
Response to Referee #1 

We thank the referee for their review and their thoughtful comments. Point-to-point responses 
can be found below, and the relevant changes will be made to the manuscript during the 
revised submission stage 
(https://www.wind-energy-science.net/peer_review/interactive_review_process.html), colored 
in red. 

 

Comment #1 

Wake model. Overall, the inclusion of the wake model seems to be the weak, but predominant, 
part of the article. That is not a criticism of the wake model itself. The lifting line wake model 
definitely seems to have merit, and engineering models are important. It is fully understandable 
that model developers wish to spread their model and test their capabilities. However, the 
present application should be better addressed and motivated. Does the analysis actually 
strengthen or weakening the general use of the wake model? Does the inclusion of the wake 
model improve the potential for closed-loop wind farm control, or are the results so model 
dependent that one should rather use a more model-free approach? 

Response 

Thank you for this comment. We will improve the motivation of the wake model in the 
manuscript and we will briefly summarize that justification and rationale here. In general, 
model-free wind farm power maximization has significantly slower rates of convergence than 
model-based optimization and may therefore be less well suited for closed-loop control in a 
practical, transient wind farm setting (see recent discussion by [1,2]). Model-free formulations 
have not been vigorously tested in transient simulation mean conditions aside from the recent 
paper by Ciri et al (2019) [3]. 
Given computational cost considerations for real-time control (i.e. computational limitations at 
an operational wind farm), a focus of the wind farm controls community has been to leverage 
existing, computationally efficient steady-state wake models for closed-loop control (see, e.g., 
review by Doekemeijer, Fleming & Willem van Wingerden (2019) [1]). 
As the referee has suggested, an overarching objective of the submitted manuscript is to 
examine the sensitivity of closed-loop wind farm power maximization control to common wake 
model parameters and assumptions. More specifically, the assumptions invoked in the wake 
model presented here are functionally similar to assumptions in the popular FLORIS model 
software. The results in this manuscript suggest that wake models do lead to beneficial power 
production increases for turbine arrays, provided that the parameters in the wake models can 
be accurately estimated a priori or in a closed-loop fashion.  
While model-free wind farm control is an interesting line of research moving forward, 
generalizations of such approaches to transient atmospheric conditions require further rigorous 
testing. Future work in this community (as recently discussed at the IEA Topical Expert Meeting 
on Wind Farm Controls) should establish standard test problems and benchmarks for the 
comparison of various optimization formulations such as the presently proposed methodology 
and model-free formulations. 
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Comment #2 
It seems that the calibration of model parameters frequently ends up compensating for the 
missing physics, which affects several of my following points. This is also one of the major 
self-contradictions within the article. On one hand, the authors repeatedly write that the model 
is "physics-based", which in isolation is correct. However, the current application of the model 
also includes several other models/assumptions, which in combination is questionable. It also 
leads the authors to give statements like:  
- "the two parameter lifting line model may be overparameterized, which leads to overfitting." 
- "The ability of a one or two parameter analytical wake model ....may enforce unreal-istic 
model parameters to represent neglected physics.".  
Clearly, the model does not capture all the physics. Hence, the desirable physics of the original 
model appears to become a limitation, rather than an benefit, when various additional models 
and assumptions are combined, see below. The results and the aforementioned quotes 
in-dicate these concerns, but it is not reflected in the abstract nor in the conclusion, which 
hence seems somewhat selective. I will try to elaborate on a number of points, where this 
seems to have a significant impact. 
 
Response 
Thank you for this thorough comment. We will update the abstract and conclusions to further 
reflect the sensitivity analyses which were a major component of this research.  
Due to the underlying assumptions of wake models and yaw misalignment wake deflection 
models, these methods cannot be expected to capture all relevant physics for full-scale wind 
farm operation. In fact, the use of state and parameter estimation methodologies to correct 
unresolved physics or imperfect model assumptions have been commonly used for wind farm 
controls applications [see e.g. 4, 5].  
Within the current closed-loop framework, the goal of the EnKF model parameter estimation is 
to accurately fit to a current timestep and then to apply those parameters for optimization only 
for the very next timestep. While it is reasonable to question the generalization of the 
site-specific fitting, the purpose here is not to create general parameterizations of the model 
parameters to be used for other conditions or wind farms but to only apply the parameters 
from one control step to the next. This objective and fitting consequence is thoroughly 
discussed in the text of this article (and will be detailed in the abstract and conclusion of the 
updated manuscript as per the referees comments).  
More importantly, the predictive ability of this approach was tested here in Figures 21 and 22. 
As discussed in the manuscript Section 5.4, the present wake model approach with EnKF state 
estimation significantly outperforms the predictive capabilities of the commonly used Gaussian 
wake model with pre-defined empirical parameters with 5x lower predictive error. Therefore, 
with the site-specific fitting, the EnKF estimation of the model parameters significantly 
improves the model predictive ability. The improvement in the predictive ability of wake 
models with optimized model parameters is also shown in the very recent paper [2] (published 
online April 29, 2020). 
Future work will focus on the constraining of the state estimation methodology to reduce 
model flexibility to test whether this improves the predictive success. 
 
Comment #2(a)(1) 
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Model Description and Assumptions:  
- The assumption of thrust following cosˆ2gamma could potentially have a big impact on the 
results. The article investigates PP ,but this seems to be an equally important assumption and 
the impact should not be neglected. 
 
Response 
The authors agree that the wake model assumption of thrust following cosˆ2(gamma) could 
also have an influence on the closed-loop control performance. This was not tested in this study 
since the actuator disk model used directly enforces the thrust to follow cosˆ2(gamma) and 
since this assumption is enforced in the lifting line model derivation [6]. In general, the thrust 
would follow cosˆTp(gamma), where Tp is likely less than 2 (see e.g. Bastankhah and Porte-Agel 
(2016) [7]). In this event, the closed-loop model parameter estimation would likely compensate 
by predicting smaller wake expansion coefficients (which leads to stronger wakes) than the true 
value given the model expectation of less streamwise thrust than is imposed in reality. We will 
update the manuscript with further discussion about this wake model assumption. 
 
Comment #2(a)(2) 
The article states "Future work should focus on methodologies to robustly estimate PP from 
SCADA data". That’s in principle good, but I question the statement"there is no accepted 
framework for determining PP"(line 635). It seems that it could relatively easily to perform 
simulations using an actuator disc model or an aero-elastictool, e.g. FAST, to fit both PP and the 
coefficient for CT as function of yaw for the specific turbine. This would render Section 5.3 
obsolete as it stands now. The sensitivity to PP is obviously interesting, but it would seem more 
appropriate to address it using your reference to Liew et al. as also commented in line 650. 
 
Response 
As discussed by Liew et al. (2020) [8], both actuator disk theory and blade element momentum 
theory (e.g. FAST) return Pp=3. Wind tunnel experiments [e.g. 9] and large eddy simulations 
[e.g. 10] have shown that Pp is more typically between 1.5-2.  
Further, Pp is likely turbine specific (see e.g. Liew et al. (2020) [8]) and has functional 
dependence on shear, veer, atmospheric stability, wake impingement, and likely other 
parameters. Field experiments (on-going by the authors) to robustly calculate Pp require weeks 
or months of experimentation due to the functional dependencies mentioned above and are 
therefore expensive and time consuming. Therefore, the authors believe that the quantification 
of the influence of Pp under model parameter uncertainty are critical to future wake steering 
deployments. 
 
Comment #2(a)(3) 
- Linear superposition: This is a highly questionable assumption, which will also affect the 
results in terms of the overfitting and parameter compensating for lack of physics. An improved 
wake superposition has recently been proposed by Zong and Porté-Agel,2020, which is 
physically consistent and shows improved results, also for wake steering 
 
Response 
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While the linear wake superposition method (or sum-or-squares superposition commonly used 
in FLORIS) are often used, the referee is correct that their physical justification is challenging. 
Zong and Porte-Agel (2020) (which was published after this article was submitted for review) 
have thoroughly addressed this long-standing open-question in the literature. The method of 
Zong and Porte-Agel (2020) leverages an iterative approach and assumes an empirical, 
pre-defined prescription of the wake model parameters which differs from the present model 
approach. Future work will incorporate the new superposition methodology with optimal 
parameter estimation. 
 
Comment #2(a)(4) 
- Please define the "effective velocity" (line 136). Does that correspond to rotor averaged or 
based on the power production? 
 
Response 
The effective velocity is the rotor averaged velocity, we will adjust the language in the 
manuscript to clarify this definition. 
 
Comment #2(b) 
Advection time: This section could be significantly reduced and rephrased. Most of the 
explanation deals with Taylors hypothesis, but at the end the advection time is adjusted to be 
twice this "to account for errors associated with the simple advec-tion model". This appears as 
a somewhat random choice in the current context. The proper explanation could/should 
involve (conservative) estimates of the wake propagation velocity, i.e. the wake propagates 
slower than the mean flow. There are numerous references for this. 
 
Response 
Thank you for this comment. We will rephrase this section for brevity and include additional 
wake propagation references in the manuscript. The invocation of twice the Taylor’s hypothesis 
advection time was to have a strongly conservative estimate. Since the flow is quasi-statistically 
stationary (i.e. statistically stationary except for inertial oscillations which occur on Coriolis time 
scales), conservative estimates for the advection time and time-averaging of statistics have 
been taken. The influence of the advection time scale assumption was tested in the initial 
manuscript where it was shown that it did not play a significant role in the power production 
output of the closed-loop control, and the results are given in Table 1. Part 2, which studies the 
transient diurnal cycle, will investigate these times scales in more detail. 
 
Comment #3 
Introduction. Although a good review is appreciated, it could be shortened and more focused. 
The section on derating seems too long for an article focusing on wake steering. Wind farm 
control is a very active field, so new articles are constantly being publish. Hence, I will just 
recommend the inclusion the recent review by Kheirabadiand Nagamune, 2019, which also 
quantifies the potentials of wind farm control. As also concluded by Kheirabadi and Nagamune, 
wake steering has been shown to have the largest potential, but their Figure 4 also reveal that 
power increase from wake steering is not guaranteed. Hence, some statements could be less 
assured, e.g. line 116 in the article. 
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Response 
We will rephrase the introduction and streamline the discussion. We will include the reference 
to the review paper the referee has noted. 
 
Comment #4 
Steady vs dynamics: Generally, it seems "unfair" to use a steady state model in a dynamic 
framework, although one can argue if 30min is even dynamic. And by "unfair", I mean on the 
analytical model. How would the performance be if it was applied on a more realistic control 
scenario of 5-10min? I suspect this is given in Part 2, but this should be a self-contained article. 
There are several places, where the wording appears inconsistent. This is particular the case in 
Section 4, where "the flow is stationary" is used several times and at the same time "the 
dynamics of the wake" and "counter rotating vortices". Such statements appear contradictory. 
LES simulations of the flow behind a disc/rotor should not be stationary, even with uniform 
inflow. The wake will be dynamic (as you mention), e.g.meandering. This is also seen in Figure 
5. There it appears as if the two turbines are positioned so close that the first wake doesn’t 
start to meander/breakdown, but the second does. Could the quasi-steady behavior be caused 
by the coarse resolution of 5-6 cells per disc? 
 
Response 
Thank you for noting this language confusion. The statements should read “statistically 
stationary” rather than just “stationary” and we will modify the manuscript to improve clarity 
and we apologize for the confusion this language has caused. 
The starting point for closed-loop wake steering control is to leverage existing computationally 
efficient steady-state wake models and to invoke quasi-stationarity in the flow statistics (see 
e.g. very recent paper by Doekemeijer et al. (2020), [2]). While the test case in Part 1 explicitly 
allows for a well-defined assumption of quasi-statistical stationarity, Part 2 will investigate this 
assumption's utility in a realistic transient ABL state. 
Future work should also focus on the synthesis and validation of computationally efficient, 
transient models for wind farm power prediction. 
 
Comment #5 
Several question arise from Section 4:  
- Is uniform inflow a good and representative case? Does it truly provide validation of 
optimization, because it turns the turbine in the right direction?  
- Line 285 states that AD is good for far wake. But is 4D far wake in uniform inflow? A quick 
back-of-the-envelope assessment for where the far wakestart can be done using the 
engineering expression in Sørensen et al., 2015. For a 0.01% inflow turbulence and propagation 
velocity of 0.7, I get an estimate of 13-14D downstream, before it is fully transitioned to far 
wake with a Gaussian velocity deficit, which is another of the model assumptions. What is the 
implication of this assumption? 
- Please rephrase for clarification line 377: "reduced in size and intensity". What is reduced in 
size and what intensity? The deficit? It would be difficult(=impossible) to see from an 
instantaneous velocity contour. Similarly, it is not possible to see how the figure "indicating that 
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for larger columns of turbines the potential for power increases due to wake steering are 
larger" due to the dynamics of the instantaneous flow. 
 
Response 
Thank you for this comment. While not physical, uniform inflow (zero freestream turbulence) 
represents a helpful, well-defined case for algorithmic testing and code validation. As the 
referee has noted, due to the small turbulence mixing in the wake shear layer, the top-hat 
profile wake will remain further downstream than in a realistic wind turbine wake. Therefore, 
this example is not a precise representative case where the assumptions of the wake model are 
exactly matched. 
We will rephrase line 377 for clarity and improve the quality of the figures. 
To reduce confusion of this section with physical results (atmospheric boundary layer 
simulations) we will move this section to the Appendix in the revised manuscript. 
 
Comment #6 
Quantification. Several issues relating to quantification could be improved and clarified.  
- Are the power productions in Table 1 normally distribution? Otherwise, the standard 
deviation could be biased and misleading.  
- The inclusion of whether results are significant can only be applauded. Line 434 defines 
"significant superior...if the mean array power production ....is more than one standard 
deviation larger than the other". However, the use is biased, because the analysis is essentially 
only one-sided. The authors only compare controlled mean power - 1 standard deviation to the 
meanpower of the baseline. The authors should also include the standard deviation of the 
baseline, because it’s two overlapping distributions. That essentially means none of the cases 
are significantly superior if using the authors definition of statistical significance. 
 
Response 
The Figure 1 shows the probability distribution of the six turbine array over the control update 
steps (from LES case ND2). The sum of the six wind turbine array power production is 
approximately normal as a function of control update steps. Given the sample data deviation 
from an exact Gaussian distribution, we will use two statistical tests to check the statistical 
significance of the LES power production data below. 
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Figure 1: Probability distribution over the control update steps for the sum of the six turbine 
array power production from LES Case ND2. 
 
While the total turbine array power production is approximately normal as a function of the 
control update steps, we will demonstrate two statistical tests here to show statistical 
significance for Cases NA and ND2 by assuming normal distributions or not. The null hypothesis 
is that the two temporal signals of the sum of the six turbine power production are random 
samples from the same underlying probability distribution. 
 
Two-sample T-test  (assumes normal distributions): 
P = 6.13E-4, and therefore the null hypothesis is rejected at a 5% significance level. 
 
Two-sample Kolmogorov-Smirnov test (does not assume normal distributions): 
P = 1.16E-4, and therefore the null hypothesis is rejected at a 5% significance level. 
 
Therefore, the differences between Cases NA and ND2 are statistically significant at a 5% 
significance level. We will update the manuscript with these further statistical tests for all cases. 
 
Comment #7(a) 
Zong and Porté-Agel also shows the secondary steering effect, which other recent articles are 
also investigating, see e.g. King et al., 2020. The secondary steering effect essentially implies 
that the next wake will also be partly steered for "free"(without power loss). The Liew et al. 
2020 reference states that McKay et al. 2013, Bartl et al. 2018, and Hulsman et al.2020, all show 
that the local inflow direction changes, andthe waked (2nd) turbine should adjust to the inflow. 
Hence, it would indicate that if the second turbine also yaws 20deg, it actually corresponds to a 
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larger relative yaw angle. So why would the optimization give the same(or relatively larger) yaw 
angles for the first 3 turbines?  
 
Response 
As demonstrated by the recent studies the referee has discussed, secondary steering is an 
important aspect of wake steering control. Modeling efforts to capture secondary steering are 
on-going (King et al. 2020 in review in WES) or very recently published (Zong and Porte-Agel 
(2020), which was published after this manuscript was submitted). The wake model 
methodology used in this study’s simulations did not model secondary steering and therefore 
this effect will not be directly reflected in the model-optimal yaw angles, although the authors 
note that the lifting line model with EnKF estimation predicts a generally decreasing trend of 
yaw misalignment values deeper into the array of turbines (e.g. Figure 8). Future work should 
examine the efficacy of secondary steering models in closed-loop wake steering control, but is 
out of the scope of the present study since all LES cases would need to be re-run. 
 
Comment #7(b) 
Should the yaw angles not be reduced at least by the secondary effects or is this not capture by 
the LES? 
 
Response 
The yaw angles reported in this manuscript are the local turbine relative yaw misalignment 
values (i.e. the yaw misalignment of the turbine with respect to its local wind direction 
measurement), and therefore the secondary steering effect is accounted for in the reporting of 
the yaw misalignment values from LES but not in the model optimization as discussed in the 
response to Comment #7(a). 
 
Comment #7(c) 
A quick estimate of the power yaw loss with PP = 3, yields the following table (see table in 
review). That means the first turbine yawing 15-20deg looses approx. 10-17% of the power 
compared to its own baseline(also shown in Figure 16). Line 480 states "power production 
penalty...is significant beyond 40deg". The 40deg seems "random", as one could just as well 
argue that losses of 10-17% are significant. In order for the entire farm to produce more, this 
loss should be recovered by the next turbine. However, the next 3 turbines experience similar 
losses. Therefore, increase in velocity have to compensate for all these turbine losses. If I use 
estimates from Figure 16, I read an initial power production of approx. 35% and an optimal 
power production of approx. 50% for the second turbine relative to the first. Hard to see from 
this rough estimate if the second turbine actually gain more than what the first turbine losses. 
Archer and Vasel-Be-Hagh also concluded there needs to be at least 2 turbines downstream a 
yawed turbine to regain the power loss. 
 
Response 
Thank you for this comment and for your analysis. We will remove Line 480 for clarity.  
Figure 16 only plots the power for the first two turbines in the 6 turbine array (to reduce clutter 
in the Figure). Since it only plots the first two turbines, it should be noted that the gains at 
turbine 2 do not directly compensate the losses as turbine 1, since the objective is to maximize 
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the 6 turbine array, not focus on two-turbine sub-optimization problems which reduces global 
array optimality. 
The power production for turbine 2 shown in Figure 16 accounts for the total power, i.e. the 
power production of turbine 2 accounts for power reduction due to its own yaw misalignment 
as well as power increases due to turbine 1’s yaw misalignment. The largest relative gains in the 
6 turbine array will be the turbines further downwind since their relative yaw misalignment is 
lower (see Figure 14). The total power production for the 6 turbine array is compared to 
baseline control in Figure 11. 
As the referee correctly notes, the conclusion of Archer and Vasel-Be-Hagh (and Howland et al. 
(2020)) has motivated the use of the 6 turbine array to test closed-loop wake steering in this 
study rather than a 2 turbine array. 
 
Comment #7(d) 
In order to recover the power loss, the wake velocity have to increase by V2/V1 =(0.50/0.35 * 
CP0/CPyaw)ˆ(1/3) where CP0 corresponds to my previous table of 0degyaw, and CPyaw is the 
remaining. Hence, the velocity increase(V2/V1) on the second turbine needs to be (see table in 
review). So a 17-20% increase in mean velocity. It would be nice to see some kind of velocity 
plots, either contour plots before and after control to verify this. Therefore, it would also be 
nice to see the actual power production of the individual turbines compared to baseline for the 
various scenarios, because it’s difficult to assess which turbines actually make up for the losses 
and increase the total production in the accumulated plots, e.g. Figure 9. The authors have 
attempted to do so in Figure 21, but it’s very difficult to distinguish. It seems turbines 2, 4 and 5 
recover the losses for PP = 3? Perhaps use bar plots with clearer standard deviations? 
 
Response 
We will add further plots, tables, and discussion to clarify the quantitative results in these 
simulations. To address the referee’s specific concern, we will articulate some quantitative 
results here, and include a thorough discussion in the revised manuscript. 
Focusing on Case ND2, the power production for each turbine is normalized by the baseline 
control power production (of the same turbine) and is averaged over the control update steps. 
The resulting normalized power production values are: 
 
Turbine Power (normalized by baseline greedy control and averaged over control steps) 
1 0.844  
2 1.102 
3 1.182 
4 1.159  
5 1.192  
6 1.106 
 
As can be seen from the power production values for Case ND2 (normalized by Case NA), 
turbine 1 loses approximately 15% of its power production but each downwind turbine 
generates 10-20% higher power production than baseline control. Since turbine 1 generates 
larger power, its losses influence the array sum more than the gain of the downwind turbines, 
but collectively, the average array power production increases 4.6% over greedy baseline 
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control in this case. As can be seen, with more turbines downwind, the potential for wake 
steering to increase relative power production over greedy control also increases. 
 
Minor comments 
 
Minor comment #1 
The inclusion of FLORIS (Section 5.4) seems superfluous. I suggest to leave it out to keep the 
analysis more focused, and shorter. 
 
Response 
The authors do not agree that Section 5.4 is superfluous. This section tests the influence of the 
state estimation methodology and FLORIS is a commonly used wake model whose parameters 
have been empirically defined such that model-based parameter estimation is not used. This 
comparison shows that without model parameter estimation the wake model does not fit the 
baseline power production, and as such, predicts power given a yaw misalignment strategy with 
5x larger error (Figure 21(b)). 
 
Minor comment #2 
- The definition of 0deg north seems redundant. Where is it used? It seems to be in conflict 
withFigure 6, as the wind direction with 0deg north would not be 16deg, but a 254deg. 
 
Response 
Thank you for this comment, we will modify the manuscript to clarify the terminology. 
 
Minor comment #3 
Terminology might change over time and for different researchers. Some use kidneyshaped, 
others curled wake. However, the vortex pair has been observed in the wake behind a yawed 
turbine prior to 2016 (line 131). The earliest reference I could find was Mikkelsen, 2004, see 
Section 8.3. 
 
Response 
We will add the reference to Mikkelsen 2004. 
 
Minor comment #4 
- Please introduce/explain Table 1 more when it is first presented. 
 
Response 
We will modify the manuscript accordingly. 
 
Minor comment #4 
Please provide a proper description of the turbine. Line 398: "selections based on NREL 5MW" 
does not seem reproducible by other scientists. 
 
Response 
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The reference to the NREL 5 MW turbine was to clarify the selection of the turbine diameter. All 
relevant computational parameters of the turbine are detailed in Section 3. 
 
Minor comment #5 
Details are difficult to see in many of the figures. For instance, reduce the axis limits on Figure 
15 and similar. Figure 21 is very hard to distinguish. 
 
Response 
Thank you for this comment. We will modify the figures accordingly to improve visibility. 
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