (Brokish and Kirtley, 2009), (Papaefthymiou

and Klockl, 2008), (Weber et al., 2018)).

Despite their dramatic effect of long range correlation and fluctuations of wind speeds on the power generation (and thus the

grid stability), wind speed fluctuations are known to be most intermittent on short time scales (Boettcher et al., 2003). With30

short time scales we refer to time scales in the range of seconds to minutes. As it can be seen in (Boettcher et al., 2003),

the effect of intermittency is most prominent at time scales < 1 s, but as the time scales increase, the pdfs broaden. Models

considering time steps ranging from minutes to seconds or even below are of course not suited for energy system analysis on

national levels, but are useful tools for wind turbine operators. For a time step of 10 min (Carpinone et al., 2010) presented

a higher-order Markov chain model for wind power and (Milan et al., 2013) showed a stochastic power model based on a35

conditional Langevin equation to work even in the range of seconds.

The knowledge of full three-dimensional wind fields for all three velocity components and the pressure in all details would be

desirable. The missing of the basic understanding, the impracticability of handling such huge data sets as well as the complexity

of the wind energy conversion process leads often to the demand of simplified models for wind speed. Common approaches

for the design of wind turbines are the so-called Mann uniform shear and the Kaimal spectral and exponential coherence model40

(iec, 2005). Both models take spectral and coherence aspects of turbulent velocity fluctuations into account, thus handling the

fluctuations as Gaussian distributed and stationary. Higher order statistical effects like the prominent intermittency effect of

turbulence and non-stationarities are not taken into account, see for example (Mücke et al., 2011). Another approach is to use

one-dimensional effective wind speed time series, representing for example the wind field together with the rotor aerodynamics

as it impacts the drive train or can be used to model the above discussed energy conversion process (Wächter et al., 2011).45

Within this work we propose a novel stochastic generator of one-dimensional wind speed fluctuations with a sampling in-

terval of 0.1 s. One main novelty is that we show how to grasp by this model multipoint statistics of wind structures in time.

While commonly applied methods, like spectral analysis and two-point correlations, limit themselves to two-point statistics,

here we extend the methodology to more than two points in time. We obtain generalized correlations between multiple points

in time, in terms of probability density functions (pdfs) for the occurrence of a whole sequence of wind speeds. Those pdfs we50

denote multipoint pdfs, and they constitute the basic concept of our approach. Such a stochastic multipoint approach should

in principle be able to grasp wind structures like gusts as well as clustering of wind fluctuations. The method was initially

developed by (Nawroth and Peinke, 2006) in the context of homogeneous isotropic turbulence and later on applied to the mod-

elling of log-return rates of current exchange rates (Nawroth et al., 2010) and velocity increments of idealised homogeneous

isotropic turbulence (Stresing and Peinke, 2010). The successful application to ocean gravity waves (Hadjihosseini et al., 2016)55

showed that structures of monster waves can be grasped by this approach correctly (Hadjihoseini et al., 2018). For a recent

review see (Peinke et al., 2019). Finally we want to point out that we show also how to handle the aspect of non-stationary

wind conditions.

We will continue as follows: In a first part we discuss the method for a subset of wind data characterised by its mean wind
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speed and its standard deviation. For such data it is shown how, arising from a Langevin process in scale, a predictor for the60

upcoming wind speed fluctuation around a mean value can be derived by a nesting of conditional probability density functions.

Afterwards we check for Markovian properties of the wind speed fluctuations in scale and set up a Fokker-Planck equation,

corresponding to the Langevin process in scale, and show how it contributes to the improvement of our stochastic prediction

method. Finally in the second part the non-stationary mean wind speed and its non-stationary variance is incorporated into our

approach to achieve more realistic wind speed time series.65

2 Method

In this section we present the stochastic framework used for our multipoint reconstruction scheme. As a simplification we start

this discussion for blocks of wind data U(t), with the time t, which share the same mean wind speed U and the same standard

deviation σU , as suggested in (Morales et al., 2012). Fixing U and σU one would generate quasi-stationary subsets of data.

We follow this idea, but instead of creating quasi-stationary subsets, we aim at creating quasi-stationary time series. With U(t)70

we refer to the resulting wind speed from the horizontal components. The quasi-stationary wind speed u(t) is then obtained

from U(t) by respectively normalizing it with the mean U and standard deviation σU within blocks of 1 min length. We use

measured data from the offshore research platform FINO 1: The data were recorded at a sampling frequency of 1 Hz between

calendar week 1 to 10 in 2007 with an ultrasonic anemometer, mounted at 80 m height, resulting in approximately 6 · 106

samples. The use of our method for non-stationary time series is outlined in Section 3.75

2.1 Multipoint Statistics

Since we assume wind speeds to emerge from a turbulent cascade, increments will take a key role for our method. Having a

time series of wind speeds u(t), the corresponding increment time series ∆u(τ), depending on a certain scale τ , is given by

∆u(τ) = u(t)−u(t− τ). (1)

This is the definition of so called right-sided increments. Note that the calculation of ∆u(τ) after this definition depends on80

the current wind speed u(t) and a past value u(t−τ), whereas the use of left-sided increments ∆u(τ) = u(t+τ)−u(t) would

premise the knowledge of future values u(t+τ), creating a contradiction as we aim at producing synthetic wind speed time se-

ries. To ease readability we use the shorthand notations ui := u(t−τi) and ∆ui := u(t)−u(t−τi) with τi = i·τ (i= 1,2,3, ...)

in the following.

As a further remark we note that although we consider in this work time series of wind speed, we often talk of multipoint85

statistics. ∆u(τ) is considered as a statistical two-point quantity, which more correctly could be denoted as two-time quantity.

Based on the commonly used hypotheses on frozen turbulence by Taylor, for short time fluctuations time and space statistics

are related linearly by the mean wind speed (see also (Peinke et al., 2019)).

Our idea is to predict a wind speed u∗(t∗) only by knowledge of its N past values {u1(t∗− τ1), ...,uN (t∗− τN )}. The proba-
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bility of an event u∗ to happen at time t∗ can then be expressed by the conditional probability density function (cpdf)90

p(u∗, t∗|u1, t
∗− τ1; ...;uN , t

∗− τN ) =

p(u∗, t∗;u1, t
∗− τ1; ...;uN , t

∗− τN )

p(u1, t∗− τ1; ...;uN , t∗− τN )
,

(2)

using the definition of conditional probabilities. Note this cpdf is the key quantity to estimate a new wind speed value u∗ and

it can be used iteratively to generate new time series, as we show below.

Now we link eq. (2) to the idea of an underlying turbulent cascade, which can be described by means of a Markov process.

Thus we assume that there exists a scale separation ∆τME = τj − τi (j > i), after which the Markov condition is fulfilled for95

all greater scales. This scale separation ∆τME is often called the Markov-Einstein length (Einstein, 1905). It enables us to

express the multiple cpdf p(u∗, t∗|u1, t
∗− τ1; ...;uN , t

∗− τN ) by a multiplication of simpler double cpdf and marginal pdfs:

p(u∗, t∗|u1, t
∗− τ1; ...;uN , t

∗− τN ) =

p(u∗)

p(u1)
· Π

N−1
i=1 p(∆ui|∆ui+1;u∗)

ΠN−1
i=2 p(∆̃ui|∆̃ui+1;u1)

· p(∆uN |u
∗)

p(∆̃uN |u1)
,

(3)

with ∆̃ui := u(t∗− τ1)−u(t∗− τi) with the time scale τi− τ1. For details we refer the reader to the appendix A.

100

It is known that the evolution of cpdfs of a Markov process can be described by the famous Kramers-Moyal expansion

Risken (1996), which notes for our stochastic process in scale ∆ui

−τi
∂

∂τi
p(∆ui|∆uj ;u∗) =

∞∑
n=1

(
− ∂

∂∆ui

)n [
D(n)(∆ui, τi,u

∗)p(∆ui|∆uj ;u∗)
]
,

(4)

requiring τj − τi ≥∆τME and with the Kramers-Moyal coefficients D(n) being defined as

D(n)(∆ui, τi,u
∗) =

lim
∆τ→0

τi
n!∆τ

〈[∆u′i(τi−∆τ,u∗)−∆ui(τi,u
∗)]

n〉.
(5)105

In contrast to the Kramers-Moyal expansion in time domain, a minus sign on the lhs of equation (4) has to be added for scale

processes, since during evolution of the process the scale τ is decreasing. According to the Pawula theorem, the Kramers-Moyal

coefficients vanish for n≥ 3, if D(4) = 0 (Risken, 1996), thus the Kramers-Moyal expansion reduces to the Fokker-Planck

equation (FPE)

−τi
∂

∂τi
p(∆ui|∆uj ;u∗) =

− ∂

∂∆ui

[
D(1)(∆ui, τi,u

∗)p(∆ui|∆uj ;u∗)
]

+

− ∂2

∂∆u2
i

[
D(2)(∆ui, τi,u

∗)p(∆ui|∆uj ;u∗)
]
,

(6)110
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with the drift functionD(1), accounting for the deterministic evolution of the stochastic process, whereas the so called diffusion

function D(2) scales the amplitude of the noise term of the corresponding Langevin equation

− ∂

∂τ
∆u(τ,u∗) =

1

τ
D(1)(∆u,τ,u∗) +

√
1

τ
D(2)(∆u,τ,u∗) ·Γ(τ)

(7)

with the Gaussian noise Γ(τ), fulfilling 〈Γ(τ)〉= 0 and as well 〈Γ(τ)Γ(τ ′)〉= 2δττ ′ . This equation directly describes the

evolution of a single trajectory along the scale τ .115

As it can be seen, the FPE can be used to determine the factorized pdfs from eq. (3) if the process is Markovian and higher

order Kramers-Moyal coefficients are zero. This equivalence between a cpdf with N conditions and a nested chain of several

cpdfs with only two conditions, stemming from the three-point closure of a cascade process, is extremely helpful if one aims

at estimating the pdfs from measurements, since the high dimensional pdfs in eq. (2) would require a tremendous amount of

realizations in order to be estimated well. For a more detailed discussion of this multipoint approach we refer to (Peinke et al.,120

2019).

2.2 Preliminary Analysis of Wind Speed Data

Next we check if wind speed data are suitable for the reconstruction method just described. According to the rhs of equation

(3) the estimation of the double cpdfs p(∆ui|∆ui+1,u
∗) is necessary. However, to reduce computational costs or, respectively,

the number of data points, it would be much more convenient to use the single cpdfs p(∆ui|∆ui+1) by excluding the condition125

on the wind speed u∗ to be predicted (Nawroth et al., 2010), (Peinke et al., 2019). Thus the equality

p(∆ui|∆ui+1;u∗) = p(∆ui|∆ui+1) (8)

must hold. As it can be seen from fig. (1), eq. (8) holds for u∗ ≈ 0, but shows a significant shift for u∗ ≈ 2.5, there from we

reason that the equality in equation (8) cannot generally be assumed, so we have to stick to the double cpdfs p(∆ui|∆ui+1,u
∗).

Similar results have been reported for idealised turbulence (Stresing and Peinke, 2010) and sea waves (Hadjihosseini et al.,130

2016). On derivation of our final formula for reconstruction of time series (cf. eq (3) an essential step was to premise the

underlying scale process to be Markovian. Thus it has to be shown that for ∆τ = τi+1− τi ≥∆τME

p(∆ui|∆ui+1; ...;∆uN ;u∗) = p(∆ui|∆ui+1;u∗) (9)

is a valid assumption. As the verification of this expression is not feasible in its generality, we limit ourselves by reducing the

number of dimensions involved and just check the equality of135

p(∆ui|∆ui+1;∆ui+2;u∗) = p(∆ui|∆ui+1;u∗). (10)

To check this we utilize the Chapman-Kolmogorov equation (CKE) (Friedrich et al., 2011): The cpdf p(∆ui|∆ui+2;u∗) is

estimated directly from observational data and afterwards compared with the cpdf p̃(∆ui|∆ui+2;u∗) obtained numerically by
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Figure 1. Comparison of single cpdfs p(∆u1|∆u2) (black) and double cpdfs p(∆u1|∆u2;u∗) (red) for u∗ ≈ 0 ((a), (c)), u∗ ≈ 2.5 ((b),

(d)), τ1 = 1s and τ2 = 2τ1. Dashed lines indicate cuts through the cpdfs at ∆u2 ≈ 1.2. The levels of the contour plots are given in natural

logarithmic scale.

use of the CKE

p̃(∆ui|∆ui+2;u∗) =∫
p(∆ui|∆ui+1;u∗) p(∆ui+1|∆ui+2;u∗),

(11)140

whereas the two cpdfs within the integral on the rhs are as well directly estimated from data. Figure 2 shows that equation (11)

only holds for ∆τ ≥∆τME . We find Markov-Einstein length ∆τME ≤ 0.1 s, which we are going to use henceforth.

2.3 Parametrisation of the Fokker-Planck-Equation

As it was mentioned in sec. (2.1) the FPE may be used to generate solutions for the needed cpdfs in eq. (1). Aiming for this, one

needs a parametrisation of the FPE reflecting the scale process of the real world wind speed data. No general, physical formu-145
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Figure 2. Comparison of the double cpdfs p(∆u1|∆u3;u∗) (estimated from data) and p̃(∆u1|∆u3;u∗) (obtained from CKE) for τ1 = 0.1 s

(a) or 1 s (b) and respectively τ2 = 2τ1, τ3 = 3τ1, ∆τ = τ2− τ1 = τ3− τ2 and u∗ = 0.

lation for a FPE, describing the scale process of wind speeds is known, thus we use the possibility to estimate a parametrisation

directly from the given data (cf. eq. (5) and (Reinke et al., 2018; Peinke et al., 2019)).

This way we get estimations of the drift and diffusion functions D(1)(∆u,τi,u
∗), D(2)(∆u,τi,u

∗) along the scale τi and for

every wind speed value u∗. From these estimations one then usually finds parametrisations of the FPE by fitting appropriate

polynomial surfaces to the estimated functions, which then may be used to obtain numerical solutions of the FPE.150

To match the functional shape of the estimated D(1)(∆u,τi,u
∗) and D(2)(∆u,τi,u

∗) (see fig. (3)) we require the polynomials

to be of order 3 and 2 respectively. We find a significant shift, denoted with γD(1)(τi,u
∗), depending on u∗ and τi for the drift

along all scales τi which has to be taken into account for a parametrisation suitable to the given data.

We set for D(1)(∆u,τi,u
∗):155

D(1)(∆u,τi,u
∗) =

d10(τi,u
∗) + d11(τi,u

∗) [u− γD(1)(τi,u
∗)]+

d13(τi,u
∗) [u− γD(1)(τi,u

∗)]
3

(12)
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Figure 3. Exemplary estimations of the drift and diffusion functionsD(1)(∆u,τi,u
∗),D(2)(∆u,τi,u

∗) for τ = 65 s and u∗ ≈−1.58 (red),

≈ 0 (black) and ≈ 1.58 (blue). Fits for D(1) and D(2) were achieved by applying eqs. (12, 13).

and for D(2)(∆u,τi,u
∗):

D(2)(∆u,τi,u
∗) =

d20(τi,u
∗) + d21(τi,u

∗)u+ d22(τi,u
∗)u2.

(13)

Similar findings were made for other systems (Hadjihosseini et al., 2016) and (Stresing and Peinke, 2010), where the depen-

dence on u∗ was limited only to the drift function D(1)(∆u,τi,u
∗). For wind speed data the contribution of u∗ is clearly more160

complex.

Furthermore we check the validity of the Pawula theorem, requiring D(4) = 0. As one can see in fig. (4), the fourth Kramers-

Moyal coefficient is slightly larger than zero, but negligible compared to the magnitude of the diffusion function D(2).

Next, we check if the parametrisation of the FPE, given by the eq. (12) and (13) performs well in describing the underlying165

scale process, before one uses it for the reconstruction scheme presented in sec. 2.1. This can easily be done by comparing

cpdfs estimated directly from the data and the ones obtained from numerical solutions of the FPE. The latter one is not carried

out by common finite-difference schemes, but by an iterative approach (for first works see (Renner et al., 2001),(Wächter et al.,

2003)). For a (very) small step size in scale ∆τ the functions D(1)(∆u,τi,u
∗), D(2)(∆u,τi,u

∗) can be assumed to be constant
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Figure 4. Exemplary estimations of the second and fourth Kramers-Moyal coefficient D(2)(∆u,τi,u
∗), D(4)(∆u,τi,u

∗) for τ = 65 s

in τ , leading to an exact solution (cf. (Risken, 1996)) for the cpdf170

p(∆uj , τi−∆τ |∆ui, τi,u∗) =
1

2
√
πD(2)(τi,u∗)∆τ

·

exp

[
−
(
∆uj −∆ui−D(1)(τi,u

∗)∆τ
)2

4D(2)(τi,u∗)∆τ

]
,

(14)

describing the transition between wind speed increments of a larger scale τi to a smaller scale τi−∆τ . By iteratively combining

this so called short time propagator (STP) with the CKE (see eq. 11) one is able to obtain cpdfs p(∆uj , τj |∆ui, τi,u∗) for

arbitrary large scale differences τi− τj �∆τ . In theory this procedure would lead to exact solutions of the FPE, but since one

is limited to finite step sizes ∆τ , this methods of course only provides numerical approximations of the true cpdfs.175

Comparing cpdfs estimated directly from the data and from the numerical solution we see (fig. 5) that our proposed estimation

in terms of D(1)(∆u,τi,u
∗) and D(2)(∆u,τi,u

∗) is well suited to describe the underlying scale process. Thus we use this

parametrisation for the reconstruction scheme.

2.4 Results of the Multiscale Reconstruction

Alternatively to the presented approach to obtain the cpdfs from numerical solutions of the FPE, it is of course possible and180

much less cumbersome to estimate them directly from observational data. (Note that due the use of the FPE, the obtained

pdfs are less noisy and extend to large values as seen in fig. 5.) In this section we will present the results for the multipoint

reconstruction achieved for u∗, yielding from both approaches.

To start the reconstruction scheme, we provided a short piece of the original time series of N wind speeds to the algorithm

to compute the pdf p(u∗|u1, ...,uN ), from which the first point of our simulation can be drawn. The reconstruction scheme is185

then shifted by one time step τ and applied again. By iteratively applying our method a new artificial time series of arbitrary

length can be generated. After N iterations of the reconstruction scheme no data from measurements are required any more to

9
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Figure 5. Isoline plots of a cpdf p(∆ui, τi|∆uj , τj ;u
∗) estimated from the data (black) and from numerical solution of the FPE (red) for

τi = 1.6 s, τj = 3.2 s and for u∗ ≈ 0 and u∗ ≈ 2

generate new values of u∗. From visual comparison in fig. 6 one finds a realistic looking simulated time series of u∗, retaining

the characteristics of dynamics on the smaller scales as well as the ones of the larger scales. To confirm this visual impression

in a quantitative way, we compare the increment pdfs p(∆ui, τi) obtained from the reconstructed and the measured time series.190

The synthetic time series were generated by using both, the cpdfs directly estimated from data and from numerical solutions

of the PFE. As shown in fig. 7 the increment pdfs yielding from both stochastic simulations nicely coincide with the pdfs from

observations. This attests that the presented reconstruction scheme is able to capture the complex dynamics of wind speeds,

characterized by a gradual shift of increment pdfs of a Gaussian-like shape (larger scales) to increment pdfs of heavy-tailed

shape (smaller scales).195

A striking difference between the increment pdfs from the stochastic simulation can be noted: Whereas the tails of the original

pdfs are systematically underestimated by the reconstruction using the directly estimated pdfs, the reconstruction from the

numerically obtained cpdfs is able to keep track of the tails of the original pdf. This stems from the fact, mentioned above, that

by estimating a pdf from observational data one in general underestimates the outer tails, since there are only few measured

points available. Considering the estimation of cpdfs the estimation error of course worsens, which is even more severe when200

additional conditioning is applied, like in our case in terms of the additional condition on u∗.
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Figure 6. Comparison of original wind speed time series u∗ (black, (a)) with the reconstructed one using eq. 8 (red, (b)). The vertical line

marks the transition from the N = 128 starting values to the simulated wind speeds.

The tails of cpdfs p(∆ui, τi|∆uj , τj ;u∗) computed from the family of FPEs can be extrapolated to areas where no measure-

ment points are available. This effect is a direct consequence of the CKE (eq. 11), as the tails are the product of quite well

estimated less probable but not rare events.

Certainly this approach indirectly suffers from the limited number of observations as well, as the estimation of the func-205

tion D(1)(u,r,u∗) and D(2)(u,r,u∗) is based on observational data, too (cf. eq. 5). Furthermore the parametrisation of these

functions is always only a approximation of the real drift and diffusion functions, introducing deviations from the real world

system.

But we see from fig. 7) that the majority of increments are well grasped, only the occurrence of a few rare events are

underpredicted. A more detailed investigation of the pdfs shows the pdfs obtained by the FPE deviate from the original shape210

for the largest scale τ =N ·∆τME , but is performing better in the outer wings of the pdf.

From fig. 8 a better understanding of the reconstruction method can be gained: The pdf used for the simulation p(u∗|u1, ...,uN )

is not stationary, even though it is computed from completely stationary cpdfs (cf. (8)) and changes sensitively with respect to

the N past values. While the snapshot pdf (shown as black circles) at the time marked by the black vertical line has a rather

clear shape, it undergoes a change, becoming broader (red line and red circles). Due to the spreading of the wings of the pdf,215

values of u∗ of larger magnitude become more likely to be drawn. This may lead to a distinct shift of the wind speed values
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Figure 7. Comparison of the marginal increment pdfs computed from the empirical data (black), the simulated data using the directly

estimated pdfs (red) and the simulated data using the cpdfs obtained from numerical solution of the FPE (blue). The scales range from

∆τME to N · τME , they are explicitly: 2i ·∆τME with (i= 0,1, ...,7) and ∆τME = 0.1 s. For better visualization the pdfs were shifted

along the vertical axis.

to u∗ ≤ 0 as seen in this example. After this transition the broadness decreases (blue line and circles) again and a tendency to

relax back to u∗ = 0 can be seen. Furthermore the increased broadness of the red pdf (red line) can be seen as an early warning

signal that the wind speed is prone to fluctuate in a stronger way.

3 Extension to non-stationary wind speeds220

In the preceding part for the reconstruction scheme block-wise normalized wind speeds with a window length of 1 min were

used. These blocks were defined by common mean wind speed U and standard deviation σU . For the normalised wind speed u

we showed how to generate new time series see, fig. 9.

There are different methods to generate more general non-stationary wind data. Knowing the slow variation of U(t) and σU (t)

the drift and diffusion coefficients D(i) are taken as slowly changing function of D(i)(∆u,τ,u∗,U,σU ). If due to the normal-225

isation of U to u the coefficients D(i) are in a good approximation independent of U and σU , the slow variation of the real

wind conditions can be incorporated over the back-transformation of the newly estimated values U∗ = (σU ·u∗)+U . The slow

dynamics of U(t) and σU (t) may be given from measured data, meteorological simulations or other modelling.
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Figure 8. Evolution of p(u∗|u1, ...,uN ) during reconstruction. Horizontal lines indicate snapshots of the pdf used for drawing the next

sample of u∗. The colours of the horizontal lines respectively correspond to the snapshot pdfs.

A third possibility is a self-adaptive procedure which we show here. Instead of using given values of U(t) and σU (t),230

the intrinsic fluctuation of these quantities are used: Given an initial pair (U(t),σU (t)) estimated over 1 min from measured

data, a time series of non-stationary wind-speedsU∗(t) is obtained by applying the above mentioned back-transformation to the

generated wind speeds u∗ from our algorithm. For the upcoming simulation window of 1min length a new pair (U(t′),σU (t′))

is estimated from the just generated block of wind speed data U∗(t). This procedure is carried out until a time series of non-

stationary wind speeds of desired length is obtained. In fig. 9 such a time series is shown together with the statistical analysis235

of the increment pdfs and the marginal pdf of the non-stationary wind speed U . We observe that the pdfs of the reconstructed

time series match the shape of the empirical pdfs for both, the increments and the wind speeds. At this point we would like to

emphasize that we do not aim to create copies of historical wind speeds, but to be able to generate stochastically equivalent

time series.

4 Conclusions240

We presented a stochastic approach based on multipoint statistics to generate surrogate short time wind speed fluctuations with

stochastic processes. Note these stochastic processes can be estimated self-consistently from given data. By using the normal-

ized wind speeds u∗ and wind speed increments ∆u(τi), ∆u(τj) from two separate scales τi and τj a three-point closure to
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Figure 9. (a), (b): comparison between measured non-stationary speeds U and reconstructed non-stationary wind speeds. (c), (d): increment

and one point pdfs of original and reconstructed U .
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the complex systems of wind speeds was achieved.

It was shown that our method works well in describing the dynamics of block-wise normalized wind speeds u∗ along scales245

τi in terms of a stochastic scales process, governed by a family of Fokker-Planck equations. This separation of the fluctuations

from the mean values is similar to the Reynolds-averaged Navier–Stokes (RANS) approach widely used in fluid dynamics

(Frisch, 2004), with the difference that we have a description of the underlying stochastic process of the fluctuation and ’only’

lack the mean values. With the modified reconstruction (cf. sec. 3) we are able to generate mean values on basis of past values

of the reconstructed time series, yielding realistic non-stationary wind speed time series U∗. As the typical response times250

of wind turbines and their control systems have duration of seconds to minutes, our reconstructed wind data are suitable for

investigation of many dynamical effects of the wind energy conversion process. Note for these times the wind energy system

may be driven into non-stationary response dynamics. Thus for these time scales it is important to have to maximal information

on all statistical details of the driving wind source. The stochastic model presented here is based on multipoint statistics and is

able to capture small scale intermittency effects, extreme events as well as clustering of fluctuations, up to now not addressed255

in wind energy research.

For time scales larger than the response times of wind turbines, the turbines operate with fully adapted control systems in a

stationary state. To estimate effects, like e.g. loads, of such stationary states the temporal order of the states becomes unim-

portant. It is sufficient to know how often which wind situation emerges. Thus the knowledge of the valid Weibull distribution

p(U) should be sufficient. Note, our result here indicates that it would be better to extend the Weibull distribution to the joint260

probability p(U,σU ).

Finally we emphasise that the presented stochastic multipoint approach to small scale wind speed fluctuations should en-

compass automatically extreme short term wind fluctuations, commonly added to wind investigations in terms of standard or

multi-year gusts. These methods can be applied easily to other wind quantities like the temporal behaviour of shears, or wind

veers, eventually combined in higher dimensional stochastic processes (Siefert and Peinke, 2006). The results reported in (Ali265

et al., 2019) show that such a stochastic modelling can also be used for wake flows.

Acknowledgement: We acknowledge the funding of this project by the VolkswagenStiftung grant and the support from the

Ministry for Science and Culture of the German Federal State of Lower Saxony (Grants No. ZN3045 and ZN3024, nieders.

Vorab to M. W.). Furthermore we acknowledge helpful discussions with André Fuchs and Hauke Hähne.

Appendix A: Derivation of simpler cpdfs270

To link equation (2) to the idea of an underlying turbulent cascade we identify the conditional pdf on the left-hand side (lhs)

with the cpdf p(u∗, t∗|∆u1, t
∗− τ1; ...;∆uN , t

∗− τN ). Thus the numerator of the right-hand side (rhs of (2) can be rewritten

as

p(u∗, t∗;u1, t
∗− τ1; ...;uN , t

∗− τN ) =

p(u∗,u∗−u1, τ1; ...;u∗−uN , τN )
(A1)
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and the nominator as275

p(u1, t
∗− τ1; ...;uN , t

∗− τN ) =

p(u1;u1−u2, τ2− τ1; ...;u1−uN , τN − τ1)
(A2)

The identity of the expressions in (A1) and (A2) can mathematically rigorously be shown, as done in (Nawroth et al., 2010), but

intuitively speaking the sequences on the lhs and rhs must yield the same joint pdf, since the increments on the rhs respectively

have a common reference point u∗ or u1. Next we factorize the joint pdfs from equations (A1) and (A2) by iteratively using

cpdfs280

p(u∗;∆u1, τ1; ...;∆uN , τN ) =

p(∆u1, τ1|∆u2, τ2; ...;∆uN , τN ;u∗)·

p(∆u2, τ2|∆u3, τ3; ...;∆uN , τN ;u∗) · · ·

p(∆uN−1, τN−1|∆uN , τN ;u∗)·

p(∆uN , τN |u∗) · p(u∗)

(A3)

and with ∆̃ui := u(t∗− τ1)−u(t∗− τi) with the time scale τi− τ1:

p(u1; ∆̃u2, τ2− τ1; ...; ˜∆uN , τN − τ1) =

p(∆̃u2, τ2− τ1|∆̃u3, τ3− τ1; ...; ˜∆uN , τN − τ1;u1)·

p(∆̃u3, τ3− τ1|∆̃u4, τ4− τ1; ...; ˜∆uN , τN − τ1;u1) · · ·

p( ˜∆uN1
, τN−1− τ1| ˜∆uN , τN − τ1;u1)·

p( ˜∆uN , τN − τ1|u1) · p(u1).

(A4)

A further step in reducing the dimensionality of the involved pdfs can be performed upon assuming the scale process to be

Markovian, i.e. there exists a time scale separation ∆τME = τj − τi (j > i), where285

p(∆ui, τi|∆uj , τi + ∆τME ; ...;∆un, τi +n ·∆τME ;u∗) =

p(∆ui, τi|∆uj , τi + ∆τME ;u∗)
(A5)

holds. The time scale separation ∆τME is often called Markov-Einstein length (Einstein, 1905) and for various systems its

existence could be shown empirically, ranging from jet streams in laboratory experiments (Renner et al., 2001), (Reinke et al.,

2018) to large geophysical systems such as ocean gravity waves (Hadjihosseini et al., 2016).

Appendix B: Parametrisation of D(1) and D(2)290

Here we present the polynomial coefficients used to parametrise the first and second Kramers-Moyal coefficientsD(1)(∆ui, τi,u
∗)

and D(2)(∆ui, τi,u
∗) (see eq. 12 and 13).
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Coefficients for the drift function D(1)(∆ui, τi,u
∗):

d10 = c0,d10 · τi + c1,d10 ·u∗ · τ
c̃1,d10
i + c2,d10 · τ

c̃2,d10
i ·u∗2 + c3,d10 ·u∗3 (B1)

d11 = c0,d11 · τi + c1,d11 · τ
c̃1,d11
i + c2,d11 · τ

c̃2,d11
i ·u∗2 (B2)295

d13 = c0,d13 · τ
c̃0,d13
i + c1,d13 ·u∗ (B3)

γD(1) = c1,γ
D(1)
· τ
c̃1,γ

D(1)

i ·u∗ (B4)

with:

c0,d10 =−0.006, c1,d10 =−0.888, c̃1,d10 = 0.098, c2,d10 = 0.137, c̃2,d10 = 0.019, c3,d10 =−10.566, c0,d11 =−1.656, c1,d11 =

−0.018, c̃1,d11 =−8.853e− 05, c2,d11 =−0.268, c̃2,d11 = 1.671, c0,d13 =−0.005, c̃0,d13 = 0.012, c1,d13 = 1.023, c1,γ
D(1)

=300

0.341, c̃1,γ
D(1)

= 0.247.

And for the diffusion function D(2)(∆ui, τi,u
∗):

d20 = c0,d20 · τ
c̃0,d20
i + c1,d20 · τ

c̃1,d20
i ·u∗+ c2,d20 · τ

c̃2,d20
i ·u∗2 (B5)

d21 = c0,d21 · τ
c̃0,d21
i + c1,d21 · τ

c̃1,d21
i ·u∗ (B6)305

d22 = c0,d22 · τ
c̃0,d22
i + c1,d22 · τ

c̃1,d22
i ·u∗ (B7)

with:

c0,d20 = 0.024, c̃0,d20 =−0.0001, c1,d20 = 0.0002, c̃1,d20 = 1.076, c2,d20 = 1.573, c̃2,d20 = 1.622, c0,d21 = 0.002, c̃0,d21 =−0.001,

c1,d21 = 1.104, c̃1,d21 = 1.395, c0,d22 = 0.042, c̃0,d22 = 0.002, c1,d22 = 0.555, c̃1,d22 = 0.364.
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