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First of all, we would like to thank all the reviewers for their time taken to read our
manuscript and their constructive comments. We have considered all the comments in
detail and revised our paper accordingly. We believe that these comments have helped
us to further improve the quality of our paper.

Please find below our responses to reviewer comments. The reviewer comments are
repeated in black text, and our responses are provided in blue text.
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Response to comments of Felix Kelberlau

General comments

Chen et al. develop a method to predict the coherence of horizontal wind velocity fluctu-
ations for mostly longitudinal separations. Their predictions are based on first to fourth
order wind speed statistics that can be calculated from either nacelle-mounted lidar or
mast-based in-situ anemometry. They use data from two measurement campaigns to
test their approach and find good results that are especially relevant for lidar-assisted
wind turbine control. The work lies therefore well in the scope of WES and is of broad
international interest. The paper builds up on an existing wind evolution model and
presents a novel approach to parameterise its two coefficients by means of machine
learning. The manuscript explains the study thoroughly and reproducibly, presents all
relevant results and discusses them critically.

We would like to thank the referee for the interest in this research.

Section 2.6 "Gaussian Process Regression" lies outside my field of expertise and | can
therefore not evaluate if the chosen model is suitable for the task of parametrization
the wind evolution model.

Gaussian process regression is a powerful modeling tool. One of the objectives of this
paper is to explore if this method can be applied to wind evolution modeling and the
results have demonstrated its potential.

The manuscript is overall understandable but would benefit greatly from being proof-
read by a native English speaker or similarly qualified person before publication. |
recommend reconsideration for publication after major revisions.
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Thank you for your suggestion. The revised version will be proofread before submis-
sion.

Specific comments

1.2: | assume you mean "the mean flow" (also 1.13 and all other occurrences).
Yes. This has now been corrected throughout the paper.

. 50: The introduction would benefit from references to research that support
Taylor’s frozen turbulence for very large turbulent structures but limit its applicability
for long separation distances or small scale turbulence such as Willis and Deardorff
(1976), Schlipf et al. (2010), and Kelberlau and Mann (2019).

Thank you for your suggestion. We will mention the relevant research in the introduc-
tion.

I. 59: "the vertical intercept” It would be better to describe the second parame-
ter without referring to the coherence-frequency plot that is not yet introduced here.
Thank you for your suggestion. This sentence has now been rephrased.

I. 61: "Mann spectral velocity tensor" Mann (1994) should be cited here.
Thank you for your suggestion. The citation has been added to the text here.

. 68: "If any data... is also available..." Please mention which data is available
or would be of interest.

We noted this sentence is not well formulated and have now rephrased it. And the
data used in this research is introduced in Sect.3.

I. 94: Please introduce this travel time as a function of the mean wind speed
C3

here.
In this context, the travel time At is in a general sense, not specifically the travel time
approximated by d/U, which is defined as Atr,yior in 1.130.

I. 97: Please explain why "it is not possible to predict every point of the coher-
ence curve". For my understanding, the coherence curve is visible on a plot like in
Fig.1. Do you refer to not having not enough data to smoothen the curve or not having
data for all separation distances?

In this sentence, the coherence curve means the estimated coherence curve, which is
the "reality" we aim to approach. And the smooth coherence curve is acquired from
a wind evolution model. We think it is important to clearly distinguish the different
meanings of wind evolution and wind evolution model. Wind evolution is a physical
phenomenon (the "reality”) and wind evolution model is a model used to approximate
it (There are different wind evolution models). It is not possible to predict wind
evolution but to predict the parameters of a wind evolution model and use this model
to approximate it.

In fact, we'd like to explain our prediction concept at an abstract level in Sect. 2.2.
We think that the key to using machine learning to build predictive models is to find
suitable predictors and targets — This is the process of abstracting and condensing
information. Essentially, using a wind evolution model is to condense the information
in the estimated coherence into several model parameters, which are predictable. We
will improve this section to make the logic more understandable.

. 100: Do you mean "
parameterisation model"?
"Wind field conditions" here refer to all variables related to a wind field, not limited to
statistics of measured wind velocity time series. But we noted that this word might be
not precise enough. We will explicitly write down the types of relevant variables instead.

...according to measured wind velocity time series by a
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Fig. 1 and Fig. 2: In general, it is good to visualize the workflow like done
here. But both figures show overlapping information and | recommend to merge them
into one figure. The numbering used in Fig.2 with an explanation in the text and
caption(!) is more informative than the keywords currently used in Fig. 1. A figure and
its caption should be self explanatory whenever possible. Please try to improve the
text |. 98-106 for better understanding.

Thank you for your suggestion. We will merge Fig. 1 and Fig. 2 into one figure and
modify Sect.2.2 accordingly.

I. 120: Please describe which frequency you are referring to. Probably the fre-
quency of the horizontal wind velocity fluctuations.

Yes, it is the frequency of horizontal wind velocity fluctuations. We've made it clear in
the text.

Maybe also introduce the wavenumber k here that is used as a measure of eddy size
in many other publications.

Thank you for your suggestion. We agree that wavenumber is also a common measure
in spectral analysis of turbulence. However, it is not used in this paper because our
study is based on dimensionless frequency. But we think it makes sense to mention
the relationship between wavenumber and dimensionless frequency.

Eq.(5): It is not clear where (5) comes from. If you do not want to include the
complete deduction, | suggest to give a reference that shows it and uses the same
form of the equation. In Simley and Pao (2015), a and b are defined a bit differently, |
think.

We will include the complete deduction and clarify the reason for adapting the equation
of Simley and Pao (2015) in the revised manuscript.

I. 147: You should include the weighting here: e.g. "...but the weighted average
of the wind speeds within the measurement volume"
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Thank you for your suggestion. The corresponding text has now been modified.

. 148: This is a bit ambiguous because spatial averaging does also refer to
combining data from different measurement volumes in different lidar beam directions.
Better write: "so-called line-of-sight averaging effect of lidar". (also I. 156)

Thank you for your suggestion. The corresponding text has now been modified.

I. 151: Please refer to more fundamental work (Nyquist-Shannon sampling the-
orem).

Thank you for your suggestion. The following reference has been cited: C. E. Shannon,
"Communication in the Presence of Noise," in Proceedings of the IRE, vol. 37, no. 1,
pp. 10-21, Jan. 1949, doi: 10.1109/JRPROC.1949.232969.

I. 152: You should mention the sampling rate of the lidars here (not only in the
table)and compare it with the frequency of the eddies that you want to detect.
According to the paper structure, Section 2 introduces the theoretical framework of this
study and gives related discussions in a general way. Measurement-related content is
first introduced in Section 3.

I. 158: The line-of-sight weighting of a pulsed lidar is usually approximated by a
triangular function as in e.g. (Sathe and Mann (2012)) which is a sinc2function in the
frequency domain.

Thank you for your suggestion. We agree that weighting functions for the volume
averaging effect of pulsed lidars could have different functional forms. We’ve added
the triangular function as an example of weighting functions.

Indeed, the functional form of the weighting function mainly depends on the shape of
emitted pulses and the sampling of backscattered pulses. For example, a triangular
function is used for the case where the pulse shape is assumed to be ideal rectangular
(Sathe and Mann (2012)). For Leosphere pulsed lidar systems, a Gaussian weighting

C6



function is usually used, see e.g. the following reference:
Carious, J.-P.: Pulsed Lidars, in: Remote Sensing for Wind Energy, DTU Wind
Energy-E-Report-0029(EN), chap. 5, pp. 104—121, 2013.

I. 184: It should be considered that w(x) is approximately 0 for fluctuations that
occur with a wavelength of twice the length of the illuminated section of the lidar
beam (or length of the range gate). In this case the measurement signal would
be determined by noise only. | suggest to estimate a range of critical frequencies
based on the length of the range gates. This range of critical frequencies should be
considered in the further analysis, if it is relevant for the results.

Thank you for your suggestion. That is a good point to check.

According to Schlipf (2015), the critical wavenumbers are 27 /W (W is the full width
at half maximum) and its harmonics. The relationship between wavenumber and
dimensionless frequency is kd/2w. Thus, the first critical dimensionless frequency is
d/Wy. For example, consider W= 30 m (for Leosphere systems) and d = 27.25 m (the
smallest separation of LidarComplex, which is the most critical case), d/W ~ 0.91,
which is located in the filtered part (the grey area). Therefore, the critical dimensionless
frequency is not relevant for the results. This discussion will be briefly mentioned in
the related part.

Schlipf, D.: Lidar-assisted control concepts for wind turbines, Dissertation, 2015.

Your derivation assumes furthermore that the weighting function is identical for all
range gates. This is only true if the laser beam is well collimated. Is this the case for
the lidar devices used in this study?

We agree that assuming identical weighting functions for all range gates is a simplifi-
cation. As mentioned in the paper, the derivation is based on ideal assumptions.

. 199: You could mention that a lidar with additional beams would help here
and could also be used to avoid yaw-misalignment.
Thank you for your suggestion. This has now been added to the corresponding text.
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I. 208: What is the expected order of magnitude for the misalignment angle?

First of all, we must emphasize that we don’t have the data of turbine misalignment.
What we have is the yaw position of the turbine and the wind direction measured on
a met mast located 295 m away from the turbine. When calculating the misalignment
angle «, the mean wind direction at the turbine is approximated with the mean wind
direction measured on the met mast (please note the possible uncertainty). « is
approximately normal distributed, with o ~ 5°.

How much "decorrelation" do you expect from a turbulence model (e.g. Mann (1994))
due to the resulting lateral separation? Can you quantify the order of magnitude of the
resulting error approximately?

First of all, we want to emphasize that we did not ignore the influence of the misalign-
ment angle on the horizontal coherence, but defined it as a predictor.

The resulting lateral separation depends on the separation between two range gates.
Here, we make a simple comparison based on the coherence model of Kaimal
spectrum:

. (1)

hub Lc

~(r, f) = exp {—12 . \/({/ T)Q + (O.IZL)2

We find one data block where « = 0° and compare the longitudinal coherence esti-
mated from this data block with the theoretical lateral coherence calculated according
to the above equation, assuming « = 5° (see the attached figure). Two measurement
separations are included, d; = 27.25 m and ds = 81.75 m. The mean wind speed Vi,
=11.7m/s.

I. 213: Please always write which variable you are referring to when you mention
standard deviation sigma.

Thank you for your suggestion. This has been improved.

I. 236: It would be good to introduce the variable alpha already in 2.4 (I. 199
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and Fig.4) if you refer to it here.
Thank you for your suggestion. The introduction of alpha has now been moved to
Sect.2.4.

I. 263-266: This sentence is very long and difficult to understand.
Thank you for your suggestion. We will try to rephrase it to make it more comprehen-
sible.

. 332-343: Please reassess which information should be given here: | miss:
the measurement height of the lidar, length of each range gate, measurement dis-
tances...Some of these values are given in Table 2 but should also appear here.
Thank you for your suggestion. We've now added these information to the correspond-
ing text.

The information about the coordinate system will not be used again later in the text
and do not need to be given at all then.

The wind coordinate system is defined for the processing of sonic data. Sonic data
from LidarComplex is used in the analysis (see Table 5).

. 342 and 350: Main wind direction refers usually to the direction from where
the wind blows most frequently. Better write mean wind direction.
Thank you for your suggestion. This has been corrected throughout the paper.

I. 389: | suggest a similar filtering against the line-of-sight averaging. See com-
ment for 1.184. Probably it is not worth it to re-run the computations. But check in the
coherence plots, if the frequency range is relevant and if you see a random increase
in coherence in it.

Please find the response to the comment for 1.184.

[. 397: Why do you not also filter the lowest percentile?
C9

Because the value distributions of the parameters all have a long right tail. We've
added this explanation to the text.

Fig. 6: Subfigure (e) would benefit from a zoom into just some few minutes of
data with thin plot lines to show all velocities clearly and not on top of each other.
Thank you for your suggestion. We’d like to show the whole 30-min data block because
the coherence is estimated from it. We will try to use thinner lines to make the curves
more visible.

I. 445: That makes the difference caused by the reduced sampling rate in Fig.
7 (b)even more interesting. Earlier you write that "As long as the sampling rate of lidar
is sufficiently high to acquire a complete coherence curve, it will not have a noticeable
effect on the study of the coherence.” but here you find that the influence on parameter
b is big (logarithmic y-axis). What could be the reason? f, = 1/3 Hz means, at least
at high wind speeds, that it is difficult to measure exactly after the eddy travel time
passed. That means you might miss the best moment to take your measurement.
Could this maybe have to do with the results?

Thank you for sharing your opinion about the possible influence of a low sampling
rate. However, in this study, we found the difference caused by the reduced sampling
rate too small to be observed in a plot with a normal y-axis. Both curves completely
overlap. That is exactly the reason for using a logarithmic y-axis instead. Please note
that a logarithmic axis will enlarge the difference between values lower than one.

I. 462: This is a very interesting finding! Better write that the coherence is de-
pendent on the separation distance but independent of the measurement distance,
i.e., the position in the induction zone.

Thank you for your suggestion. The sentence has now been improved.

I. 471 ff.. You point out that "The decay parameter a shows a decreasing trend
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with increasing measuring separation.” After reading the explanation given in lines
475-480 several times | still do not fully understand why longer travel time (or separa-
tion distance) leads to a less decay.

Because the modeled coherence curve is determined by a and b together. b increases
with separation between the two observed points, which means the coherence at
zero frequency decreases with separation. In other words, "the starting point" of the
coherence curve is lower, and thus the room for coherence decay becomes smaller.
And if | could follow the explanation, it would not explain why the value increases again
for very long separations with ParkCast data. Maybe you can explain this better?

In our opinion, a decreases with separation, and its decreasing trend gradually stops
at a separation of around 300 m (see Fig.9 (c)). We are not sure why you think "the
value increases again for very long separations with ParkCast data". If it is because
of the upper whiskers, we think this indicates the value is more scattered for long
separations. When we observe the trend, we mainly focus on the value range of 25th
to 75th precentiles (the box) and the median value.

I. 489: You should explain the results shown in Fig. 11 at least briefly to justify
your predictor selection shown in Table 5. Please mention the log(ecm) thresholds.
Thank you for your suggestion. We will explain the predictor selection in more detail.

Fig. 12: The scatter plots are not as informative as they could be. Please de-
crease the marker size and maybe add transparency to make it possible to see the
density of the data points. Also a regression line would help to quantify the relation
between x and y.

Thank you for your suggestion. We will improve Fig.12 according to your suggestion.

Table 5: Please provide a better caption. What does for example bold font mean?
Thank you for your suggestion. The caption has been improved.
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I. 564: The prediction accuracy is very good for this one example case but from
Fig.12 we know that the scatter throughout the whole dataset is quite high. Is this
particular example (12.12.2013, 12:00-12:30) representative in any way?

We chose this data block based on two principles: 1) data integrity and 2) representa-
tive wind statistics. In this example, the lidar measured mean wind speed is 7.3—-7.7
m/s and the lidar measured turbulence intensity is 0.10-0.12, for different range
gates. These values appeared frequently in the selected period according to Fig.A1.
Hence, we think this example is representative for the data involved in this study. And
we decided to choose a data block as an example because we thought neither the
coherence itself nor its prediction are intuitive (esp. « and b are predicted respectively
but must be combined to give the modeled coherence). We noted a mistake here: the
date should be 07 Dec. 2013. Figure 6, 8, and 13 are all plotted with the same data
block. The date has now been corrected.

Maybe it is more interesting to show a plot for a case where the deviation between
modelled and fitted curves equals the RMSE?

Thank you for your suggestion. Maybe we could try to plot two additional curves of the
modeled curve £+RMSE in the example plot to indicate the range of RMSE.

I. 599: The theory about atmospheric stability in section 2.5 can be removed
then.

We did analyze the influence of atmospheric stability. However, the stability happens
to be mostly neutral in the period we chose, and thus we could not get any clear
conclusions from the data. We will add an explanation about this issue in the text.

I. 625: The computation time was not mentioned before. Rather don’t mention
it only in the conclusions.

We have found out in this research that computational time could be a matter of
concern when applying machine learning methods. Thus, we'd like to suggest it as
one of the topics worth studying in the future in the outlook.
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Fig. A2: Please add a grid and either add x-ticks or if that is not possible out of
confidentiality concerns, remove [Hz] and [m/s2] from the labels.

Thank you for your suggestion. The grids and x-ticks in Fig.A2 were intentionally
removed out of confidentiality concerns. We will remove the units as well based on
your suggestion.

Technical corrections

I. 16: "taking values", "1..."

I. 45: "lidar is a remote sensing technology"”

I. 67: Remove "Some"

I. 81: Remove "again”

Fig. 1: The text in the plot is too small. Maybe simply enlarge the whole plot a bit.

Fig. 2: The caption is a stub.

[. 109: "...with only a few simple parameters." or better: "... with as few parameters as
possible."

I. 114: "a linear function or a more complicated term."

I. 127: Please check all occurrences of "the both" and use either "the two" or only
"both" instead.

I. 131: "dimensionless frequency" should be written in roman script.

I. 141: "projected onto"

I. 150: Please check all occurrences of "starring" and change them to "staring".

I. 151: Please capitalize "Oppenheim".

I. 155: "...laser beam pointing into a fixed direction.”

[. 200: "Since..." the sentence is not correct. Please rewrite.

I. 234: "So as the travel time Dt" is not a sentence. Please rewrite.

Table 1: Unusual table style. Consider three columns including a header for each
column instead of lines separating the rows.
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I. 351: "sampling rateS because of THEIR"

Table 2: The Matlab like interval syntax is maybe not the best way to present the
measurement distances. Better write, e.g., 30,90,...,990, Dec is abbreviated, June is
not.

I. 375: What does C stand for? Probably a formatting error here?

I. 379: and 381: No new paragraphs here.

I. 399: "referred to throughout"

I. 419: Remove both occurrences of "as"

I. 459: The idea for colours and markers is good but most of it is not visible in the plot.
Try slightly thinner lines and different marker sizes for different colours (e.g. blue circle
tiny, red circle small, yellow circle medium...).

Figure 9: The caption does not explain the difference between a) and c) and between
b) and d).

[. 579: "And the more noisy..."

I. 586: "nacelle-based"

I. 611: "error is" or "errors are"

We'd like to thank the reviewer again for these suggestions for technical correc-
tions. We have considered these comments in detail and made corresponding
corrections and improvements.
References
Willis and Deardorff (1976): 10.1002/qj.49710243411
Schlipf et al. (2010): 10.18419/0pus-3915
Kelberlau and Mann (2019): 10.5194/amt-12-1871-2019
Mann (1994): 10.1017/S0022112094001886
Sathe and Mann (2012): 10.1029/2011JD016786
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Response to comments of Anonymous Referee 2

General comments

This manuscript presents a statistical model of longitudinal coherence describing the
evolution of turbulent structures in the wind as they travel downstream. The topic is
very relevant for lidar-assisted control applications (and other wind preview-based con-
trol applications), where a good understanding of the correlation between the wind at
the measurement point and the turbine is needed. There has been previous work in
the literature focusing on developing wind evolution coherence models with parameters
describing atmospheric conditions as inputs. However, the existing models don’t nec-
essarily fit observed data well for all atmospheric conditions. This manuscript includes
many additional atmospheric parameters as predictors to estimate the coherence and
also applies a machine learning approach to model wind evolution. The advantage of
the machine learning approach is that the set of parameters used to predict wind evolu-
tion can be adapted to the measurements available at a given location. The manuscript
describes novel and relevant research, and overall is well written.

We would like to thank the referee for the interest in this research.

Despite the significance of the research, there are several areas that | believe should be
addressed. First of all, it would be useful to understand how the accuracy of the devel-
oped model compares to existing wind evolution models (e.g., Kristensen, 1979;Simley
and Pao, 2015; possibly Davoust and von Terzi, 2016). The manuscript claims that the
developed model is sufficiently accurate to model wind evolution, but if possible, it
would be interesting to know how much it improves over these simpler models.

Thank you for your suggestion. Indeed, we have also considered to compare the re-
sults of the GPR models and that of some existing wind evolution models. However, our
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concern is if this kind of comparison would make sense given the different conditions in
our study in comparison to the others. Here, we would like to take the results of Simley
and Pao (2015) as example, because the wind evolution model used in this research
is adapted from that one. Firstly, the curve fitting is done differently. In Simley and
Pao’s work, the objective function for fitting is the sum of the squared errors weighted
by the corresponding power spectrum (See the equation (5) and the corresponding
explanation in Simley and Pao (2015)). However, in our work, no weighting function
is applied in the fitting. Therefore, the fitted coherence curves will be slightly different
in both cases even for same data, and thus the corresponding model parameters will
be slight different as well. Secondly, in Simley and Pao’s work, the input variables
used to determine the model parameters are supposed to be acquired from ideal point
measurements because the model is developed from LES data. However, it is not
possible for us to acquire equivalent input variables from the on-site measurements.
Despite these difficulties, we will look into the possibility of making a comparison again.

Second, the manuscript is very well organized and easy to follow! But the English
usage could be improved throughout the manuscript. For example, there are several
sentence fragments, the word "the" is used in many places where it is not needed, and
some of the language seems too casual (e.g., pg. 10, In. 255: "Think of making a
regression model from some data.").

Thank you for your suggestion. The revised version will be proofread before submis-
sion.

My biggest concern with the manuscript is that the analysis assumes that the spatial
averaging effect of the lidar can be ignored (discussed on pgs. 7 and 8). The authors
correctly show that the lidar weighting function does not affect the measured coherence
as long as it is assumed that wind evolution can be ignored within the probe volume
(Taylor’s hypothesis is applied). But this over-simplifies the problem. For example, the
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authors are estimating the wind evolution between the two adjacent range gates, with
range gate spacing as low as 27.5 m. But pulsed lidars typically have a Full Width at
Half Maximum width of ~ 30 m. Therefore, it seems problematic to assume Taylor’'s
hypothesis within the 30 m probe volume, but assume wind evolution between the two
range gates separated by a similar distance. From my own analysis of the impact
of spatial averaging on the measured coherence, when the wind evolution model is
applied within the probe volume as well as between range gates, the presence of the
weighting function significantly impacts the measured coherence. This has the effect of
increasing the low frequency coherence but causing the high frequency coherence to
decay much faster. Therefore, it seems likely that ignoring spatial averaging altogether
in this work leads to incorrectly fitting the coherence model.

The authors should include some analysis comparing the modeled coherence with and
without wind evolution within the probe volume, using the results to either justify their
approach or to show that Taylor's hypothesis cannot be ignored. A better approach
would be to include the impact of spatial averaging and find the a and b parameters that
best fit the measured coherence when the wind evolution model is combined with the
spatial averaging model. In principle, this approach is similar to the method developed
by Schlipf et al., 2015 (Meteorologische Zeitschrift), but much simpler since only a
staring lidar mode is used.

Thank you for pointing out the interesting question about wind evolution within the
probe volume. We’d like to explain our consideration about this issue as following:
In principle, wind evolution depends on the evolution time of turbulence (see equa-
tion (2) in the paper). Theoretically, Taylor’s hypothesis is valid as the evolution time
approaches zero. Although the probe volume seems to have a similar length as the
distance between two adjacent range gates, the corresponding evolution time of both
cases is totally different. The typical length of a laser pulse is in the order of magnitude
of 1077 s (e.g. 150-400 ns depending of devices). This temporal length corresponds
to a spatial length in the order of magnitude of 10* m considering the light speed. This
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means it is not possible for lidar to distinguish the signals backscattered from the lo-
cations within this spatial range. This is the reason for a lidar having a probe volume.
In this case, the evolution time of turbulence is in the order of magnitude of 1077 s.
But for the distance between two range gates, the evolution time corresponds to the
travel time of the mean flow between two range gates, which is in the order of mag-
nitude of 10° — 10' s depending on wind speed and the distance between both range
gates. Therefore, we think assuming Taylor’'s hypothesis within the probe volume is
reasonable. We will add this explanation in the corresponding part of the paper to
avoid misunderstanding.

Nevertheless, we agree that ignoring the spatial averaging effect of lidar is based on
ideal assumptions (esp. the laser beam aligns with the mean direction, which is not
always the case in practice) and is a kind of simplification. And in our paper, we also
suggest the method developed by Schlipf et al., 2015 (Meteorologische Zeitschrift) for
cases where the misalignment angle between the mean wind direction and the laser
beam can be determined accurately (because this method requires the misalignment
angle). In fact, our deduction follows the same approach but assumes no misalignment
angle. The reason for that is, as discussed in the paper, determination of the misalign-
ment angle is not always possible. For example, in our case, we can only use the wind
direction measured on a met mast located at about 300 m away from the wind turbine
to approximate the wind direction at the wind turbine. This approximation contains un-
certainties. And sometimes even if it is possible to acquire the misalignment angle at
turbines, the requirement for accuracy is very high because this variable is included
in the most basic step — fitting the estimated coherence to the wind evolution model.
Based on these considerations, we decided not to include the angle in the fitting but
use it as a predictor, which makes this variable more standalone and prevents its er-
rors from affecting "everything". And Gaussian process regression inherently assumes
imperfect training data (containing noisy terms). Thus, it is better to keep uncertainties
in predictors.
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Moreover, in this research, our goal is to explore the potential of applying GPR in
prediction of wind evolution. We wanted to examine it with different data avaiability.
Thus, we could not include the misalignment angle in the fitting process, assuming
this variable is always available. And we wanted to use a simple wind evolution
model as a baseline case to demonstrate the prediction concept. As mentioned at
the end of the paper, one could choose whichever wind evolution model suitable for
own application scenario and obtain the corresponding parameterization model by
following the methodology suggested in this work.

Specific comments

-Pg. 2, In. 58: "adapted the Pielke and Panofsky’s model by introducing a new
parameter..." More accurately, the paper by Simley and Pao (2015) took the form of the
coherence model for transverse and vertical separations suggested by the following
paper, and adapted it to longitudinal coherence:

R. Thresher, W. Holley, C. Smith, N. Jafarey, and S.-R. Lin, “Modeling the response
of wind turbines to atmospheric turbulence,” Department of Mechanical Engineer-
ing,Oregon State University, RL0/2227-81/2, Corvallis, OR, Tech. Rep., Aug. 1981.
Thank you for your suggestion. This reference has now been cited to the correspond-
ing text.

-Section 1: Introduction: Another very relevant paper should be discussed in the
literature review section. The following paper discusses fitting lidar-measured coher-
ence to the longitudinal coherence structure suggested in Simley and Pao (2015):
Analysis of wind coherence in the longitudinal direction using turbine mounted lidar
S.Davoust and D. von Terzi 2016 J. Phys.: Conf. Ser. 753 072005

Thank you for your suggestion. This paper is very relevant to our work. A short
discussion about it has now been added to the literature review.
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-Eqg. 9: The last index "j" should be changed to "i".
Thank you for pointing out this mistake. It has now been corrected.

-Pg. 8, In. 188: This paragraph and Fig. 4 are hard to follow. | would suggest
labeling the angles the text refers to in the figure, and also provide some equations to
support what you are trying to explain.

Thank you for your suggestion. We will improve the figure and the corresponding text.

-Pg. 8, In. 196 - pg. 9, In. 208: In this discussion, it is a little hard to tell if
yaw misalignment is required by the coherence estimation method, or if it is optional.
This becomes obvious later, but | think here it would be good to explain that the
final model allows different combinations of predictors (including yaw misalignment)
depending on availability.

Thank you for your suggestion. We will improve this part and mention that the
misalignment angle could be used as a predictor if it is available.

-Section 2.5: Can you compare the predictors you are using to the predictors
used in previous longitudinal coherence models in the literature (e.g., Kristensen,
1979; Simley and Pao, 2015)? It would be insightful to understand which new
parameters are included in this study.

Thank you for your suggestion. We will add a simple comparison of predictors to this
Section.

-Pg. 9, In. 213: It would be good to define turbulence intensity here.
Thank you for your suggestion. The definition of turbulence intensity has been now
added to this part.

-Pg. 10, In. 233: "thus how likely or to what extent the local terrain changes"
makes it sound like the terrain variations are the primary reason the coherence would
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depend on "d". But even if the terrain stays the same, | would still think there could be
a dependence on "d".

Thank you for pointing out this issue. Actually, we don’t want to imply the terrain
variations are the primary reason. But we have to admit the expression in that
paragraph is not good enough and thus causes this misunderstanding. We will modify
this paragraph to make it clearer.

-Pg. 10, In. 234: "For prediction, it is not possible to obtain Atmaxcorr-" Why
can't it be determined? It can be calculated just like all the other predictors, right?
Yes, you're right. Thank you for pointing out this mistake. We will include Atmaxcorr @S
a potential predictor and add a short discussion about selecting Atmaxcorr OF AtTayior IN
Sect.5.2.

Also, on pg. 6, In. 130, you say that the d/U approximation is not used in this
study and Atmaxcorr IS Used. Which of these statements is right?

Thank you for pointing it out. This is a mistake in writing. The sentence in 1.130 should
be "... this approximation is not applied in estimation of coherence." When estimating
the coherence, the velocity time series measured at the downstream is shifted by
Atmaxcorr (1.377), while At,1or could be used as a predictor considering it is easy to
calculate.

-Pg. 10, In. 251: (Chen, 2019). Can you describe how this current manuscript
compares to the earlier work? Better yet would be to discuss this in the introduction.
Thank you for your suggestion. A brief introduction of the preliminary work has been
added to the introduction.

-Pg. 11: Section: "Hyperparameters of GPR": In general, this section would be
more clear if the specific variables discussed were connected to the wind evolution
application.
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This part aims to introduce the hyperparameters of GPR in a general sense so that
readers could more or less understand the functions of these hyperparameters. In
general, the logic of machine learning is to find statistical relationships among data
(if we say it in a simple way). It is not possible to associate its algorithm to specific
physical quantities except predictors (inputs of models) and target variables (outputs
of models), which are introduced in other sections. Thus, we think it would be better to
keep the explanation here abstract.

-Pg. 11, In. 271: "where x is the input vector of different parameters" Can you
provide an example of what these input parameters are in your application?
The input vector = is a set of predictors for a single observation, which has the
dimension of D x 1. We've added the dimension of predictors D to the text.

-Pg. 12, In. 278: "where X is the aggregation of all input vectors." Can you ex-
plain in more detail? What are the dimensions of X? of parameters x of observations?
X has the dimension of D x n. D is the number of predictors and n is the number of
observations. We've added the number of observations n to the text.

-Eq. 19: | did not see these basis functions or the coefficients beta discussed
any more in the manuscript. Can you describe how you chose the basis functions
and how the coefficients were estimated? And how do these values affect the final
estimate in Eq.22?

There are four types of basis functions provided in MATLAB: empty (assuming no
basis function), constant, linear, and pure quadratic. We tried all of them and found
there is not much difference. Finally, we chose the constant basis function because
it is commonly used and takes a little less time. As far as we unterstand, the coeffi-
cients are estimated in the fitting of a GPR model by an optimizer like LBFGS-based
quasi-Newton approximation to the Hessian. The algorithm is implemented in MATLAB.
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-Pg. 12, In. 286: Please describe in more detail why you are using a kernel
function (I assume because then you don’t need to actually define the functions
"phi(x)").

Yes, exactly. As far as we understand, a kernel function can be used to replace the
calculation of inner productions or covariance of the outputs of two functions. More
details please refer to e.g. Rasmussen and Williams (2006) p.12 and p.14, Duvenaud
(2014) Chapter 2, etc.

-Pg. 12, In. 288-290: | dont think these sentences are needed, since in the
next paragraph, you thoroughly introduce the ARD-SE kernel.

We introduce the ARD-SE kernel in detail because we have chosen this kernel in our
study. But in general, kernel function is one of the hyperparameters which should
be chosen according to data. Therefore, we consider it is necessary to give a short
overview about kernel functions.

-Pg. 12, In. 291: Why is the ARD-SE kernel chosen? And please provide a
reference about this kernel.

We've tried both types of kernels and found out that applying the ARD kernels
can obtain much better model performance than applying the kernels with same
characteristic length scale, but the results of different ARD kernels, e.g. ARD-SE or
ARD exponential, don’t show much different. The reference for the ARD-SE kernel is
cited in 1.298. The same citation has been added to the first mention of the ARD-SE
kernel.

-Eq. 21: Please define "D".
Thank you for your suggestion. D is the dimension of predictors and has now been
defined in the corresponding text.

-Pg. 12, In. 296: "A relatively large length scale indicates a relatively small
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variation along corresponding dimensions in the function" From Eqg. 21, it seems
more accurate to say that a large length scale relative to the amount of variability in
the predictor indicates a smaller variation along the corresponding dimensions. For
example, it seems the size of the length scale is only meaningful by itself if all of the
predictors have been normalized to the same std. dev. Is this correct?

We think it depends on whether one decides to train the model with standardized data
or not. In our study, the training data is standardized using z-scores, i.e. centering and
scaling the data by its mean and standard deviation, respectively. This is explained in
Sect.5.1 Model Training.

-Eq. 22: Can you state the difference between X and X, here?

The meaning of * is stated below Eq.22. But if it is not clear, we can modify it.

Also, this equation seems to just be saying that the conditional distribution is normally
distributed, so | don’t think the right hand side of the equation adds anything. Perhaps
it would be less confusing to just explain that the function values are estimated given
input parameters X, by conditioning f on the training parameters and observations, X
andy, as well as X.: fi| X, y, X,.

We just intended to use Eq.(22) to explain that the predictive equation of GPR is
a conditional distribution given the training data and the new input data, and this
conditional distribution is normal distributed.

Finally, how are the estimates formed from the resulting distribution? Is the mean
value used?

The mean value is the predicted value of the target variable, and the 95% confidence
interval is determined by the variance of this distribution.

-Table 2: The lidar weighting function width (e.g., Full Width at Half Maximum)
would be a relevant parameter to list in this table.

Thank you for your suggestion. Now, the information about the FWHM of both lidars
has been added to the text as well as the table.
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-Pg. 15, In. 367: "The threshold for both are 6 m/s and 3 m/s". How are the
thresholds used? For example, are these the thresholds in terms of deviation from
the mean value of the three-data point window? Also, how is the standard deviation
defined here? How many data points are used to calculate the std. dev.?

The range filter works in this way: 1) Calculate the value range within the window
(range = max value - min value); 2) If the value range exceeds the preset threshold,
this point will be filtered. The standard deviation is the standard deviation of all
the values within the window. We noted the explanation about the filter is not well
formulated. This will be improved.

-Pg. 18, In. 436: "all the PDFs supported by MATLAB" Is there a particular
MATLAB toolbox you are referring to here? Also please provide a reference for
MATLAB.

We used a tool called fitmethis developed by Francisco de Castro. This tool
requires Statistics and Machine Learning Toolbox of MATLAB. We apologize for
missing the citation in the text! Citation: Francisco de Castro (2020). fitmethis
(https://www.mathworks.com/matlabcentral/fileexchange/40167-fitmethis), ~MATLAB
Central File Exchange. Retrieved Jan 13, 2020.

-Pg. 20, In. 465: "all the fitted curves of the coherence are grouped together
proves it is reasonable to model the wind evolution based on dimensionless fre-
quency". Do you mean that they are grouped together at high frequencies (fgiess >
0.1)? Additionally,"proves" seems like a strong statement here. Maybe "suggests"?
Yes. And thank you for your suggestion for wording.

-Fig. 9: The caption should refer to the different subplots that are labeled (a-
d).
Thank you for pointing out the missing information in the caption. This information has
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now been added.

-Pg. 22, In. 486: "all the potential predictors are included...to determine the
characteristic length scale". Please describe how the training to find the length scales
is performed.

As same as coefficients 3, characteristic length scale(s) is estimated in the fitting of
a GPR model by an optimizer like LBFGS-based quasi-Newton approximation to the
Hessian.

-Pg. 22, In. 489: "Figure 11 illustrates a comparison among the log(c,,)." As
mentioned earlier, it doesn’t seem fair to compare the sigma,, magnitudes unless all
of the predictor variables have been normalized to have the same std. dev. (or some
other normalization). Is this done?

Yes. The training data is standardized by centering and scaling the data of each
predictor by its mean and standard deviation, respectively, which gives the standard
scores (also called z-scores) of the predictor data.

-Table 4: Please explain "standard deviation of observed responses” in more
detail. It's not clear what the "observed responses" are.

The "observed response” generally means the model response observed from the
data. In our case, it refers to the target variables, i.e. the fitted wind evolution model
parameters a and b. We will modify the corresponding text to make it clearer.

-Fig. 13: I'm not sure how to interpret this figure. Are there errors in the plots
or the legend? The legend lists separate solid lines and dotted lines, but | don’t see
both in the plots. Do they perfectly overlap?

In this example, yes. We will modify the line colors or the line styles to make the curves
distinguishable even though they overlap.

Additionally, the legend says that blue dotted is a fitted case and solid red is the
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predicted case. But these two lines are very far apart,which does not support the claim
that the fitted and predicted curves are very close.

Different line styles indicate different types of curves: line with dot is fitted curve,
normal line is predicted curve, and dashed line is confidence interval. Different colors
indicate the results for different separations: blue is for RyvsRs and red is for RjvsRs.
And there is indeed an error in the color of the predicted curves in the legend. It has
now been corrected.

Additionally, what is the significance of the particular period being shown here. Is this
one of the periods with the best match between the fitted and predicted coherence?
Or is it representative of a typical case?

We did not intend to show an example with the best match. We chose this data block
based on two principles: 1) data integrity and 2) representative wind statistics. In this
example, the lidar measured mean wind speed is 7.3—7.7 m/s and the lidar measured
turbulence intensity is 0.10-0.12, for different range gates. These values appeared
frequently in the selected period according to Fig.A1. Hence, we think this example
is representative for the data involved in this study. And we decided to choose a data
block as an example because we thought neither the coherence itself nor its prediction
are intuitive (esp. a and b are predicted respectively but must be combined to give the
modeled coherence). We noted a mistake here: the date should be 07 Dec. 2013.
Figure 6, 8, and 13 are all plotted with the same data block. The date has now been
corrected.

-Pg. 26, In. 556: "REE2 at least over 0.65." What is the significance of 0.65 as
an indication that the prediction accuracy is "satisfactory"?

We have to admit that the wording here is not very appropriate. We will modify the
inappropriate expressions in the paper.

-Pg. 26, In. 573: "no obvious relevance between the error and values of any of
the predictors is indicated in both figures." | don’t quite agree. | think there are some
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interesting trends, like in Fig. 14 (b), the RMS prediction error decreases as sigma
increases. Trends can also be observed in Fig. 15 (b) and (f).

Thank you for your suggestion. That is a very interesting finding. We will think about
this part again.

-Pg. 29, In. 612: "capable of achieving a parameterization model with sufficient
accuracy for the prediction of wind evolution.” This seems like a very strong statement
to make. Please provide some more context for this statement. How is "sufficient
accuracy" determined?
We noted the wording here is not very appropriate. We will modify this statement to
make it more objective.

-Pg. 29, In. 616: "methods to improve the estimation of the coherence and the
wind statistics are desired." What are some of the shortcomings of your current
approaches that you think could be improved?

For example, if the direction misalignment could be determined in a reliable way by
e.g. using a lidar with multiple beams, it might be possible to use a more sophisticate
wind evolution model to analytically account for more complicated effects. moreover,
methods to improve the accuracy of turbulence intensity or high order wind statistics
derived from lidar data would be of great interest (if it is possible).

-Fig. A1-A5: | think if there are appendix figures, they should be in a labeled
appendix section.
Thank you for your suggestion. An appendix section has been added.

-Pg. 30, In. 623: Is the current computational time acceptable for real-time ap-
plications?

According to our study, it is possible to do real-time prediction but not real-time model
training.
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-Section 6: If possible, it would be nice to hear your thoughts on whether the
chosen coherence formula structure (Eq.5) could be improved. In other words, the
paper mostly focuses on how to estimate the a and b parameters, assuming Eq. 5 is
the right model. But is this model good enough? For example, Simley and Pao (2015)
show that this kind of model did not fit stable atmospheric conditions very well.

We initially also wanted to study the influence of atmospheric stability on wind
evolution. However, we found that the stability of the selected period of LidarComplex
(where sonic data is available) happened to be mostly neutral. Therefore, unfortu-
nately, we could not get any conclusions related to atmospheric stability.

According to our experience, we think this coherence formula structure is reasonable
and can fit the estimated coherence well in most cases as long as noises in the high
frequency range (if exist, e.g. the noises caused by motion of the nacelle) can be
properly filtered. And we found that in comparison to fitting all coherence measured
simultaneously (between different separations) at once (as Simley and Pao (2015)
did), fitting the coherence individually could improve the fitting quality because this
enable each coherence to find its best-fit parameters.
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Response to comments of Mark Kelly

General comments

This work examines evolution of advected turbulence, in terms of spectral coher-
ence,with the motivation of wind turbine control assisted by inflow measured by lidar.
The topic is quite relevant to wind energy, and fits well with the journal (WES).

There is some interesting content and potentially useful results, with the use of GPR
and Bayesian inference being quite nice.

We would like to thank the referee for the interest in this research and the positive
feedback on our methodology.

Unfortunately the paper appears to be somewhat ‘unfinished’; perhaps it is also due to
the lack of English fluency or preparation time. For example, the abstract has simply
copy-pasted a few sentences from the paper, and repeats in a cumbersome way:‘This
paper aims to achieve parameterization model for the wind evolution model to predict
the wind evolution model parameters’. The paper needs to be proofread by somebody
with English fluency, at any rate.

The abstract does not clearly provide an idea of the work done, and while the text has
more detall, it is not clear throughout; | am not sure that readers could repeat what has
been done.

Thank you for your suggestion. We will improve the presentation of the whole paper,
especially the abstract. The revised manuscript will be proofread before submission.

More importantly, there are inconsistencies that have not been considered, and should
be addressed/rectified; perhaps most significant are the form itself chosen for coher-
ence (see derivations below in Specific comments), and the use of Taylor’s hypothesis
for some (but not other) parts of the model/parameterization.
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Thank you for your suggestion. Please find below our responses to the related com-
ments.

There are a number of details and also explanations which are missing, but which could
hopefully be included, to make the work publishable. The results/performance are a bit
overstated (in English), but this is not needed, as the numberical results presented tell
the story less subjectivelyaATand are good to share with the wind energy community,
provided that they are given with sufficient detail, replicability, and consideration.

Thank you for your suggestion. We will include the missing information and modify the
wording of the paper as suggested by the reviewer.

Specific comments

Line 15 and elsewhere later in the paper: while the authors define ‘wind evolu-
tion’ as squared coherence, they imprecisely define such (e.g.“Coherence is a
dimensionless statistic in the frequency domain”).

When we reviewed the relevant literature (see the following references as examples),
we noted that squared coherence is commonly used instead of magnitude coherence
(Although it is not clearly stated as "squared coherence" in the text, but "coherence”,
the formulas show squared coherence.). Hence, we decided to follow their definition to
keep our work consistent with the previous studies. But we agree that the expression
"Coherence is a dimensionless statistic..." is not precise enough, and thus we’ve now
rephrased the corresponding text.

Davenport, A. G. (1961). The spectrum of horizontal gustiness near the ground in
high winds. Quarterly Journal of the Royal Meteorological Society, 87(372), 194-211.
https://doi.org/10.1002/qj.49708737208

Panofsky, H. A., & McCormick, R. A. (1954). Properties of spectra of atmospheric
turbulence at 100 metres. Quarterly Journal of the Royal Meteorological Society,
80(346), 546-564. https://doi.org/10.1002/qj.49708034604
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Specifically, this should be written as temporal coherence (time shift, frequency
domain), in contrast with spatial (wavenumber spectra) coherence. Further, coherence
does not describe the “correlation between two signals”, but rather the correlation
between spectral components of two signals.

Thank you for your suggestion. This paragraph has now been rephrased accordingly.

Do lines 19-20 not imply that use of Taylor's hypothesis means ignoring wind
evolution? This may be relevant, for consistency later (line 235).

Yes. We think that the degree of wind evolution should depend on the evolution time,
so Taylor’s hypothesis should be valid when the evolution time approaches to zero. We
noted that the text in 1.232-235 is not well formulated, and thus we’ve now rephrased
that part.

Line 35: The statement “dependence of coherence on separation and atmo-
spheric stability was not adequately researched” lacks reference and/or explanation. It
was not adequate, according to whom, or how?
The content in 1.29-35 is a brief introduction of the work of Panofsky and Mizuno
(1975). This statement is specifically for that study. To avoid misunderstanding, we've
added "in that study" at the end of the sentence.

Line 36-38: You write “The longitudinal coherence differs from the lateral and
vertical coherence because the former measures the correlation with respect to time
lag while the latter with respect to spatial separation.” This is not correct: longitudinal,
lateral, and vertical coherences all depend on f, based on integration over time
lags; they are depending on spatial separations in the respective directions. For the
longitudinal coherence to give spectral correlations ‘with respect to time lag’ At, then
the longitudinal separation is related to At in some way, though you have stated before
this point that you are not using Taylor’s hypothesis.

We have to admit that this sentence is not well formulated, and maybe the use of "with
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respect to" is not proper here. Of course, coherence is a function of frequency when it
is estimated from time series data. What we wanted to express is that the lateral and
vertical coherence depends on spatial separation in the respective directions, while
the longitudinal coherence is coupled with the time-dependent variation of turbulence
because the evolving eddies are moving in the longitudinal direction with the mean
flow. So, the longitudinal separation is related to the travel time (corresponding to
the evolution time) At¢. And we think this is independent of application of Taylor’s
hypothesis, but Taylor’s hypothesis provides an approximation (z/U) for the travel time.

Line 112/equation 2: how is this a function of frequency (f)?l.e., include the f-
dependence on LHS, and also within 7 on RHS.

Thank you for your suggestion. We’ve now included the f-dependence on LHS. But
regarding the f-dependence of 7 on RHS, because it is derived from Eq.(3) and Eq.(4),
which is "unknown" for Eq.(2), we would prefer not to include it in Eq.(2).

There appears to be incompatibility between Eqs. 3—4 and Eq. 5; in particular
(5) is missing o and U.

We have to admit that here we may have written too briefly. The sentence "Combining
Eq. (2)—(4) and introducing the second parameter in the model, as inspired by Simley’s
model (2015a)..." means that combining Eq. (2)—(4) gives the formula like Pielke
& Panofsky (1970), and then we imitate the formula of Simley’s model (2015a) to
introduce a second parameter in the model. We initially wanted to avoid introducing
too many formulas for brevity. But if that would cause confusion, we will add related
formulas and explanations.

Further, in Section 4.2 and Fig. 10, you analyze the behavior of a with Aty axcorr (Stating
a o< At-949 ) but do not consider that the equations already imply a At dependence.

maxcorr

That is, eqns. 2 and 5 give

CAt/T = \/(afAt)2 + b2 )
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however (3)—(4) with (2) give
(CL.fAt)? = (afAt)? + b? 3)

where the turbulence intensity is defined I, = ¢ /U. Thus one sees that

a = \/(CIU)Q - (b/fdless)2 = Clum (4)

In the limit of high dimensionless frequency or large turbulence intensity, i.e. without
the offset b, then a — CI, like Pielke & Panofsky (1970). But in the limit of small
turbulence intensity or low dimensionless frequency (small fAt), i.e. a large offset,
then we see a become imaginary, implying a (nonphysical) coherence oscillating with
At or Ax.
Thank you for pointing out this interesting question. In fact, we did notice it and have
examined if the At dependence of a is due to the At introduced in fyess- As presented
in the paper, a < At;;%4 . If this dependence originally did not exist but entirely comes
from At in fyiess, the exponent of ¢maxcorr Should be around -1, and it could be canceled
out with the At in fyess- Moreover, we also tried to fit the estimated coherence to the
coherence model dependent of frequency or wavenumber (without introducing At in
the formula), and we found that o’ oc At%:31  (here use o' to distinguish from the
former a). Hence, we think that a (or @’) originally has a At¢ dependence, and the At in
fdless Just changes the exponent of At.
The form (5) is the same as that of (4) in Simley & Pao (2015), with d; in the latter
replaced here by UAt, and b here replacing their abd;; this should be noted, and the
text is not quite clear nor correct following your Eqn. 5. You do note the reason for
keeping At (instead of using At = d;/U), but why did you drop the spatial separation
dependence (d;) from the ‘b’ part of the Simley Pao (2015) expression? From your
logic for the ‘a’ term, then instead of just b you would have bd; (but not bU At).
The reasons for using b to replace their ab'd; (use b’ to distinguish from our b) are: 1)
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In terms of curve fitting, ab’ is essentially the fitted term, and thus &’ shows a strong
dependence on a, which is generally undesirable for machine learning methods. 2)
Using ab/d; (or b"d;) implies that the unit of &' is m™!, while a is dimensionless. We
wanted to make both dimensionless to keep consistent. 3) We did try v"d;, but we
found that d; is still an important predictor for ", which indicates " still depending on
d;. Then, it is not necessary to assume b d;, but simply use b and take d; as a predictor.

In lines 145-9: your text is a bit imprecise hereaAfthe sonic anemometer has a
measuring volume as well (not a point), it is just much smaller than the lidar’s.
Also, among the reasons why longitudinal coherence from lidar deviates from that
calculated via sonic anemometers, one key possibility is missing: the validity of Taylor’s
hypothesis.

Thank you for your suggestion. We will modify the text accordingly.

Line 153: what do you mean by “complete coherence curve”?

In that context, a "complete coherence curve" means the coherence can more or
less cover the range from the highest coherence (e.g. 0.9 — 1.0, sometimes could be
lower depending on spatial separation) to lowest coherence (e.g. 0 — 0.1). We've now
improved the expression to make it clearer.

Lines 157—164: please include references, as this is not original.
Thank you for your suggestion. The relevant reference has now been cited to the
corresponding text.

Line 184: neglect of the spatial averaging effect and w(x) in 'ij also demands
use of Taylor’s hypothesis. This should be noted (along with its potential inconsis-
tency).

Here, Taylor’s hypothesis is applied within the lidar probe volume. The lidar probe
volume is resulted from the length of laser pulses, with typical length in the order

C35

of magnitude of 10~7 s (e.g. 150-400 ns depending of devices). Considering the
light speed, this temporal length corresponds to a spatial length in the order of
magnitude of 10! — 10> m. Within this range, the exact locations from which the
signals are backscattered can not be distinguished. Because wind evolution depends
on the evolution time of turbulence (see equation (2) in the paper). In this case,
the corresponding evolution time is in the order of magnitude of 10~7 s. Therefore,
wind evolution can be neglected within the probe volume. Referee 2 asked a similar
question. Please find in p.11 the discussion if you are interested in more details. And
we noted a mistake: in fact, it is not necessary to specifically assume t = x/U. There
must be a correspondence between t and x as long as wind flows in x direction.

Lines 193-5: the sentence “To retrieve the longitudinal coherence in this case,
the above discussed spatial averaging effect must be coupled to a specific turbulence
model (Schlipf, 2015; Mann et al., 2009), and thus the wind evolution model is included
in the final model implicitly” does not quite make sense. Could you clarify?

Schlipf et al. (2015) suggested an approach to consider different effects of lidars
when detecting wind evolution. Here, we briefly mention the explicit expression of
the horizontal coherence deduced in that study, based on the assumption of lidar
point-measurement for simplification:

C052 (CVH)’YLJ,MJT’YU,uySu,u
cos?(agy)Siiu + sin?(ap)Siin

YijlosP = )
where v;;:,sp iS the horizontal coherence of lidar point-measurements, ~;; ., and
Vijuy are the longitudinal and lateral coherence of the u-component, S, and Sy,
are the auto-spectra of u and v components, aj is the misalignment angle. From this
equation, one can see the determination of the longitudinal coherence v;; ., is only
possible given a specific turbulence model (knowing Sy; ., Sii» @and ~;;..,) @and knowing
the misalignment angle a;.

The volume averaging effect of lidar is then taken into account with a Riemann sum

C36



based on the theoretical consideration for the case of lidar point-measurement, and
thus the equation is too complex to be explicitly expressed.

More details please see:

Schlipf, D., Haizmann, F., Cosack, N., Siebers, T., and Cheng, P. W.: Detection of Wind
Evolution and Lidar Trajectory Optimization for Lidar-Assisted Wind Turbine Control,
Meteorologische Zeitschrift, 24, 565-579,

https://doi.org/10.1127/metz/2015/0634, 2015.

Line 217: by “its definition”, do you mean the definition analogous to (13), where the
timelags is replaced by spatial separation r?
Yes, exactly.

Lines 217-19: If you say L;,: = T;,:U, then aren’t you just using U as a poten-
tial predictor somehow?

Yes. U itself is also included as a predictor.

Also, isn’t this inconsistent with the previous section, where you state that Taylor’s
hypothesis is to be avoided? Or, is Taylor's hypothesis avoided only for certain
aspects? Please clarify.

Unfortunately, for calculation of L;,; from measured data, we have no alternatives
except this approximation. But in this part, we only discuss in general what could
be the possible predictors. A prediction selection is done to select proper predictors
(discussion see Sect.5.2).

Line 223: The statement “atmospheric stability represents a global effect of the
boundary layer on the wind field” is not quite correct. From what you measure, or via
M-O similarity, it is a ‘global’ effect from the surface,and potentially only through part of
the ABL (sometimes not even above the surface layer in stable conditions).

Thank you for your suggestion. We will modify the text accordingly.
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Line 234: “So as the travel time At” is not a sentence. What are you trying to
convey here?

Thank you for pointing out this mistake in writing. We’ve now modified this paragraph
to make it clearer.

Line 235: So you are meaning that distance d is used instead as a predictor.
Yes, exactly.

Line 250: by “performs the best”, perhaps you should use ‘performs wellaATunless
you explain what ‘best’ means (i.e. what other models).

Thank you for your suggestion. In a preliminary study, we explored different machine
learning algorithms on a simple level, including stepwise linear regression, regression
tree, support vector machine regression, and Gaussian process regression, and we
found GPR performs the best among these methods. Now, we’ve added these details
and moved this part to the introduction.

Line 257: The phrase “underlying functions of the data” is not clear. Do you
mean behavior conditioned on other variables, or relation to other variables?

Here, we mean "one needs to initially guess what type of function(s) could exist among
the relevant variables before choosing a specific regression model.” We will rephrase
this part to make it clearer.

Table 1/ line 255+ : Is it even possible to use the fourth or even third moment,
given the large sampling uncertainty involved for highter-order moments? Please
see and reference e.g. Lenschow, Mann Kristensen (1994) and Ch.2 of Wyngaard’s
text-book (2010), to understand and defend use of u4aATlet alone 1.3.

Thank you for the recommended references. We agree that the third and fourth
moment determined from measured data would contain a large uncertainty. But our
approach is first to find all variables which can be obtained from measured data and
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then to use feature selection to select suitable variables as predictors for the GPR
models. Feature selection can detect the statistical correlation between predictors
and the target variable. Although some variables could contain uncertainties, these
variables could still be useful for the prediction of GPR models as long as they have a
strong statistical correlation with the target variable. From this perspective, machine
learning algorithms generally have an error tolerance for data (of course, the more
accurate the data is, the more accurate the prediction could be), which is also one of
the advantages of machine learning.

Line 284: To be clear and consistent, can you not specify that g is a weight,
and the ‘basis function’ h(x) maps the means into the new space?

[ can also be understood as the weight vector of h(x). But we've defined w as a
weight vector before, we wanted to avoid using the same word in case reader might
confuse these two different processes: h(x)'3 is used to model the mean function
m(x) of g(z), and g(x) ~ GP(m(z), k(z,2")) (k(z,2') is a kernel); ¢(z) "w is used to
find the linear model of f(x) in a higher dimensional space. Theoretically, for any
function f(xz), it is always possible to find a linear model equivalent to f(z) in a higher
dimensional space. For example, for a quadratic function

f(z) = az® 4+ bz + ¢, (6)
if define p = z2, ¢ = z and r = 1, then

f(z) =g(p,q,7) = ap+bq + cr, @)

which is a linear model of f(z) in the three-dimensional space of (p,¢,7). In the
algorithm of GPR, ¢(z) is not explicitly defined. The mapping is done through a kernel,
which is the so-called kernel trick.

What is meant by ‘Basis function is one of the hyperparameters’? l.e., how is a
function a parameter, or is h(x) already assumed to have some form, possibly related
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to the p(x) forms?

A hyperparameter, different from a parameter, is not necessarily a value (or values),
but more like a setting adjusting model behavior (specifically related to machine learn-
ing). There are four types of basis functions provided in MATLAB: empty (assuming no
basis function), constant, linear, and pure quadratic.

lines 289-296:0,, is not a ‘length’ in the physical sense; it has units of whatever
zm, has. Thus it is a characteristic magnitude for the predictor having index m.

In the context of machine learning, this term is defined as "characteristic length scale".
Please see references like:

Rasmussen, C. E. and Williams, C. K. I.: Gaussian processes for machine learning,
Adaptive computation and machine learning, MIT, Cambridge, Mass. and London,
2006.

Duvenaud, D.: Automatic model construction with Gaussian processes, Apollo -
university of cambridge repository, https://doi.org/10.17863/CAM.14087, 2014.

lines 299-302: To be explicit, the RHS of (22) does not contain a ‘conditioning
bar. l.e.to help the reader and match the text, show in the math that the joint Gaussian
prior is conditioned on X.(is the eqn. correct?). Most readers will not have read
Duvenaud’s PhD thesis, so it is useful to help them understand.

We just intended to use Eq.(22) to explain that the predictive equation of GPR is
a conditional distribution given the training data and the new input data, and this
conditional distribution is normal distributed. We did not include the equations of f,
and cov( f,) because both are very complicated. We don’t think it is necessary for this
paper to go so deep into mathematics.

Lines 307-311: why k=57 If it is due to needing a large enough sample for ver-
ification, then this should be stated.
Theoretically, k can be any integer between two and the number of observations
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(This is a special case which is called "Leave-one-out".). When k is very small, the
sample size of training data (% of the total observations) could be not large enough.
However, the training process must be repeated k times. So, when k is too large, the
training could take very long time. Therefore, k = 5-10 is common used in machine
learning. We will add this explanation in the corresponding text.

Line 335: was the lidar on the nacelle, at what height?
At 95 m. We have also noted some information about the measurements is only listed
in Table 2 but missing in the text. We will improve this part.

Line 350: please be more clear and specific, and also include references.

The research project ParkCast is an ongoing project led by our institute (Stuttgart
Wind Energy, University of Stuttgart). Because no publications related to this project
have been published so far, we cannot cite any references. However, we have
communicated the project-related information with our colleague in charge of this
project to ensure its correctness.

Line 362-366: Why are two different filtering types used?

Because the two lidars are different, and one of them is a long range lidar (the max
range was set as 990 m for the data used in this paper). For a long range lidar, the
backscattered signals from distant range gates could be very weak, and thus the
CNR values could be low although the measured wind speed is plausible. In this
case, filtering the data based on CNR values is not a good idea. Wirth et al. (2018)
suggested an approach to filter the data with a range filter, which can keep more valid
data compared to the CNR filter.

Wirth, ., Ellinghaus, S., Wigger, M., Niemeier, M. J., Clifton, A., and Cheng, P. W.:
Forecasting wind ramps: Can long-range lidar increase accuracy?, Journal of Physics:
Conference Series, 1102, 012 013, https://doi.org/10.1088/1742-6596/1102/1/012013,
2018
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State why -24dB for CNR; include reference.
We determined the threshold for CNR by checking the plot of CNR values and wind
speed. The CNR threshold could be various under different measurement conditions.

Line 375: Using “C2N” to symbolically write ‘N choose 2’ unique pairs, is not
standard practice. You can write(N2)or equivalently N(N—1)/2.
Thank you for your suggestion. This has now been corrected.

Line 479—-480: need citation for Levenberg-Marquardt algorithm.
Thank you for your suggestion. The corresponding citations have now been added to
the text here.

Fig.9 caption: mention which plots belong to which campaign.
Thank you for pointing out the missing information. The campaign names have been
added to the caption.

Fig.11 / §5.1 : why not plot ¢,,2? This is what is actually used in the ARD-SE
kernel shown in eqn.21, and its behavior more clearly demonstrates relevance.

We can also plot 0,2, but in principle, it will not be different because
log(o,2) = —2log(c). The plots will just be flipped up side down, with the y-
axis (in log) scaled by two. The benefit of using log(o,,,) is that it shows the order of

magnitude of o,,, directly.

Line 489-90: you state “predictors are selected according to different preset lim-
its of the log(c,,) considering different cases of application or data availability”, but
what are these preset limits?

The limits are listed in Table 5 and discussed in Sect.5.2. We will modify the text to
make it clearer.
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Line 494 / Table 4: how/why did you choose the initial ¢,,, = 10?
The initial values of ¢, are randomly set. They will be estimated from training data
and the GPR algorithm just need some initial values to start the training process.

Line 509: | am not sure that R2 of 0.65 is “satisfactory”; perhaps this could be
just written in terms of R2 and RMSE without the subjective claim.

Thank you for your suggestion for wording. We will modify it (and other similar
expressions).

Also, “all situations” is not quite consistent with just the recommended cases (i.e. it
implies all cases).

"All situations" here refer to 1.501: "two different situations of data availability are
considered: only using variables calculated with lidar data as predictors (in both
of LidarComplex and ParkCast available) and only using variables calculated with
sonic data (only in LidarComplex available)." We intended to distinguish "situation”
and "case", and to use "situation" to indicate different data availability. But maybe
"situation" is not a suitable word. We will consider the wording here again.

Lines 519-520: This is a good point, and it would be useful to repeat this ear-
lier, when introducing the potential predictor variables because some of them appear
redundant.

It is mentioned in the penultimate paragraph in Sect.2.5, but maybe is is not clear
enough. We will indicate this point more clearly.

Lines 524-527: It appears that you are conflating two things here, one of which
you are missingaATapplicability of Taylor’'s hypothesis will also affect L compared to T
via U, whereas this is not the case for the usage of U to ‘convert’ o, to IT.

What we wanted to discuss here is the possible difference for the model between using
the variables directly acquired from measured data like U and o and the variables
derived from the other variables like I = o/U. In principle, I7 can be regarded as a
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function of o and U, and thus it is probably "useless" for the model. But we agree that
we missed the point — the approximation of L by TU assuming Taylor’s hypothesis
is less accurate and thus probably less preferred by the model. Thank you for your
suggestion.

Lines 532-534: perhaps us or ps4 could help prediction; but to be responsible,
one needs to mention that [1] the uncertainty in these quantities are very large
(Lenschowet al. 1994 reference), and [2] lidar may not be able to consistently measure
these.Further, these higher-order moments are likely more affected by your filtering.
Thank you for your suggestion. That is a very good point.

Lines 537-539: this is likely due to the implicit co-dependence | derived above,
i.e.a is a function of CIT and b/fdless. Your finding confirms also the need/utility to
consider the behavior of the parameters involved.

As mentioned above in the response to the comment on Eq.(5), we did consider this
issue. The ideal case is a and b are completely uncorrelated, but the model form deter-
mines that the correlation between a and b cannot be completely eliminated. Indeed,
we have reduced their dependence by adapting the form of the offset parameter b.

Lines 542-554: what about cross-comparison using the sonic? Were the wind
directions such that the sonic (at 270m upstream) could be compared to the lidar (e.g.
at 163.5m upstrean)?

We are not quite sure what kind of comparison this "cross-comparison" refers to.
We assume that it means the coherence estimated from the sonic data and the data
measured at the farthest range gate of the lidar when the wind direction is aligned with
the line between the met mast and the wind turbine. Firstly, to estimate coherence,
this wind direction must exist long enough, which is less likely to happen in practice.
Secondly, because the sampling rate of the ultrasonic anemometer is much higher
than the lidar, the sampling rate of the sonic data must be artificially reduced, by e.g.
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averaging, to match the sampling rate of the lidar data. But this leads to the fact that
estimating coherence between the sonic data and the lidar data does not bring more
benefits than estimating coherence between lidar data measured at different range
gates.

Line 555-6: isn't this ‘satisfactory’ R?> > 0.65 only true for certain cases and
variables?

This statement is specific for the cases using lidar data. Although we discussed
different variable combinations and compared the performance of the corresponding
models, all the variables are essentially derived from line-of-sight wind speed. In other
words, as long as there is a lidar measuring wind speed properly, one would be able
to derive all the discussed variables. The question is which of them are necessary. In
general, we want as many as necessary and as few as possible.

Figure 14 / Line 560 and afterward: these plots do not responsibly/transparently
show prediction error, as they don'’t give an idea of the magnitude of a. You should
plot percentage error or similar; given that a can be small depending on band IT (as
derived above), the plotted differences in a might be relatively significant.

We have been thinking for a long time if it would be better to show relative error or
absolute error. Our concern is that values of a« and b are very abstract and completely
not intuitive. In fact, the shape and position of the predicted coherence determined by
both parameters together is the final prediction goal. And the prediction error is the
shift of the predicted curve from its estimated curve due to the error of « and b.
Assume a prediction error for a is 0.5. lts relative error will be 50% given « = 1 and
25% given a = 2. But is the difference between the curve of « = 1 and a = 1.5
somehow related to 50% of something? Or is the difference between the curve of
a = 1 and a = 1.5 somehow as twice large as the difference between the curve of
a=2anda = 257 Itis not the case. In the end, we chose to show the absolute
error because knowing the absolute error, one could more or less imagine how much
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the predicted curve would be shifted due to the error by observing Fig.3, which is not
possible for showing the relative error.

Moreover, we are considering to plot two additional curves on the plot of example
predicted curves (Fig.13) to indicate the range of predicted curves due to the RMSE of
both parameters. That could hopefully give an intuitive feeling for the prediction error
of the coherence curve.

Lines 574-5: if the whiskers are large because of sample size, then why not
(also) account for this via \/n ?

Here, what we wanted to express is that large whiskers indicate large variances
of predicted errors. The reason for that could be insufficient training data in the
corresponding value range resulting in less accurate predictions for that value range
by the model. We noted the expression here is not clear enough and will improve it.

Line 576: The claim ‘it is proven that the Gaussian process regression is capa-
ble of achieving an accurate parameterization model” is an overstatement. It is
DEMONSTRATED(not proven) that the GPR was able to predict two coherence model
parameters with an R? > in chosen cases (not simply ‘accurate’).

Thank you for your suggestion for wording. We will rephrase this part.

Technical corrections

There are many English usage/grammatical corrections and suggestions, which are
included in the attached annotated PDF-file. | thus only include a sample of them here
in this list. The sentence structure and writing is unclear or ambiguous in numerous
places; the paper really should be reviewed and edited by somebody with adequate
fluency.

Thank you for your suggestion. The revised manuscript will be proofread before sub-
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mission.

| list some of the specific corrections below, but since there are >300, after the first
few | include the line numbers, which refer to the annotated attached PDF. After page
16 | did not correct much English; this is left to the authors for the next draft.

aAé Abstract/line 1: One (generally) shouldn’t copy sentences from the introduc-
tion into the abstract (further, this first sentence is a definition); ‘turbulence’ should be
‘turbulent’; pluralize ‘structure’; delete ‘of the eddies’; replace ‘while the eddies’ with
e.g. ‘as they’; replace ‘by the main flow over’ with ‘through’.
aA¢ L.2-4: Remove ‘the’; change ‘because’ to ‘i’; remove ‘only’...see annotated PDF
for more details.
aAé L.5-7: These 2 sentences are quite unwieldy (cumbersome) and also somewhat
tautologicalaAT particularly for an abstract, also with repeated phrases that need to be
reduced/condensed. Please correct the English usage here.
aAé L.12-13: First sentence can be corrected from “Wind evolution refers to the
physical phenomenon that the turbulence structure of the eddies changes over time
while the eddies are advected by the main flow over space.” to something like ‘WIND
EVOLUTION' REFERS TO THE PHYSICAL PHENOMENON OF TURBULENCE
STRUCTURES (EDDIES) CHANGING OVER TIME, WHILE THE EDDIES ARE
ADVECTED THROUGH SPACE BY THE MEAN FLOW.
aA¢ L.13-15: change “The mathematical” to ‘A common statistical’; delete ‘usually’;
‘hereinafter for brefity, also’ should be ‘hereafter’; delete ‘two time series data sets of
the’ and instead add ‘measured at two different locations, after ‘velocity’; change ‘with
certain time shift’ to ‘calculated over varying time shifts’.
aA¢ L.17-19
aA¢ L.22
aA¢ L.25-27
aA¢ L.29
aAé L.32: run-on sentence; use parentheses as noted
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aA¢ L.33-34

aA¢ L.36-38

aA¢ L.40, L.42-44

aA¢ L.47-48

aAé L.52 use of definite articles and parentheses

aA¢ L.55-59, L.61

aA¢ L.63 delete ‘model’

aA¢ L.65, 67

aA¢ L.73-74

aA¢ L.79-81: delete a number of redundant words, add punctuation as noted
aA¢ L.122-123

aA¢ L.136

aA¢ L.151 Capitalize ‘Oppenheim’, here and elsewhere.

aA¢ L.156

aA¢ L.169

aA¢ L.177: have already introduced U as mean wind speed (delete here).
aAé Page 8: L.186-7; 189; 196-9; 201-2

aAé Page 9: L.204; 210; 212; 220-2;

aA¢ L.224 and elsewhere: not ‘Monin-Obukhov length’, just use ‘Obukhov length’
aAé Page 10: L.225-8; 233; 2507

aAé Page 11: L.258-9; 261; 264; 269; 272

aA¢ Page 12: L.275-8; 288-9; 292; 295-6; 302; 304-5

aAé Page 13: L.308

aA¢ Page 14: L.335; 339; 346-7; 349-353; 363-5

aAé Page 15: L.367

aAé Page 20: L.470; 479

aAé Page 24, Table 5: Taylor is italicized under case 6, but should be Roman font.
aAé Page 25: L.537; 550
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Please also note the supplement to this comment: https:/www.wind-energ-sci-
discuss.net/wes-2020-50/wes-2020-50-RC3-supplement.pdf

We highly appreciate these suggestions for technical corrections. All of the comments
have been considered, and corresponding corrections have been made. We'd like to
thank the reviewer again for taking valuable time to help us to improve this manuscript.
The revised manuscript will be proofread before submission.

Please also note the supplement to this comment:
https://wes.copernicus.org/preprints/wes-2020-50/wes-2020-50-AC1-supplement.pdf

Interactive comment on Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2020-50, 2020.
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~which requires accurate
10 avoid unnecessary
or even harmful control actions. Moreover, 4D stochastic wind field simulations can be made possible by integrating wind
evolution into standard 3D simulations, to provide a more realistic simulation environment for this control concept. Motivated
by these factors, this research aims to investigate the potential of Gaussian process regression in the parameterization of
wind evolution. Wind evolution is commonly quantified using magnitude-squared coherence of wind speed and is estimated
with lidar data measured by two nacelle-mounted lidars in this research. A two-parameter wind evolution model suggested-in
hiterature-was-apphied-modified from a previous study is used to model the wind-evolution-and-the-wind-evolution-was-estimated
using-tidar-dataestimated coherence. A statistical analysis was-done-to-revealis done for the wind evolution model parameters
determined from the estimated coherence, to provide some insights into the characteristics of wind evolutionmedel-parameters.
Gaussian process regression was-applied-to-achieve the parameterization-modelThe results -have proven the applicabili
of-models are trained with the wind evolution model parameters and different combinations of wind-field-related variables
acquired from the lidars and a meteorological mast. The automatic relevance determination squared exponential kernel function
is applied to select suitable variables for the models. The performance of the Gaussian process regression model-to-prediet the
wind-evolution-model parameters-with-sufficientaceuracymodels is analyzed with respect to different variable combinations,
and the selected variables are discussed to shed light on the correlation between wind evolution and these variables.

prediction of wind evolution

1 Introduction

Wind-evolution-Wind evolution refers to the physical phenomenon
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structure-is-usually-definedof turbulence structures (eddies) changing over time, and is defined, in this study, as magnitude-

squared coherence éhefemaﬁeﬁeﬁbfew%y—a}%&de endent on evolution time. Magnitude-squared coherence (hereafte referred
to as coherence)

structure properties (see e.g. Panofsky and McCormick, 1954; Davenport, 1961; Panofsky et al., 1974). In general, coherence
describes the correlation between spectral components of two signals or data sets, taking value-between-Ovalues between zero,

for no correlation, to +-6unity, for perfect correlation. Whereas;-Because turbulent eddies are advected by the mean flow while

evolving, the longitudinal coherence, i.e. coherence of turbulent velocity at locations separated in the mean direction of the
flow, is used to measure wind evolution in practice (see e.g. Schlipf et al., 2015; Simley and Pao, 2015a). And when estimatin

the coherence, the data measured at the downstream location should be shifted by the travel time, corresponding to the evolution
time, to match the data measured at the upstream location. Taylor s (1938 hypothes1s 1sa spe01al case that assumes fhe—pa&efﬁ

unchanged, while eddies move with the mean flow. In other words, Taylor’s hypothesis assumes a-perfect-correlationno wind
evolution, which means the coherence is +-0-ever-the-whele-frequeney-rangeunity for all frequencies. The validity of Taylor’s

hypothesis was researched in some studies (see e.g. Willis and Deardorff, 1976; Schlipf et al.

used in data analysis and wind field modeling for the sake of simplification (see e.g. Kelberlau and Mann, 2019; Veers, 1988).

The research on wind evolution dates back to the 1970s. Pielke and Panofsky (1970) attempted to generalize some of the

. Taylor’s hypothesis is widel

mathematical deseription-of-the-descriptions for horizontal variation of turbulence characteristics. The final goal at that time
was to figure out an empirical model of the fourdimensional-space-timefour-dimensional (space—time) structure of turbu-
lence. In Pielke and Panofsky’s werk<1976)(1970) work, the coherence model suggested by Davenport (1961) to describe
the correlation between horizontal wind components at different heights, also known as Davenport Geometric Similarity, was
extended into other wind components and separation directions. They-Pielke and Panofsky’s (1970) model also followed Dav-
enport’s idea to approximate the coherence with a simple exponential function with-using a single decay parameter;-which-is
knewn-as—Pielke-and-Panofsky’s-model. The decay parameters were assumed to be some-constantsin-thatresearchconstants.
After that, Ropelewski et al. (1973) did-a-systematiestady-of-systematically studied the coherence for streamwise and cross-
stream wind components with horizontal separations. Based on their theoretical discussion, the decay parameters—might-be
parameter for

Richardson number (J. L. Lumley and H. A. Panofsky, 1964). Extending the study, Panofsky and Mizuno (1975) found that
the retationshiprelationships between coherence and other parameters were rather complicated. A model for the decay param-

eter was proposed based on the-diseussion-of-its empirical properties. This decay parameter model involves turbulence intensity
accounting for the influence of terrain roughness, standard deviation of the lateral wind component, lateral integral length scale
whieh-shows-of the longitudinal wind component (which shows a relationship with Richardson number), separation of the

two observations, and the angle between the wind direction and the measurement line. This model can be regarded as the first

parameterization medel-for-the-of Pielke and Panofsky’s medel-butit-wasjust-developed-using(1970) model. However, the
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model was developed using only very few observations measured-with-meteorological-tower-taken on meteorological towers,
and the dependence of coherence on separation and atmospheric stability was not adequately researched in that study.

It is worth mentioning that wind-evolution-speeifically-refers-to-the longitudinal coherence (i-e—eoherence-in-the-directionof
the-flow)-by-definition—The longitadinal-coherenee-differs from the lateral and vertical coherence because the former measures
the-correlation-with-respeet-to-time-tag-is coupled with time-dependent variations in turbulence, while the latter with-respeet
to-spatial-separationmeasures the decay of correlation due to spatial separations in their respective directions. However, in

the above-mentioned studies the longitudinal coherence was not clearly distinguished. Kristensen (1979) proposed that the
longitudinal coherence should behave differently and deduced an alternative expression for wind-evelution,—which-isknewn
as-it, which we refer to Kristensen’s (1979) model. This model is-based-on-the-assumption-assumes that the coherence can
be moedeHed-modeled with the probability that an eddy measured-observed at the first observation-peint-will-pass-the-second

enepoint can also be observed at the second point, given that: the eddy has not completely faded out during the travel time; and

the eddy has been taken towards the second point.
In-the-recent-years;-wind-Wind evolution has become interesting again because of the new concept of lidar-assisted wind

turbine control (see e.g. Schlipf, 2015; Simley and Pao, 2015a; Simley et al., 2018). Lidar -— more specifically, Doppler
wind lidar — is a remote sensing deviee-technology which can be used to measure wind speed in a certain spatial range
(Weitkamp, 2005). The main idea of lidar-assisted wind turbine control is to enable a feedforward control of the—wind
tarbine-wind turbines by using a nacelle-mounted lidar to measure the approaching wind field at some distance upwind.
The control system should enly-react-react only to the changes in the wind field which can be predicted accuratelyover-the
distanee—, to avoid harmful and unnecessary control aetioractions. This is made possible by applying an adaptive filter to
filter-remove the uncorrelated part of the lidar signal. An accurate prediction of the wind evolution will thus benefit the filter

design. Moreover, the application of Taylor’s hypothesis in the wind field simulation is no longer appropriate for medeting
modeling the lidar-assisted control system. To solve this problem, Bossanyi(2613)-proposed-an-approach-different approaches

see e.g. Bossanyi, 2013; Laks et al., 2013) have been proposed to integrate the wind evolution model in-the-Veer’s-within the
wind field simulation method 2)-of Veers (1988), to make it possible to simulate a four-dimensional wind field.

Some attempts were made to impreve-the-medelingfurther promote the modeling of wind evolution. Schlipf et al. (2015)
suggested an approach to determine the decay parameter in the-Pielke and Panofsky’s medel-with-measuring—data—of-a
nacelle-based-lidar—Simley-andPae(2045a)-(1970) model with data measured by a nacelle-mounted lidar, taking into account

the influence of lidar measurement on coherence. However, the limitation of this study is that only four one-hour data blocks
were examined. Simley and Pao (2015b) attempted to validate the models of Pielke and Panofsky *s-medel-and-the Kristensen

“s—moedel-(1970) and Kristensen (1979) with data from LES wind fieldsand—found-eout-that-the-both-moedels—eannot-, but

found that neither model can always correctly model the coherence as frequency approaches zero. To improve this issue,

Simley and Pao (2015a) adapted—the-tried to apply the coherence model for transverse and vertical separations suggested
Thresher et al. (1981) to the longitudinal coherence. This model has a form similar to Pielke and Panofsky’s medel-by

fh&eehefeftee—aHefy&ewffeqﬂeﬂey 1970) model but includes an additional parameter to allow coherence less than unity at
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very low frequency. Davoust and von Terzi (2016) examined Simley and Pao’s (2015a) model with data from nacelle-mounted
lidars on three sites. To enable a direct comparison with Simley and Pao’s (2015a) work, a correction method was applied
to_compensate the influence of lidar measurement on coherence. However, the linear dependence of the decay parameter
on turbulence intensity suggested by Simley and Pao (2015a) was not clearly observed. The relationship between the offset

arameter and integral length scale shows a good match with that suggested in Simley and Pao’s (2015a) work, but the
agreement decreases after the correction of coherence. At the same time, de Maré and Mann (2016) developed a four-

dimensional model to describe the space-time structure of turbulence by combining the Mann (1994) spectral velocity tensor
and the-Kristensen’s (1979) longitudinal coherence model.

Motivated by the above-mentioned research, this study aims to further-analyze-hew-wind-evelutionis-influenced-by-the-wind
-achieve parameterization models for a wind evolution
model to-prediet-the-modified from Simley and Pao’s (2015a) model. In addition, it is desired to gain some insights

complex relationships between wind evolution and wind-field—related variables such as wind evelation-aceerdingto-relevant
conditions;-such-as-the-wind-statistics, atmospheric stability, and relative pesition-of-the-positions of measurement points. This

For these purposes, a previous study (Chen, 2019) was done to explore different supervised machine learning algorithms on
. Hocking, 1976) . Breiman et al., 1984)
support vector regression (see e.g. Vapnik, 1995), and Gaussian process regression (see e.g. Rasmussen and Williams, 2006).
It was found that Gaussian process regression, overall, performs the best for prediction of wind evolution model parameters,
and thus its potential is further analyzed in this study with more extensive data,

This research is mainly done using lidar measurement because lidar can provide large amount-amounts of spatially separated

into the

a simple level, including stepwise linear regression (see €. regression tree (see e.

measuring points simultaneously, which is a-of great advantage for studying the dependeney-dependence of wind evolution on

separation eempared-to-in_comparison to data from a meteorological tower. Some-tidar-Lidar data from two measurement

campaigns undertaken in different terrain types are available. H-any-data-of-the-meteorological-tower-is-also-available-in-the

eorresponding-In one of the measurement campaigns, itis-data taken on a meteorological tower is also involved in the analysis
to provide a comparison.

The present paper is organized as follows: Section 2 briefly explains the theoretical basis of wind evolution and the-cenceptof

the-parameterization-meodel-its prediction concept as well as the principles of the applied-metheds-methods applied in this work;
Section 3 introduces the involved-measurements-and-the-procedure-of-the-measurement campaigns and the data processing;

Section 4 presents the results of the statistical analysis of the wind evolution model parameters; Section 5 illustrates the process
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of the-model training and the evaluation of the ebtained-parameterization models; Section 6 summarizes the presented-results
again-results and gives the conclusions and eutloek-of-this-stadyan outlook.

2 Methodology

This section first explains the mathematical definition-expression of wind evolution in Sect. 2.1. Then, the-medel-conceptfor

he-predietionof-the-wind-evelutionand-the-corresponding-workflow-of-th aely-our concept of wind evolution prediction and
a corresponding workflow are presented in Sect. 2.2. After that, the wind evolution model applied in this work is introduced in

Sect. 2.3. Finally, the details of the workflow are introduced and discussed in Sect. 2:32.4-2.7.
2.1 Wind Evolution

As mentioned in the introduction, wind evolution is mathematically defined as the magnitude-squared coherence between two
wind speed signals ¢ and j measured at two points separated in the longitudinal direction, with ¢ for the signal measured at the
upstream point and j fer-at the downstream point:
2
[Si; (/)]
)
Sii(£)S53(f)

where S;;(f) and S;;(f) represent the power-spectral densities (PSDs) of signals ¢ and j, respectively, and .S;; ( f) represents

v5(f) = 4]

the cross-spectral density between ¢ and j. It must be emphasized that the coherence corresponds to a lagged correlation, which
means the signal j should be shifted by the travel time At thatafter which the signal ¢ is expected to arrive at the downstream

point for calculation of the coherence.

2.2 Concept and Workflow

Ttis-aimed-to-prediet-the-wind-evolutionA _supervised learning algorithm aims to find the mapping function from predictors
(i.e. input variables) to a rarget (i.e output variable) through known data about the predictors and the target without relying on
a predefined equation as a model. The key to using supervised learning is to identify suitable predictors and targets, which is
in fact a process of abstracting and condensing information.

In this study, we aim to develop a predictive model for wind evolution of the longitudinal wind component. It is worth
noting the different meanings of wind evolution and wind evolution model. Wind evolution, i.e. the coherence s-but-it-is-ot
possible-to-predictevery pointof the-eoherence-eurveestimated from measured data in practice, is not predictable because the

estimated coherence consists of approximately infinite data points. Therefore, a model with a limited number of parameters

is needed o “orh ot mn e e el b e B el L e e on—model—e:

using-thepredieted-medel-parameters—From the perspective of machine learning, using a wind evolution model is essentiall
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condensing the information in the estimated coherence into several model parameters which are predictable. These model
arameters are targets of predictive models, and thus the predictive model is deemed a parameterization model in this study.

- wind-field—related variables such as wind statistics,

atmospheric stability, and relative positions of measurement points are considered as potential predictors, based on the theoretical
and experimental studies mentioned in the introduction. A discussion about the potential predictors is provided in Sect. 2.5.
Further analysis needs to be done to determine which of the potential predictors should be selected for model trainin

i.e. feature selection. The principle of feature selection is to figure out which variables provide the best predictive power

accounting for most of the variation in the target values) and, ideally, these variables should be independent from each other

to prevent over-fitting in model training. To investigate the necessary predictors under different data availability, different
combinations of predictors are discussed in Sect. 5.

2YFigure 1 illustrates our concept and workflow of wind
evolution prediction. For model training, the essential steps are determination of observed values of predictors and targets from

measured data and training parameterization models using a machine learning algorithm, more specifically: 1) estimation-of-to
estimate the coherence using lidar data; 2) determination-of-the-to determine the observed target values, i.e. the wind evolution

model parameters, by fitting the estimated coherence to the-a wind evolution model; 3) ealenlation-of-the-potential-predictors
from-the-measured-data—-to calculate observed predictor values from measured data (mainly lidar data; sonic data could be
used if available); 4) training-the-Gaussian-process—regression-model—More-detailsareintrodueed-in-Seet—2:3-2710_train
parameterization models using a machine learning algorithm. The prediction process goes in the opposite direction: Firstly, the
wind evolution model parameters are predicted by the trained parameterization models using new predictor values calculated
from new measured data; then, the predicted coherence is reconstructed by the wind evolution model using the predicted model

parameters.
Werkflow:

2.3 Wind EvolutionMedel

As-explained-aboveitis-veryimportant to-ehoose-a-To demonstrate our concept and workflow: Sect.2.3 explains the wind
evolution model hsimsmmie bt oo e b e e b Ll e e e el
model; similar-to-the Simiey’s-modet(2615a)isused-used in this study; Sect. 2.4 discusses special issues about coherence
estimation using lidar data; Sect. 2.5 discusses the potential predictors of the parameterization models; Sect. 2.6 and Sect. 2.7
briefly introduce the principle of Gaussian process regression (the machine learning algorithm applied in this study) and the
method of model validation, respectively; Section 3.2 shows the fitting process of the estimated coherence in detail; Section 5
demonstrates the training of parameterization models, predictor selection, and model validation in the respective subsections.
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Figure 1. Concept and workflow of wind evolution prediction. The workflow of model training is: 1 — Estimation of coherence using lidar

data; 2 — Determination of wind evolution model parameters by fitting the estimated coherence to a wind evolution model; 3 — Calculation of

otential predictors from measured data (mainly lidar data; sonic data could be involved if available); 4 — Training parameterization models

using a machine learning algorithm.

23 Wind Evolution Model

Following the theoretical considerations by Ropelewski et al. (1973), the coherence decreases exponentially with increasing
travel-evolution time At of the signal with respect to “‘eddy turnover time™ 7 +
At
2

Vinodel (f) = €xp <C' T) » 2)
where-the-The term C' represents the decay behaviour of the coherence depending on the time ratio. C' is-here-virtual-which
ear-could be a constant, a linear function, and¢-ever-or a more complicated term.

T is a time scale associated with the characteristic eddy size A and characteristic velocity of turbulence which is approximated

by the standard deviation of wind speed o as foHowing:=follows
T~ 2 3)

This expression implies that eddies are supposed to decay faster under a-high-strong turbulence. Given the same degree of
turbulence, large eddies are supposed to take longer time to decay.
The eddy size A is linked to the frequency of horizontal wind velocity fluctuations f and the flow mean wind speed U with

this relation +

U
A~ —. 4
7 “)
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Combining Eq. (2)~(4)and-introdueing the-, the coherence model becomes

2 — —c.Z.¢.

This equation is essentially the same as the model proposed by Pielke and Panofsky (1970), except that, in their model, At is

approximated by d/U (d is separation) using Taylor’s (1938) translation hypothesis, indicated as At.

Simley and Pao (2015a) noted a limitation of this one-parameter model form: the intercept (coherence for 0 frequency) of

the modeled coherence is forced to be unity, which is not always realistic. To overcome this issue, Simley and Pao (2015a)

introduced a second parameter in the modek-as-inspired-by-Simley’s-modeH20+5a);the-coherence model, taking a model form
similar to the coherence model for transverse and vertical separations suggested by Thresher et al. (1981)

fd

2
) e ). O

’yglodel(fvd) = exp —a (

where o’ and I’ are tuning parameters. A comparison between the fitting quality of a one-parameter model and a two-parameter

model is given in Sect. 3.2 to confirm the necessity of using a two-parameter wind evolution model.

We have made two modifications to Simley and Pao’s (2015) model. Firstly, d/U is restored to the travel time At to avoid

coupling Taylor’s (1938) translation hypothesis in the wind evolution modelis-finally-defined-as—+

712110(161 = CeXp (7 a? - (f : AIL)2 + b2) )

considering the effect of the wind turbine’s induction zone. In fitting the estimated coherence to the wind evolution model, At

is determined by the time lag of the peak of the cross-correlation between two wind speed signals, indicated as A¢y;. Secondl

a’'b’d is replaced with b. The reasons for that are: 1) With the original form a’b'd, a’b’ is essentially the fitted term (given that d

is known) in the curve fitting. Thus, b’ shows a strong dependence on o/, which is generally undesirable for machine learning
algorithms. And, 2) the form ab'd implies that this term is proportional to d, but we found that d is still an important predictor
for V', indicating that the assumption of a linear relationship might be not proper, Therefore, we decided to directly use b to
represent the intercept and take d as a predictor instead (see Sect. 2.5).

The modified wind evolution model is

Voaar(F) = exp (—/a? (T B +82) )

where the de

decay parameter a represents the
decay effect of the-coherence, and the effset-parameter—offset parameter b is used to adjust the intercept (coherence for 0

frequency) of the modeled coherence curve. The intercept equals exp(—|b|). Fhe-both-wind-evolution-medel-Both parameters

are dimensionless. The benefit of introducing the offset parameter-O-is shown in-Sect. 3.2 The travel time - Atl-is determined by
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- At is dimensionless, and thus is defined as dimensionless frequency fqiess—

- In the end, our wind evolution model is defined as

’YIQHOdel(fdless) = exp (—\/m) . (8)

In some studies (see e.g. Schlipf et al., 2015), the wind evolution model is defined as a function of wavenumber k, with

between k and

lying Taylor’s (1938) translation hypothesis. To

give an everview-intuitive impression of the wind evolution model, Fig. 2 shows the theoretical curves calculated with different

values of a and b as exampleexamples.

1
—_—a=1 —b=0.01
—a = —b=0.1
08 a= b=0.2
—_— = —b=0.3
'3'()'6 ——a = 5| ] —b=0.5
E E
™ 8 ~ B
<04 <
0.2
0 ‘ : 0 ‘ ‘ ‘
103 1072 107! 10° 10! 103 1072 107! 10° 10!
(a) fdless (b) fdless

Figure 2. Impact of the model parameters a and b on the wind evolution model. (a) b= 0. (b) a = 3.

2.4 Estimation-of Estimating Coherence using Lidar Data

In this work, the coherence is estimated with lidar data because lidar can provide more data sets-with respect to different

—whieh-spatial separations. This is not easy to obtain frem-data—of
meteorologieal-towers—And-when using meteorological towers because multiple towers would be needed and only when the

wind direction is aligned with the tower locations would the data be usable. Further, the prediction of the coherence is mainly
expected to be applied when coupled with the deployment of a lidar, e.g. in lidar-assisted wind turbine control.

A Doppler wind lidar is a remote sensing device measuring-that measures wind speed based on the optical Doppler ef-
fect. Lidar emits laser pulses and detects the Doppler shift in backscattered light from the-aerosol particles in the atmo-
sphere that are entrained with the wind. The Doppler shift is proportional to the line-of-sight wind speed, i.e. the wind speed
projected en-onto the laser beam, and thus can be used to estimate the line-of-sight wind speed. The measurement prin-
ciple of Doppler wind lidar is explained in many publications s
.g. Weitkamp, 2005; Pena et al.,

2013; Liu et al., 2019) and thus is not introduced here in detail.
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However, it must be emphasized that the coherence estimated with lidar data is-deviated-deviates from that estimated with
data of peint-measurements;e-g—from-two-taken from ultrasonic anemometers. There-are-several-The reasons for that are: 1)
The sampling rate of a-tidarlidars is generally much lower than that of an-uttrasenie-anememeterultrasonic anemometers, and

thus lidars cannot measure high-frequency fluctuations in wind speed; 2) Lidar-doesnot-measure-the-wind-speed-at-a-peint-but

m-the measuring volume of lidars is generally much
longer than that of ultrasonic anemometers because of its measurement principle, which-is-the-se-ealled-and thus for lidars, the

spatial averaging effect effidarwithin the measuring volume needs to be considered; 3) Eidarlidars can only measure the wind
speed projected on-its-onto the emitted laser beams, i.e. the light-of-sight wind speed. The influence of these three aspects is
discussed as-feltewsfollowing, specifically considering the-ease-of starring-mede-of-Jidarlidar in staring mode:

Low sampling rate of lidar. According to the sampling theerem(Oppenheim-et-al-1997)Nyquist—Shannon sampling theorem
(Shannon, 1949), the upper frequency limit of a signal transformed from the time domain into the frequency domain is the half
of the sampling frequency. As long as the samplingrate-of-lidar-lidar sampling rate is sufficiently high to acquire a complete
coherence curve it-wilk-covering the range from the highest coherence (e.g. 0.9-1.0) to the lowest coherence (e.g. 0-0.1), it
would probably not have a noticeable-effect-on-the-study-of-the-large impact on studying the coherence. To obtain as high a
sampling rate as possible, it is decided to select the-data-of thestaring-mede-staring-mode data to calculate the coherence. Fhe
staring-mode-of-lidar-generally-means-Staring mode generally means that the lidar measures the wind speed with a single laser
beam pointing tewards-a-fix-in a fixed direction. Specifically in this work, the laser beam points to-the-horizontally upstream of
the wind turbineheorizontally.

Spatial averaging effect of lidar. Consider a pulsed lidar (only pulsed lidars are involved in this work). The spatial averaging
effect can be moedeHed-modeled with a moving windew-averaging-average weighted by a Gaussian-like shape function eentered
mmwmmmmmﬂmewmmm point.

a-pu A ! Ars ¢ i yFollowing Carious (2013), the weighting function w(z)

is an even function centered at every measurement point along the laser beam. The lidar-measured-lidar-measured wind speed

at the measurement point z for any instant can be moedeHed-with-—modeled with

oo

w(zg) = / w(zo — z)up(x)de = (W up)(z0), 9)

— 00

where u, () is a fo

axis-wind speed function of spatial
points on the x-axis aligned with the taserbeam-of-the tidar—

lidar’s laser beam. According to the convolution theorem (Oppenheim-et-al51+997)(?), the following relationship is valid for

the Fourier transformation between space and wavenumber domain -
Flup = F{wrup} = F{w}- Flup}, (10)

where F{ } is the Fourier transform operator.

10



Fellew-Following Eq. (1), the coherence estimated with lidar data, indicated with the subscript “F5is+"1’, is_

Siin(f) - Si(f)’

where S;;1(f) and S;;1(f) are the auto-spectrum at the point ¢ and j, respectively, S;;1(f) is the cross-spectrum between %

285 7,(f) = an

and j, and f is the frequency in Hz. They are all estimated with-from lidar data. The auto-spectrum is -
Siia(f) = Fluaa(®)} - F{uj100(8)}, (12)
where u; 1(t) is the time series of the wind speed at ¢, and the symbol * means conjugate. And the cross-spectrum is +

290 Sii(f) = F{ua)}- F{u1(t)} (13)

Assume that the laser beam is aligned with the wind direction and the-Taylor’s hypethesis—is—valid;-(1938) translation
hypothesis applies within the measurement volume, and that Eq. (10) is also valid for the Fourier transformation between the
time and frequency domain-by-applyingt=—-~t ismean-wind-speed-—Thus-domains. Taylor’s (1938) hypothesis is considered
valid within the measurement volume because, in principle, wind evolution depends on the evolution time of turbulence (see

295 Eg. (2)), and the measurement volume corresponds to a temporal length on the order of magnitude of 107 s (typical length of
alaser pulse). Now, Eq. (11) can be written as (with ¢ and f are-omitted for clarity):

| F{uir} - F*{uja}?
Fluin} - Fe{uint - Fluga}- F*{u;}
_ | F{w} - Fluip}- F{w} - F{u;p}?
Fi{w}- Fluipt- F{wh - F{uip} - F{w}-Flujp} - F{w} F{u;p}

Because the function w(z) is real and even, according to the conjugate symmetry of the Fourier transformation {Opperhetmet-al-1997)

2
Yij1 =

(14)

(), F{w} = F*{w} and F{w} is real and even as well. As a result, all 7{w} in the denominator and the numerator are can-

300 celled out. And thus Eq. (14) becomes:

Flusp} - F g} L
Fluipy - F{uiph Flujph F{ujp} P

Voj = (15)

This means that the spatial averaging effect does not influence the coherence i#-under the above-mentioned assumptions-are
futfiledideal assumptions.

Misalignment of wind direction and lidar measurement. The above derivation is based on an important assumption that

305 the laser beam is aligned with the wind direction. This will not always be fulfilled in therealityreality, even for a nacelle-based

nacelle-mounted lidar operating in staring mode. Figure 3 shows a sketehfor-a—case-of misaligrment-of-misalignment

between wind direction and lidar measurement g%mlvggglw The coherence estimated—with-tidar—data—of the

line-of-sight wind speed is 77,-

310
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 which
is no longer the longitudinal coherence but the horizontal coherence as defined by Panofsky and Mizuno (1975). 72, and ~2
are the longitudinal and lateral coherence, respectively.

5 [}
Y
'3 V223
a
o—> o—)>
1 2 2
Y12
lidar beam

— line-of-sight wind speed

—— longitudinal wind component

Figure 3. Misalignment of wind direction and lidar measurement. c is the misalignment angle. 77, is the coherence of the line-of-sight wind
speed. 72 and v2 are the longitudinal and lateral coherence, respectively.

Schlipf et al. (2015) suggested a model for the horizontal coherence (magnitude coherence) based on the assumption of
oint-measurement for simplification

C082 (a)’yij,ux’}/ij,uy Sii,u
cos?(a)Siiu +sin? (@) S v

YijlosP = ) (16)

where 7; ; is the horizontal coherence of line-of-sight wind speed point-measurements, ;. .x and ;. ., are the longitudinal
and lateral coherence of the longitudinal wind component, S;; y and S;; , are the auto-spectra of the longitudinal eeherence 35

2o teve-and lateral wind components. Based on this equation, determining the longitudinal co-

herence i iven a specific turbulence model (knowing S;; . Si and knowin

imphetthyrintegration of horizontal coherence weighted by the range weighting function of lidars.

In this study, it-is-decided-to-develop-the-we decide to develop a parameterization model based on the-horizontal coher-
ence for the following reasons:First;-a-, Firstly, consider the case for a nacelle-mounted lidar. The misalignment of the lidar
measurement means that the wind turbine is misaligned as well. In this case, it makes sense to predict the correspondin

12



horizontal coherence. Secondly, a standalone parameterization model, independent from any turbulence model, is desired for

more flexibility in application. Second;-the-determination-of-the-model-parameters-of-Thirdly, determining the parameters in
an implicit wind evolution model is complicated and-+tis-a-must-when using measured data. And it is necessary to acquire
the angle-between-the-wind-direction-and-the-taser-beammisalignment angle o, which is not always possible in application,
335 especially when eonsidering-tidar-as-lidar is the only data source—, though deployment of lidars with multiple beams might
help in this case . Moreover, the requirement for the accuracy of « is very high because o is included in the most basic step
— fitting the estimated coherence to the wind evolution model. The uncertainties contained in a will propagate through the
whole model and affect the further analysis radically, Since the prediction concept is-expeeted-needs to be applicable for
different-data-avatlability—Jt-under different data availabilities, it is not desired to make the estimation-of-coherence-depend
340 fitting process depend so critically on a variable whieh-is-whose availability and accuracy are not always guaranteedte-be

Whereasthe-variation—. It is thus helpful to consider « as a predictor (see Sect. 2.5) to account for variations in the horizon-

tal coherence caused by the direction misalignmentis

345 i . The benefit of doing so is to make o more standalone and to prevent its errors from affecting everything else, while
reasonably taking its influences into account. In addition, Gaussian process regression inherently assumes imperfect trainin
data (containing noisy terms; see Sect. 2:5)2.6), so it is better to keep uncertainties in predictors.

Certainly, if the measurement-of-the-direction misalignment is available and sufficiently accurate in a given application

scenario, the prediction concept can be easily adjusted by changing the model-used-in-the-second-step-in-the-workflow—(see
350 Seet—22)to-obtain-the-wind evolution model parametersto which the estimated coherence is supposed to fit.

2.5 Potential Predictors

In the literature reviewed in the introduction, the variables

considered relevant to wind evolution s-and-thus-will-be-the-are as listed below:

¢ Ropelewski et al. (1973): turbulence intensity (a function of roughness length and Richardson number (J. L. Lumley and H. A. Panof

355 )

¢ Panofsky and Mizuno (1975): mean wind speed, turbulence intensity, standard deviation of the lateral wind component
lateral integral length scale of the longitudinal wind component, longitudinal separation, and the angle between the wind
direction and the measurement line (if misalignment exists

» Kristensen (1979): turbulence intensity, longitudinal integral length scale of the longitudinal wind component, and
360 longitudinal separation_

¢ Simley and Pao (2015a): turbulence intensity, longitudinal integral length scale of the longitudinal wind component, and
longitudinal separation_

13
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The above-mentioned variables can be categorized into three groups: wind statistics, atmospheric stability, and relative
WMMLWWWWWWMWIM predictors of the surregate-model—A
~parameterization models. It is worth mentioning, in advance, that
not all of these predictors will be used in the final models. Useful features will be selected using the automatic relevance
determination squared exponential kernel function (Duvenaud, 2014). The goal of this initial step is to collect all possible
predictors even though some of them will turn out to be redundant and can be converted to each other.

Wind statistics. i i i ton— i
%mmmmwm&@m%mmwmmw
turbulence intensity is defined as

It = A7)

Sl Q

In addition, mean wind speed U and its standard deviation o —turbulence—intensityare also included because they are the
fundamental variables of turbulence intensity. Apparently, IT --and o are equivalent (given U), so only one of them will be

selected according to the result of feature selection.
Moreover, integral length scale L i i

seale-Fis-defined-as-(Pope;2000)-is considered as a predictor, and approximated with (Pope, 2000; Simley and Pao, 2015a

oo

L:U/p Yds=U-T, (18)
0

where p(s) is the autocorrelation function. a-this-study-the-Indeed, integrating the autocorrelation gives the integral time scale
is-computed by integrating the autoeorretation T, and thus 7' is also considered as a predictor. L and 7’ thus constitute another
W%MMMWWWWM%WWWMM up to the
first zero-crossing instead of infinity in practice
(Simley and Pao, 2015a). It is worth mentioning that the approximation of I based-on-its-definition; it is-approximated-with
the-integral-time-seale- 4=

L=U-T.

MereoverBesides the variables already considered in prior studies, it is interesting to study-the-influence-of-other-statistical
speed could play a role in wind evolution prediction. Skewness (i.e. the third standardized central momentskewness—ftz—a
WWM%WWWM@W s of the asymmetry of-the-distribution-of-the

~and flatness
Joanes and Gill, 1998

of the wind speed distribution, respectively. The sample skewness (71, with bias correction, is defined as

14
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G, = n(n—1) i U

L, (19)
_ n 3/2
and the sample kurtosis G5 (not substracting 3), with bias correction, is defined as (Joanes and Gill, 1998
Go—_ -1 (n+1) L—i’)(n—l) +3 (20)
n =1 "

where u; is wind speed fluctuations, and n is the number of data points. The sample skewness and kurtosis determined from
measured data would probably contain large uncertainties. For example, Lenschow et al. (1994) found that statistical moments
estimated using time series data with limited length show a systematic deviation from the true moments. Despite this, it is still

worth investigating whether these two high-order wind statistics could be useful for prediction.
Atmospheric stability. The atmospheric stability represents a global effect of the surface layer in the boundary layer on the

wind-field-and-thusitis-constdered-as-a wind field. It is believed to affect wind evolution being an influence factor on the-wind

a—turbulence stability (Ropelewski et al., 1973; J. L. Lumley and H. A. Panofsky, 1964). A dimensionless height (built-with
Mem—@buﬂ&wmwwlength LMO W&%ﬂﬂﬂ%ﬂ%ﬁﬁ%&&dﬂuﬂeﬁﬂ%ﬁ%ﬁﬂﬁﬂp

height-Cis-defined-as-Busingeretal51971):-(0Obukhov, 1971), is considered as a predictor (Busm eretal., 1971)

z Kgw'0! z
- _ _hgwtez 21
‘ Lyio Ou3 1)

where £ is the von Kdrman constant, g is gravitational acceleration, z is the measurement height, # is average-of-the mean

potential temperature, u, is the friction velocity, and w’6/, is eovariance-of perturbations-of-vertical-veloeity-the covariance of
vertical velocity perturbations and virtual potential temperature.

Relativepeosition—of-the-measurement-points-Relative positions of measurement points. The—distance-between—the—twe

measurementpoints-Based on our modifications to Simley and Pao’s (2015a) model (see Sect. 2.3), measurement separation d
Mﬂee%y%eﬁlay—aﬂ—ﬂﬁpeﬁ&ﬂﬁeleﬁlwm%mthe wind evolution beeause-it-determines-howfar-the-eddies-travel;

model and is now considered as a predictor. As discussed in Sect. 2.4, the angle-between-the lidarbeam-and-the-main-wind

direction—a-is-assoctatedto-misalignment angle « is not involved in fitting the wind evolution model but is considered as a

redictor to account for the influence of the lateral coherence on the horizontal coherence. In fact, d is associated with two

different effects. On the one hand, d corresponds to travel time or, rather, to evolution time At, and-thus-is-considered-as—a




425

430

435

440

445

450

455

~believed to play an important role in wind evolution.
On the other hand, d together with a account for the decay of the lateral coherence. The travel time determined with the
maximum cross-correlation Aty is a more accurate variable. However, considering that calculating Aty might not always be
feasible due to its computational complexity, the travel time approximated using Taylor’s (1938) translation hypothesis At is

The Table-Hists-the-notations of the peteﬂ&a}-pfedietefs—uﬁed—m—thts—wefkabove -mentioned potential predictors are summarized

in Table 1. These variables are aeqti
derived from both lidar data and data measured with ultrasonic anemometers (hereafter referred to as sonic data) according to
their availability in each measurement campaign. This-is-distingui i iptsThe measurement instrument is indicated
with a subscript: "I" for lidar and "s" for MWWWMW%@Q For example U, means
represents the mean wind speed calculated with-h

thereinafter for brevity;-also-referred-to-as-sonic-data-)—from lidar data. Regarding sonic data, it is more reasonable for the
analysis of wind evolution to use a wind coordinate system with the 2-axis aligned to the mean wind direction instead of the
%%%
The hi "y"
are obtained by projecting the high-resolution wind components measured with ultrasonic anemometers on the wind coordinate
system. Then, the above-mentioned variables are derived from the data based on the wind coordinate system. For example, U s
represents the mean wind speed calculated from the longitudinal wind component measured with ultrasonic anemometers.

h-resolution longitudinal (indicated with the subscript and lateral (indicated with the subscript "y") wind speeds

2.6 Gaussian Process Regression

—This section briefly

introduces the principle of the Gaussian process regression (GPR) and the mest-impertant-medel-hyperparameters—whieh

modify-the-behaviour-hyperparameters that modify the behavior of a GPR model. The model training is done using Mattab-the
MATLARB Statistics and Machine Learning Toolbox'.

The principle of GPR. Think-of-Consider making a regression model from some data. A very intuitional-approach-isfitting
the-data-to-certain-types-of funetionintuitive approach is to fit certain functions, e.g. linear function-or-polynominatfunetionor
polynominal. However, this requires an initial guess about the underlying-funetions-ef-functional relationship(s) behind the

Uhttps://de.mathworks.com/products/statistics.html
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Table 1. Notations of potential predictors.

U mean wind speed [ms™']
o standard deviation of wind speed [ms™']
G skewness of wind speed [-]
#rGa kurtosis of wind speed [-]

It turbulence intensity [-]

T integral time scale [s]

L integral length scale [m]

¢ dimensionless Obukhov length [-]

d distanee-measurement separation (m]

a angle between lidar-beam-and-main-wind-direetion-wind direction and lidar measurement  [°]
Aty travel time — maximum cross-correlation_ [s]
Aty iravel ime — Taylor's (1938) approximation )

data, which is very difficult in this case ;-because the wind evolution model parameters do not indicate any clear dependeney
dependence on the potential predictors. The reasons for that could be multiple: first:-1) the data could be noisy; second;—the
dependeney-and 2) the dependence could exist in multidimensional space whichis-netpossible-to-be-observednot observable in
a single dimension, etc. Under this circumstance, GPR turns out to be a good choice because it is non-parametric probabilistic
model, which means the model is not a “fix—funetionspecific function, but a probability distribution over functions. The
principle of-the-GPR-is-based-on-the-underlying GPR is Bayesian inference. The prior distribution over functions, which can be
understood as a guess about what kird-effunetionskinds of function could be present without knowing the data, is specified
by a particular Gaussian process (GP) which faveurs-fayors smooth functions. In the training process, as adding the data, the
-probabilities associated with the functions which
do not agree with the observations will be decreased, which gives the posterior distribution over the functions (Rasmussen and
Williams, 2006).

Hyperparameters of GPR. The behaviour-behavior of a GPR model is defined by its hyperparameters. To introduce the
hyperparamtershyperparameters, a basic explanation in—mathematieal-aspeet-is given following Rasmussen and Williams

(2006). Please note that the complete deduction is not displayed here because it is beyond the scope of this paper. For further
details, please refer to Chapter 2 of Rasmussen and Williams’ (2006) book.

The-GPR is based on the-Bayesian inference. First, consider a single observation. The Bayesian linear regression model with

Gaussian noise is defined as:

fl@)=o(x) w, y=f(x)+e, (22)
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where x is the-input-veetor-of-different-parametersan input vector containing D different predictors of a single observation,

475 ¢(x) is the function which maps the input vector inte-onto a higher dimensional space where the Bayesian linear model is

applicable, w is the-weight-veetorofa vector of weights of the linear model, f(x) is the function value, y is the observed target

value, and ¢ is independent identically distributed Gaussian noise with zero mean and variance o>

e~ N(0,02). (23)

The Bayesian linear model is a GP given the-prior-that the prior distribution of w is Gausstan-normally distributed with zero
480 mean. Since a GP is fully specified by its mean and covariance, itthe Bayesian linear model is written as +

f(X) ~ gP(O7COV(f(X)>)> (24)

where X is the aggregation of all input vectors of n observations. This is the prior distribution over functions. The presence of
€ shows another advantage of the-GPRGPR, viz. that it is able to inherently assume noisy observations and take into-account
this-effeet-this effect into account in the model. o, is one of the hyperparameters.

485 It is common, but not necessary, to assume GPs with a zero mean function. The u#se-mean function can be modeled with a

sh(x) and a corresponding coefficient vector
B. So, the-medel-can-alse-GPs with a non-zero mean function can be assumed as +

set of basis functions

g(z) = f(x)+h(z)' B, (25)

The basis function is one of the hy-
490 perparameters. The-coefficients-are-estimated-with-MATLAB provides four types of basis function: zero (assuming no basis

function), constant, linear, and pure quadratic. The coefficient vector 3 is estimated from training data.
The covariance of the function values is usually—aequired—throughnot specified explicitly but estimated using a kernel

function +
cov(f(X)) =K(X,X)., (26)

495 which is the so-called kernel trick. There are two types of kernel functions: one is kernel functions with the same charac-
teristic length scale for each-predietorall predictors; the other is—that-with-has separate characteristic length sealescales. The
latter is-ealed-Automatic Relevance Determination-kerneHunetions-which-are called automatic relevance determination kernel
functions and can be used to select predictors. Kernel-The kernel function and its characteristic length scale(s) are hyperparam-
eters of the GPR model.

500 In this work, the-Automatic Relevance Determination Squared Exponential kernel function (ARD-SE kernel) (Duvenaud, 2014)
is applied. The ARD-SE kernel function is basically the-a squared exponential kernel function (SE kernel) with a separate char-
acteristic length scale oy, for each predictor m (m is the index of predictors). For any pairs of observations ¢, j, the ARD-SE

kernel function is defined as +

> LA (@im = jm)?
K(zi,z;) = ofexp —3 Z — | (27
m=1 m
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where J]% denotes the signal variance, which determines the variation of function values from their mean. The characteristic
length scale o, implies the sensitivity of the function being modeled to the predictor m. A relatively large length-seale-g,,
indicates a relatively small variation along the corresponding dimensions in the function, which means these predictors are less
relevant in-eemparison-to-than the others (Duvenaud, 2014).

In the end, the key predictive equation for GPR can be derived by conditioning the joint Gaussian prior distribution on the

observations:, and it is normally distributed.
Fel Xy, Xo ~ N(F o cov(fa)), (28)

where the-subseription*-denotes-testdata-X, denotes new input data used in prediction. f represents f (X, ) for convenience,

which is the predicted function value.
To summarize, the hyperparameters defining the-a GPR model are the basis function h(z), the noise standard deviation

of the Gaussian process model o,,, the kernel function K(:ci,asj), the standard deviation of the function values o¢, and the
characteristic length scale in the kernel function o,,,. These hyperparameters can be tunned-tuned in the training process to

achieve a better model.
2.7 Model Validation

The trained model is evaluated with a k-feld-k-fold cross-validation s-in which the data is divided into k- _disjoint, equally
sized subsets. The model validation is done with one subset (also called in-fold observations) and the training is done with
the restk—+remaining (k — 1) subsets (also called out-of-fold observations). This procedure is repeated k-4 times, each time
with a different subset for validation. The predicted target values and the goodness-of-fit measures of the regression models are

computed for in-fold observations using a model trained on out-of-fold observations.

Theoretically, k can be any integer between two and the number of observations (a special case called ‘leave-one-out’).
When k is very small, the sample size of training data (“* of the total observations) could be insufficiently large. However,
considering that the training process must be repeated k times, it would take a very long time when k is very large. As a
compromise between these two factors, & is commonly set to 5-10 in machine learning. In this study, 5-fold cross-validation
was-1s applied.

The model performance is evaluated with two goodness-of-fit measures: the-RootMean-Square-Errorroot-mean-square error
(RMSE)

N
1
RMSE = N Z(yz - ypred,i)2 29

and the coefficient of determination (R?) -which-are-defined-with-Eq—(29)-and-Eq—(30)-respectively-

N N 5
1 2: Yi — Ypred z)

Rl\ISERQ = AT (Uz -y 7‘ed‘i)21 - L pi d

TLVED LAY N 2 : pred, 7(yL — y)2

i

, (30)
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va(yz Ypred, 1)2
2w —v)?

InEg—29-and-Eg—36)-where y and ypreaypred denote the observed target-vatues-and-the-predieted-oneand predicted target

values respectively, i denotes the average of the observed target values, /V denotes the number of observations.

R?P=1-—

It is worth mentioning that, according to this definition, R? can be understood as taking prediction with the mean value of
the observations as referenee-a reference by which to evaluate the model performance. In this case, R? ranges from —oo to
one, for perfect prediction. R? yields—equals zero if the prediction is simply-made-made simply with the mean value of the
observations. The higher the-R? is, the better the model performs. A negative value of R? indicates that the predietion-with-the
seleeted-modetis-selected model performs even worse than the predietionjust-using-prediction using just the mean value of the

observations.

3 Data Processing

This section first introduces the data sources in Sect. 3.1 and then explains the procedure for the determination of the wind

evolution model parameters in Sect. 3.2.
3.1 Data Source

tn-this-study—-This study involves measured data from two research projectsare-involved. The reasons for using two different
data sources are, on the one hand, to find commonality in-between two different measurements and avoid accidental conclu-
sions, and, on the other hand, to study whether there are differences or what kind of differences in the wind evolution can be
observed. The relevant research projects as well as the measurement campaigns are briefly-introduced-(briefly) as follows:
LidarComplex. The research project LidarComplex was funded by the German Federal Ministry for Economic Affairs and
Energy (BMWi). In this project, a lidar measurement campaign was carried out in Grevesmiihlen, Germany. The measurement

site is basically flat, mainly farmland with hedges and few large trees. The-More details about the measurement campaign

can be found in Schlipf et al. (2015). The lidar deployed in this measurement campaign was the SWE Scanner 1.0, which
understood-as-measurement distanees)-focusing at distances of 54.5m, 81.75 m, 109 m, 136.25 m, and 163.5 m, respectively.
The full width at half maximum (FWHM) of the measurement range gates is 30 m (Carious, 2013). The lidar was installed on
the nacelle of a wind turbine with-a-reter-diameter-of H09-m-in-the-measurement-campaign-A-(rotor diameter of 109 m) at 95 m
. In addition, a meteorological mast is located 295-m-295 m southwest of the wind turbineon-which-the tidar-was-instalted—The

; data from an ultrasonic anemometer installed at 93 m on the meteorological mast is also involved in this study. SCADA data
of the wind turbine is also available. M
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determined—with-the-Recorded yaw positions are used to estimate the misaligenment angle «, assuming that the mean wind

direction at the turbine can be approximated with the mean wind direction foreach-data-blockmeasured on the meteorological
mast.

ParkCast. The research-projeet ParkCast® project is an ongoing project funded by the German Federal Ministry for Economic
Affairs and Energy (BMWi). CurrenttyWhile this paper is in preparation, a lidar measurement campaign is being conducted on
the offshore wind farm atpha-ventusalpha ventus®. Two long-range lidars StreamtineXR-(StreamlineXR) have been deployed
in the measurement campaign. The data used in-this-study-was-gathered-by-the-one-here is from the lidar installed on the nacelle
of the-wind turbine AV4 (rotor diameter of 126 m) at 92 m, measuring the inflowstream—Unfortunately;-the-data-of-the-. The

measurement distances were set to 30 m to 990 m with an increment of 60 m. The FWHM of the measurement range gates
is 60 m. Unfortunately, neither data from the meteorological mast on FINOlané-the-* nor SCADA data of the-AV4 for the

observed period was net-yet-available when the analysis was done. Therefore, ithas-te-be-assumed-that-the-wind-tarbine-had

RO—GITC Oof—Sartg U gtne-ooServeaperrioaana—nc aar—-waS—arwaySsmeaSurmeg—arongtematm—wina—-« "

misalignment angle « is not available for ParkCast.
In-eomparisen-Compared to ultrasonic anemometers, lidar systems have much lower sampling rate-beeause-of its-measurement

prineiplerates. To obtain as-high—s s-possible;itis-deei the highest possible sampling rate, we select the mea-
surement periods where the staring mode was eonducted-for-the-used, for both campaigns.

Essential information about the measurements are-summarized-in-the-is summarized in Table 2. Figure A1 gives an overview
of the wind statistics of these two selected measurement periods by illustrating the relative frequency distribution of lidar
meastred-lidar-measured wind speed and lidar-measured-turbulence intensity. For brevity, “EidarComplex"and—ParkCast"
‘LidarComplex’ and ‘ParkCast’ are used to refer to the selected measurements throughout the paper.

3.2 Determination of Wind Evolution Model Parameters

To obtain the wind evolution model parameters a and b, the wind evolution is estimated with lidar data and then fitted to the
wind evolution model (Eq. 58). The processing procedure is described as follows:

The lidar data from LidarComplex is filtered using-a-CNRfitter-with-the-valid-range-from—24-dB-to—5-dBaccording to the
carrier-to-noise ratio (CNR) of the lidar signals (CNR filter). The valid range of the CNR filter is —24 dB to —5 dB, determined

from the plot of CNR values and wind speed.

filter is not, however, suitable for lidar data fittering for-the from ParkCast because, for a long-range lidarby Wiirth-etat2048)

Zhttps://www.rave-offshore.de/en/parkcast.html

3https://www.alpha-ventus.de/english
“https://www.fino1.de/en/
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Table 2. Summary of measurement setups.

Measurement campaign

LidarComplex

ParkCast

Selected period 02 Dec 2643—26-2013-20 Dec 2013 04 Fune-Jun 2019-14 Jun 2019 —+4-Fune-2649-
Location Grevesmiihlen, Germany Aldpha-Ventus-alpha ventus

Terrain type onshore, flat offshore

Device nacelle based lidar + met mast nacelle based lidar
Measurement height [m] 95 (lidar), 93 (sonic) 92

Range gate [m] 54.5:27:25+, 81.75, ..., 163.5 30:60+, 90, ..., 990
Number of range gates 5 17

Sampling rate [Hz] 0.99 0.27
V&hd—%&mp{esi\@ydvvsggn\pvlgsv» 3285 10112

* After lidar data filtering, data pairing, and outlier filtering. For details see Sect.3.2

B &

is-to-deteet-the-extreme—values—which-execeed-the-threshoeld-within-, the backscattered signals from distant range gates could
be very weak, and thus the CNR values could be low even when the measured wind speed is plausible. Wiirth et al. (2018)

suggested an approach to filter the data based on the value range (range filter) and the standard deviation (standard deviation

600 filter) within a certain number of adjacent data points defined by-the-windowsizeas a window, which can keep more valid

605

610

data than a CNR filter. A range filter is-detects the maximum value difference within a window and filters the data points for
which the maximum value difference exceeds a threshold. A standard deviation filter calculates the standard deviation within

a window and filters the data points for which the standard deviation exceeds a threshold. Both filters are applied to check
the line-of-sight wind speed of-lidar-and-its-standard-deviation—The-thresholdsfor both-are-6-m/s-and-3-m/swith thresholds of
6ms ! and 3ms !, respectively. The window size is set as-to three data points.

The lidar data is divided into 30-min-30-minute blocks. This is atse-consistent with the eemmonr-commonly used period for
ealeulation-of-calculating the Obukhov length. Only the data blocks with more than 80% valid data points are used to estimate
the coherence. The missing values are interpelated-with-the-estimated by shape-preserving piecewise cubic interpolation —Amd
the-(Fritsch and Carlson, 1980). The missing end values are each replaced with their nearest value.

Fhe-data-Data measured at different range gates (i.e. measurement distaneedistances) is paired in the way shown in Fig. 4 to

obtain as many samples (i.e. data blocks) as possible. The pairing has €%-pessibilities(N- (MMS the number

of the lidar range gates).
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The travel time of the wind field is approximated with the time lag at the maximum of the cross-correlation A¢maxearr Aty
between these two wind speed signals. The upstream point is always regarded as the reference point. The data measured at the
downstream point is shifted by Atsaseom—

Aty to match the reference wind speed data. The magnitude-squared coherence is estimated using Welch’s overlapped
averaged periodogram method using a Hamming window, 24 segments, and 50% overlap.

The data of the reference point is used to calculate the-lidar-measured-lidar-measured wind statistics.

lidar ° ° °

-~ @
[ ]

ot

Figure 4. Pairing of different measurement points for estimation-of-estimating coherence —for LidarComplex, given as an example.

Step-3:-Fitting-to-the-wind-evelution-medel:Step 3. Fitting to the wind evolution model.

Beeause-Before fitting the model, we must consider two issues that might introduce noise into the coherence estimate.
Firstly, because both lidars are installed on the to i i i i i i

frequeneiesnacelle of a wind turbine which is actually in motion, the focus points of lidar-are-thus-the laser beams are moving
as well. This movementmotion causes excitation at certain frequencies in the estimated coherence.

Figure A2 shows a comparison between an example coherence curve and the power spectral density (PSD) of the fore-aft
and in-plane tower top acceleration of LidarComplex. The excitation in the coherence conforms to that in the-both PSDs and
is-mainty-located-in-the-frequeney-range-higher-than-occurs mainly at frequencies above 0.2 Hz. To avoid the-negative-effeet
negative effects on the fitting quality caused by this excitation, the cut-off frequency is setto-be-6-2-Hzhence set at 0.2 Hz, and
the coherence is enty-fitted-fitted only up to this cut-off frequency.

Secondly, according to Schlipf (2015), critical wavenumbers where the lidar signals would be only determined by noises

must be checked. The critical wavenumbers are 27 /Wy, (Wp, is the full width at half maximum of the range gate) and

between wavenumber k£ and dimensionless frequenc

its harmonics. As mentioned in Sect. 2.3, the relationshi

= kd/27. Thus, the smallest critical value of < is d/W7,. Considering LidarComplex as an example, W,

d = 27.25 m for the smallest separation, which is the most critical case. d/Wp, &~ 0.91, which is already located in the filtered

art (see the grey area in Fig. 5 (a)).
The fitting is done threughnenlinearleast-squaresfitting-using-by a nonlinear least-squares method using the Levenberg-
Marquardt algorithm (Levenberg, 1944; Marquardt, 1963; Moré, 1978). Only the data blocks with ?2-ef the fitting-hicher than

6-8-R? > 0.8 are considered as valid samples.

Step4:-Outliersfiltering:Step 4: Qutlier filtering.
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The final filtering was done by checking the value distribution of every parameterrelevant variable to omit outliers. It is

emphasized that eutlier-isnet-neecessarily-wrong-data—Fer-outliers are not necessarily false data. In some cases, euther-isjust

sample-colectedfrom-the-value range-where-the outlier is from a value range in which not enough samples have-been-colleeted-
TFhoeughsit-were collected. It is very important to filter the-outliers properly because it is difficult for the-a regression model to

capture the relationship for those value ranges with too few samples. : s
than-Because the distributions of the variables all have a long right tail, the outliers are chosen as all data exceeding the 99t®
percentile of the data.

Figure 5 is an example plot of the data block from 07 Dec. 2013, 12:66-+200-12:30, from LidarComplex. This data block is

selected here for two reasons: data integrity and representative wind statistics. In this data block, the lidar-measured mean wind
speed is 7.3ms ! to 7.7ms ™!, and the lidar-measured turbulence intensity is 0.10 to 0.12, for different range gates. These
values appeared frequently in the selected period according to Fig.Al. Hence, this data block is regarded as a representative

ease-study-case-study example for LidarComplex and is referred througeut-to throughout the paper. The figure illustrates the
estimated coherence between different range gates and the corresponding fitted curves. The shaded areas show the-that the

selected cut-off frequency of 0.2 Hz is reasonable for this case. A similar plot from ParkCast is found in Fig. A3. Because the
sampling rate of ParkCast is lower, the excitation by the nacelletep-’s movement is not observed in the coherence, and thus no
cut-off frequency was set for ParkCast data.

In Fig. 5 (c) and (d), the intercept of the coherence is much lower than ere-1 even though the separation is not very large.
This confirms the necessity of choosing a wind evolution model which is able to define different offset values depending on the
conditions. Indeed, in-comparisen-to-compared with the fitting quality of Pielke and Panofsky’s model which merely-contains
contains merely a single parameter — the decay parameter a ;— the fitting quality of the wind evolution model (Eq. (58)) is
overall better (see Fig. A4). The #2-of thefitiing-to-value of R for the fitting of Eq. (58) is almost always higher than thatef
the-fitting-to-thefor the fitting of Pielke and Panofsky’s (1970) model. The wind evolution model used in this work (Eq. (58))

is thus proven te-be-able to model the coherence better.

4 Statistical Analysis of Wind Evolution

This section presents the-results—of-the-a statistical analysis of the-wind evolution, including the distributions of the wind

evolution model parameters —in—(Sect. 4.land-their-dependency-on-the-measuring-separation—in-) and their dependence on
measurement separation (Sect. 4.2).

4.1 Distribution of the Wind Evolution Model Parameters

To study the overall characteristics of the-wind evolution, the value-distributions of the wind evolution model parameters for
the-both measurements are displayed in Fig.6.
As listed in Table 2, there are two main differences between the lidar settings in the-both measurements: sampling rate and

measurement range, which might affect the distributions of the wind evolution parameters. To enhance the comparability of
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1 R1 VS. R2
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0 | 1 |

1072 107! 10° 1072 107! 10°
(a) f dless (b) f dless

1 R1 VS. R4 1 R1 VS. R5

4 1 1 1 1 1
12:00 12:05 12:10 12:15 12:20 12:25 12:30
time
(e) —— Ry =545 m R3 = 109 m ——— R5 = 163.5 m
R2 = 81.75 m R4 = 136.25 m

Figure 5. (a) — (d) Example plots of the estimated coherence between the lidar wind speeds measured at different range gates and the
corresponding fitted curves. The separations between the corresponding range gates are 27.25m, 54.5m, 81.75m, and 109 m, respectively.

The shaded areas indicate the data filtered by the cut-off frequency 0.2 Hz. (e) Time series of the lidar wind speed. The mean lidar wind

speed Ur="7-3ms— U, ranges from 7.3ms ™" to 7.7ms~ " and the lidar measured turbulence intensity I ranges from 0.10 to 0.12, for
different range gates. Date: 07 Dec. 2013. Data source: LidarComplex.

the-both distributions, two special post-processings are executed correspondingly. Firstly, because the lidar sampling rate of
LidarComplex is approximately as-three-times-as-three times that of ParkCast, an artificial data set is made for LidarComplex
by averaging every three data points of the original lidar data to simulate the-lidar-data-as-ifit-were-measured-with-a—similar
samplingrate-as-measurement at a sampling rate similar to that of ParkCast, so that the distributions of the-both measurements
can be compared. The fitted probability density function (PDF) of the wind evolution model parameters determined with

this data set are plotted as yellow dashed lines in Fig. 6 (a) and (b). The comparison between the fitted PDF of the original
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data and that of the data with reduced sampling rate indicates that the lidar sampling rate only very slightly affects the wind
evolution model parameters, or, perhaps more accurately, the estimated coherence. Hence, the different sampling rates of-the
both-measurements-do not account for the differences between the both-cases observed in Fig. 6. Secondly, because of the
limited measurement range of LidarComplex, the maximum separation between two range gates only-reaches-reaches only
109 m, while that of ParkCast reaches more than 700 m. To make them comparable, Fig. 6 (c) and (d) merely-show-show only
the wind evolution parameters calculated from the coherence with separation smaler-than-below 120 m of ParkCast.

Apart from that, the measurements were carried out in different environments (onshore and offshore), at different times of the
year (which would-impaet-impacts atmospheric stability), and have different wind speed and turbulence intensity distributions
(see Fig. Al). Despite these differences, the valae-distributions of the wind evolution model parameters do have some common
characteristics. First of all, the value ranges of the-both wind evolution model parameters for the-both measurements are
similar;—;_a ranges mostly from O to 6 and b from O to 0.5. Values out of these ranges are less likely to happen, according
to the measurements. Second, the values of a and b are found eutto follow an inverse Gaussian distribution and a Gamma
distribution, respectively. These two PDFs are determined by fitting the histograms to all the PDFs supported by MATEAB-and
the MATLAB Statistics and Machine Learning Toolbox and searching for the one with the maximum likelihood. This is done

The corresponding fitted parameters of the PDFs (orange curves) are displayed in Table 3. It is interesting to observe that
the peak of the probability density is located around ¢—=-1-8-a¢ = 1.8 for the onshore ease-LidarComplex, while around &=
0:8-a = 0.8 for the offshore ease-ParkCast. Moreover, the medians of a are approx—2:0-and-+-5-approximately 2.0 and 1.5 for
LidarComplex and ParkCast, respectively. The mean (see 1 in Table 3) and median of a as well as its value of the peak location
of the PDF of LidarComplex are all higher than that of ParkCast. This indicates that the coherence under similar separation
generally decays faster in an onshore location than an offshore location. In terms of b, most of the values is-near-0-are near 0

AARANRAANL

and values higher than 6-1-0.1 are not often observed. Therefore, the y-axes-y-axes in Fig. 6 (b) and (d) are shewn-inlogarithmie
manner-plotted logarithmically to make the part-of-higher-vatue-of-higher-value part of b visible. However, there-is-b shows no
significant difference ef-b-between-both-between the two cases observed in the figure.

It is not yet possible to explain the physical relationship between the wind evolution model parameters and the above-
mentioned PDFs and the physical meaning of the corresponding PDF parameters. To verify whether the abeve-diseussed
phenomena-commonty-exist-above-discussed phenomena commonly occur in wind evolution, further research involving more
different measurement campaigns is necessary. At this point, a hypothesis is made that the values of a and b might follow
an inverse Gaussian distribution and a Gamma distribution, respectively. The corresponding PDF parameters probably-might
depend on the terrain types, on the one hand. It is not clear if the roughness length would be the-a suitable parameter to
quantify the influence of the terrain type on the value distribution of wind evolution model parameters. To figure out a concrete
relationship between the PDF parameters and the terrain types, again, it is necessary to involve more measured data gathered

from different terrain types. On the other hand, unfortunately, it is not yet possible to estimate to what extent the atmospheric

SFrancisco de Castro (2020). fitmethis (https:/www.mathworks.com/matlabcentral/fileexchange/40167-fitmethis), MATLAB Central File Exchange.
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stability would affect the distribution of the wind evolution model parameters because there was no sonic data available for

ParkCast to de-therelevantresearch-inform the associated investigation until this work was finished.

Table 3. Parameters of the fitted probability density functions.

wind evolution model parameters PDF LidarComplex  ParkCast
inverse Gaussian distribution w=2.07 u=1.86

¢ fa; o, \) = mexp [Jg”ﬂ;;;)z] A=17.23  A=238

B Gamma distribution k=0.42 k=0.24

f(x; k,0) = ka_le_% 0=0.18 0=0.16

Note: the notations p, A, k, 6 are independent from the other notations in the table.
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Figure 6. Distribution of wind evolution model parameters. (a) and (b): LidarComplex. (c) and (d): ParkCast. The curves show the corre-

sponding fitted probability density function.

27



715

720

725

730

4.2 Dependeney-Dependence of the Wind Evolution Model Parameters on Measuring-Separationmeasurement
separation

Flgure 7 shows the fitted curves of the estimated coherence of all pairings of the above-mentioned ease—study-example—of
tnei i n-LidarComplex case-study example. Each color indicates

a particular range gate, while
it-ean-be-observed-each marker indicates a particular measurement separation. The figure shows a very clear dependeney
dependence of the fitted curve form on the measuring-separation—The-measurement separation — the curves with the same
marker af&eveﬂappedrde%pﬁ&m%imgg different range gates. This confirms that the coherence ea%ydepends

positions, even though
of 2:5-rotor-diameters-in the MWMW e inflow side of the wind
turbine). Since the curve offset is enly-related-related only to the offset parameter b, obviously, b must strongly depends-on-the
meastring-depend on the measurement separation. In addition, that all the fitted curves of the coherence are grouped together
proves-suggests it is reasonable to model the wind evolution based on the dimensionless frequency. Similar conclusions can be

drawn from the example plot of ParkCast (see Fig. A5), which proves that these conclusions are not accidental.

—6—R; vs Ry, 1D
——R; vs R3, 2D
—A—R; vs Ry, 3D
—=—R;y vs R;, 4D
——Ry vs R3, 1D
—6—Ry vs Ry, 2D
—£— Ry vs R, 3D

R3 vs Ry, 1D

R3 vs Rs, 2D
—e— Ry vs R5, 1D

1073 1072 107t 100
fdless

Figure 7. Fitted curves of the estimated coherence between the lidar wind speeds measured at different range gates. The range gate-gates

Ry to Rs teeate-are located at 54.5m, 81.75m, 109 m, 136.25 m, and 163.5 m, respectively. 1D = 27.25 m. The mean lidar wind speed

H="7-3ms—LU, ranges from 7.3 ms ' to 7.7ms ' and the lidar measured turbulence intensity I ranges from 0.10 to 0.12, for different
range gates. Date and time: +2-07 Dec. 2013, 12:00-12:30. Data source: LidarComplex.

To further study the dependeney-dependence of the wind evolution model parameters on the measuring-measurement sep-
aration, the box plots of the wind evolution parameters, grouped by the measuring-separationsmeasurement separations, are

given in Fig. 8. Although the ranges of the measuring separation-of-the-both-measurements-measurement separation from the
two measurement campaigns are very different, similar-trends-can-stittbe-observed-from-the box plots still show similar trends.

The decay parameter a shows a decreasing trend with increasing measuring-measurement separation. This decreasing trend of
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a gradually stops when-the-separation-approaches-300-mat a separation of about 300 m, as observed in Fig. 8 (c). The offset
parameter b shows an increasing trend with inereasing-measuring-separation. An inereasing-increase in b implies a deerease-of

735 the-decreased offset of the coherence curve. This is consistent with the phenomena observed from Fig. 7 and Fig. AS.
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Figure 8. Box plots of the wind evolution model parameters grouped by the meastrinrg—measurement separations d. (a) and (b):
LidarComplex. (¢) and (d): ParkCast. The bottom and top of the bexs-boxes indicate the first (250 percentile) and the-third (758 per-

centile) guartiequartiles. The lower and upper whiskers show 5™ (bottom) and 95" (top) percentiles. The red line in the middle indicates
the median value. Minimum sample size is 50.

The decay of the-coherence is supposed to result from the evolution of the-turbulence-eddies-with-respeet-to-the-turbulence
eddies depending on travel time. The dependeney-dependence of the decay parameter a on the measuring-measurement sepa-
ration, or rather the travel distances, actually reveals the dependeney-dependence of a on the travel time. Figure 9 shows the
correlation between a and the travel time approximated by Atmaseor= Aty of ParkCast. The fitted curve represents a negative
correlation trend between them. This implies that the decay rate of the coherence decreases with an-increasing travel time. The
nonlinear least-squares fitting is done through-nonlinearleastsquares—fitting-with-using the Levenberg-Marquardt algorithm

5 Parameterization Model

This section first presents the training procedure of the-GPR-medel-GPR models with application of the ARD-SE kernel to
select the suitable predictors in Sect. 5.1. FeHowed-Following that is a discussion abeut-the-predictorseleetionof the selected

predictors in Sect. 5.2, and an evaluation of the model performance ofthe-GPR-models-for-the-prediction-of the-wind-evolution
medel-parameters-in Sect. 5.3.
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‘.--. - data
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Figure 9. Correlation between the decay parameter a and the travel time approximated by Atmaxcorr Aty . The equation-of-the-fitted curve:
%G%%Mf. Data source: ParkCast.

5.1 Model Training

The-initial-settings-of-the-initial settings for GPR model training is-are listed in Table 4. The setting-of-"exact-GPR"-means
‘exact GPR’ setting means that a standard GPR is applied in the fitting and prediction process—In-eoentrast-the-; otherwise

GPR can be approximated using different methods to reduce the eomputatioral-computation time for large amount-amounts of
training data. The initial values of o, o¢, and o, listed in the table are just used to initiate the training —The-final-values-are

determined-by-process, and their final values will be estimated from the training data —The-standardizationis-dene-by the GPR
algorithm. The training data is standardized by centering and scaling the data of each predictor by its mean and standard devia-

tion, respectively, which gives the standard scores (also called z-seeres)-z-scores) (Kreyszig, 1979; Mendenhall and Sincich, 2007)

on o ha A do othe nd d ad nrad or—d
V a o o t O ahaard aPP G or¢Gata:

of the predictor data. Wher
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Table 4. Initial settings of GPR model training.

Hyperparameter  Setting

Basis function constant

Kernel function ARD-SE

Fitting method exact GPR

Prediction method  exact GPR

Initial value of o, standard deviation of observed respenses-target values
Initial value of o standard deviation of observed respenses-target values
Initial value of o, 10

Standardization true

770

—Training the model is a two-ste
rocess. In the first step, all the potential predictors are included in a preliminary training to determine the characteristic length
scale g, for each predictor (see Eq. 27). Figure 10 illustrates a comparison among the log(o-2) of all potential predictors. As

-2

explained in Sect. 2.6, the larger log(o, is, the more important and useful the corresponding predictor is for a GPR model

775 and thus this predictor should be selected. In the second step, new GPR models are trained only with the selected predictors
applying a 5-fold cross-validation to evaluate the model performance, using RMSE (see Eq. 29) and R? (see Eq. 30) as criteria.

780 Table 5 displays the predictors selected according to different lower limits of log(o~2) under different measurement campaigns

LidarComplex or ParkCast), different data availability (whether sonic data is available), and different targets (a or b). R? and
the RMSE of the 5-fold eross-validation-are-also-listed-cross-validation for the model trained with the respective combination

of predictors are shown in the table —The-bold-text-indicatesthe recommen ded-predictor-combinationsfor-each-situation—The
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Figure 10. Comparison of the relative importance of predictors. (a) ParkCast, lidar data. (b) LidarComplex, lidar data. (¢) LidarComplex,
sonic data. log(o,.%) = —co is not displayed.

—#As-shown-In general, the more relevant predictors are involved in the model, the more accurate predictions the model
can make. However, using more predictors entails a larger training data set and thus a longer model training time. On the
other hand, it might also reduce the applicability of the model because predictions can only be made when all predictors are
consistently available and reliable, The trade-off between these factors must be considered in predictor selection, and it is aimed
to achieve relatively high model performance with as few predictors as possible. The bold text in Table 5 s-the predietors-with
“O-indicates the recommended predictor combinations for each situation based on these considerations.

The predictors with log(o,-%) > —2 are generally essential for the model. Fhetimit-oftog{e)-eanbe-set-to-0-if the-
Let us take the situation of using lidar data from LidarComplex to predict a as an example to explain the process of predictor

selection (see Fig. 10 (a) top and the first block in Table 5). Firstly, since log(o>2) of I and 7; are much smaller than the

others, it is not necessary to consider these two predictors, and the lower limit of log(o~?) can be initially set to —4 (see Table
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Table 5. Resutts-Summary of the predictors selected according to different lower limits of 1o o.-2) under different measurement campaigns
different data availability, and different targets, R and RMSE are obtained from a 5-fold cross-validation of the model eross-vatidationtrained
with the respective combination of predictors. The bold text indicates the recommended predictor combinations.

Measurement  Target  Case %@g{aﬁl&\g&g&il Predictors

1 <10> -4 Uy, o1, frzr Gy, Gag, L, FrsAtrayor Aty d
2 <6> -2 U1, o1, frzr a4 At rayor G, Goug. L Aty
LidarComplex 3 <+6>0 U, o, s ftarGry, Gau. Li vF At rayiordrtr
lidar data ¢ 44 <04~ U 01, Ly, Aty d
5 - U1, o, e #Gh ), Gog Lo, A, d
56 <608~ Ui, o1, oG, Gl Lo At d o
67 <+6> -2 Uy, on, s frar Gy, Gaa, L, AtragrorAtym, d
78 > -1 Ungo G Gar Lo
LidarComplex 9 - Uy, o1, Ly, Atrayior Atm, 4
lidar data b 810 <40~ Uy, 01, Gy, Gy, Ly, Atr, d
911 <6 O, ov, s 41=G1). Ga Lo Aty d o
1012 <6 U, o, s G, Gaao Lo, At d, g
{+l3 <%9> _4 Ux,s, WMLX@’ At Tayior Oy s, W@@é@g&%i
LidarComplex Lys, 025, G1as, Gaz5 Al d,
sonic data “ 1214 <05> -2 Ux s, oxsrftzssassG 2,08 00,5 Glyss Ons Gaas @
1315 <050 Usss O Oss @
4 16 <+9> _3 fras s Usso L0 Gras. Gass Lx.s, St rayor oy st s firzs FrsGlys G
LidarComplex Gz, A0, d, o, a
18 >—1 Ita.s, G248 G1
ParkCast 19 51 Un 0 Giso Gty L Ay, d
ldardaa 20, 20, s e Gigo Giao Lo Aty
ParkCast 2 - Un 0 Giso Gty L Aty d
lidar data ’ 22 >0 U191, G110, G2

Notes: Cases 4-6 and Cases 9-12 are selected for comparison with Case 1 and Case 7 for different purposes, respectively. Case 4 and Case 9: to examine the effect of introducing G'1 and G2 as pre

different effects of Aty and Atp. Case 6 and Case 11: to examine the effect of having «v available. Case 12: to examine the effect of introducing a as a predictor for b.

kept-aceeptable—. The resulting models are evaluated to determine whether it is appropriate to remove these predictors. For
805 example, the comparison between Case 1 and Case 2 shows that removing d almost does not affect the model performance in
this situation, with R? decreasing only slightly from 0.70 to 0.69. However, further abandonment of Aty significantly reduces
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840

the prediction accuracy, reducing R? more substantially from 0.69 in Case 2, to 0.59 in Case 3. Therefore, it is no longer proper
to remove further predictors, and the predictor combination in Case 2 is recommended.

5.2 Discussion of Selected Predictors

Feature selection is not only a tool to select suitable predictors for a machine learning model, but also could shed some light
on intrinsic relationships among data, Here are some discussions about the selected predictors, to provide some insights into
ossible correlations between wind evolution and these predictors.

Selection between two related variables. In the preliminary training, two pairs of related variables are intentionally involved
at the same time: standard-deviation-o and turbulence-intensity-Ir, integral-timeseale-T' and integral-dength-seale-L. Only

It is only necessary to select one of the two related variables needs-te-be-selected-as—predictorif-neeessary(if determined to
be relevant), because they can be converted to-each-ether-into each other (given U). In terms of ¢ and I, it is surprising to

notice that the GPR medel-shows-models show a preference for o rather than It, although It is more commonly used in data
analysis and simulation in wind energy. The only exception is the situation of using sonic data from LidarComplex to predict
NWWHOWBVGI the %ﬁuﬂﬁe&beeeme&eempheafeekﬁﬁefm&ﬁf
selection becomes complicated for 7" and L.

hmﬁeeiﬁfﬁh&M%W&L is clearly more preferred%eﬁﬁdeﬁﬁg%hak W L
is bviously higher than log(o_ <) of T %d&e%w&&w%%peeek@ee«l%q—&%

ealenlated from-the-data-but-not from-the-othervariablesin Fig. 10 (a) top and (b). In the other situations, log(c-?) of L and

log(o-2) of T show similar values. For consistency, we decided to select L for all cases whenever L is determined to be
relevant.

Introducmg htgher-order wind statistics as predtctors In-literature;-the-higher-order-statisties-skewness-and-kurtosis-of-the
S0 far, skewness Gy and kurtosis G of wind speed have not
W@EXM However, it is %%W%S%HMWW are selected

as predictors

%MMW%WW%MW
devices. Case 4 and Case 9 are aimed at examining the effects of Gy and G on the prediction of @ and b, respectively, with G
and G, removed in comparison to Cases 1 and 7. Case 4 and Case 9 show much worse prediction accuracy, with &2 = 0.53 in
Case 4 compared to 1?2 = 0.70 in Case | and 12” = 0.46 in Case 9 compared to /2” = 0.70 in Case 7. This comparison confirms
that &y and G are essential for predicting wind evolution when using lidar data, and introducing Gy and Gy as predictors can

This implies that G; and G'» might contain additional information which ean-deseribe-the-state-of-turbulence-more-coneretely:
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Forexamplegiven-the-same-could distinguish different states of turbulence given a particular mean wind speed and standare

with-other-eonditions:turbulence intensity. and this “different state’ might be relevant to wind evolution.

Different approximations of travel time. Aty and Aty are two different approximations of travel time. Although Aty is
expected to be more predictive than Aty, At is still involved in the model training because, in application, it is easier to
calculate Aty than Aty Cases 5 and 10 are selected to compare with Cases 1 and 7, respectively, to examine the different
effects of Aty and Aty on the GPR models. The respective values of 12” show that replacing Aty with Aty only slightly
decreases the prediction accuracy. Therefore, for a simpler calculation of travel time, Aty can be used as a predictor instead.

Effect of misalignment angle. As discussed in Sect. 2.5, misalignment angle o is supposed to be an important predictor
for the prediction of the horizontal coherence. In Cases 13-15, where sonic data from LidarComplex is used to predict a,
shows a high relevance with log(q7,,%) > 0. However, for the prediction of b using sonic data (Cases 16-18), removing o from
predictors does not influence the prediction accuracy much, especially when comparing Case 16 and Case 17, with ?” = 0.80
and R? = 0.78, respectively. These results indicate that o is essential for the prediction of a but not relevant for predicting b.

In addition, o is introduced in the prediction using lidar data (Case 6 and Case 11) as well to examine its effect, although o
is actually not available when only using a lidar in staring mode. As mentioned in Sect. 3.1, « is approximated by the deviation
between the yaw position of the turbine and mean wind direction taken on the meteorological mast. Cases 6 and 11 both show.
better prediction accuracy than Cases | and 7, with B2 =0.76 and R?? = 0.81, respectively, despite the uncertainties in the
approximation of a.. This means that if a were available, the prediction accuracy of the models trained with lidar data could be
further improved. As mentioned earlier, a could be made available e.g. by deploying a multi-beam lidar.

Introducing one of the targets as a predictor for the other. Since-the-two-wind-evolution-parameters-According to the
wind evolution model (Eq. (8)), @ and b jointly determine the shape of-the-wind-evolution-model—there-is-and the position

of the modeled coherence, and thus they have a certain correlation between-themwith each other. Introducing one of them
as a predictor for the other may improve its prediction accuracy. The-comparison-ofcase-9-and-+0-Case 12, with R* = 0.74,
compared to R? = (.70 in Case 7, confirms that introducing a as a predictor for b can indeed-inerease-the-R>of the-help with
the prediction of b. This means it could be a good idea to predict the wind evolution model parameters successively rather than
separatelyin parallel. This concept is not yet fully studied in this work, and thus ease-9-isnot-considered-as—Case 12 is not
presented as a recommendation. To prove its applicability, it is necessary to investigate which wind evolution model parameter
should be first predicted, and how the prediction uncertainty of-the-first-one-would-be-propagated-in the first parameter would
propagate to the secondene.

Prediction using sonic data. As-mentioned-above;-theresearch-on-the-eases-of-Additional research on using sonic data as

aims to provide some insights into
whether it is worth involving sonic data in wind evolution prediction when available. When comparing the model performance
of the recommended-eases of using lidar data-and-sonie-datausing lidar data and sonic data from LidarComplex, Case 13—the
best case of using sonic data to predict a-—shows a higher prediction accuracy (12” = 0.83 ) than Case 6—the best case of using.
lidar data given o available (R? = 0.76). However, Case 13 needs many more predictors than Case 6, whereas Case 14 and

predictors i
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Case 15 , with fewer predictors, do not show any advantage in prediction accuracy. For predicting b, Case 16—the best case of
0.81). It

must be emphasized that the ultrasonic anemometer is installed on a met-mastloeated-at-meteorological mast located 295 m

using sonic data (R? = 0.80), does not outperform Case 11, the best case of using lidar data given « available (R> =

3

away from the lidar. There must be a deviation between the sonic data and the data-of-true values in the wind field where

the coherence is estimated—Despite-this;-the-best-eases-of-, which reduces the prediction accuracy when using sonic dataas
i i teti in-comparison-te-thatof-. Figure 11 illustrates
a comparison between the model performance of the recommended cases of using lidar data (ease-6-and-9)—This-implies-that

than-that-of-ease-6and sonic data.
5 0.5
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Figure 11. Comparison of prediction performance of models using lidar data and sonic data from LidarComplex. (a) and (b): lidar data. (c

and (d): sonic data. The subscript ‘pred’ indicates the predicted values.

Interestingly, Case 15 can achieve the same predictive accuracy as Case 1, with only three predictors: the-mean-and-standard
deviation—of-the Jongitudinal-component-mean wind speed Uy sand-os—and-the—, standard deviation of the vertical wind

s

component o, ;—TFhink-of-the-physical-consideration—of Kristensen(1979)—The Kristensen’s-model-assumes—that-the-wind

the-probability-that-the-eddy-diffuses+in-, and the misalignment angle «. In fact, g, . is determined to be the most important
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ARD-SE

. This might imply a possible correlation between wind evolution and vertical

T Ox s alOx 55 W 0z,5

convection.

Influence of atmospheric stability. We initially intended to study the influence of atmospheric stability using a dimensionless

height ( as the stability parameter (see Sect. 2.5). However, very surprisingly, ( is not selected as a relevant predictor in an

cases, and log(o~2) is quite small compared to the others (see Fig. 10 (¢)). In the end, we found that the stability happens to be
mostly neutral during the chosen measurement in LidarComplex. This could be an-explanationfor-this-predictorcombination:

the reason for ¢ not being selected as a predictor. Therefore, it is not possible to analyze the influence of atmospheric stabilit
on wind evolution in this study.

5.3 Model Evaluation

As mentioned-above—the-shown in Table 5, R? of all recommended cases range from 0.67 to 0.83. These results are much
better than that of the preliminary study (Chen, 2019); in particular, the prediction accuracy of the parameterization-medel

2

) S S 5

modelevaluation, from the perspective of the predietion-of-offset parameter b has been significantly improved. This is mainly.
Wmhe wind evolution-model parameters. In-this section, model-evaluation is further discussed-from- othe
perspeetives—ARD-SE kernel, which can help to select predictors reasonably and give different weights to predictors according.
to their relevant importance for the prediction, whereas kernel functions with a common length scale for predictors were applied
in the preliminary study.

Firstlyitisinteresting to-visualize-the The prediction errors of a and b are quantified with the respective RMSE between their
predicted and observed values. But in fact, the shape and position of the predicted coherence determined by both parameters
together is the final prediction goal. And the corresponding prediction errors will eventually appear as the deviation between
the predicted curve and its estimated curve due to the prediction errors of a and b.

To intuitively display how the prediction errors affect the shape and the position of the predicted coherence in the frequency
domain, eembining-the-predietion-of-the-both-wind-evolution-medel-parameters—Figure-Fig. 12 shows the predicted coher-
ence and the corresponding 95% confidence interval by-the-GPR-models-using-lidar-data(ease-for the example case from
LidarComplex. For the example prediction with lidar data in Fig. 12 (), the prediction of a and b is made by the GPR models

in Cases 6 and +6)11, respectively. And for the example prediction with sonic data in Fig. 12 (b), the prediction of a and senie

data(ease-b is made by the GPR models in Cases 13 and +4)for-the-casestudy-example-of LidarComplex17, respectively. The
predicted coherence and the 95% confidence interval are reconstructed throtugh-by putting the predicted vatue-values of a and

b and their lower and upper bounds of the 95% confidence interval into the wind evolution model (Eq. (58)). From-the-figure;it
It can be observed that the prediction is very good for this example because the predicted coherence is almost overlapped with

the one estimated from the measured data, and the 95% confidence interval is quite narrow.
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To show the prediction errors in a more general sense, the RMSE interval is additionally indicated as shaded areas in Fig.
12. The lower and upper bounds of the RMSE interval are determined with

rygﬂodel,lb(fdless) = €xXp |:_ \/(apred + Aa)Z ) deIess + (bpred =+ Ab)2:| (31)
and
’anodel,ub(fdless) = CXp |: \/(apred - Aa)z ' f(%less + (bPYEd - Ab)2:| ’ (32)

respectively, where a,,..q and b are the predicted values of a and b, and Aa and Ab are the respective RMSE. The narrow
RMSE interval shows that the GPR models perform overall well in the prediction of wind evolution.
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Figure 12. Example predicted coherence with 95% confidence interval for two different measuring-measurement separations of LidarCom-
plex. (a) Prediction with lidar data: predicted-vatue-of-a from-ease— Case band-thatof, b from-ease+0— Case 11, (b) Prediction with sonic
data: predieted-value-of-a from-ease— Case 13and-thatof, b from-ease-+4— Case 17, The shaded areas indicate the RMSE interval. The input
predictor data and the estimated coherence are from the case study example of LidarComplex: +2-07 Dec. 2013, 12:00-12:30. The mean lidar

wind speed U; ranges from 7.3ms ™' to 7.7 ms ! and the lidar measured turbulence intensity It ranges from 0.10 to 0.12, for different
range gates.

SeeondtyMoreover, it is important to check if the prediction errors of the models are relevant to the values of the predictors.
Taking the models trained with the lidar data ef-LidarComplex—(ease-from LidarComplex (Case 6 and +0)-as-Case 11) as
an example, Fig. 2?-and-22-illustrate-13-16 _show the box plots of the prediction errors, defined as the deviation between
the predicted target-value-and-the-real-oneand the observed values of targets, with respect to the values of the predictors.
The histograms of the predictor values are plotted below the box plots correspondingly. The x-axes-z-axes of the box plots
correspond the upper limit-bound of the respective bin in the histograms. For example, in Fig. 22-13 (a), the first box labelled

with ‘4" means it is plotted with the prediction errors of the samples attributed to the mean wind speed range of 3-4 ms~1.
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Figure 13. Prediction errors of a (Case 6) and b (Case 11) from LidarComplex with respect to the values of predictors. (a) Lidar measured
mean wind speed U;. (b) Standard deviation of lidar measured wind speed o;. n is sample size. The bottom and top of the boxes indicate the
first and the third quartiles, i.e. 25" and 75" percentile, respectively. The lower and upper whiskers show 5" and 95" percentiles. The red

line and the yellow cross in the middle indicate the median and mean value, respectively.

The box plots indicate data within the first and the third quartiles (i.e. 25" and 75" percentile) and represent the main part
of the data, whereas whiskers show the tails of the distributions of the prediction-error-data indicating extreme values. In Fig.
13-16, it can be observed that the boxes of the prediction errors of a and b are all eentered-around-0-and-no-ebviousrelevance

isrelatively large beeause of a-smalt-sample size—quite narrow and centered around 0, indicating small prediction errors for
the majority of samples. That the boxes are centered around 0, as well as the median and mean values (indicated as red lines
and yellow crosses, respectively), means that there is no systematic error with respect to predictor values. In the boxplots for
the prediction errors of g, the ranges of boxes and whiskers do not show obvious relevance to predictor values except for small
travel time and measurement separation. The large range of the box and whiskers of the first box in Fig. 15 (b) and that of the
first box in Fig. 16 (a)) implies that the prediction of a is likely more uncertain for small travel time and measurement separation
(both are related to some extent). The ranges of boxes and whiskers of the prediction errors of b show some relevance to the
values of standard deviation, skewness, travel time, and measurement separation. In Fig. 13 (b), a clear trend can be observed,
that the ranges of the boxes and whiskers decrease with the values of standard deviation, indicating that the prediction of b

might be better for high turbulence. A similar trend can be observed in Fig. 14 (a), meaning that the prediction of b might be
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Figure 14. Prediction errors of a (Case 6) and b (Case 1) from LidarComplex with respect to the values of predictors. (a) Skewness of lidar
measured wind speed Gy, (b) Kurtosis of lidar measured wind speed Giz1 1 is sample size. The bottom and top of the boxes indicate the
first and the third quartiles, i.e. 25" and 75'" percentile, respectively. The lower and upper whiskers show 5'" and 95'" percentiles. The red
line and the yellow cross in the middle indicate the median and mean value, respectively.

better under the circumstance of negative skewness (longer left tail) than that of positive skewness (longer right tail). In Fig.
15 (b) and Fig. 16 (a), the ranges of boxes and whiskers get larger with travel time and measurement separation, implying that
the prediction errors of b increase with travel time and measurement separation.

the-wind-evolution—HeweveritIt is worth emphasizing that the performance of any regression model is-only-pessible-te-be
can be only as good as the quality of the training data. No matter-whatkind-choice of regression model eannot-eliminate-the
notsy-term-in-the-can eliminate noise from the training data. And the noisy-noisier the training data is, the more uneertainty

uncertainties the prediction of the regression model will contain. A good data source is always very-essential for training a

good regression model.
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Figure 15. Prediction errors of a (Case 6) and b (Case 11) from LidarComplex with respect to the values of predictors. (a) Integral length

scale of lidar measured wind speed L. (b) Time lag determined by the peak of maximum cross-correlation Atyr. n is sample size. The

bottom and top of the boxes indicate the first and the third quartiles, i.e. 25" and 75" percentile, respectively. The lower and upper whiskers

how 5 and 95" percentiles. The red line and the yellow cross in the middle indicate the median and mean value, respectively.

6 Conclusions and Outlook

This paper aims to a

to-the-wind-field-conditions—Beeause-the-concept-of-the-investigate the potential of Gaussian process regression (GPR) in the

arameterization of wind evolution. This research has been motivated by the need of lidar-assisted wind turbine control needs

afor accurate models to predict wind evolution, in order
to avoid harmful and unnecessary control actien—actions. In addition, the commonly used 3-dimensional stochastic wind field
simulation method can be extended to 4-dimensional by integrating wind evolution, to provide a more realistic simulation

environment for this control concept.

this research, data from two nacelle-mounted lidars in both onshore and offshore locations were used to estimate wind

evolution.
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Figure 16. Prediction errors of a (Case 6) and b (Case 11) from LidarComplex with respect to the values of predictors. (a) Measurement
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the first and the third quartiles, i.e. 25" and 75" ercentile, respectively. The lower and upper whiskers show 5" and 95" percentiles. The
red line and the yellow cross in the middle indicate the median and mean value, respectively.

ion-mode affeter: veat, modified from

a model suggested in the literature. To shed light on some characteristics of them-and-an-investigation-of-the-applicabilityof
the-Gausstan-proeessregresston-for-predietion-of-wind evolution, a statistical analysis was done for the wind evolution model

parameters.

In the statistical analysis, the distributions of the wind evolution model parameters of the-both measurements show some
common characteristics, despite different wind-field-conditions-wind-field—related variables and settings of the measurements.
The value ranges of the-both wind evolution parameters a (i.e. the decay parameter) and b (i.e. the offset parameter) are very
similar in the-both measurements. The distributions of a and the b seem to follow an inverse Gaussian distribution and a
Gamma distribution, respectively. The fitted parameters of the probability density functions are different in the-both measure-
ments. {H&fhu&hypefhes&eek\ygvhy/ggm that the pararneters of the probability densuy functions sheuld-m N\gdwdepend
on the terrain type.
data—Moreoverit-was-observed-astrong-dependeney-Moreover, a strong dependence of wind evolution model parameters on
the-measuring-separationwas observed on measurement separations. The decay parameter a shows a decreasing trend with in-

creasing measuring-measurement separation, while the offset parameter b shows an increasing trend with increasing measuring

measurement separation.
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shew-satisfactoryprediction—aceuracy-under-a—-S-fold-eross—validationAn investigation was done to explore the potential of
using GPR to achieve parameterization models for wind evolution. GPR models were trained with the wind evolution model

(i.e. targets) and some wind-field—related variables (i.e. predictors) acquired from the lidars and a meteorological

mast. The automatic relevance determination squared exponential kernel was applied to evaluate the relative importance of
the-predietorsfor-the-meodel-and-different predictors and to select the essential predictors —t-is-confirmed-that-thiskernelis

predictor selection;-e—g-introdueing for the models under different data availabilities. The performance of the GPR models
was evaluated with the coefficient of determination R? and root-mean-squared error (RMSE) using a 5-fold cross-validation.
The R? of the models in the recommended cases for both targets, under different measurement campaigns and different data
availabilities, range from 0.67 to 0.83.

A comparison between the models trained with different predictor combinations provides some interesting insights: 1) GPR
models show preference to a fundamental variable than a derived variable when selecting between two related variables.
2) Introducing higher-order wind statistics or(i.e. skewness and kurtosis) as predictors can improve the models. 3) When
using travel time as a predictor, the approximation determined with the maximum cross-correlation is slightly preferred than
Taylor’s translation hypothesis, but the latter could still be an option for the sake of simplification. 4) Introducing one of the

a-visualizationof the predicted-coherenee-targets as a predictor for the other can also improve the models, but further research
needs to be done to understand the propagation of the uncertainties introduced by the first predicted target. 5) Considering the
misalignment angle as a predictor can properly account for its influence on the horizontal coherence. 6) Prediction using sonic
data (not measured nearby) does not show any advantages given that it requires many more predictors to exceed the prediction
using lidar data_

The predicted coherence is obtained by putting the two predicted parameters into the wind evolution model. To intuitively
display how the prediction errors of a and b affect the shape and the position of the predicted coherence in the frequency

domain, the predicted coherence and its 95% confidence interval in-thefrequeney-domainwas visualized for a representative
case-study example. The predicted coherence matches the coherence estimated with-the-meastired-from data very well, and the

95% confidence interval is relatively narrow. In addition, i teti i the valaes

show the impact of the RMSE of a and b in a more general sense. The RMSE interval turns out to be quite narrow, indicating
an overall goo model performance. Furthermore, the wind-evetutionprediction errors of a and b were analyzed with respect
to the values of each predictor, shown as boxplots. The results show that, for both a and b, there is no systematic error with
respect to predictor values. The prediction of a seems to be less accurate for small travel time and measurement separation.
The prediction errors of b show some relevance to the values of standard deviation and skewness of wind speed, travel time,
and measurement separation.
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For-the-medel-There is still space to improve the performance of the parameterization model;—there—is—still-space—for

improvement. Since the performance of any regression model is-only-pessible-to-be-can be only as good as the quality of the
training data, reducing the uncertainty in the training data or increasing the data amount could improve the model performance.
For example, methods to improve the estimation of the coherence and the wind statistics from lidar data are desireddesirable.
Moreover, the predictors discussed above do not cover all the-possibilities. Introducing new proper predictors could hence also
improve the model performance. In fact, the model concept is very flexible. Any improvement of any part of the workflow can
be easily integrated.

In the future, besides the ideas abeve-mentioned;itis-mentioned above, it would be interesting to involve more measurement

data, especially from different terrain types, to further s

work-commenlyexist-and-what-are-the physical-prineiples-investigate whether the wind evolution characteristics found here
occur commonly, and what physical principles stand behind them. Another question reeds-to-be-answered-is—i-that needs

answering is whether it is possible to achieve a generally applicable parameterization model, and how. Moreover, considering
that the computational time of the model training could be an important issue for some applications, e.g. real-time model
comparing GPR with some alternative

algorithms to provide-an-insight-of-develop insight into the trade-off between the-computationral-computation time and the
prediction accuracyef-the-medel. Furthermore, eensiderconsidering the application of the parameterization model using real-

training, it is worth

time measurement data as predictors, an additional model will be needed to determine whether the current data meets the
quality requirements to be input into the parameterization model. Fhis-will-be-one-of-theresearchfoecusesin-thenearfuture—
Last but not least, as mentioned above, the our model concept is very flexible and the-its methodology can be applied in
different situations. For example, for other lidar trajectories or even other measurement devices, the model concept can be
modified by replacing the method-of-the-estimation-of-coherenee-coherence estimation method. The wind evolution model

and the regression model can also be changed. Basically, one can achieve a parameterization model to meet ewn—speeifie

requirements-various specific requirements by following the concept and the methodology presented in this paper.
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