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Response to Referee #1 

We thank the referee for their review and their thoughtful comments. Point-to-point responses 
can be found below, and the relevant changes have been made to the manuscript. 

 

Comment #1 

Wake model. Overall, the inclusion of the wake model seems to be the weak, but predominant, 
part of the article. That is not a criticism of the wake model itself. The lifting line wake model 
definitely seems to have merit, and engineering models are important. It is fully understandable 
that model developers wish to spread their model and test their capabilities. However, the 
present application should be better addressed and motivated. Does the analysis actually 
strengthen or weakening the general use of the wake model? Does the inclusion of the wake 
model improve the potential for closed-loop wind farm control, or are the results so model 
dependent that one should rather use a more model-free approach? 

Response 

Thank you for this comment. We will improve the motivation of the wake model in the 
manuscript and we will briefly summarize that justification and rationale here. In general, 
model-free wind farm power maximization has significantly slower rates of convergence than 
model-based optimization and may therefore be less well suited for closed-loop control in a 
practical, transient wind farm setting (see recent discussion by [1,2]). Model-free formulations 
have not been vigorously tested in transient simulation mean conditions aside from the recent 
paper by Ciri et al (2019) [3]. 
Given computational cost considerations for real-time control (i.e. computational limitations at 
an operational wind farm), a focus of the wind farm controls community has been to leverage 
existing, computationally efficient steady-state wake models for closed-loop control (see, e.g., 
review by Doekemeijer, Fleming & Willem van Wingerden (2019) [1]). 
As the referee has suggested, an overarching objective of the submitted manuscript is to 
examine the sensitivity of closed-loop wind farm power maximization control to common wake 
model parameters and assumptions. More specifically, the assumptions invoked in the wake 
model presented here are functionally similar to assumptions in the popular FLORIS model 
software. The results in this manuscript suggest that wake models do lead to beneficial power 
production increases for turbine arrays, provided that the parameters in the wake models can 
be accurately estimated ​a priori​ or in a closed-loop fashion.  
While model-free wind farm control is an interesting line of research moving forward, 
generalizations of such approaches to transient atmospheric conditions require further rigorous 
testing. Future work in this community (as recently discussed at the IEA Topical Expert Meeting 
on Wind Farm Controls) should establish standard test problems and benchmarks for the 
comparison of various optimization formulations such as the presently proposed methodology 
and model-free formulations. 
 
Comment #2 
It seems that the calibration of model parameters frequently ends up compensating for the 
missing physics, which affects several of my following points. This is also one of the major 
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self-contradictions within the article. On one hand, the authors repeatedly write that the model 
is "physics-based", which in isolation is correct. However, the current application of the model 
also includes several other models/assumptions, which in combination is questionable. It also 
leads the authors to give statements like:  
- "the two parameter lifting line model may be overparameterized, which leads to overfitting." 
- "The ability of a one or two parameter analytical wake model ....may enforce unreal-istic 
model parameters to represent neglected physics.".  
Clearly, the model does not capture all the physics. Hence, the desirable physics of the original 
model appears to become a limitation, rather than an benefit, when various additional models 
and assumptions are combined, see below. The results and the aforementioned quotes 
in-dicate these concerns, but it is not reflected in the abstract nor in the conclusion, which 
hence seems somewhat selective. I will try to elaborate on a number of points, where this 
seems to have a significant impact. 
 
Response 
Thank you for this thorough comment. We will update the abstract and conclusions to further 
reflect the sensitivity analyses which were a major component of this research.  
Due to the underlying assumptions of wake models and yaw misalignment wake deflection 
models, these methods cannot be expected to capture all relevant physics for full-scale wind 
farm operation. In fact, the use of state and parameter estimation methodologies to correct 
unresolved physics or imperfect model assumptions have been commonly used for wind farm 
controls applications [see e.g. 4, 5].  
Within the current closed-loop framework, the goal of the EnKF model parameter estimation is 
to accurately fit to a current timestep and then to apply those parameters for optimization only 
for the very next timestep. While it is reasonable to question the generalization of the 
site-specific fitting, the purpose here is not to create general parameterizations of the model 
parameters to be used for other conditions or wind farms but to only apply the parameters 
from one control step to the next. This objective and fitting consequence is thoroughly 
discussed in the text of this article (and will be detailed in the abstract and conclusion of the 
updated manuscript as per the referees comments).  
More importantly, the ​predictive ​ability of this approach was tested here in Figures 21 and 22. 
As discussed in the manuscript ​Section 5.4,​ the present wake model approach with EnKF state 
estimation significantly outperforms the predictive capabilities of the commonly used Gaussian 
wake model with pre-defined empirical parameters with 5x lower predictive error. Therefore, 
with the site-specific fitting, the EnKF estimation of the model parameters significantly 
improves the model predictive ability. The improvement in the predictive ability of wake 
models with optimized model parameters is also shown in the very recent paper [2] (published 
online April 29, 2020). 
Future work will focus on the constraining of the state estimation methodology to reduce 
model flexibility to test whether this improves the predictive success. 
 
Comment #2(a)(1) 
Model Description and Assumptions:  
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- The assumption of thrust following cosˆ2gamma could potentially have a big impact on the 
results. The article investigates PP ,but this seems to be an equally important assumption and 
the impact should not be neglected. 
 
Response 
The authors agree that the wake model assumption of thrust following cosˆ2(gamma) could 
also have an influence on the closed-loop control performance. This was not tested in this study 
since the actuator disk model used directly enforces the thrust to follow cosˆ2(gamma) and 
since this assumption is enforced in the lifting line model derivation [6]. In general, the thrust 
would follow cosˆTp(gamma), where Tp is likely less than 2 (see e.g. Bastankhah and Porte-Agel 
(2016) [7]). In this event, the closed-loop model parameter estimation would likely compensate 
by predicting smaller wake expansion coefficients (which leads to stronger wakes) than the true 
value given the model expectation of less streamwise thrust than is imposed in reality. We will 
update the manuscript with further discussion about this wake model assumption. 
 
Comment #2(a)(2) 
The article states "Future work should focus on methodologies to robustly estimate PP from 
SCADA data". That’s in principle good, but I question the statement"there is no accepted 
framework for determining PP"(line 635). It seems that it could relatively easily to perform 
simulations using an actuator disc model or an aero-elastictool, e.g. FAST, to fit both PP and the 
coefficient for CT as function of yaw for the specific turbine. This would render Section 5.3 
obsolete as it stands now. The sensitivity to PP is obviously interesting, but it would seem more 
appropriate to address it using your reference to Liew et al. as also commented in line 650. 
 
Response 
As discussed by Liew ​et al. ​(2020) [8], both actuator disk theory and blade element momentum 
theory (e.g. FAST) return Pp=3. Wind tunnel experiments [e.g. 9] and large eddy simulations 
[e.g. 10] have shown that Pp is more typically between 1.5-2.  
Further, Pp is likely turbine specific (see e.g. Liew ​et al. ​(2020) [8]) and has functional 
dependence on shear, veer, atmospheric stability, wake impingement, and likely other 
parameters. Field experiments (on-going by the authors) to robustly calculate Pp require weeks 
or months of experimentation due to the functional dependencies mentioned above and are 
therefore expensive and time consuming. Therefore, the authors believe that the quantification 
of the influence of Pp under model parameter uncertainty are critical to future wake steering 
deployments. 
 
Comment #2(a)(3) 
- Linear superposition: This is a highly questionable assumption, which will also affect the 
results in terms of the overfitting and parameter compensating for lack of physics. An improved 
wake superposition has recently been proposed by Zong and Porté-Agel,2020, which is 
physically consistent and shows improved results, also for wake steering 
 
Response 
While the linear wake superposition method (or sum-or-squares superposition commonly used 
in FLORIS) are often used, the referee is correct that their physical justification is challenging. 
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Zong and Porte-Agel (2020) (which was published after this article was submitted for review) 
have thoroughly addressed this long-standing open-question in the literature. The method of 
Zong and Porte-Agel (2020) leverages an iterative approach and assumes an empirical, 
pre-defined prescription of the wake model parameters which differs from the present model 
approach. Future work will incorporate the new superposition methodology with optimal 
parameter estimation. 
 
Comment #2(a)(4) 
- Please define the "effective velocity" (line 136). Does that correspond to rotor averaged or 
based on the power production? 
 
Response 
The effective velocity is the rotor averaged velocity, we will adjust the language in the 
manuscript to clarify this definition. 
 
Comment #2(b) 
Advection time: This section could be significantly reduced and rephrased. Most of the 
explanation deals with Taylors hypothesis, but at the end the advection time is adjusted to be 
twice this "to account for errors associated with the simple advec-tion model". This appears as 
a somewhat random choice in the current context. The proper explanation could/should 
involve (conservative) estimates of the wake propagation velocity, i.e. the wake propagates 
slower than the mean flow. There are numerous references for this. 
 
Response 
Thank you for this comment. We will rephrase this section for brevity and include additional 
wake propagation references in the manuscript. The invocation of twice the Taylor’s hypothesis 
advection time was to have a strongly conservative estimate. Since the flow is quasi-statistically 
stationary (i.e. statistically stationary except for inertial oscillations which occur on Coriolis time 
scales), conservative estimates for the advection time and time-averaging of statistics have 
been taken. The influence of the advection time scale assumption was tested in the initial 
manuscript where it was shown that it did not play a significant role in the power production 
output of the closed-loop control, and the results are given in Table 1. Part 2, which studies the 
transient diurnal cycle, will investigate these times scales in more detail. 
 
Comment #3 
Introduction. Although a good review is appreciated, it could be shortened and more focused. 
The section on derating seems too long for an article focusing on wake steering. Wind farm 
control is a very active field, so new articles are constantly being publish. Hence, I will just 
recommend the inclusion the recent review by Kheirabadiand Nagamune, 2019, which also 
quantifies the potentials of wind farm control. As also concluded by Kheirabadi and Nagamune, 
wake steering has been shown to have the largest potential, but their Figure 4 also reveal that 
power increase from wake steering is not guaranteed. Hence, some statements could be less 
assured, e.g. line 116 in the article. 
 
Response 
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We will rephrase the introduction and streamline the discussion. We will include the reference 
to the review paper the referee has noted. 
 
Comment #4 
Steady vs dynamics: Generally, it seems "unfair" to use a steady state model in a dynamic 
framework, although one can argue if 30min is even dynamic. And by "unfair", I mean on the 
analytical model. How would the performance be if it was applied on a more realistic control 
scenario of 5-10min? I suspect this is given in Part 2, but this should be a self-contained article. 
There are several places, where the wording appears inconsistent. This is particular the case in 
Section 4, where "the flow is stationary" is used several times and at the same time "the 
dynamics of the wake" and "counter rotating vortices". Such statements appear contradictory. 
LES simulations of the flow behind a disc/rotor should not be stationary, even with uniform 
inflow. The wake will be dynamic (as you mention), e.g.meandering. This is also seen in Figure 
5. There it appears as if the two turbines are positioned so close that the first wake doesn’t 
start to meander/breakdown, but the second does. Could the quasi-steady behavior be caused 
by the coarse resolution of 5-6 cells per disc? 
 
Response 
Thank you for noting this language confusion. The statements should read “statistically 
stationary” rather than just “stationary” and we will modify the manuscript to improve clarity 
and we apologize for the confusion this language has caused. 
The starting point for closed-loop wake steering control is to leverage existing computationally 
efficient steady-state wake models and to invoke quasi-stationarity in the flow statistics (see 
e.g. very recent paper by Doekemeijer et al. (2020), [2]). While the test case in Part 1 explicitly 
allows for a well-defined assumption of quasi-statistical stationarity, Part 2 will investigate this 
assumption's utility in a realistic transient ABL state. 
Future work should also focus on the synthesis and validation of computationally efficient, 
transient models for wind farm power prediction. 
 
Comment #5 
Several question arise from Section 4:  
- Is uniform inflow a good and representative case? Does it truly provide validation of 
optimization, because it turns the turbine in the right direction?  
- Line 285 states that AD is good for far wake. But is 4D far wake in uniform inflow? A quick 
back-of-the-envelope assessment for where the far wakestart can be done using the 
engineering expression in Sørensen et al., 2015. For a 0.01% inflow turbulence and propagation 
velocity of 0.7, I get an estimate of 13-14D downstream, before it is fully transitioned to far 
wake with a Gaussian velocity deficit, which is another of the model assumptions. What is the 
implication of this assumption? 
- Please rephrase for clarification line 377: "reduced in size and intensity". What is reduced in 
size and what intensity? The deficit? It would be difficult(=impossible) to see from an 
instantaneous velocity contour. Similarly, it is not possible to see how the figure "indicating that 
for larger columns of turbines the potential for power increases due to wake steering are 
larger" due to the dynamics of the instantaneous flow. 
 

5 



Response 
Thank you for this comment. While not physical, uniform inflow (zero freestream turbulence) 
represents a helpful, well-defined case for algorithmic testing and code validation. As the 
referee has noted, due to the small turbulence mixing in the wake shear layer, the top-hat 
profile wake will remain further downstream than in a realistic wind turbine wake. Therefore, 
this example is not a precise representative case where the assumptions of the wake model are 
exactly matched. 
We will rephrase line 377 for clarity and improve the quality of the figures. 
To reduce confusion of this section with physical results (atmospheric boundary layer 
simulations) we will move this section to the Appendix in the revised manuscript. 
 
Comment #6 
Quantification. Several issues relating to quantification could be improved and clarified.  
- Are the power productions in Table 1 normally distribution? Otherwise, the standard 
deviation could be biased and misleading.  
- The inclusion of whether results are significant can only be applauded. Line 434 defines 
"significant superior...if the mean array power production ....is more than one standard 
deviation larger than the other". However, the use is biased, because the analysis is essentially 
only one-sided. The authors only compare controlled mean power - 1 standard deviation to the 
meanpower of the baseline. The authors should also include the standard deviation of the 
baseline, because it’s two overlapping distributions. That essentially means none of the cases 
are significantly superior if using the authors definition of statistical significance. 
 
Response 
The Figure 1 shows the probability distribution of the six turbine array over the control update 
steps (from LES case ND2). The sum of the six wind turbine array power production is 
approximately normal as a function of control update steps. Given the sample data deviation 
from an exact Gaussian distribution, we will use two statistical tests to check the statistical 
significance of the LES power production data below. 
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Figure 1:​ Probability distribution over the control update steps for the sum of the six turbine 
array power production from LES Case ND2. 
 
While the total turbine array power production is approximately normal as a function of the 
control update steps, we will demonstrate two statistical tests here to show statistical 
significance for Cases NA and ND2 by assuming normal distributions or not. The null hypothesis 
is that the two temporal signals of the sum of the six turbine power production are random 
samples from the same underlying probability distribution. 
 
Two-sample T-test  (assumes normal distributions): 
P = 6.13E-4, and therefore the null hypothesis is rejected at a 5% significance level. 
 
Two-sample Kolmogorov-Smirnov test (does not assume normal distributions): 
P = 1.16E-4, and therefore the null hypothesis is rejected at a 5% significance level. 
 
Therefore, the differences between Cases NA and ND2 are statistically significant at a 5% 
significance level. We will update the manuscript with these further statistical tests for all cases. 
 
Comment #7(a) 
Zong and Porté-Agel also shows the secondary steering effect, which other recent articles are 
also investigating, see e.g. King et al., 2020. The secondary steering effect essentially implies 
that the next wake will also be partly steered for "free"(without power loss). The Liew et al. 
2020 reference states that McKay et al. 2013, Bartl et al. 2018, and Hulsman et al.2020, all show 
that the local inflow direction changes, andthe waked (2nd) turbine should adjust to the inflow. 
Hence, it would indicate that if the second turbine also yaws 20deg, it actually corresponds to a 
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larger relative yaw angle. So why would the optimization give the same(or relatively larger) yaw 
angles for the first 3 turbines?  
 
Response 
As demonstrated by the recent studies the referee has discussed, secondary steering is an 
important aspect of wake steering control. Modeling efforts to capture secondary steering are 
on-going (King et al. 2020 in review in ​WES​) or very recently published (Zong and Porte-Agel 
(2020), which was published after this manuscript was submitted). The wake model 
methodology used in this study’s simulations did not model secondary steering and therefore 
this effect will not be directly reflected in the model-optimal yaw angles, although the authors 
note that the lifting line model with EnKF estimation predicts a generally decreasing trend of 
yaw misalignment values deeper into the array of turbines (e.g. Figure 8). Future work should 
examine the efficacy of secondary steering models in closed-loop wake steering control, but is 
out of the scope of the present study since all LES cases would need to be re-run. 
 
Comment #7(b) 
Should the yaw angles not be reduced at least by the secondary effects or is this not capture by 
the LES? 
 
Response 
The yaw angles reported in this manuscript are the local turbine relative yaw misalignment 
values (i.e. the yaw misalignment of the turbine with respect to its local wind direction 
measurement), and therefore the secondary steering effect is accounted for in the reporting of 
the yaw misalignment values from LES but not in the model optimization as discussed in the 
response to ​Comment #7(a)​. 
 
Comment #7(c) 
A quick estimate of the power yaw loss with PP = 3, yields the following table (see table in 
review). That means the first turbine yawing 15-20deg looses approx. 10-17% of the power 
compared to its own baseline(also shown in Figure 16). Line 480 states "power production 
penalty...is significant beyond 40deg". The 40deg seems "random", as one could just as well 
argue that losses of 10-17% are significant. In order for the entire farm to produce more, this 
loss should be recovered by the next turbine. However, the next 3 turbines experience similar 
losses. Therefore, increase in velocity have to compensate for all these turbine losses. If I use 
estimates from Figure 16, I read an initial power production of approx. 35% and an optimal 
power production of approx. 50% for the second turbine relative to the first. Hard to see from 
this rough estimate if the second turbine actually gain more than what the first turbine losses. 
Archer and Vasel-Be-Hagh also concluded there needs to be at least 2 turbines downstream a 
yawed turbine to regain the power loss. 
 
Response 
Thank you for this comment and for your analysis. We will remove Line 480 for clarity.  
Figure 16 only plots the power for the first two turbines in the 6 turbine array (to reduce clutter 
in the Figure). Since it only plots the first two turbines, it should be noted that the gains at 
turbine 2 do not directly compensate the losses as turbine 1, since the objective is to maximize 
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the 6 turbine array, not focus on two-turbine sub-optimization problems which reduces global 
array optimality. 
The power production for turbine 2 shown in Figure 16 accounts for the total power, i.e. the 
power production of turbine 2 accounts for power reduction due to its own yaw misalignment 
as well as power increases due to turbine 1’s yaw misalignment. The largest relative gains in the 
6 turbine array will be the turbines further downwind since their relative yaw misalignment is 
lower (see Figure 14). The total power production for the 6 turbine array is compared to 
baseline control in Figure 11. 
As the referee correctly notes, the conclusion of Archer and Vasel-Be-Hagh (and Howland et al. 
(2020)) has motivated the use of the 6 turbine array to test closed-loop wake steering in this 
study rather than a 2 turbine array. 
 
Comment #7(d) 
In order to recover the power loss, the wake velocity have to increase by V2/V1 =(0.50/0.35 * 
CP0/CPyaw)ˆ(1/3) where CP0 corresponds to my previous table of 0degyaw, and CPyaw is the 
remaining. Hence, the velocity increase(V2/V1) on the second turbine needs to be (see table in 
review). So a 17-20% increase in mean velocity. It would be nice to see some kind of velocity 
plots, either contour plots before and after control to verify this. Therefore, it would also be 
nice to see the actual power production of the individual turbines compared to baseline for the 
various scenarios, because it’s difficult to assess which turbines actually make up for the losses 
and increase the total production in the accumulated plots, e.g. Figure 9. The authors have 
attempted to do so in Figure 21, but it’s very difficult to distinguish. It seems turbines 2, 4 and 5 
recover the losses for PP = 3? Perhaps use bar plots with clearer standard deviations? 
 
Response 
We will add further plots, tables, and discussion to clarify the quantitative results in these 
simulations. To address the referee’s specific concern, we will articulate some quantitative 
results here, and include a thorough discussion in the revised manuscript. 
Focusing on Case ND2, the power production for each turbine is normalized by the baseline 
control power production (of the same turbine) and is averaged over the control update steps. 
The resulting normalized power production values are: 
 
Turbine Power (normalized by baseline greedy control and averaged over control steps) 
1 0.844  
2 1.102 
3 1.182 
4 1.159  
5 1.192  
6 1.106 
 
As can be seen from the power production values for Case ND2 (normalized by Case NA), 
turbine 1 loses approximately 15% of its power production but each downwind turbine 
generates 10-20% higher power production than baseline control. Since turbine 1 generates 
larger power, its losses influence the array sum more than the gain of the downwind turbines, 
but collectively, the average array power production increases 4.6% over greedy baseline 
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control in this case. As can be seen, with more turbines downwind, the potential for wake 
steering to increase relative power production over greedy control also increases. 
 
Minor comments 
 
Minor comment #1 
The inclusion of FLORIS (Section 5.4) seems superfluous. I suggest to leave it out to keep the 
analysis more focused, and shorter. 
 
Response 
The authors do not agree that Section 5.4 is superfluous. This section tests the influence of the 
state estimation methodology and FLORIS is a commonly used wake model whose parameters 
have been empirically defined such that model-based parameter estimation is not used. This 
comparison shows that without model parameter estimation the wake model does not fit the 
baseline power production, and as such, ​predicts​ ​power given a yaw misalignment strategy with 
5x larger error (Figure 21(b)). 
 
Minor comment #2 
- The definition of 0deg north seems redundant. Where is it used? It seems to be in conflict 
withFigure 6, as the wind direction with 0deg north would not be 16deg, but a 254deg. 
 
Response 
Thank you for this comment, we will modify the manuscript to clarify the terminology. 
 
Minor comment #3 
Terminology might change over time and for different researchers. Some use kidneyshaped, 
others curled wake. However, the vortex pair has been observed in the wake behind a yawed 
turbine prior to 2016 (line 131). The earliest reference I could find was Mikkelsen, 2004, see 
Section 8.3. 
 
Response 
We will add the reference to Mikkelsen 2004. 
 
Minor comment #4 
- Please introduce/explain Table 1 more when it is first presented. 
 
Response 
We will modify the manuscript accordingly. 
 
Minor comment #4 
Please provide a proper description of the turbine. Line 398: "selections based on NREL 5MW" 
does not seem reproducible by other scientists. 
 
Response 
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The reference to the NREL 5 MW turbine was to clarify the selection of the turbine diameter. All 
relevant computational parameters of the turbine are detailed in Section 3. 
 
Minor comment #5 
Details are difficult to see in many of the figures. For instance, reduce the axis limits on Figure 
15 and similar. Figure 21 is very hard to distinguish. 
 
Response 
Thank you for this comment. We will modify the figures accordingly to improve visibility. 
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Response to Referee #2 

We thank the referee for their review and their thoughtful comments. Point-to-point responses 
can be found below, and the relevant changes have been made to the manuscript. 

 

General comments: 

Comment #1 

One overall comment I had was I wasn’t quite positive of the main, conclusion of the paper. Is 
that the proposed method is at least successful in the provided tests, or that it is necessary to 
use a method like this? The paper is a little bit long, I wondered if parts might be condensed 
also to make more clear what are the bigger, more important, findings? The authors however 
can freely disregard this suggestion, but I hope this impression is useful. 
 
Response 
Thank you for this helpful comment, we will streamline the discussion in the paper to highlight 
the main contributions. 
The main technical contribution of this paper is the development of a closed-loop wake steering 
methodology for application in transient ABL flows which does not rely on an open-loop offline 
yaw misalignment lookup table calculation.  
The two main conclusions are: 1) that the wake model, when combined with a state estimation 
approach, is able to predict the power production for the wind farm in yaw misalignment with 
significantly less error than the standard approach of an empirically pre-calibrated wake model 
and 2) model parameter uncertainties, such as the uncertainty in Pp, can inhibit the success of a 
wake steering application and these uncertainties must be carefully accounted for. 
 
Comment #2 
What is the model of yaw control within the turbine used? Is the turbine free to yaw at any 
moment? Most turbines have a built-in yaw control strategy which includes some dead-band 
about vane angle, and an intentionally delayed response to changes in wind direction. If this 
was not used, how would it change results if it were? 
 
Response 
The referee is correct that most utility-scale turbines have a native yaw control system which 
acts outside a deadband of 5-10 degrees based on low-pass filtered wind vane angle 
measurements. The yaw control strategy used in the present study low-pass filters the wind 
direction measured at the rotor based on a predefined time constant, leverages the computed 
turbine-specific wind direction to implement the desired yaw misalignment, and holds the 
imposed nacelle position for one period of the predefined time constant. This was described on 
Page 11 Line 315 and will be further expanded on in the revision to improve clarity. 
Depending on the dynamics of the ABL, the method we have employed may lead to different 
results than the method the referee has mentioned. However, in the present conventionally 
neutral ABL large eddy simulations, the variations in the turbine-specific wind directions as a 
function of time due to turbulence and inertial oscillations are relatively small (a few degrees) 
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and therefore the yaw control method we have used and the deadband method will perform 
very similarly.  
For Part 2 of this work, where the closed-loop controller is tested in the transient diurnal cycle, 
this native yaw control system will likely have a larger impact and we will test various native 
yaw control strategies. 
 
Comment #3 
One general comment I had on the sections related to the cos pP parameter, is that the 
discussions and conclusions are proposed in absolute terms, where relative would be more 
appropriate. As i understand, pP=3 is "correct" in this LES simulation, and so 2 is 2/3 of correct, 
and 4 is 4/3 of correct. Most of the numbers are baselined to a correct value of 3, but should be 
scaled in other simulations or on physical turbines. My main point is to avoid stating that 2,3 or 
4 is better/worse and more under-predicting pP by x% leads to, while over-predicting pP by x% 
leads to ... In a similar way this would change the statement "a conservative estimate of pP=4" 
should be used in cases where it’s not yet known could be the more reasonable 125% of the 
value of the most similar published value (in terms of rated power or rotor size). 
 
Response 
Thank you for this comment. The referee is correct that the reference to conservative values of 
Pp are relative since they depend on the turbine-specific correct, or maximum likelihood 
estimate, value of Pp. The authors suggest that given a confidence interval on Pp for a given 
wind turbine, a conservative estimate should be selected for Pp for the calculation of the yaw 
misalignment strategy since the underestimate of Pp leads to power production loss during 
wake steering. We will modify the manuscript to consider your comment and discuss the Pp 
sensitivity in relative terms. 
 
Specific comments: 
 
Comment #1 
The last sentences of the abstract are somewhat confusing before you read the paper 
Response 
We will modify the last sentence of the abstract for improved clarity. 
 
Comment #2 
p 13 "likely enhanced in yaw misalignment" see yaw-added recovery 
in​https://www.wind-energ-sci-discuss.net/wes-2020-3/ 
 
Response 
Thank you for highlighting this paper, we will add the reference to the yaw-added recovery. 
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Comment #3 
P23 "wind speed and direction bins of arbitary size" this seems pretty possible using 
interpolating functions 
 
Response 
Thank you for this interesting comment, interpolating functions would be an excellent 
candidate to use in open-loop lookup table computation. 
 
Comment #4 
P23: "using a neural network for example" these ideas are theoretically possible but practical 
observation suggests that any method who’s parameters are not human intelligible will have 
obstacles because it will be difficult to make in-field adjustments 
 
Response 
The authors agree that methods which are based on first principles or physical phenomena are 
likely to perform better in a complicated field environment and we leave machine learning 
questions for future experimentation and improvement.  
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Response to Referee #3 

We thank the referee for their review and their thoughtful comments. Point-to-point responses 
can be found below, and the relevant changes have been made to the manuscript. 

General comments: 

Comment #1(a) 

The introduction could be considerably reduced without harming its quality: the general 
introduction in wind energy (up until line approx. line 27) can be omitted, the discussion on 
induction control could be reduced to simply mentioning that dynamic control is much more 
promising than static (with some key references, i.e. Annoni et al, Campagnolo et al, Munters & 
Meyers, Frederik et al.) 
 
Response 
We will streamline the introduction review. 
 
Comment #1(b) 
The literature review at the beginning of Section 2.2 can be shortened 
 
Response 
We will shorten the literature review for brevity. 
 
Comment #1(c) 
Section 2.4 basically discusses a straightforward time lag based on Taylor’s hypothesis. This 
could be significantly shortened. 
 
Response 
We will remove this section and state the time lag based on Taylor’s hypothesis in a brief 
fashion. 
 
Comment #1(d) 
Section 2.5 takes up quite a lot of space with again a detailed review, but very little is said 
related to the current manuscript, other than ’the update frequency is selected according to 
the dynamics of the problem studied’. Further, ’Comments on the update frequency are made 
in Section 5.’ (l. 270), hinting on a study where the sensitivity to this frequency is analyzed, 
where is this exactly? Or do the authors refer to the part where a dynamic approach is 
compared to a lookup table (i.e. Section 5.1)? In the latter case, please rephrase (l. 270) more 
exactly. 
 
Response 
We will streamline and re-phrase the discussion in Section 2.5 and on Line 270 to improve 
clarity. 
 
Comment #2(a) 

1 



It would be illustrative if the authors could provide a schematic which shows inputs, outputs, 
and operations of the algorithm. This could be similar to figure 1 which shows α and γ as 
inputs to the state estimation, however their role is not discussed in section 2.2. 
 
Response 
We will include a schematic to describe the state estimation methodology and clarify the role of 
α and γ. 
 
Comment #2(b) 
Further, the statement ’The EnKF is computationally superior ... but this may lead to spurious 
correlations in the state representation’ is somewhat confusing. Does this affect the results in 
the current paper? 
 
Response 
We will remove the statement which does not directly relate to the results of the current 
paper. 
 
Comment #2(c) 
The EnKF is particularly well-suited for discretized PDE problems. Why? add a suitable reference 
perhaps 
 
Response 
We will remove this statement which is not critical to the current paper. 
 
Comment #2(d) 
The outcome of the EnKF is a vector with k w and σ for all turbines except the last one, for 
which this is not relevant (l 191 p 7). However, in your equations, this last turbine is included in 
the state estimation, e.g. see Equation (7). Is this correct? 
 
Response 
Thank you for noting this notation error. The referee is correct that the furthest downwind 
turbine does not need to be included in the state estimation, and in fact, its parameters are 
irrelevant for the wake model. We will adjust the state estimation equations accordingly. 
 
Comment #2(e) 
Equation (18): should all π’s be replace with ˆπ here? If not, how is π defined? 
 
Response 
Thank you for noting this typographical error in Equation (18). The π’s should have been 𝜓’s 
and we have fixed the error. 
 
Comment #3(a) 
The authors use an actuator disk model. Some more details would be welcome. Is it a rotating 
or non-rotating model (I assume the latter). The ADM is accurate in the far wake, yet at a 
turbine spacing of 4D it is doubtful whether far wake conditions are met. Somme comments on 
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this would be welcome. How does the ADM deal with the dependency of thrust forces and 
power extraction on yaw angle? Is this a standard cos 2 (γ) and cos 3 (γ) respectively? How 
does this influence conclusions based on the sensitivity of the control framework on P p in 
section 5.3? 
G 
Response 
The actuator disk model used in the large eddy simulations presented in this study does not 
include rotation, it is a standard actuator disk model. We will include more details on the ADM 
in the manuscript and the description is also stated here. The referee is correct to note that the 
ADM has some discrepancy with the rotating ALM in the near-wake region. 
To be clear, the relative turbine spacing in the conventionally neutral ABL simulations is 
between 4-5D in the mean hub-height wind direction since the spacing is 4D in the x-direction 
and the turbines are aligned at 18 degrees to the x-axis.  
The wind speed profile at the wind turbine hub height approximately 4D downwind of the 
leading turbine, incident on the second turbine, is shown in Figure 1. The wake profile exhibits a 
Gaussian shape, rather than a top-hat shape, suggesting that with the turbulence intensity and 
length scales present in the conventionally neutral ABL LES, 4-5D spacing is sufficient to 
establish far wake behavior with the actuator disk model used in this study. This is consistent 
with the expected location of far-wake behavior onset (experimentally found in yawed rotating 
turbines to be approximately x/D=3 [1]). 
The goal of the current study is to test the efficacy of the closed-loop control algorithm, and 
therefore, the focus was not to precisely match the wakes observed in full-scale wind farms 
through LES; future work should also incorporate more advanced wind turbine models. 

Figure 1​: Time averaged wind speed profile at x/𝛿​0​=3.5 at the wind turbine hub height. The flow 
at this x-location is incident on the second wind turbine in the array. The wind speed exhibits a 
Gaussian profile, suggesting the onset of far-wake behavior [see e.g. 1]. 
  
 
Within the actuator disk model formulation, the dot product is taken between the incident 
wind velocity vector and the wind turbine rotor normal vector to calculate the perpendicular 
velocity vector. The thrust force normal to the rotor area is computed using the perpendicular 
velocity, the axial induction factor (a=0.25), and the coefficient of thrust ( in the.75CT = 0  
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current study). The forces are then projected into the computational domain coordinate 
system. In this fashion, the dependence of the thrust force (with thrust being defined as parallel 
to the mean velocity at hub height) on the yaw misalignment angle is given uniformos (γ)c 2  
inflow conditions. Importantly, with non-uniform flow conditions, the thrust is not guaranteed 
to follow . The ADM power production is defined as where is theos (γ)c 2 P = up · F T up  
velocity perpendicular to the rotor area and is the thrust force. This results in a powerF T  
production dependency on the yaw misalignment angle of , again, for uniform inflowos (γ)c 3  
conditions only. For heterogeneous flow conditions, the scaling for thrust and power as a 
function of yaw misalignment is approximately  and , respectively, although itos (γ)c 2 os (γ)c 3  
may deviate from these approximate scaling expectations. We will include further comments 
on the ADM in the revised manuscript. 
 
The particular “ground-truth” value of , as discussed in Section 5.3, is wind turbine modelP p  
specific. The current LES experiments detail the sensitivity of the wind farm power production, 
and therefore the efficacy of wake steering, to the estimate of for a ground-truth ,P p P p = 3  
but the sensitivities noted in the current study are not expected to depend on the particular 
ground-truth value for . For example, the current experiments show that an estimate ofP p  

when the ground-truth value is 3 leads to power production loss compared to standardP p = 2  
operation. For a different wind turbine model with a ground-truth of , we would thenP p = 2  
expect an estimate of may lead to undesirable results, for example, while .5P p = 1 P p = 2
would be an excellent estimate. The results of the current study are not absolute, in the sense 
that is always a good choice, but relative, in the sense that a conservative estimate forP p = 4  

is wise given the parameter uncertainty which is present in wake steering applications.P p P p  
We have refined the discussion in Section 5.3 to clarify this point. 
 
Comment #3(b) 
p.12, l 323 – 325: ‘... without the influence of variable turbine operation, the flow is identical to 
machine precision between yaw aligned and yaw misaligned cases’. I would suggest rephrasing 
this. I understand the authors want to convey that both cases are started from identical initial 
conditions, and any differences can hence be attributed to differences in farm controls. 
However, stating that these simulations are ’identical to machine precision’ is somewhat 
deceptive in the simulation of a chaotic dynamical system. In such systems, differences (even at 
machine precision levels e.g. by adapting compiler optimization levels), will grow exponentially 
in time, resulting in a completely different turbulent flow realization. I’m not saying this is the 
case in the current simulations, but a better phrasing would simply be to remove the ‘to 
machine precision’ part. 
 
Response 
Thank you for this comment. The referee is correct that differences in turbulent systems grow 
exponentially in time and even modifications in the compiler optimization could cause these 
differences which grow to O(1) errors. We have carefully ensured that these floating-point 
differences are eliminated by fixing the initialization (to machine precision), compiler 
optimization, and processor topology in the present study to allow for quantitatively rigorous 
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comparisons between the various control simulations. We have added a footnote to clarify the 
points the referee has raised. 
We can further demonstrate the point the referee has raised here. We perform a numerical 
experiment with three simulations. In the conventionally neutral LES flow, we fix all parameters 
and initializations to machine precision and the control architecture is fixed between the three 
cases. In two cases (#1 and #2), the processor topology is fixed while in the third case (#3), the 
compiler optimization changes the processor topology. The power production for Cases #2 and 
#3 normalized by the power from Case #1 are shown below in Figure 2. Cases #1 and #2 remain 
in quantitative agreement to machine precision while Cases #1 and #3 diverge. The deviation 
between Cases #1 and #3 are a consequence of round-off differences that occur due to global 
reduction (sum) operations with modified processor topology. 
All comparison cases in this paper were performed with the comparison methodology enforced 
in Cases #1 and #2. 

Figure 2:​ Processor topology experiment. In the left plot, the wind turbine array power 
production (Case #2) is normalized by a separate LES case (Case #1) with fixed control 
architecture and initialization as well as a fixed processor topology. In the right plot, the power 
(Case #3) is normalized by a separate LES case with fixed control architecture and initialization 
but a modified processor topology (Case #1). The normalized power from Case #3 oscillates 
around 1 as a function of time. 
 
 
Comment #4(a) 
The relatively low grid resolution, combined with the uniform inflow creates a possibly 
problematic setup where the wake behind the first turbine is artificially stabilized, resulting in 
very low baseline power in row 2, and hence huge gains to be obtained from any type of 
control. A remark could be added to the text on this. This is somewhat mentioned in l. 361, but 
it would be good to mention that this case is highly dependent on things like grid resolution, 
SGS model, and hence physical results should be interpreted with care. 
 
Response 
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Thank you for this comment. The referee is correct that LES of uniform inflow impinging on 
wind turbine models at typical LES resolutions leads to an artificial stabilization as mentioned in 
the discussion in Section 4 (Line 361). This challenge of turbulent transition in wind turbine 
model wakes for uniform inflow and the influence of the SGS model was discussed in detail in 
Howland ​et al​ ​JRSE​ (2016) [2]. As a result of this comment, and those of the other referees, we 
have moved the uniform inflow test case section to the Appendix to reduce confusion between 
this unphysical algorithmic test case and the physical conventionally neutral LES results. 
 
Comment #4(b) 
Figure 3 and Figure 4: x-axis is labeled time step. Is this simulation time step of control update 
step? I’m suspecting the latter, but it would be better to be explicit, similar to how axes are 
labeled in later figures. 
 
Response 
Thank you for noting this typographical error. The x-axes for Figures 3 and 4 should state 
‘Control update step,’ and we have updated the manuscript accordingly. 
 
Comment #4(c) 
 p. 14, l. 369: The authors indicate their fear of an overparametrized model which is overfitting 
by spurious anti-correlation of k w and σ 0 . Would it make sense / be possible to directly try 
and obtain these parameters from a time-averaged LES flow field and hence quantify the 
’correct’ parameter values? 
 
Response 
Thank you for this suggestion. This is an interesting idea and it is possible to quantify an 
empirical best-fit for the wake spreading rate kw in the LES setting. In fact, this has been the 
previous wake modeling approach to the wind farm controls problem (see e.g. Niayifar & 
Porte-Agel (2015) [3] and the FLORIS model). However, this methodology is impractical in a field 
setting for continuous parameter estimation where nacelle-mounted LiDARs are not often 
available and ​a priori ​parameterized values for physical constants can lead to inaccurate power 
predictions (see comparison with empirical Gaussian wake model in Figure 21). The purpose of 
the present study is to establish a framework which relies only on readily available SCADA data 
for model parameter estimation, and therefore we have not focused on flow-field empirical 
parameter fitting in this study. Future work should investigate the efficacy of physics-based 
constraints during optimization of the wake model parameters, but this is out of the scope of 
the current study. 
 
Comment #4(d) 
Concluding, the overall added value of this section is quite limited in my opinion. The main 
contribution would be to have a very basic test case, showing that the EnKF and yaw angles are 
relatively stable for steady flow conditions. Therefore, I believe it would be better if the section 
is introduced and discussed with this aim. 
 
Response 
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As discussed in the response to ​Comment #4(a), ​we have moved this section to the Appendix to 
focus on the physical results in the conventionally neutral ABL setting. 
 
Comment #5(a) 
Table 1 is introduced early on. However, by itself, the table is insufficiently explained to 
completely understand which case is which. An example is the NA case, which is not clearly 
defined in the text until Appendix C. Also, the naming and order in which these cases are 
presented in the table could be greatly improved. For example, Section 5.1 discusses NL and 
ND2, whereas ND1 is only introduced in Section 5.2. The naming also gets very confusing later 
on, e.g. the case with P p = 2 is called ND4 and P p = 4 is called ND5. This results in the reader 
constantly having to go back to Table 1 to recall which case is which. More logical naming 
would prevent this, e.g. replace ND4 by NDP2, ND5 by NDP4. 
 
Response 
We will describe the cases and Table 1 in more detail and earlier in the manuscript to improve 
clarity and we have re-named the cases according to the referee’s suggestions. Note that we 
have also switched the names of Case ND1 and ND2 in the revision as per the referee’s 
suggestion. 
 
Comment #5(b) 
The final column in Table 1 is used to determine statistical significance of improvements over 
the basecase. It would be more illustrative to plot this in a barplot including errorbars, because 
seeing whether these values overlap for different cases from numerical data is not trivial. 
 
Response 
Thank you for this suggestion, we have incorporated a barplot (Figure 5) with corresponding 
errorbars to clarify these data and their statistical significance. 
 
Comment #5(c) 
Section 5.1: How is the lookup table in the NL case generated? Is this simply by running 1 
control window, and then keeping the yaw angles constant? How robust is this? I.e. how would 
these steady yaw angles differ if they were generated based upon a state estimation from a 
different time window / turbulent flow realization? This would have an impact on statistical 
significance of the results. 
 
Response 
As discussed on Line 416 of the manuscript, the lookup table approach is approximated by:  
“The lookup table control is approximated by fixing the yaw misalignment angles as a function 
of time after the initial optimal angles are computed during the first yaw controller update” 
 
Generating the yaw angles in a different time window would lead to small changes in the yaw 
misalignment values computed by the model-based optimizer as the referee has mentioned. 
This point was investigated by the authors extensively before submission of the manuscript, 
although it was not shown for brevity in the already lengthy manuscript. We will articulate the 
results here and add a brief discussion in the revised manuscript. 
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While generating yaw misalignment angles in a different time window/turbulent flow 
realization with slightly different mean wind direction, wind speed, turbulence intensity, etc 
leads to slightly different values of yaw misalignment, the conclusions of the study are not 
affected since the changes to the wind farm power production are not statistically significant. 
This experiment was investigated for Case ND1 and Case ND1R, the robustness version of Case 
ND1 which is algorithmically identical but initialized at a later LES temporal instance. 
 
The yaw misalignment values implemented in the first control update step of Case ND1 are 
(from first to last turbine in degrees): 
[16.8163, 17.0334, 16.8953, 14.7568, 2.8090, 0.0000] 
The increase in power production over baseline control (Case NA) is for Case ND1: 4.59% +/- 
2.34% 
The yaw misalignment values for Case NL are identical to the first step of Case ND1 by 
definition. 
 
In a robustness test case, the conventionally neutral ABL LES is run for several more physical 
hours before the yaw misalignment strategy is switched on the and resulting yaw misalignment 
values are computed in the separate turbulent time window realization (from first to last 
turbine in degrees): 
[15.5785, 15.8899, 14.4753, 12.1178, 3.7497, 0.0000] 
Case ND1 was repeated, starting from the later time, and the increase in power production 
over baseline control (Case NAR, which was also re-run for the later time window) is for Case 
ND1R: 5.7% +/- 2.03% 
The yaw misalignment values for Case NLR are identical to the first step of Case ND1R by 
definition. Therefore, changing the time window for the lookup table approximation did not 
significantly change the yaw misalignment values, as the referee has suggested. 
 
The differences in power production for these two cases are not statistically significant as 
characterized by a one-sided two-sample Kolmogorov-Smirnov test at a 5% significance level. 
Further, the yaw misalignment values are qualitatively and quantitatively similar. Therefore, 
while the specific time wind in which the lookup table (or dynamic yaw) control is implemented 
has some influence on the quantitative results, we have demonstrated that it does not 
influence the statistical significance of the results. We have added a discussion in the 
manuscript to clarify this point. 
 
Comment #5(d) 
Section 5.1: p. 18, l. 438. a lot of explanation is given for a non-significant performance 
difference. Does this make sense? 
 
Response 
We will modify the discussion to highlight that the result is not statistically significant. 
 
Comment #5(e) 
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For figures like 8,9,10,11, it would improve direct interpretability of the figures if the case name 
was included directly on the plot instead of only in the caption. There is ample whitespace left 
to do this everywhere. 
 
Response 
We will add the case numbering to the plots. 
 
Comment #5(f) 
Section 5.2: p. 22, l. 492 the authors claim ‘The most successful dynamic control framework ... is 
the static state estimation methodology’. Please add the casename here explicitly (ND3 I 
presume). Based on what metric is ND3 more successful than ND2? Power extraction 
differences were mentioned not to be significant. 
 
Response 
As with ​Comment #5(d)​, we will limit the differentiation of cases which are not statistically 
significant differences. 
 
Comment #5(g) 
Section 5.2: p. 23, l.496: ‘This potential dependence of k w and σ 0 on yaw misalignment was 
not incorporated explicitly ...’ Is this dependence not implicitly accounted for through the EnKF? 
 
Response 
This is an excellent observation by the referee. The goal of the data-driven EnKF methodology is 
that the dependence is implicitly accounted for. The authors were suggesting that future work 
could also incorporate this dependence explicitly in a physics-based modeling strategy. We will 
clarify this in the manuscript. 
 
Comment #5(h) 
Section 5.2 last paragraph: This comparison to NL lookup table seems a bit out of place. Could 
this be moved to Section 5.1? I understand there are chronological dependencies in how you 
want to write down observations, but the current narrative is somewhat confusing. 
 
Response 
Thank you for this suggestion, we have reformulated the narrative to improve clarity. 
 
Comment #5(i) 
Section 5.3 p.25, l.532: ‘Interestingly, ND5 outperforms ND2, but not significantly’ This 
statement is confusing, if its insignificant, then the outperformance is not to be distinguished 
from statistical noise, so calling that interesting seems contradictory. Please remove or 
rephrase 
 
Response 
As with ​Comment #5(d),​ we will remove discussion of statistically insignificant results. 
 
Comment #5(j) 
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Section 5.4: the part on FLORIS can probably be omitted. Further, this section basically also 
quantifies a dependence on P p , which was already the subject of Section 5.3. Consider 
renaming sections to avoid overlap in their definition. 
 
Response 
The authors believe that a comparison with an empirical physics-based model without state 
estimation is warranted to show the benefit of the EnKF on power production predictions. The 
lifting line model has not received an empirical calibration treatment as the Gaussian wake 
model has [see ref. 2], and therefore FLORIS was selected as a comparison. It is important to 
note that this comparison is predominantly a commentary on the success of the EnKF for 
improving wake model state estimation, rather than a comparison between the lifting line and 
Gaussian wake models. 
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Minor/technical comments: 
 
Comment #1 
The title of the paper could be improved such that the goal of the research is reflected therein, 
namely quantifying the sensitivity to design choices in the control framework. Currently, the 
title ’Optimal closed-loop wake steering’ is rather generic, and mentioning that it is ’part 1’ of a 
two-parts paper in my opinion degrades the idea that the current work is self-contained. 
 
Response 
Thank you for this comment. This article was titled ‘Part 1’ since there will be a follow-up ‘Part 
2’ which will focus on wake steering in diurnal cycle simulations. Each article will be 
self-contained, as the present article is. 
 
Comment #2 
p.3, l.79: mentioning that accurately predicting greedy base-line power production is the main 
challenge in wake steering control, is somewhat exaggerated in my opinion. 
 
Response 
We will modify the language in the manuscript to highlight that dynamic wake steering does 
indeed carry other technical challenges aside from the mentioned baseline power production 
prediction. 
 
Comment #3 
The output of your controller is a time-series of yaw angles γ(t), do the ADM in the LES directly 
impose these yaw angles, or is there a limitation on the yaw rates? Figure 3 seems to indicate a 
very large jump in yaw angle within a single timestep. Is this technically feasible? 
 
Response 
Yaw control rates are typically ~0.5°/s. The largest jump in yaw misalignment in the present 
study is from greedy control to wake steering control in ‘Control update step 1’ of the 
simulations. This jump has a maximum of 30°, which would take approximately 60 seconds to 
implement. This time is significantly less than the Taylor’s hypothesis time lag (Section 2.4) and 
therefore this yaw rate will not influence the results. For a dynamic wake steering controller 
with a more rapid yaw update frequency, this effect should be considered. 
This was discussed in the original manuscript on Line 480 but we have moved the discussion to 
the LES formulation Section 3 to improve clarity. 
 
Comment #4 
p.7, l. 184: number of turbines N T , l. 192: number of turbines N t (either use N T or N t ) 
 
Response 
We will fix the typographical error. 
 
Comment #5 
p.9, l.234: I believe the algorithm should be denoted as Adam, not ADAM 
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Response 
We will fix the typographical error. 
 
Comment #6 
p.10,l.280: add the continuity equation to the momentum equation 
 
Response 
We will add the continuity equation for completeness. 
 
Comment #7 
p.10,l.264: psuedo vs. pseudo? 
 
Response 
Pseudo, we will fix the typographical error. 
 
Comment #8 
Figure 2 and Figure 6 could be improved by adding a snapshot of a velocity 
field in addition to the purely schematic domain presentation. 
 
Response 
We will add a velocity field snapshot. 
 
Comment #9 
p.13,l.345: in incorporated vs is incorporated 
 
Response 
We will fix the typographical error. 
 
Comment #10 
p.20,l.471: proportionality constant σ 0 
 
Response 
Thank you, we will adjust the manuscript accordingly. 
 
Comment #11 
p.21,l.472: Gaussian wake does NOT have a clear trend 
 
Response 
We will fix the typographical error. 
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Abstract. Strategies for wake loss mitigation through the use of dynamic closed-loop wake steering are investigated using

large eddy simulations of conventionally neutral atmospheric boundary layer conditions, where the neutral boundary layer

is capped by an inversion and a stable free atmosphere. The closed-loop controller synthesized in this study consists of a

physics-based lifting line wake model combined with a data-driven Ensemble Kalman filter
:::::::
(EnKF) state estimation technique

to calibrate the wake model as a function of time in a generalized transient atmospheric flow environment. Computationally5

efficient gradient ascent yaw misalignment selection along with efficient state estimation enables the dynamic yaw calcula-

tion for real-time wind farm control. The wake steering controller is tested in a six turbine array embedded in a
:::::::::
statistically

quasi-stationary conventionally neutral flow with geostrophic forcing and Coriolis effects included. The controller
:::::::::
statistically

::::::::::
significantly increases power production compared to baseline, greedy, yaw-aligned control although the magnitude of success

of the controller depends on the state estimation architecture and the wind farm layout
:::::::
provided

:::
that

:::
the

::::::
EnKF

:::::::::
estimation

::
is10

:::::::::
constrained

::::
and

::::::::
informed

::::
with

:
a
::::::::::::
physics-based

::::
prior

:::::
belief

:::
of

:::
the

::::
wake

::::::
model

:::::::::
parameters. The influence of the model for the

coefficient of power Cp as a function of the yaw misalignment is characterized. Errors in estimation of the power reduction

as a function of yaw misalignment are shown to result in yaw steering configurations that under-perform the baseline yaw

aligned configuration. Overestimating the power reduction due to yaw misalignment leads to increased power over greedy

operation while underestimating the power reduction leads to decreased power, and therefore, in an application where the in-15

fluence of yaw misalignment on Cp is unknown, a conservative estimate should be taken. Sensitivity analyses on the controller

architecture, coefficient of power model, wind farm layout, and atmospheric boundary layer state are performed to assess

benefits and trade-offs in the design of a wake steering controller for utility-scale application. The physics-based wake model

with data assimilation
:::
The

:::::::::::::::
EnKF-augmented

::::
wake

::::::
model

:
predicts the power production in yaw misalignment with a mean

absolute error over the turbines in the farm of 0.02P1, with P1 as the power of the leading turbine at the farm, whereas a20

physics-based .
::
A
::::::::
standard wake model with wake spreading based on an empirical turbulence intensity relationship leads to

a mean absolute error of 0.11P1:
,
::::::::::::
demonstrating

:::
that

:::::
state

:::::::::
estimation

::::::::
improves

:::
the

::::::::
predictive

::::::::::
capabilities

::
of

:::::::::
simplified

:::::
wake

::::::
models.
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1 Introduction25

Wind and solar energy are likely the only low-carbon energy technologies which are being implemented rapidly enough to

mitigate the effects of global warming (IEA, 2017). Since wind energy has a low marginal cost (Bitar et al., 2012), increases in

wind farm power production approximately manifest as a reduction in the levelized cost of electricity (LCOE) (Joskow, 2011).

While the LCOE of wind energy is already often below those of traditional combined-cycle natural gas and coal (Bilgili et al., 2015; EIA, 2018)

, continued reductions in wind energy LCOE will likely increase the adoption of this technology (Borenstein, 2012; Ouyang and Lin, 2014)30

due to improved economics in sub-optimal wind resource areas (Wiser et al., 2015). Modern horizontal axis wind turbines

achieve performance approaching the Betz limit (Wiser et al., 2015). However, collections of wind turbines arranged in wind

farms suffer from aerodynamic interactions which reduce wind farm power production between 10 and 20% (Barthelmie et al.,

2009) due to greedy control schemes which only consider the power maximization of individual wind turbines at the farm.

Recent work has focused on the operation of wind turbines in a collective fashion in order to increase the power production of35

the wind farm through the mitigation of wake interactions (see review by Boersma et al., 2017).

Wind farm power optimization through wake interaction mitigation methods have generally relied on axial induction and yaw

misalignment control since these two methodologies do not require significant hardware modifications on traditional horizontal

axis wind turbines (Burton et al., 2011). Annoni et al. (2016) utilized a steady-state model to inform the optimal axial induction

factors for each wind turbine in an LES of a model wind farm but did not find significant power production improvements over40

baseline greedy operation. Campagnolo et al. (2016a) found similar results in a wind tunnel experiment of three wind turbines.

The full large eddy simulation (LES) adjoint equations were used to optimize the power production by Goit and Meyers (2015).

Munters and Meyers (2017) and Munters and Meyers (2018) extended the work of Goit and Meyers (2015) and used dynamic

axial induction and yaw misalignment to increase wind farm power production using the full-state adjoint. While these studies

achieved successful dynamic power production increases over baseline operation, the computational expense of adjoint LES45

is similar to standard LES and is currently a challenge to use in real-time wind farm control. Bauweraerts and Meyers (2019)

showed that coarse LES can potentially be used for real-time prediction and control but this requires future investigation and

is not the focus of the present study. Ciri et al. (2017) used a model-free formulation and dynamic control to increase the

power production of a model wind farm and found that downstream wind turbines may also need to change their operational

strategy to increase farm performance. Gebraad et al. (2013) also used a model-free gradient-based optimizer to increase the50

power production of a wind farm by approximately 1%. Park and Law (2016) used data-driven Bayesian ascent to efficiently

maximize the power production of a model wind farm using axial induction . As a general conclusion of the present literature,

simulations and field experiments of stationary axial induction based on static-wake models (models which represent the time

averaged behavior of a stationary or quasi-stationary flow) have shown this methodology is unlikely to increase
:::::::
Readers

:::
are

::::::
directed

:::
to

::::::::::::::::::
Knudsen et al. (2015)

:::
and

::::::::::::::::::::::::::::
Kheirabadi and Nagamune (2019)

:::
for

:::::
recent

:::::::
reviews

::
of

:
wind farm power production in55

utility-scale wind farms but may improve wind turbine fatigue loading provided that the objective function is carefully proposed
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and the fatigue is accurately modeled (see extensive review by Knudsen et al., 2015). Meanwhile,
:::::::::::
maximization

::::::::::::
methodologies.

:::::::
Previous

:::::::::
simulation

::::::
studies

::::
have

::::::
shown

:::
that

:::::
wake

::::::
steering

::::
may

::::
have

:::::
more

:::::::
potential

::::
than

:::::
static

::::
axial

::::::::
induction

:::::::
control

::
for

:::::
wind

::::
farm

:::::
power

::::::::::::
maximization

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Annoni et al., 2016; Gebraad et al., 2016a; Campagnolo et al., 2016a),

::::::::
although

:
dynamic axial in-

duction
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Park and Law, 2016; Munters and Meyers, 2018; Frederik et al., 2020) or more sophisticated dynamic blade pitch strate-60

gies
::::::::::::::::::
(Frederik et al., 2019) may significantly increase power production (Munters and Meyers, 2018; Frederik et al., 2019, 2020)

and require future field experimentation.

Greedy wind turbine operation minimizes the yaw misalignment between the nacelle position and the incoming wind di-

rection. Contemporary wind turbines often operate in small yaw misalignment due to sensor noise and uncertainty (Fleming

et al., 2014) leading to sub-optimal power production for the misaligned turbine. However, recent attention has focused on65

wake steering, the intentional misalignment of certain turbines within a wind farm in order to deflect wakes laterally away

from downwind generators (Grant et al., 1997; Jiménez et al., 2010). While the yaw misaligned wind turbine’s power pro-

duction is decreased (Burton et al., 2011; Medici, 2005)
::::::::::::::::::::::::::::
(Medici, 2005; Burton et al., 2011), wake steering has been shown to

increase the power production of downwind generators in simulations (Fleming et al., 2016; Gebraad et al., 2017; Fleming

et al., 2018; Archer and Vasel-Be-Hagh, 2019) and wind tunnel experiments (Adaramola and Krogstad, 2011; Mühle et al.,70

2018; Bastankhah and Porté-Agel, 2019). Further, the potential for wake steering to increase wind farm power production in

wind conditions with wake losses has been observed in full-scale field campaigns with two (Fleming et al., 2017, 2019) and

six wind turbines (Howland et al., 2019).

While wake steering has been shown to be a beneficial global wind farm control strategy compared to greedy operation,

the selection of the optimal yaw misalignment strategy for each wind turbine at a farm is challenging. The optimal yaw75

misalignment angles depend on the wake interactions between wind turbines (Gebraad et al., 2017). These wake interactions

are dependent on wind speed, wind direction, atmospheric stability, turbulence intensity, local terrain, and other flow features

(see e.g. Hansen et al., 2012). Most wake steering control strategies have relied on static engineering wake models such as the

FLORIS model (Gebraad et al., 2016a, b; Fleming et al., 2016) or a lifting line model (Shapiro et al., 2018; Howland et al.,

2019) to select the optimal yaw misalignment strategy based on a steady, time-averaged assumption of the wind farm flow.80

Extremum seeking wake steering control has also been tested by Campagnolo et al. (2016b) using a gradient-based controller.

However, these static model approaches may have challenges in establishing the optimal yaw misalignment strategy as a

function of time in a transient flow environment such as the stable atmospheric boundary layer (ABL) or the full diurnal cycle

(see e.g. Wyngaard, 2010).

Recent work has focused on the selection of the optimal yaw misalignment angles as a function of time for transient flow ap-85

plications. The main challenge in this flow environment
::::::::::::::
Ciri et al. (2017)

::::
used

:
a
:::::::::
model-free

::::::::::
formulation

:::
and

::::::::
dynamic

::::::
control

::
to

:::::::
increase

::
the

::::::
power

:::::::::
production

::
of

::
a

:::::
model

::::
wind

:::::
farm

::
in

::::::::::
simulations.

:::::
While

::::::::::
model-free

::::::::::
optimization

::
is

:::
the

::::::
subject

::
of

:::::::::
promising

:::::::
on-going

::::::
work,

:::
this

::::::::::::
methodology

::::::::
generally

::::::::::
experiences

::::::
slower

:::::
rates

:::
of

::::::::::
convergence

::::
and

::::
may

:::
be

::::
less

::::::
suited

::
to

::::::::
transient

::::
flow

::::::::::
applications

::::::
where

::::
wind

:::::::::
conditions

:::::
shift

:::::::
rapidly,

:::::::
although

::::::
future

:::::
work

::::::
should

::::::::
compare

:::::::::::
model-based

:::
and

::::::::::
model-free

::::::::::
formulations

::
in
::::::::
transient

::::
flow

:::::::::::
applications.

::
A

:::::::::
significant

::::::::
challenge

::
in

::::::::
transient

::::
flow

:::::::::::
environments

:
is in accurately predicting90

the power production given greedy baseline control, considering ABL and controller state uncertainty in a utility-scale wind

3



farm. The combined two-dimensional computational fluid dynamics and adjoint-based optimization model WFSim has been

utilized (see e.g. Boersma et al., 2016, 2018; Vali et al., 2019) for control applications. Subsequent studies have used the En-

semble Kalman filter (EnKF)
:::
has

::::
been

::::::::
leveraged

:
to perform model state estimation as a function of time (Doekemeijer et al.,

2017) . The EnKF filter has been successfully used
:::
and

:
for low-order model state estimation for the purpose of receding hori-95

zon frequency regulation control (Shapiro et al., 2017) and reference power signal tracking applications (Shapiro et al., 2019).

Doekemeijer et al. (2018) found that the EnKF has comparable state estimation performance given either nacelle-mounted

LiDAR data or Supervisory Control and Data Acquisition (SCADA) power production data alone. Since very few utility-

scale wind turbines have nacelle-mounted LiDAR systems, the successful performance of the EnKF based on SCADA data

alone highlights the potential for online model calibration without additional hardware installation. The present computational100

complexity of the EnKF-WFSim system may limit the applicability to real-time control systems, although recent efforts have

focused on the reduction of the simulation time of this method. As such, real-time closed-loop wind farm controllers with

online state estimation require reliable analytic wake models such as the FLORIS or lifting line model.

Static wake model based dynamic control studies have utilized a quasi-static wake steering approach wherein the optimal yaw

misalignment angles are computed and stored as a function of wind speed and direction based on static wake models with pre-105

defined model parameters (Fleming et al., 2019). However, the pre-defined model parameters were calibrated for the FLORIS

wake model
::::::::
Gaussian

::::
wake

::::::
model

:::::::::::::::::::::::::::::
(Bastankhah and Porté-Agel, 2014) based on idealized LES

::::
large

::::
eddy

::::::::::
simulations

::::::
(LES)

and their applicability to a new utility-scale field implementation are unknown a priori. Further, there is additional uncertainty

associated with the freestream velocity and turbulence intensity measurements in a wind farm environment where the typical

sensors are limited to nacelle-mounted anemometers placed directly behind the rotating rotor. The dynamic influence of yaw110

misalignment on these sensors is unknown (Howland et al., 2019). Recently, Raach et al. (2019) used the FLORIS wake model

to design a closed-loop wake steering controller which relies on a downwind facing nacelle-mounted LiDAR system which was

able to increase power production in an example nine wind turbine LES case. In order to focus on a low-order methodology

which does not require additional hardware installations, we develop closed-loop wake model based wake steering control

for the application of data-driven wind farm power maximization based on SCADA power production data. The algorithm115

was designed for real-time control of utility-scale wind turbines without the requirement of additional hardware or sensor

measurement systems and utilizes the gradient-based optimal yaw algorithm developed by Howland et al. (2019). The dynamic

wake steering controller implemented in this study does not require historical data to be sorted into pre-selected wind speed

and direction bins in order to make optimal yaw misalignment decisions. This is beneficial since the sorting of SCADA data

represents a major uncertainty associated with wake steering control (Fleming et al., 2019; Howland et al., 2019).120

Analytic wake models require a number of simplifications of the flow physics and wind turbine operation in order to predict

wind farm power production in a computationally efficient fashion (see e.g. review by Stevens and Meneveau, 2017).
::::::::
However,

::::::::
compared

::
to

:::::::::
model-free

:::::::
control,

:::
the

::::
wake

::::::
model

::::::
encodes

::
a
::::
prior

:::::
belief

::
of

:::
the

:::::::
physics

::
of

::::
wind

::::
farm

:::::
flows

:::
and

:::::::::
establishes

::
a
::::
base

::::::::::
performance

:::::
given

:::
the

:::::
initial

:::::
model

:::::::::
parameters

:::::::::
preceding

::
the

:::::::::::
perturbations

:::::::
applied

::
by

:::
the

:::::
EnKF

:::::::::::::::::::::::::::::::::::::
(also see discussion by Schreiber et al., 2019)

:
. The selected model-based optimal yaw misalignment angles will depend on the wake deflection model form and parameters,125

and the model for power production degradation as a function of the yaw misalignment angle. Further, in a low-order, model-
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Controller Wind farm

State
estimation

γ(t)

kw(t); σ0(t) P (t);α(t)

Figure 1. Diagram of the dynamic wake steering control system. The wake model parameters as a function of time are kw(t) and σ0(t)

and the yaw misalignment angles are given by γ(t). The power production and wind direction are given by P (t) and α(t), respectively. In

open-loop control, the model parameters kw and σ0 are fixed as a function of time.

driven power optimization application, the selected yaw misalignment angles will depend on the wind farm layout, wind

direction and speed, and stability state of the ABL. The goal of the present study is to analyze the sensitivity of wind farm

power production increases through wake steering as a function of
::
to the design of the control system, model for power loss as

a function of yaw misalignment, and wind farm layout .
::::
when

:::::::::
leveraging

:::::
wake

:::::::
steering

::::::
control.

:
130

This work represents Part 1 of the results and targets a canonical planetary boundary layer with conventionally neutral

stratification. Part 2 will focus on a sensitivity analysis of wake steering control as a function of the
::::
with temporally varying

stratification and surface heat flux. Section 2 will introduce the dynamic wake steering methodology and EnKF state estimation

technique. The LES methodology is introduced in Section 3. The dynamic wake steering will be
:
is
:

validated in a two-turbine

uniform inflow LES case in Section
::::::::
Appendix

:
F. In Section 4, the sensitivity to model architecture and parameters as well as135

wind farm layout is tested in LES of the conventionally neutral ABL with realistic Coriolis forcing. Finally, conclusions are

given in Section 5.

2 Dynamic wake steering methodology

The present methodology is focused on optimal closed-loop wake steering control as a function of time for transient flow

applications. The dynamic wake steering controller is illustrated in Figure 1. The controller entails a forward-pass wake model140

described in Section 2.1 and a backward pass to compute analytic gradients for gradient-ascent power maximization (Section

2.3). State estimation uses the ensemble Kalman filter described in Section 2.2. The wind farm is simulated using LES (Section

3).
:::
The

::::::::::
closed-loop

::::::
control

::::::::
algorithm

:::
and

:::::::::::::
implementation

::
is
::::::::
validated

::
in

:::::::::
Appendix

:
F
:::
for

::::
LES

::
of

:::::::
uniform

::::::
inflow.

:

2.1 Lifting line wake model

Following the observation of counter-rotating vortex pairs shed by wind turbines operating in yaw misalignment in experiments145

and LES (Howland et al., 2016)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Mikkelsen et al., 2003; Howland et al., 2016; Bastankhah and Porté-Agel, 2016), Shapiro et al.

(2018) developed a wake model for wind turbines in yaw based on Prandtl’s lifting line theory. The wake model derived by

Shapiro et al. (2018) was reformulated by Howland et al. (2019) to improve computational efficiency and to extract analytic
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gradients for the purpose of gradient-based optimization. Readers are directed to Shapiro et al. (2018) for the derivation of the

initial wake model and to Howland et al. (2019) for the analytic formulation which eliminates the need for domain discretiza-150

tion. In the two dimensional static wake model, the
::::
rotor

::::::::
averaged

:
effective velocity at a downwind wind turbine j is given as

ue,j(x) = u∞−
Nf∑
i

√
2πδui(x)dw,i(x)D

16σ0,i

[
erf

(
yT +D/2− yc,i(x)√

2σ0,idw,i(x)

)
− erf

(
yT −D/2− yc,i(x)√

2σ0,idw,i(x)

)]
, (1)

where u∞ is the incoming freestream velocity and δui and dw,i are the velocity deficit and the wake diameter as functions of

x associated with the upwind turbine i, respectively. The wind turbine rotor diameter is given by D. The downwind turbine155

lateral centroid is yT and the lateral wake centroid is yc,i. The wake model parameters are kw, the wake spreading coefficient

and σ0, the proportionality constant for the presumed Gaussian wake. The velocity deficit trailing a single wind turbine is

δui(x) =
δu0,i
d2w,i(x)

1

2

[
1 + erf

(
x√

2D/2

)]
, (2)

with δu0,i = 2aiu∞ and axial induction factor ai = 1/2
(

1−
√

1−CT,i cos2(γi)
)

. The thrust coefficient is given by CT and

the yaw misalignment angle is given by γ.
:::
The

::::
wake

::::::
model

:::::::
assumes

:::
the

:::::
thrust

:::::
force

::
in

:::
the

:::::::::
streamwise

::::::::
direction

:::::::::::
T ∼ cos2(γ)160

:::::
which

::::
may

:::
not

::
be

:::::
valid

:::
for

::
all

:::::
wind

::::::
turbine

::::::
models

:::::::::::::::::::::::::::::::::::
(see e.g. Bastankhah and Porté-Agel, 2016)

:
.
::
In

:::
the

::::::
present

:::::
LES

:::::
cases,

:::
the

::::
wind

::::::
turbine

::::::
model

:::::::
enforces

:::
this

:::::
thrust

::::::
scaling

::::
(see

:::
§3)

::::
and

:::::::
therefore

:::::::::
sensitivity

:::::::
analyses

:::
on

:::
this

::::::::::
assumption

:::
are

:::
left

::
for

::::::
future

:::::
work. Positive and negative yaw misalignment are defined as counter-clockwise and clockwise rotations, respectively, when

viewed from above. The inflow wind angle is given by α, where 0◦ is north and proceeds clockwise to 360◦ at north again.

The thrust force in the streamwise direction is assumed to follow actuator disk theory as cos2(γ). The
:::
The wake diameter as a165

function of the streamwise location x is dw,i(x) = 1 + kw,i log(1 + exp[2(x/D− 1)]). Linear superposition of the individual

wakes is assumed in Eq. 1 (Lissaman, 1979).

The wake centerline yc,i is given by

yc,i =

x∫
x0,i

−δvi(x′)
u∞

dx′, (3)

where the spanwise velocity δv is given similar to Eq. 2 with the initial disturbance given analytically as (Shapiro et al., 2018)170

δv0,i =
1

4
CT,iu∞ cos2(γi)sin(γi). (4)

The wind turbine model power is computed as

P̂i =
1

2
ρAiCpu

3
e,i, (5)

where A is the wind turbine rotor area and ρ is the density of the surrounding air. The model for the coefficient of power Cp as

a function of the yaw misalignment remains an open question. Often, the power loss as a function of the yaw misalignment is175

assumed to follow Pyaw ∼ P cosPp(γ), where Pp is a known parameter. Following actuator disk theory (Burton et al., 2011),
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Pp = 3. However, simulations have shown for the NREL 5 MW turbine that Pp = 1.88 (Gebraad et al., 2016a). Recent work

has shown that Pp differs for freestream and waked turbines (?)
:::::::::::::::
(Liew et al., 2020). The value of Pp that results in a satisfactory

agreement with experimental data depends on the wind turbine model, ABL shear and veer, and atmospheric stability. In the

present study, we will consider Pp an uncertain parameter and perform sensitivity analysis on it. The uncertainties of the wake180

model parameters kw and σ0 are considered by the state estimation in Section 2.2. The coefficient of power is modeled as

CP,i = 4ηap,i(1− ap,i)2 cosPp(γi), (6)

with ap,i = 1
2

(
1−

√
1−CT,i

)
The parameter η is tuned to match the manufacturer provided yaw-aligned CP look-up table

(Gebraad et al., 2016a). The applicability of this model is limited to Region II of the wind turbine power curve which is

typically between 4 and 15 m/s.185

2.2 Ensemble Kalman filter state estimation

Engineering wake models rely on parameters which represent physical phenomena, such as the wake spreading rate kw.

Niayifar and Porté-Agel (2016) proposed the dependence of kw on the turbulence intensity which may be measured at a wind

farm by nacelle anemometers, and this model has been used in subsequent FLORIS applications (see e.g. Fleming et al., 2018)

. Shapiro et al. (2019) proposed the use of canonical turbulent wake mixing and a prescribed mixing length model to estimate190

kw. Schreiber et al. (2019) utilized a data-driven approach where error terms are added to the engineering model and SCADA

is used for data assimilation to correct the wake model inaccuracies. Gradient optimization-based SCADA data assimilation

was used by Howland et al. (2019) to select the model parameters which minimize the model error in producing the site-specific

wind farm greedy baseline power production. Howland and Dabiri (2019) subsequently used gradient descent coupled with a

genetic algorithm for data assimilation.195

Here, we will employ the EnKF (Evensen, 2003) state estimate technique along with the wake model described in Section

2.1. The EnKF filter was found to be computationally less expensive than the gradient-based data assimilation used by Howland

et al. (2019). The EnKF filter is computationally superior to other Kalman filter methods (extended, unscented, etc.) since there

are typically fewer ensemble states than dimensions but this may lead to spurious correlations in the state representation

(see e.g. discussion by Doekemeijer et al., 2018; Mandel, 2009). The states
::::
The

::::
states

:
and dimensions here represent the wake200

model instantiations and parameters, respectively. In our state estimation case, the dimension space scales linearly with the

number of turbines NT ::
Nt, rather than with the N2

T or N3
T :::
N2
t ::

or
::::
N3
t in a model with a domain discretization (see discussion

by Howland et al., 2019). Therefore the number of ensembles, which is a hyperparameter selected by the EnKF user, and

dimensions will be of the same order of magnitude. The SCADA power production of each wind turbine is a function of time,

denoted Pk, where k is the time step index. The goal is to estimate the wake model parameters given SCADA power production205

data measurements, Pk ∈ IRNt ,
:::::
using

:::
the

::::::::
ensemble

:::::::
Kalman

::::
filter

:::
as

:
a
:::::
rapid

::::::::::
gradient-free

:::::::::
optimizer

::::::::::::::::
(Cleary et al., 2020). This

approach follows previous uses of the EnKF for wake model state estimation (Shapiro et al., 2017; Doekemeijer et al., 2017)

but the algorithm is reviewed here. The EnKF is particularly well-suited for discretized partial differential equation systems,

often in geophysical applications, and is computationally efficient for the present application as well
::::::::
nonlinear

:::::
wake

::::::
model,
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::::::
denoted

:::
by

::
h,

::::
also

:::::::
receives

:::
the

:::::
wind

:::::
speed

:::
and

::::::::
direction

:::::
from

:::
the

::::::
leading

:::::::
turbine,

::
as

::::
well

:::
as

:::
the

::::
yaw

:::::::::::
misalignment

::
of

:::::
each210

::::::
turbine

::
in

:::
the

:::::
farm. There are two wake model parameters for each upwind turbine and no parameters for the last turbine

downwind. The model parameters with Nt wind turbines at the kth time step are given by

ψk = [kw,1, ...,kw,Ntw,Nt−1
:::::

,σ0,1, ...,σ0,Nt0,Nt−1
:::::

]. (7)

The modeling and measurement errors are represented by χ= [χTkw ,χ
T
σ0

]T ∈ IR2Nt

::::::::::::::::::::::::
χ= [χTkw ,χ

T
σ0

]T ∈ IR2(Nt−1) and ε ∈
IRNt , respectively. The modeling errors χkw and χσ0 are zero mean and have prescribed variances of σ2

kw = 0.0009 and215

σ2
σ0

= 0.0009. The Gaussian random measurement noise ε has zero mean and a prescribed standard deviation of σε = 0.03·P1.

The hyperparameter variances were selected based on tuning experiments (see Appendix A). In order to estimate the state model

parameters, the EnKF filter uses an ensemble of wake model evaluations. The ensemble is given by

Ψ = [ψ(1), ...,ψ(Ne)] ∈ IR2Nt×Ne2(Nt−1)×Ne

:::::::::
. (8)

The power predictions are given by the matrix220

Π̂ = [π̂(1), ..., π̂(Ne)] ∈ IRNt×Ne , (9)

where Ne is the number of ensembles.

The statistical noise of the power production measurements is given by ε. The Gaussian random noise is added to the SCADA

measurements for each ensemble

ξ(i) = Pdata + ε(i). (10)225

The perturbed power production ensemble matrix is

Ξ = [ξ(1), ..., ξ(Ne)] (11)

with the perturbation matrix prescribed by

Σ = [ε(1), ...,ε(Ne)] (12)

The mean of the ensemble states and modeled power production is given by230

Ψ = Ψ1Ne (13)

Π̂ = Π̂1Ne (14)

where 1Ne ∈ IRNe×Ne is a full matrix where all entries are 1/Ne. The perturbation matrices are

Ψ′ = Ψ−Ψ (15)

Π̂′ = Π̂− Π̂. (16)235
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Wake model

h(ψk + Bχk)
�ψk = [ �kw, �σ0]

Process noise
χk

Measurement noise
ε

Power data
Pdata

Posterior

estimate, Eq.(19)
�ψk+1 = [ �kw, �σ0]

Figure 2.
::::::::
Schematic

::
of

::
the

::::::::
ensemble

::::::
Kalman

:::
filter

::::::::
parameter

::::::::
estimation

::::::::::
methodology.

:::
The

:::::
wake

:::::
model

::::::
predicts

::
the

:::::
power

::::::::
production

:::::
given

::::
wake

:::::
model

::::::::
parameters

:::
ψk ::::

from
:::
time

::::
step

:
k
:::
and

:::
the

:::::::
modeled

::::::
process

::::
noise

::
χ.

:::
The

:::::
power

::::
data

::::
from

:::
the

:::
LES

:::
are

::::::::
augmented

::::
with

:::::::
modeled

::::::::::
measurement

::::
noise

::
ε.

:::
The

::::
wake

:::::
model

:::::::::
predictions,

:::::::::::
h(ψk +Bχk), ::::::

process
:::
and

::::::::::
measurement

::::
noise,

:::
and

:::::
power

:::
data

:::
are

:::::::
leveraged

::
to

:::::::
compute

::
the

:::::::::
parameters

:
in
:::
the

::::
k+1

::::
time

:::
step

:::::
ψk+1::::

using
:::
the

::::::::::
measurement

::::::
analysis

::::
step

:::
(Eq.

:::
19).

The first step in the EnKF process is an intermediate forecast step

Ψk+ = [ψ
(1)
k +Bχ

(1)
k , ...,ψ

(Ne)
k +Bχ

(Ne)
k ] (17)

Π̂k+ = [h(πψ
:

(1)
k +Bχ

(1)
k ), ...,h(πψ

:

(Ne)
k +Bχ

(Ne)
k )]. (18)

where matrix B ∈ IR2Nt×2Nt

:::::::::::::::::::
B ∈ IR2(Nt−1)×2(Nt−1)

:
is the identity matrix and h represents the nonlinear wake model de-

scribed in Section 2.1.240

The measurement analysis step is given by

Ψk+1 = Ψk+ + Ψ′k+Π̂′Tk+(Π̂′k+Π̂′Tk+ + Σk+1ΣTk+1)−1 · (Ξk+1− Π̂k+). (19)

The final values of kw and σ0 for the k+ 1 time step are given as the columns of Ψk+1. The EnKF
:
is
::::::::
repeated

::
for

::
a
:::::::::
predefined

::::::
number

::
of

::::::::
iterations

:::
for

::::::::
improved

:::::::::
estimation

::::
(see

::::::::
Appendix

::::
A).

:::
The

::::::
EnKF state estimation then assumes that the parameters

kw,k+1 and σ0,k+1 will be valid over the succeeding finite time from step k+ 1 until step k+ 2.
:
A

:::::::::
schematic

::
of

:::
the

::::::
EnKF245

:::::::::::
methodology

:
is
::::::
shown

::
in

::::::
Figure

::
2.

The EnKF is a Kalman filter method which uses the Monte-Carlo sampling of model parameters according to a prescribed

Gaussian function to represent the covariance matrix of the probability density function (PDF) of the state vector Ψ. The

likelihood of the data is represented using observations Ξ and prescribed perturbations Σ. Using the prior PDF of the state (k)

and data likelihood, the posterior state (k+ 1) is estimated using Bayes’s rule (Eq. 19).250

2.3 Optimal yaw misalignment optimization

The optimal yaw misalignment angles depend on the wind speed, direction, turbulence intensity, and other key ABL conditions.

Within a given condition bin, the number of potential yaw misalignment angle combinations grows exponentially with the

number of wind turbines. As such, brute force optimization methods are not sufficient for the selection of the optimal yaw

9



misalignment strategy. Previous studies have considered genetic algorithms (Gebraad et al., 2016a), discrete gradient-based255

optimization (Gebraad et al., 2017), and analytic gradient-based optimization (Howland et al., 2019). Using gradient-based

ADAM
::::
Adam

:
optimization (Kingma and Ba, 2014), the gradient update is given by

γt+1 = γt−α mt√
vt
, (20)

wheremt = β1m
t−1+(1−β1)∂

∑
P̂

∂γ and vt = β2v
t−1+(1−β2)(∂

∑
P̂

∂γ )2. The hyperparameters are set to the commonly used

values of β1 = 0.9 and β2 = 0.999, respectively (Kingma and Ba, 2014). The analytic gradients computed by Howland et al.260

(2019) are used for the gradient-based wind farm power optimization.

2.4 Approximate advection timescale

Upon the yaw misalignment of an upwind turbine, there is a time lag associated with the advection time scale of the flow

for the control decision to influence a downwind turbine. While the advection time depends on the length scale of the

turbulent eddy (Del Álamo and Jiménez, 2009; Yang and Howland, 2018; Howland and Yang, 2018), the mean flow advection265

approximately follows the mean wind speed in wind farms (Taylor, 1938; Lukassen et al., 2018). The number of simulation

time steps associated with the approximate advection time between the first and last turbines is computed as

Ta =
∆sx

uhub∆t
,

where ∆sx is the distance between the first and last turbine in the streamwise direction and uhub is the mean streamwise

velocity at the wind turbine model hub height at the leading turbine in the farm. The simulation time step is fixed and is ∆t,270

which corresponds to a CFL of less than 1 persistently during runtime. In the computation of wind farm statistics for the

utilization of static wake models, the advection time scale is accounted for by initializing the time averaging two advection

time scales 2Ta after the yaw misalignments for the wind turbine array have been updated. To account for errors associated

with the simple advection model, the time lag is taken as double the advection time scale, 2Ta. The sensitivity of the wind farm

power production and model-predicted optimal yaw misalignment angles as a result of the advection time lag are considered275

in Section 4.

2.4 Yaw misalignment temporal update frequency

While static wake models are able to capture time averaged wind farm dynamics in stationary flows (see e.g. Stevens and Meneveau, 2017)

, instantaneous wind speed and direction are constantly changing and challenging to predict. As the stability of the atmosphere

transitions during the diurnal cycle, the mean wind conditions as well as turbulence intensity will change with a significant280

impact on the wake loss magnitude (Hansen et al., 2012). The wake steering strategy must be dynamic to adapt to the instantaneous

wind conditions but also requires some time lag according to the advection time scale of the wind farm. The selection of the

optimal yaw misalignment angle update frequency will impact the power production of the wind farm. Kanev (2020) found

that when utilizing a dynamic wake steering controller in transient flow environments the energy production may decrease as

10



a result of wind direction fluctuations as a function of time. The energy loss was due to the dynamic wake steering controller285

attempting to follow the wind direction constantly as a function of time, leading to increased yaw duty, and a final yaw update

time of 2 minutes was selected.

In a full-scale wake steering field experiment, Fleming et al. (2019) found that wind direction and speed data low pass

filtering resulted in an unintended time lag between the observed conditions and the associated optimal yaw misalignment

angles. Finally, Raach et al. (2019) utilized a feedforward-feedback framework to adjust the open-loop predicted optimal yaw290

misalignment angles continuously based on LiDAR measurements of the wake centroid location, instead of SCADA power

measurements, with an update time scale on the order of seconds. In the present study, the yaw misalignment update frequency

is selected according to the dynamics of the problem studied. Comments on the update frequency for the conventionally neutral

ABL LES cases are made in Section 4.

3 Large eddy simulation setup295

Large eddy simulations are performed using the open-source psuedo-spectral
:::::::::::::
pseudo-spectral code PadéOps1. The solver uses

6th order compact finite differencing in the vertical direction (Nagarajan et al., 2003) and Fourier collocation in the horizontal

directions. Temporal integration uses a fourth order strong stability preserving Runge-Kutta variant (Gottlieb et al., 2011). The

LES code has previously been utilized for high Reynolds number ABL flows (Howland et al., 2020a; Ghaisas et al., 2020)

and is described in detail by Ghate and Lele (2017). The ABL is modeled as an incompressible, high Reynolds number limit300

(Re→∞) flow with the
::::::
filtered,

:
nondimensional momentum equations given by

∂ui
∂t

+uj
∂ui
∂xj

=− ∂p

∂xi
− ∂τij
∂xj

+ fi +
δi3
Fr2

(θ− θ0)− 2

Ro
εijkΩjuk −

∂PG

∂xi
,

∂ui
∂t

+uj
∂ui
∂xj

=− ∂p

∂xi
− ∂τij
∂xj

+ fi +
δi3
Fr2

(θ− θ0)− 2

Ro
εijkΩjuk −

∂PG

∂xi
,

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(21)

∂ui
∂xi

= 0
::::::

(22)305

where ui is the velocity in the xi direction, p is the nondimensional pressure, and PG is the nondimensional geostrophic

pressure. The subfilter scale stress tensor is given by τij and the sigma model is employed (Nicoud et al., 2011). The tur-

bulent Prandtl number used in the subfilter scale model is Pr = 0.4 (Ghate and Lele, 2017). Surface stress and heat flux

is computed using a local wall model based on Monin-Obukhov similarity theory with appropriate treatment based on the

state of stratification (Basu et al., 2008). The wind turbine forcing is represented by fi and an
:
a
:::::::::::
non-rotating actuator disk310

model is used (Calaf et al., 2010).
:::
The

:::::::
actuator

::::
disk

:::::
thrust

::::
force

::::
acts

:::::::
parallel

::
to

:::
the

::::
rotor

::::::
normal

::::::
vector.

::::
The

:::::::
incident

:::::::
velocity

:
is
::::::::

projected
::::

into
:::
the

:::::
rotor

::::
disk

:::::
plane

::::
and

::::::::
therefore

:::
the

::::::::::
dependence

::
of

:::::
thrust

:::
on

:::
the

::::
yaw

::::::::::::
misalignment

::
γ

::
in

:::::::
uniform

::::::
inflow

1https://github.com/FPAL-Stanford-University/PadeOps
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::::::::
conditions

::::::
would

::
be

::::::::
cos2(γ),

:::::::
although

::
it
::::
may

:::::::
deviate

::::
from

::::
this

::
in

:::::::
sheared

:::
and

::::::
veered

::::::
inflow

:::::::::
conditions.

:
While the actuator

disk model is lower fidelity than the actuator line methods, it captures the far wake
::
(far

:::::
wake

::
is

::::::::::::
approximately

:::::::::
x/D & 3,

:::
see

:::
e.g.

::::::::::::::::::::::::::::
Bastankhah and Porté-Agel (2017)

:
) accurately for both aligned (Martínez-Tossas et al., 2015) and yaw misalignment wind315

turbines (Lin and Porté-Agel, 2019). Since the goal of the present study is controller synthesis and sensitivity experiments,

more computationally expensive actuator line simulations are left for future work given the large volume of simulations that

are run.

Earth’s rotational vector is given by Ω = [0,cos(φ),sin(φ)], where φ is the latitude. The traditional approximation, which ne-

glects the horizontal component of Earth’s rotation (Leibovich and Lele, 1985)
::::::::::::::::::::::::::::::::::::::::
(Leibovich and Lele, 1985; Howland et al., 2018)320

, is not enforced. Therefore, Earth’s full rotational vector is included resulting in wind farm dynamics which are sensitive to

the direction of the geostrophic wind (Howland et al., 2020b). For simplicity all simulations are performed with west to east

geostrophic wind. The Coriolis terms are parameterized by the Rossby number Ro=G/ωL, where G is the geostrophic wind

speed magnitude, ω is Earth’s angular velocity, and L is the relevant length scale of the problem. All wind speeds used in

this study will be normalized by the geostrophic wind speed magnitude. The nondimensional potential temperature is given325

by θ. The buoyancy term is parameterized by the Froude number Fr =G/
√
gL, where g is the gravitational acceleration. The

equation for the transport of the filtered nondimensional potential temperature is given by

∂θ

∂t
+uj

∂θ

∂xj
=−

∂qSGSj

∂xj
, (23)

where qSGSj is the subgrid scale (SGS) heat flux.

The wind is forced by prescribing the geostrophic approximation where the geostrophic pressure gradient drives the mean330

flow (Hoskins, 1975). The geostrophic pressure balance in the stable free atmosphere is given by

∂PG

∂xi
=− 2

Ro
εijkΩjGk, (24)

with Gk representing the geostrophic velocity vector.

The simulations utilize a fringe region to force the inflow to a desired profile (Nordström et al., 1999). In the uniform inflow

cases, the fringe region forces the flow to a uniform profile. In the
::
In

:::
the conventionally neutral ABL cases, the concurrent335

precursor method is applied wherein a separate LES of the ABL is run without wind turbine models and the fringe region is

used to force the primary simulation outflow to match the concurrent precursor simulation outflow (see e.g. Munters et al.,

2016; Howland et al., 2020a).

For the uniform inflow and conventionally neutral cases, there
:::::
There

:
is an initial startup transience following the domain

initialization. The uniform inflow domain is initialized with u= 1 in the streamwise direction. Detailed comments on the ini-340

tialization for the conventionally neutral case are given by Howland et al. (2020b). The simulation cases are run until statistical

stationarity and quasi-stationarity is reachedfor the uniform and conventionally neutral cases, respectively. The conventionally

neutral case is statistically quasi-stationary due to inertial oscillations (see Allaerts and Meyers, 2015, for a detailed discussion on the conventionally neutral ABL quasi-stationarity)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(see Allaerts and Meyers, 2015, for a detailed discussion on the conventionally neutral ABL statistical quasi-stationarity). Upon

convergence, the wake steering control strategy is initiated.345
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The control is initialized with greedy baseline yaw alignment which is fixed for nT time steps. After nT simulation steps,

with the time averaged power production for each wind turbine measured over the previous nT − 2Ta :::::::
nT −Ta:time steps,

the
::::
with

:::
the

::::::::
advection

::::
time

::::
scale

:::::
given

:::
by

:::
Ta,

:::
the

:
EnKF state estimation and optimal yaw calculations are performed (Figure

1). The
:::::::
time-lag

:::::::::
associated

::::
with

:::
the

::::::::
advection

:::::
time

::::
scale

::
of

:::
the

:::::
wind

::::
farm

::
is
:::::::::
estimated

::
by

::::::::
invoking

:::::::
Taylor’s

:::::::::
hypothesis

::::
(see

::::::::
Appendix

::
C

::
for

::
a

::::
brief

::::::::::
discussion).

:::
The

:
yaw angles are then implemented and held fixed for nT time steps and the cycle repeats.350

The wind speed, wind direction, and power production are averaged in time over the window. The state estimation and yaw

misalignment update steps are performed concurrently with a period of nT simulation steps. In general, these two processes

can be decoupled, although this was not investigated in the present study.
::::::
Typical

::::::::::
utility-scale

::::
wind

::::::::
turbines

::::
have

:
a
::::
yaw

::::
rate

::
of

::::::::::::
approximately

::::::
0.5◦/s

::::::::::::::::::::
(Kim and Dalhoff, 2014).

::::
For

:::
the

::::::
largest

:::
yaw

::::::::::::
misalignment

::::::
change

::
in

:::
one

:::::::
control

:::::
update

::::
step

::
in

::::
this

::::
study

:::
of

::::::::::::
approximately

::::
30◦,

:::::
when

:::
the

:::::
wake

:::::::
steering

::::::
control

::
is

:::::::::
initialized,

:::
the

:::::::
yawing

:::::
action

::
is
:::::::::
completed

:::
in

::::::::::::
approximately355

:::
one

::::::
minute,

::::::
which

::
is

::::::::::
significantly

::::
less

::::
than

:::
the

::::::::
advection

::::::::
timescale

::
in

:::
the

:::::
flow.

:::::::::
Therefore,

:::
the

::::
yaw

:::
rate

::::
will

:::
not

::::::::
influence

:::
the

:::::
results

::::::::
presented

::
in
::::
this

:::::
study.

:

In order to compare the power production of the yaw misalignment control strategy with the baseline greedy control, a

separate LES case is run for each experiment with yaw aligned control. The two simulations are initialized from identical

domain realizations and the computational timestep ∆t is fixed between the two cases. Therefore, without the influence of360

variable turbine operation, the flow within and around the turbine array is identical to machine precision between the two yaw

aligned and yaw misaligned cases2. Since this study will consider the conventionally neutral ABL which contains turbulence

and inertial oscillations, this separate simulation must be used instead of a comparison with the power production of the first

yaw control update step (see Appendix B).

4 Dynamic wake steering uniform inflow LES365

In this section, the dynamic closed-loop wake steering controller described by Figure 1 will be used in LES of two turbines

operating in uniform inflow. The domain has lengths of 25D, 10D, and 10D in the x, y, and z directions, respectively, and

the number of grid points are 128, 64, and 64. Two actuator disk model wind turbines are simulated in uniform inflow with

slip walls on all sides and a fringe region at the domain exit to force the inflow to a uniform profile. The fringe is used in the

last 25% of the computational x domain. The turbines are located 4D apart in the streamwise direction and are misaligned by370

0.25D in the spanwise direction as shown in Figure F1. Due to the spanwise misalignment, the preferential yaw misalignment

direction for the upwind turbine is positive (counter-clockwise rotation viewed from above).

The flow is stationary after the initial startup transient has decayed and therefore the optimal yaw misalignment angles for

the two wind turbines are not a function of time. The flow is initialized as described in Section 3. Upon statistical stationarity,

the closed-loop wake steering controller is initialized and the flow is run for nT = 10000 LES time steps to ensure sufficient375

2
:
In
:::::
chaotic

::::::::
dynamical

::::::
systems,

:::::::
differences

:::::
caused

::
by

::::::
changes

::
in

::
the

::::::
compiler

:::::::::
optimization

:::
will

::::
grow

:::::::::
exponentially

::
in

:::
time

:::::::::::::::
(Senoner et al., 2008).

:::
We

:::
have

:::::
ensured

:::
that

::::
these

:::::::::
floating-point

::::::::
differences

::
are

:::::::
eliminated

:::
by

::::
fixing

::::::
compiler

:::::::::
optimization

::
and

:::::::
processor

::::::
topology

::
to

::::
allow

::
for

:::::::::
quantitative,

::::::
temporal

::::::::
comparisons

::::::
between

::
the

:::
LES

:::::
cases.

::
The

:::::
results

::
are

:::::::
therefore

:::::::
repeatable

:
to
::::::
machine

:::::::
precision.
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Sx = 4D

y − direction fringe

x− direction fringe
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18 ◦

Figure 3. Uniform inflow LES
:::::::::::
Conventionally

::::::
neutral

:::
six

::::
wind

:::::
turbine

:::::
finite

::::
wind

::::
farm simulation actuator disk model layout

::::
setup. The

fringe region
::::::::
geostrophic

::::
wind

:::::::
direction

:
is represented by the dashed black line

::::
west

::
to

:::
east

:
and the

:::::
x-axis

::
is

:::::
aligned

::::
with

:::
the

:::::::::
geostrophic

wind turbines are shown
:::::::
direction.

:::
The

::::
mean

::::
wind

:::::::
direction

::
at

:::
hub

:::::
height,

::::::::::::::
tan−1(v/u)≈ 16◦

:::
but

::
is

::
not

::::::
known

:
a
::::
priori

:
in

:::
the

::::::::
simulation

:::
and

::::
varies

:
as solid black lines

:
a
:::::::
function

::
of

:::
time.

:::
The

::::
wind

::::::
turbine

::::
array

:
is
:::::

offset
::::
from

::::::::
alignment

:
in
:::

the
:::::::::
x-direction

::
by

::::
18◦.

:::
The

::::
initial

::::::::
boundary

::::
layer

:::::
height

::
δ0::

is
:::
700

:::::
meters

:::
and

::::
does

:::
not

::::::
change

:::::::::
significantly

:::::
during

:::::::
runtime

:::
(see

:::::
Figure

:::
4).

:::::
Fringe

:::::::
functions

:::
are

::::::
applied

::
in

::
the

::
x
:::
and

::
y

:::::::
directions

::
to

:::::::
establish

:
a
::::
finite

::::
wind

::::
farm

::::::::
simulation.

:

averaging. The time averaging is initialized following the advection time of the wind farm (see Section C) and therefore

there are nT − 2Ta timesteps within each time averaging window.
::::
wind

:::::::
turbines

::::
have

::
a

::::
rotor

::::::::
diameter

::
of

::::
126

::::::
meters

:::
and

::
a

:::
hub

::::::
height

::
of

::::
100

::::::
meters.

::::
The

:::::
thrust

:::::::::
coefficient

::
is

::::::::::
CT = 0.75.

::::
The

:::::
initial

::::::::
boundary

:::::
layer

:::::
height

::
is
::::
700

::::::
meters.

::::
The

:::::::
domain

:::
size

::
is
:::::::::::
12× 6× 2.4

:::::::::
kilometers

::
in
::::

the
::
x,

::
y,

::::
and

::
z

:::::::::
directions,

:::::::::::
respectively,

::::
with

::
z

::::::::::
representing

::::
the

::::::::::
wall-normal

::::::::::
coordinate.

:::
The

:::::::
number

:::
of

::::
grid

:::::
points

::
is
:::::::::::::::

480× 240× 192
::::
with

::
a
::::
grid

:::::::
spacing

::
of

::::::::::::::::::
25m× 25m× 12.5m.

::::
The

::::
grid

:::::::
spacing

::
is
::::::::

uniform380

:::
and

:::
the

:::::
mesh

::::
size

::
is

::::::
similar

:::
to

:::::::
previous

:::::::
studies

:::::::::::::::::::::::
(Allaerts and Meyers, 2015)

:::
and

::
a
::::
grid

:::::::::::
convergence

:::::
study

::::
was

:::::::::
performed

::
by

::::::::::::::::::::
(Howland et al., 2020b)

::
for

:::
the

:::::::::::::
conventionally

::::::
neutral

:::::
ABL.

:::
Six

::::::
model

:::::
wind

:::::::
turbines

:::
are

::::::::::
incorporated

:::
in

:::
the

::::::
domain

::::
and

::
the

::::::
layout

::::::
within

:::
the

::::::::::::
computational

::::::
domain

::
is
::::::
shown

::
in

::::::
Figure

::
3.

::::
The

::::::
Rossby

:::::::
number

:::::
based

::
on

:::
the

:::::
wind

::::::
turbine

::::::::
diameter

::
is

:::
544

:::
and

:::
the

::::::
Froude

:::::::
number

::
is

::::
0.14.

::::
The

::::::
vertical

:::::::
profiles

::
of

:::::::
velocity,

:::::::
potential

:::::::::::
temperature,

:::
and

::::::::::
streamwise

::::::::
turbulence

::::::::
intensity

::
for

:::
the

::::::::
precursor

:::::::::
simulation

:::
for

::::
two

::::::
domain

::::::::
snapshots

:::
are

::::::
shown

::
in

::::::
Figure

::
4.385

4 Dynamic wake steering
:::::::::::::
conventionally neutral atmospheric boundary layer LES

In this section, we will utilize the closed-loop wake steering controller that was validated in Section F for uniform inflow in
::
in

the conventionally neutral ABL. While the conventionally neutral ABL is
:::::::::
statistically

:
quasi-stationary, the optimal yaw mis-

alignment angles will vary as a function of time due to turbulence, large-scale streamwise structures (Önder and Meyers, 2018),
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(a)
Two wind turbine model uniform inflow

LES (a) power production. (b) The yaw

misalignment angle γ for the upwind

turbine. The downwind turbine remains

yaw aligned during the simulation.

(b)

(c)

Two wind

turbine model uniform inflow LES (a) kw and σ0 for the upwind turbine and (b) P̂ and P for the downwind turbine.

The sum of power production for the two turbine pair as a function of the control update steps is shown in Figure F2(a). The power

production is normalized by the greedy control simulation. The power production for the first yaw controller update time step is equal to 1

since yaw misalignment has not been implemented and the model is gathering power production data to be used for the first EnKF data

assimilation pass. The power production increases in the second time step when yaw misalignment in incorporated for the upwind turbine

(Figure F2(b)). The controller correctly commands the upwind turbine to positive yaw misalignment. While the flow is stationary, the

upwind turbine yaw misalignment angle changes marginally after the second time step. These changes can be attributed to modifications to

the wake model parameters as a function of time as estimated by the EnKF (Figure F3(a)). The estimated model parameters vary in time in

this stationary flow due to standard error of the mean with limited samples within a given time window of length T , due to the influence of

the yaw misalignment of the dynamics on the wake, and due to the limited number of ensembles Ne in the EnKF.

The wake model parameters have a functional dependence on the yaw misalignment of the turbines within the wind farm. The wake of a

yaw misaligned turbine is narrower than the same turbine when yaw aligned (Archer and Vasel-Be-Hagh, 2019). The wake spreading rate

kw dictates the wake recovery rate. Yaw misalignment also reduces the axial induction factor of the wind turbine and therefore affects the

wake recovery. Further, since wind turbines in yaw misalignment generate large-scale counter rotating vortices (Howland et al., 2016), the

wake recovery rate will likely be enhanced in yaw misalignment (Fleming et al., 2018). As a result of these vortices, the wake will have

top-down asymmetry and this will influence σ0. While the present model neglects the vertical dimension, the development of a

controls-oriented model which incorporates the curled wake asymmetry is ongoing (Martínez-Tossas et al., 2019). Future work should

characterize the influence of yaw misalignment on the wake spreading rate.

The state-estimated power production for the downwind turbine is compared to the LES power production in Figure F3(b). The downwind

turbine’s power production in the greedy control strategy is low (approximately 0.2P1) due to the freestream inflow condition and close

streamwise direction spacing. The EnKF results in an accurate power production estimation using the lifting line model. While the wake

model parameters are changing as a function of time (Figure F3(a)), the power production estimate for the downwind turbine is not

significantly affected. The wake model parameters kw and σ0 are anti-correlated as a function of time. Within the two-parameter lifting line

model, increasing kw or σ0 reduces the wake effect for the downwind turbine. With the LES power production of the downwind turbine and

the yaw misalignment of the upwind turbine approximately fixed, the state estimation increases one parameter and reduces the other

parameter to remain consistent in the estimation of the downwind power. This indicates, similarly to the results in Appendix A, that the two

parameter lifting line model may be overparameterized which may lead to overfitting. The accuracy of the EnKF state estimation and lifting

line model in the prediction of the power production in yaw misalignment will be tested in Section 4. This accuracy will implicitly measure

the impact of overfitting in the model. Since there is no wake impinging on the upwind turbine , the state estimation has no impact on the

power prediction of the upwind turbine since there are no wake model parameters to estimate. The accuracy of the upwind turbine model

prediction will be governed by the fidelity of the cosine model and Pp, given by Eq. 6.

The instantaneous streamwise velocity is visualized in Figures F4(a) and (b) for the baseline greedy yaw control and the optimal yaw

misalignment angle, respectively. As a result of the yaw misalignment, the wake is partially laterally deflected away from the downwind

turbine. The yaw misalignment increases the magnitude of the streamwise velocityin the wake region. The wake region trailing the second

turbine is reduced in size and intensity as a result of the yaw misalignment action of the first turbine, indicating that for larger columns of

turbines the potential for power increases due to wake steering are larger.

Figure 4. Two wind turbine model uniform inflow
:::::::::
Horizontally

::::::::
averaged

::::::::
concurrent

::::::::
precursor

::::::::::::
conventionally

::::::
neutral

:::::
ABL

:
LES

instantaneous streamwise velocity u snapshot with (a) no yaw misalignment
::::::
velocity,

:
(b) after the last

::::::
potential

:::::::::
temperature

::
in

:::::::
Kelvins,

:::
and

::
(c)

:::::::::
turbulence

:::::::
intensity.

::::::::::
Horizontally

:::::::
averaged

:::::::
profiles

::::
from

::::
two

:::::::
different time step

:::::::
instances

:::
are

:::::
shown

::::
with

:::::
solid

:::::
(early)

::::
and

:::::
dashed

::::
(late)

::::
lines,

::::::::::
qualitatively

:::::::::::
demonstrating

:::
that

::
the

::::
flow

:
is
:::::::::
statistically

::::::::::::
quasi-stationary

::::::::::::::::::::::::::::::::::::
(see further discussion by Howland et al., 2020a)

.
:::::::::::

Dashed-dotted
::::
lines

::::
show

:::
the

::::::
extents of dynamic wake steering

::
the

:::::
turbine

::::
rotor

::::
area.
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and inertial oscillations. A suite of LES cases is run to test the influence of the controller architecture design, state estimation390

design, Pp estimate
::::
(Eq.

::
6), and the wind farm layout on the power production increases over greedy baseline operation as a

result of wake steering control. Each sensitivity study represents a new LES case which is run using the concurrent precursor

methodology described in Section 3.

All quasi-steady conventionally neutral ABL simulations have a yaw controller update of nT = 1000 time steps which

approximately equal to τ = 3000 seconds or 50 minutes. The advection time scale from the first to the last wind turbine in the395

array is approximately 9 minutes and the time lag is taken as two times the approximate advection time scale based on Taylor’s

Hypothesis. Therefore, each update contains approximately 30 minutes of statistical averaging, or about 600 time steps. The

long time averaging window was selected since the flow is
:::::::::
statistically quasi-stationary and to ensure temporal averages with

reduced noise. In transitioning ABL environments, the time averaging window should likely be reduced (Kanev, 2020). The

greedy baseline controller yaw alignment is updated according to the same timescales based on the mean wind direction400

measured locally by each wind turbine. The nacelle position for the yaw misaligned turbines is based on the wind direction

measurement at each local turbine as well as the controller estimated optimal yaw misalignment angles, i.e. nα = α+γ where

nα is the nacelle position and α is the wind direction incident to the wind turbine.

The wind turbines have a rotor diameter of 126 meters and a hub height of 100 meters (selections based on NREL 5 MW turbine, Jonkman et al., 2009)

. The thrust coefficient is CT = 0.75. The initial boundary layer height is 700 meters. The domain size is 12× 6× 2.4405

kilometers in the x, y, and z directions, respectively, with z representing the wall-normal coordinate. The number of grid points

is 480× 240× 192 with a grid spacing of 25m× 25m× 12.5m. The grid spacing is uniform and the mesh size is similar to

previous studies (Allaerts and Meyers, 2015) and a grid convergence study was performed by (Howland et al., 2020b) for the

conventionally neutral ABL. Six model wind turbines are incorporated in the domain and the layout within the computational

domain is shown in Figure 3. The Rossby number based on the wind turbine diameter is 544 and the Froude number is 0.14.410

The vertical profiles of velocity, potential temperature, and streamwise turbulence intensity for the precursor simulation for

two domain snapshots are shown in Figure 4.

Conventionally neutral six wind turbine finite wind farm simulation setup. The geostrophic wind direction is west to east

and the x-axis is aligned with the geostrophic wind direction. The mean wind direction at hub height, tan−1(v/u)≈ 16◦ but

is not known a prioriin the simulation and varies as a function of time. The wind turbine array is offset from alignment in the415

x-direction by 18◦. The initial boundary layer height δ0 is 700 meters and does not change significantly during runtime (see

Figure 4). Fringe functions are applied in the x and y directions to establish a finite wind farm simulation.

Horizontally averaged concurrent precursor conventionally neutral ABL LES (a) velocity, (b) potential temperature, and

(c) turbulence intensity. Two different instantaneous domain snapshots are shown in solid (early) and dashed (late) lines.

Dashed-dotted lines show the extents of the turbine rotor area.420

This section is organized as follows: Section 4.1 examines the sensitivity of the wind turbine array power production to the

wake steering controller design. Section 4.2 tests the sensitivity to the state estimation methodology. The sensitivity of the

wake steering control to
:::
the

:::::::
estimate

::
of

:
Pp is discussed in Section 4.3. The accuracy of the wake model power predictions
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Case Steering Static yaw Static kw,σ0 Advection Feedforward kw,σ0 Pp ::
P̂p

∑
P−

∑
Paligned∑

Paligned
(%)

∑
P ±STD(

∑
P )

Wind turbine column alignment 18◦

NA - - - - 3 - 3.01± 0.13

NL - 3 5.4 3.17± 0.14

ND1 - - - 3 0.2
::
4.6 3.01± 0.12

::::::::
3.15± 0.14

ND2 - - -
:

3 4.6
::
0.2 3.15± 0.14

::::::::
3.01± 0.12

ND3 - - 3 5.7 3.18± 0.13

ND4
:::::
NDP2 - - 2 −3.0 2.92± 0.13

ND5
:::::
NDP4 - - 4 5.1 3.16± 0.16

ND6 - - - 3 4.2 3.13± 0.12

Wind turbine column alignment 14◦

NA14 - - - - 3 - 2.96± 0.09

ND141 - - 3 1.1 2.99± 0.10

ND142 - - 3 1.0 2.99± 0.11

Table 1. The conventionally neutral finite wind farm wake steering cases. The mean power production increase with respect to yaw aligned

operation is calculated over approximately 24 hours of physical wind farm operation.
::::
Case

:::
NA

:
is
::::
yaw

::::::
aligned

::::
wind

:::
farm

::::::::
operation.

::::
Case

:::
NL

::::::::::
approximates

::::::::
open-loop

:::::
lookup

::::
table

:::::
based

::::::
control.

::::
Cases

::::::::
beginning

::::
with

:::
ND

:::
are

:::::::
dynamic,

:::::::::
closed-loop

:::::
control

:::::
cases

:::
with

::::::
various

::::::
control

:::::::::
architectures

::
as

::::::
denoted

::
in

:::
the

::::
table.

:::
The

:::::
wake

:::::
model

::::::
estimate

:::
for

::
Pp::

is
:::
P̂p.

is discussed in Section 4.4. Finally, Section
::::::::
Appendix E characterizes the influence of the wind farm alignment on the wake

steering power production increase. The conventionally neutral ABL wake steering results are summarized in Table 1.425

:::
The

:::::::::::::
conventionally

::::::
neutral

:::::
ABL

::::
wake

::::::::
steering

::::
LES

:::::
cases

:::
and

::::::
results

:::
are

:::::::::::
summarized

::
in

:::::
Table

:::
1.

:::::::
Baseline

::::
yaw

:::::::
aligned

::::
wind

::::::
turbine

:::::::::
operation

::
is

:::::
given

:::
by

::::
Case

::::
NA,

::::::
where

:::
the

::::
yaw

:::::::::
alignment

::
is
:::::::
updated

::
at
::::

the
:::::
same

:::::::
temporal

:::::::::
frequency

:::
as

:::
the

:::::::
dynamic

::::
yaw

::::::
control

::
is

:::::::
updated

::
to

::::::
ensure

::::::::::
quantitative

:::::::::::
comparisons

::
as

::
a

:::::::
function

::
of

:::::
time.

::::
Case

::::
NL

:::::::::::
approximates

:::::::::
open-loop

::::::
lookup

::::
table

::::::::
operation,

::::::
where

:::
the

::::
yaw

:::::::::::
misalignment

::
is

::::::::
prescribed

:::
as

:
a
:::::::
function

::
of

:::
the

:::::::
incident

:::::
wind

:::::
speed

:::
and

::::::::
direction

:::::
rather

:::
than

:::::::::::
dynamically

:::::::
adapting

::
to

:::
the

:::::
local

:::::
inflow

::::::::::
conditions.

:::::
Cases

:::::
ND1,

:::::
ND2,

:::
and

::::
ND3

::::
use

:::::::
dynamic

:::::
wake

::::::
steering

:::::::
control

::::
with430

::::::
varying

::::::::
parameter

:::::::::
estimation

::::::::::
techniques.

::
In

::::
Case

::::
ND1

:::
the

:::::
wake

:::::
model

::::::::::
parameters

::
are

:::::::::
optimized

:::::::::::
continuously

:::::
based

::
on

:
a
:::::
fixed

::::::::
parameter

:::::::::::
initialization.

:::::
Cases

:::::
ND1

:::
and

:::
NL

:::
are

::::::::
discussed

::
in
:::::
detail

:::
in

::::
§4.1.

::
In

:::::
Case

::::
ND2,

:::
the

::::::
model

:::::::::
parameters

:::
are

:::::::::
optimized

::::::::::
continuously

::
in
::::
time

:::::
based

:::
on

::
an

:::::::::::
initialization

:::::
using

:::
the

:::::::
previous

::::
time

::::
step

::::::
optimal

::::::::::
parameters,

:::
and

::::::
finally

::::
Case

:::::
ND3

::::
fixes

:::
the

::::
wake

::::::
model

:::::::::
parameters

::::
after

:::
the

:::::::::
estimation

::
in

:::
the

:::
first

::::::
control

::::::
update

::::
step.

::::
The

::::::::
influence

::
of

:::
the

::::
state

:::::::::
estimation

:::::::::
techniques

:::
are

::::::::
discussed

::
in

:::::
detail

::
in

::::
§4.2.

:::::
Cases

::::::
NDP2

:::
and

::::::
NDP4

::::::
modify

:::
the

:::::
wake

:::::
model

:::::::
estimate

:::
for

:::
Pp :::

and
:::
are

::::::::
described

::
in

:::::
more

:::::
detail

::
in435

::::
§4.3.

:::::::
Finally,

::::
Case

::::
ND6

::
is
:::
the

:::::
same

::
as

:::::
Case

::::
ND1

::::::
except

:
it
::::
sets

:::
the

::::::::
advection

::::
time

:::::::
Ta = 0.

:::::
Cases

::::::
NA14,

:::::::
ND141,

:::
and

:::::::
ND142

::::::
modify

:::
the

::::
wind

::::
farm

:::::::::
alignment

::
to

:::
14◦

:::::
with

::::::
respect

::
to

:::
the

::::::::
horizontal

::::
axis

:::
and

:::
are

::::::::
described

:::
in

::::
more

:::::
detail

::
in

:::::::::
Appendix

::
E.

:::
The

::::::::
statistical

::::::::::
significance

::
of

:::
the

:::::
array

:::::
power

::::::::::
productions

:::
for

::
the

:::::::
various

::::
wake

:::::::
steering

:::::
cases

::::
with

::::::
respect

::
to

:::::::
baseline

::::::
control

::::
Case

:::
NA

:::
are

::::::
shown

::
in

::::::
Figure

::
5.

:::
The

::::::::
statistical

::::::::::
significance

::
is
:::::::::::
characterized

::::
with

:::::::::
one-sided

::::::::::
two-sample

::::::::::::::::::
Kolmogorov-Smirnov
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Figure 5.
:::

Time
:::::::
averaged

::::
sum

::
of

:::
the

::
six

::::::
turbine

::::
array

:::::
power

::::::::
production

:::
for

:::
the

:::::::::::
conventionally

::::::
neutral

::::
ABL

:::
LES

:::::
cases

:::::::
described

::
in
:::::
Table

:
1.
::::
The

:::::::
errorbars

:::::
denote

:::
one

:::::::
standard

:::::::
deviation

::
in

:::
the

:::::
power

:::::::::
production.

:::
The

:::::
power

::::::::
production

::
is

:::::::::
normalized

::
by

:::
the

::::::
leading

:::::
turbine

:::
P1 ::

in

::::::
baseline

::::::
control

::::::::
conditions.

::::
The

:::::::
statistical

:::::::::
significance

::
of

:::
the

::::
wake

:::::::
steering

:::::
power

::::::::
production

::::::::
difference

::::
with

::::::
respect

::
to

::::::
baseline

::::::
control

:::
Case

::::
NA

::
are

:::::::
indicated

:::
by

::
the

::::::
colors.

:::
The

:::::::
statistical

:::::::::
significance

::
is
::::::::::
characterized

:::
by

:
a
:::::::
one-sided

:::::::::
two-sample

:::::::::::::::::
Kolmogorov-Smirnov

:::
test

:
at
::

a

::
5%

:::::::::
significance

:::::
level.

::::
Case

:::
NA

:
is
::::
blue

:::
and

::::
Case

::::
ND2

:::
does

:::
not

::::
have

::::::::
statistically

::::::::::
significantly

:::::
greater

:::::
power

::::::::
production

::::
than

::::
Case

:::
NA.

:::::
Green

::::
cases

::::
have

::::::::
statistically

::::::::::
significantly

::::::::
(p < 0.05)

::::
more

:::::
power

::::
than

::::
Case

:::
NA.

::::
Red

::::
cases

::::
have

:::::::::
statistically

:::::::::
significantly

::::::::
(p < 0.05)

::::
less

:::::
power

:::
than

::::
Case

:::
NA.

:

::::
tests

:::
for

:::
the

:::::
given

::::
case

::::
with

::::::
respect

:::
to

:::::::
baseline

::::::
control

:::::
Case

:::
NA

::
at

::
a
:::
5%

::::::::::
significance

:::::
level.

::::
The

::::::::::::::::::
Kolmogorov-Smirnov

::::
test440

:::
was

:::::::
selected

:::::
since

::
it

::::
does

:::
not

::::::
enforce

::
a
::::::
normal

::::::::::
distribution

::::::::::
assumption

::
on

:::
the

:::::
data.

:::::
Cases

::::
NL,

:::::
ND1,

:::::
ND3,

::::::
NDP4,

:::
and

:::::
ND6

::::::
produce

:::::::::::
significantly

:::::
more

:::::
power

::::
than

:::::::
baseline

::::::
control

:::::
Case

::::
NA.

::::
Case

:::::
NDP2

::::::::
produces

:::::::::::
significantly

:::
less

::::::
power

::::
than

:::::::
baseline

::::::
control

:::
and

:::::
Case

::::
ND2

::
is
:::
not

:::::::::::
significantly

:::::::
different

::::
than

:::::
Case

::::
NA.

:::::
None

::
of

:::
the

::::::
Cases

:::
NL,

:::::
ND1,

:::::
ND3,

:::::::
NDP4,

:::
and

:::::
ND6

:::
are

::::::::::
significantly

:::::::
different

:::::
from

::::
each

:::::
other.

::::
The

:::::
power

:::::::::
production

:::
for

::::
each

:::::::
turbine

::
for

:::::
each

::::
wake

:::::::
steering

::::
case

::
is
::::::
shown

::
in

::::::
Figure

::
6.445

4.1 Comparison between dynamic and quasi-static wake steering approaches

The dynamic wake steering controller described in Figure 1 is compared to lookup table static control in this section. Since the

flow is
:::::::::
statistically quasi-stationary, the mean wind speed and direction at hub height do not change significantly as a function

of time. Therefore, during simulation, the flow remains at wind conditions which would be associated with one wind speed

and direction bin in tabulated lookup table wake steering control. The lookup table control is approximated by fixing the yaw450

misalignment angles as a function of time after the initial optimal angles are computed during the first yaw controller update

(Case NL).
::::::::
Numerical

::::::::::
experiments

::::
(not

::::::
shown

:::
for

:::::::
brevity)

:::::::::::
demonstrated

::::
that

:::::::::
modifying

:::
the

::::::
control

::::::
update

::::
step

::::
from

::::::
which
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Figure 6.
::::
Time

:::::::
averaged

:::::
power

::::::::
production

:::
for

::::
each

:::::
turbine

::
in
::::
each

::::
wake

:::::::
steering

::::
case.

:::
The

:::::::
errorbars

:::::
denote

:::
one

:::::::
standard

:::::::
deviation

::
in

:::
the

::::
power

:::::::::
production.

:::
The

:::::
power

:::::::::
production

:
is
:::::::::
normalized

::
by

:::
the

:::::
leading

::::::
turbine

::
P1::

in
:::::::
baseline

:::::
control

:::::::::
conditions.

::
the

:::::::
lookup

::::
yaw

:::::::::::
misalignment

::::::
values

::::
were

:::::::::
computed

:::
did

:::
not

:::::
have

:
a
::::::::::
statistically

:::::::::
significant

::::::::
influence

::
on

:::
the

::::::
results

:::
for

:::::
Case

:::
NL.

:
The dynamic yaw controller is represented by Case ND2.

:::::
ND1.

:::
The

:::::
time

:::::::
averaged

:::::
wind

:::::
speed

::
at

:::
the

:::::
wind

::::::
turbine

::::
hub

:::::
height

:::
for

:::::
Cases

:::
NA

::::
and

:::
NL

:::
are

::::::
shown

::
in

:::::
Figure

:::
7.

::
As

::
a

:::::
result

::
of

:::
the

:::::::
positive

:::
yaw

::::::::::::
misalignment

:::::::
strategy

::
in

::::
Case

:::
NL

:::::::
(Figure455

::::
7(b)),

:::
the

:::::::::
individual

:::
and

:::::::::
collective

::::
array

::::::
wakes

:::
are

:::::::
deflected

:::
in

:::
the

::::::::
clockwise

::::::::
direction

::::::::
compared

::
to

:::
the

:::::::
aligned

:::::::::::
configuration

::
of

::::
Case

:::
NA

:::::::
(Figure

:::::
7(a)).

The yaw misalignment angles as a function of the yaw controller updates for Cases NL and ND2
::::
ND1 are shown in Figure 8.

The
:::
yaw

:::::
angles

::
in
::::
this

:::::
study

::
are

:::::::
defined

::
as

:::
the

:::::::::::
misalignment

::::
with

::::::
respect

::
to

:::
the

::::
local

::::::
inflow

:::::::
direction

:::::::
incident

:::
on

:::
the

::::::::
particular

::::::
turbine

::
in

:::
the

:::::
array.

::::::
While

:::
the lifting line model

::::
does

:::
not

::::::::
explicitly

::::::::::
incorporate

:::
the

::::::
effects

::
of

:::::::::
secondary

:::::::
steering

:::
for

::::::
which460

:::::
model

:::::::::::
development

::
is

:::::::
on-going

::::::::::::::::::::::
(see e.g. King et al., 2020),

:::
the

::::::
model selects yaw misalignment angles which are large for the

first turbine and generally decrease further into the wind farm, which is consistent with
::
the

:::::::
optimal

:::::
values

::::::
found

::
by recent wind

tunnel experiments (Bastankhah and Porté-Agel, 2019). Since the flow is
:::::::::
statistically

:
quasi-stationary, the dynamic algorithm

yaw misalignment angles do not change significantly as a function of time. There are a few yaw misalignment changes on the

order of 10◦ during one yaw update. The change in yaw misalignment in a single control update is not limited explicitly in465

this study. The
:::
The

:
time averaged power productions as a function of the yaw controller updates for the two cases are shown

in Figure 9. The qualitative trends in power production are similar between the two cases. Quantitatively, the lookup table

static yaw misalignment Case NL increased the power production 5.4% with respect to the baseline greedy control while the

dynamic yaw Case ND2
::::
ND1 increased the power by 4.6%.

The quantitative influence of wake steering is a function of the layout and ABL conditions. As the focus of the present study470

is assessing the sensitivity of wake steering to controller architecture, model parameters, and wind farm layout, measures of

the statistical significance of the results are useful. However, the statistical significance of the results (e.g. whether Case NL

significantly outperformed Case ND2
::::
ND1) does not indicate, necessarily, that lookup table control is better than the dynamic
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(a)

(b)

Figure 7.
::::
Time

:::::::
averaged

::::
wind

:::::
speed

:::::::

√
u2 + v2

::
at
:::
the

::::
wind

::::::
turbine

:::
hub

:::::
height

::
of

::::::
z = 100

:::::
meters

:::
for

:::
(a)

::::::
baseline

:::
yaw

::::::
aligned

::::::
control

::::
Case

:::
NA

:::
and

::
(b)

:::::
wake

::::::
steering

:::::
control

::::
Case

::::
NL.

:::
The

::::
wind

:::::::
turbines

::
are

::::::
shown

:::
with

:::::
black

::::
lines.

:::
The

::::
yaw

::::::::::
misalignment

:::::
values

:::
for

::::
Case

:::
NL

:::
are

:::::
shown

::
in

:::::
Figure

:
8.
:

controller used in Case ND2
::::
ND1 for all wake steering applications but rather, that it was better for the specific ABL setup

and computational time window of the experiment. In this study, we will consider a control case to be significantly superior475

to another if the mean array power production averaged over the control update steps is more than one standard deviation

larger than the other case. The mean and standard deviations of the array power productions over the control update steps
:::
The

::::::::
statistical

::::::::::
significance

::
of

:::
the

:::::
power

:::::::::
production

:::::::
increase

::::
with

:::::::
respect

::
to

:::::::
baseline

::::::
control

::::
Case

:::
NA

:
are shown in Table 1.

:::::
Figure

::
5. Cases NL and ND2

::::
ND1 have significantly higher power than Case NA but the power in Case NL is not significantly higher

than in Case ND2
::::
ND1.480

Although it is not significant, there are several possible reasons for the static yaw misalignment’s slightly superior performance

compared to the dynamic yaw controller. The yaw selection may overfit to the previous time window and select angles which

are suboptimal for the next time window (tested further in Section 4.2). The
:::
The relationship between the wake model power

prediction and the measured LES power production is shown for the two cases in Figure 10. The wake model overpredicts the
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(a) (b)

Figure 8. Wind farm yaw misalignment angles γi for each turbine for (a) online control using the initial parameters to initialize the next state

(ND2
::::
ND1) and (b) and the lookup table control (NL).

(a) (b)

Figure 9. Time averaged wind farm power production as a function of the control update steps for (a) online control using the initial

parameters to initialize the next state (ND2
:::
ND1) and (b) and the lookup table control (NL). The wind farm power is normalized by the power

production of the aligned wind farm case.

power production in yaw misalignment more for the dynamic yaw control than the lookup table control. After the first time485

step, the wake model no longer has any state information for the LES power production with greedy baseline control since the

previous state had yaw misalignment. When the wake model overpredicts the expected LES power, the wake model parameters

are updated to a state which expects larger wake loss effects in baseline control; therefore, the yaw misalignment angles are

increased at the next time step. The yaw misalignment angles for the leading turbine oscillate around the lookup table optimal

forecast which was based on calibration with power data from greedy baseline control alone (Figure 8). The dynamic yaw490

increased power slightly less than the static yaw misalignment case
:
,
:::
but

:::
not

::::::::::
significantly

::::
less. However, eliminating the need

to tabulate historical data and the complexity of implementing a lookup table-based controller could be beneficial in a practical

controller setting. Further, the conventionally neutral boundary layer does not occur often in practice (Hess, 2004). Therefore,

in a practical setting, the wind direction and speed at hub height will not be fixed for multiple hours as in this test problem.

In Case ND6, the power productions are time averaged over the full nT window without considering the advection time scale495

in the controller design. The power production increase over greedy control is 4.2% in this case which is less than the 4.6%
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(a) (b)

Figure 10. Relationship between the LES wind farm power production compared to the wake model wind farm power production prediction

for (a) online control using the initial parameters to initialize the next state
:::::
(ND1) and (b) and the lookup table control

:::
(NL). The wind farm

power is normalized by the power production of the aligned wind farm case. The LES power production is given by P and the wake model

prediction is given by P̂ .

(a) (b) (c)

Figure 11. Time averaged wind farm power production as a function of the control update steps for (a) online control using the previous

optimal
::::
initial

:
parameters to initialize the next state (ND1), (b) online control using the initial

::::::
previous

::::::
optimal parameters to initialize the

next state (ND2), and (c) and the static state estimation control (ND3). The wind farm power is normalized by the power production of the

aligned wind farm case.

increase when considering the advection time lag (Case ND2
:::
ND1), although this difference is not significant. The dynamics

of the closed-loop controller over long experimental horizons are tested in a 50 control update simulation in Appendix D.

4.2 Influence of the state estimation

The influence of the state estimation methodology is tested in this section. Within the conventionally neutral ABL, three500

experiments are run, focused on the state estimation initialization. In
:::
The

:::::
initial

:::::
model

::::::::::
parameters

::
in

:::
the

:::::
EnKF

::::
state

:::::::::
estimation

::
are

::::
held

:::::
fixed

::
at

:::::::
kw = 0.1

::::
and

::::::::
σ0 = 0.25

::
in Case ND1.

::
In

:::::
Case

::::
ND2, the optimal EnKF estimated parameters from the previous

time step are used to initialize the state estimation of the current time step. The initial model parameters are held fixed at

kw = 0.1 and σ0 = 0.25 in Case ND2. Finally, Case ND3 fixes the model parameters after the first time step. Case ND3 differs

from Case NL from Section 4.1 since the optimal yaw misalignment angles may vary as a function of time while the model505

parameters do not.
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(a) (b) (c)

Figure 12. Wake spreading coefficient for each turbine in the wind farm for (a) online control using the previous optimal
::::
initial

:
parameters

to initialize the next state (ND1), (b) online control using the initial
::::::
previous

::::::
optimal

:
parameters to initialize the next state (ND2), and (c)

and the static state estimation control (ND3).

The power productions as a function of the yaw controller update for the three cases are shown in Figure 11. Case ND1

::::
ND2 has significantly less power production than Cases ND2

::::
ND1

:
and ND3. The time averaged power production increases

with respect to the baseline, greedy control is 0.2%, 4.6%,
::::
0.2%,

:
and 5.7% for cases ND1, ND2, and ND3, respectively. The

power production in Cases ND2
::::
ND1 and ND3 are significantly higher than Case NA while Case ND1

::::
ND2

:
is not. Further,510

Cases ND2
::::
ND1 and ND3 are significantly better than ND1

::::
ND2

:
but Case ND3 is not significantly better than ND2

::::
ND1. In

the EnKF methodology described in Section 2.2, the update step to the wake parameters is limited by the imposed parameter

variance (σkw and σσ0
). Therefore, the initialization of the EnKF with fixed parameters limits the perturbation of the estimated

parameters as a function of time whereas the initialization with the previous optimal parameters allows kw and σ0 to vary more

significantly over time. The EnKF estimated kw and σ0 for the three cases are shown in Figures 12 and 13, respectively. While515

the proportionality constant
::
σ0 of the presumed Gaussian wake does

::
not

:
have a clear trend for Case ND1

::::
ND2, the estimated

wake spreading rate kw is clearly decreasing for all wind turbines as a function of time. For Case ND2
::::
ND1, the estimated

model parameters do not have a clear trend and remain approximately constant as a function of time. As the estimated wake

spreading rate is decreased, the wake model predicts worsening wake interactions and lower array power production given

greedy baseline control. As a result, the model predicted optimal yaw misalignment angles increase as a function of time for520

Case ND1
::::
ND2 as shown in Figure 14(a). While Cases ND2

::::
ND1

:
and ND3 predict the optimal yaw misalignment for the most

upwind turbine to be approximately 20◦, and decreasing γ moving downwind, Case ND1
::::
ND2 increases the yaw misalignment

for the upwind turbine to as high as 30◦. While this case was not run further, it is not expected that this trend would continue

unboundedly with controller instability since the power production penalty as a function of increased yaw misalignment is

significant beyond 40◦. The typical yaw rate for utility-scale horizontal axis wind turbines is around 0.5 degrees per second.525

For the largest discrete yaw misalignment change in the present study of ≈ 30◦ (Figure 14(a)), the yaw misalignment change

would take≈ 75 seconds. This time is significantly less than the advection time Ta, and is therefore does not impact the control

system and power production results here.

The relationship between the model predicted and LES measured power production for the three cases is shown in Figure

15. Case ND1
::::
ND2 has an increased occurrence of wake model over-prediction of the power production while Case ND3 has530
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(a) (b) (c)

Figure 13. Proportionality constant for the presumed Gaussian wake for each turbine in the wind farm for (a) online control using the previous

optimal
::::
initial

:
parameters to initialize the next state (ND1), (b) online control using the initial

::::::
previous

::::::
optimal parameters to initialize the

next state (ND2), and (c) and the static state estimation control (ND3).

(a) (b) (c)

Figure 14. Yaw misalignment angles for each turbine in the wind farm for (a) online control using the previous optimal
:::::
initial parameters to

initialize the next state (ND1), (b) online control using the initial
::::::
previous

::::::
optimal

:
parameters to initialize the next state (ND2), and (c) and

the static state estimation control (ND3).

an increased occurrence of wake model under-prediction. Case ND2
::::
ND1 has approximately equal occurrence of under- and

over- prediction. The efficacy of the state estimation is shown in Figure 16. Both Cases ND1 and ND2 are able to estimate the

power production for the downwind turbine in the baseline, greedy operation (the first time step) and with yaw misalignment.

Since Case ND3 uses static state estimation, there are some discrepancies between the LES power production and the lifting

line model (Figure 16(c)). The power production for the most upwind turbine is modeled accurately using Pp = 3, although535

the LES power production is generally slightly lower, indicating Pp > 3 for this ADM and ABL state.

The most successful dynamic control framework utilized in the conventionally neutral ABL is the static state estimation

methodology
:::::
(Case

:::::
ND3),

::::::::
although

:::
the

::::::::::
differences

:::::::
between

:::::
Cases

:::::
ND1

:::::::::
(parameter

:::::::::
estimation

::::
from

::::::::
standard

::::::::::::
initialization),

::::
ND3

:::::
(static

::::::::::
parameters

::::
after

::::
first

::::::
control

:::::
step),

::::
and

:::
NL

::::::
(static

::::
yaw

:::::
angles

:::::
after

::::
first

::::::
control

::::
step)

:::
are

::::
not

:::::::::
significant. While

the optimal yaw misalignment angles change slightly as a function of time (Figure 14), the wake model parameters are fixed.540

Since the flow is
::::::::::
statistically quasi-stationary, the wake model parameters should not change significantly as a function of time.

However, the wake model parameters may have a function
:::::::::
functional dependence on γ, the yaw misalignment for the upwind
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(a) (b) (c)

Figure 15. Relationship between the LES wind farm power production compared to the wake model wind farm power production prediction

for (a) online control using the previous optimal
::::
initial

:
parameters to initialize the next state (ND1), (b) online control using the initial

::::::
previous

::::::
optimal parameters to initialize the next state (ND2), and (c) and the static state estimation control (ND3). The LES power production is

given by P and the wake model prediction is given by P̂ .

(a) (b) (c)

Figure 16. Time averaged power production for the first and second wind turbines in the wind farm as a function of the control update

steps for (a) online control using the previous optimal
::::
initial

:
parameters to initialize the next state (ND1), (b) online control using the

initial
::::::
previous

::::::
optimal parameters to initialize the next state (ND2), and (c) and the static state estimation control (ND3). The LES power

production is given by P and the wake model state estimation is given by P̂ .

turbines. This potential dependence of kw and σ0 on yaw misalignment was not incorporated explicitly in the present modeling

framework,
::::::::
although

:
it
::
is
:::::::::::
incorporated

::::::::
implicitly

:::::::
through

:::
the

::::
state

:::::::::
estimation,

:
and is recommended for future work.

The static state estimation with dynamic yaw controller is able to outperform the lookup table control (Table 1). This545

indicates that while the wake model parameters are fixed, the optimal yaw misalignment angles differ even with changes to

the mean wind direction less than 1◦. As such, the lookup table based yaw misalignment strategy is unlikely to be optimal

in a general setting since it relies on wind speed and direction bins of arbitrary size. Instead, in a lookup table approach, the

wake model parameters could be tabulated instead of the optimal yaw misalignment angles. Optimal yaw misalignments can be

calculated dynamically, on-the-fly using the computationally efficient model described in Section 2.1 or a mid-fidelity model550

(e.g. WFSim, Boersma et al., 2018) could be used to compute discrete yaw angles in wind condition bins and the continuous

optimal yaw function could be approximated using
::::::::::
interpolating

::::::::
functions

:::
or a neural network, for example.
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(a) (b)

Figure 17. Time averaged wind farm power production as a function of the control update step for online control using the initial parameters

to initialize the next state and (a) Pp = 2
:::::
P̂p = 2

:
(ND4

::::
NDP2) and (b) Pp = 4

:::::
P̂p = 4 (ND5

::::
NDP4). The wind farm power is normalized by

the power production of the aligned wind farm case.

(a) (b)

Figure 18. Yaw misalignment angles for each turbine in the wind farm for online control using the initial parameters to initialize the next

state and (a) Pp = 2
:::::
P̂p = 2

:
(ND4

::::
NDP2) and (b) Pp = 4

:::::
P̂p = 4 (ND5

:::::
NDP4).

4.3 Influence of
:::
the

:::::::
estimate

::
of
:
Pp ::

in
:::
the

:::::
wake

:::::
model

The wind turbine power production as a function of the yaw misalignment in the wake model is given by Eq. 6. The parameter

Pp is uncertain. Following actuator disk theory, Pp = 3
::::::
Pp ≈ 3, although experiments typically show Pp ≤ 2 for wind turbines555

and wind turbine models with rotation (e.g. Medici, 2005). With the ADM used presently, Pp = 3 should be an accurate

approximation but will be imperfect since actuator disk theory applies only to one dimensional
:::::::
spatially

:::::::
uniform, steady flow.

Since Pp is wind turbine and likely site-specific, it is likely in a wake steering applicationthat
:
,
:
the precise value of Pp is

:::::::
generally

:
unknown a priori. In this section, we will model Pp as 2 (ND4) and 4 (ND5

::::::
P̂p = 2

:::::::
(NDP2)

:::
and

:::::::
P̂p = 4

::::::
(NDP4)

using the same control architecture as Case ND2. Pp = 2
::::
ND1,

::::::
where

::
P̂p:::::::

denotes
:::
the

::::
wake

::::::
model

:::::::
estimate

:::
for

:::
Pp.

::::::
P̂p = 2

:
will560

lead to an underestimate of the power production loss due to yaw misalignment and Pp = 4
::::::
P̂p = 4 will lead to an overestimate.

:::::
Given

:::
that

:::
the

:::::
value

::
of

:::
Pp ::

is
:::::::::::::
turbine-specific,

:::
the

::::::::
influence

::
of

:::
the

::
Pp::::::::::

uncertainty
::::::::
described

::
in

:::
this

::::::
section

::::::
should

:::
be

:::::::::
considered

::::::
relative

::
to

:::
the

:::
true

:::::
value

::
of

:::::::
Pp = 3,

:::
and

:::
the

::::::::::
conclusions

:::::
apply

::::
with

::::::
respect

::
to

:::
the

:::::
scaled

:::::
values

:::
of

::::::
P̂p/Pp.

:::
For

:
a
::::::::
different

::::::
turbine

:::::
model

:::::
with

:::::::
Pp = 2,

:::
for

:::::::
example,

::::::
similar

::::::
values

::
of

::::::
P̂p/Pp:::::

would
:::::
yield

::::::::::
qualitatively

::::::
similar

:::::::
results.

The power productions as a function of the yaw update steps for Cases ND4 and ND5
:::::
NDP2

:::
and

:::::
NDP4

:
are shown in Figure565

17. Case ND4 with Pp = 2
:::::
NDP2

::::
with

::::::
P̂p = 2 has 3.0% less power production than baseline greedy operation while Case ND5

26



(a) (b)

Figure 19. Time averaged power production for the first and second wind turbines in the wind farm as a function of the control update

steps for online control using the initial parameters to initialize the next state and (a) Pp = 2
::::::
P̂p = 2 (ND4

:::::
NDP2) and (b) Pp = 4

::::::
P̂p = 4

(ND5
:::::
NDP4). The LES power production is given by P and the wake model state estimation is given by P̂ .

with Pp = 4
:::::
NDP4

::::
with

:::::::
P̂p = 4 has 5.1% more power than baseline control. Case ND2 and ND5 are significantly better than

ND4. With Pp = 2
::::
ND1

:::
and

::::::
NDP4

::::
have

::::::::::
significantly

::::::
higher

:::::
power

::::::::::
production

::::
than

::::::
NDP2.

::::
With

::::::
P̂p = 2, the model prediction

for the optimal yaw misalignment angles are high, with the first three upwind turbines misaligning by almost γ = 40◦ (Figure

18(a)). With Pp = 4
:::::
P̂p = 4, the penalty for yaw misalignment is significant and no turbine misaligns more than γ = 20◦ (Figure570

18(b)). For the present conventionally neutral ABL and ADM implemented, 3< Pp < 4 for the leading upwind turbine. The

success of Case ND5 with Pp = 4
:::::
NDP4

::::
with

::::::
P̂p = 4

:
suggests that small yaw misalignments can still increase the wind farm

power production significantly with respect to the baseline greedy control.

The LES power productions and EnKF state estimated powers as a function of the yaw control updates are shown for the two

Pp ::
P̂p cases in Figure 19. For Case ND4, the upwind turbine power production is significantly over-predicted. The EnKF does575

not estimate the state for the most upwind turbine since there are no wake model parameters which influence its production.

The power production for the second wind turbine is accurately estimated even with Pp = 2
:::::
P̂p = 2. This again shows that the

state estimation
::::
with

:
a
::::::::::::
two-parameter

::::::
model is likely overparameterized where the EnKF is making up

:::::::::::
compensating for the

incorrect Pp model by altering kw and σ0 unphysically
:
,
::::::::
although

:::
the

::::::::::
consequence

:::
of

:::
this

:::::
effect

::
in

:::
the

::::::::
accuracy

::
of

:::
the

::::::
power

:::::::::
predictions

::::
will

::
be

::::::::
discussed

:::
in

::::
§4.4. The power productions and EnKF estimations for the first two wind turbines for Case580

ND5 show that Pp = 4
::::::
P̂p = 4 is a more accurate estimate than Pp = 2

:::::
P̂p = 2. Again, the downwind turbine power is estimated

accurately with the incorrect value of Pp:::
P̂p.

The comparison between the wake model power predictions against the LES power production are shown in Figure 20.

With Pp = 2
:::::
P̂p = 2

:
(Figure 20(a)), the wake model significantly overpredicts the power production of the wind turbine array

with expected power increases over the baseline of 25% but a power decrease with respect to the baseline realized. On the585

other hand, with Pp = 4
:::::
P̂p = 4

:
(Figure 20(b)), the wake model underpredicts the power production of the wind turbine array

for nearly all control update steps. Interestingly, Case ND5 outperforms Case ND2 (Pp = 3), but not significantly. Comparing

Figures 15(b) and 20(b), it is clear that, in this simulation, the lifting line model prediction of downwind turbine power is

less conservative as a function of increasing γ. Therefore, the model is likely slightly over-estimating the true optimal yaw

misalignment angle magnitudes when Pp = 3.590

27



(a) (b)

Figure 20. Relationship between the LES wind farm power production compared to the wake model wind farm power production prediction

for online control using the initial parameters to initialize the next state and (a) Pp = 2
:::::
P̂p = 2

::::::
(NDP2)

:
and (b) Pp = 4

:::::
P̂p = 4

::::::
(NDP4). The

LES power production is given by P and the wake model prediction is given by P̂ .

Overall, the sensitivity analysis on Pp suggests that given a model application where Pp is unknown, a conservative es-

timation should be taken(e. g. Pp = 4). .
:

With the present data-driven dynamic controller, underestimating Pp leads to the

wake model estimating a state which would lead to high wake losses with baseline greedy control. There is no pathway

for the state estimation to discern the discrepancy between an incorrect Pp model or, for example, changing atmospheric

conditions which are giving rise to worsening wake losses given baseline control. Future work should focus on method-595

ologies to robustly estimate Pp from SCADA data.
:::::::
Further,

:::
the

::::::::
potential

::::::::
deviation

::
of

:::
the

:::::
wind

::::::
turbine

:::::
thrust

:::::
from

:::::::
cos2(γ)

:::::::::::::::::::::::::::::
(Bastankhah and Porté-Agel, 2016)

:::::
should

:::
be

::::::::::
investigated

::
in

:
a
::::::
similar

:::::::
manner

::
as

::
Pp:::

in
:::::
future

:::::
work.

4.4 Accuracy of wake model predictions

The accuracy of the wake model power predictions are assessed in this section by comparing the LES power measurements to

the wake model power predictions from the previous time step. As detailed in Section 3, the simulation is initialized with greedy600

yaw alignment which is held fixed for nT time steps (control update 1), after which yaw misalignment angles are implemented

for nT steps (control update 2). The yaw angles are subsequently updated dynamically every nT simulation steps. At control

update 1, the previous nT steps of yaw aligned operation are used to compute Pbaseline, the time averaged power production for

each wind turbine. Pbaseline is used to estimate kw and σ0 using the EnKF such that |Pbaseline− P̂baseline| is minimized. With

the estimated model parameters, the optimal yaw misalignment angles are computed for each wind turbine. Using kw and σ0605

estimated and the optimal yaw angles computed at control update 1, P̂yaw is predicted which is attempting to represent Pyaw,

the average power production over the nT steps following control update 1. The computation of Pyaw is completed at control

update 2 and can be compared directly to P̂yaw to validate the predictive capabilities of the lifting line model and the estimated

model parameters. In short, P̂baseline represented Pbaseline and it is an estimation or fit because the model had knowledge of

Pbaseline. P̂yaw is a prediction since the model had no knowledge of Pyaw. The LES measured and wake model estimated and610

predicted power productions are shown in Figure 21 for Pp = 2
:::::
P̂p = 2, 3, and 4.

The mean absolute error for the lifting line model power estimation was 0.0037 for all three cases since Pp does not affect

the fitting with yaw aligned control enforced. The mean absolute errors for the lifting line model power predictions were 0.044,
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(a) (b)

(c)

Figure 21. Wind turbine power production from LES P and wake model P̂ . P1,baseline is the LES power production for the leading upwind

turbine from control update step 1 where the wind farm is operated with greedy baseline control. P̂baseline is the wake model fit to Pbaseline

using EnKF estimation. Pyaw is the LES power production for control update step 2 with yaw misalignment incorporated. P̂yaw is the

wake model prediction of Pyaw using kw and σ0 fit based on control update step 1 and with the optimal yaw misalignment angles which

were implemented by control update step 1.
:::
The

::::
wake

:::::
model

:::::::
estimate

:::
for

:::
Pp,

::::
given

:::
by

::
P̂p::

is
:
(a) Pp = 2

:::::
P̂p = 2, (b) Pp = 3

:::::
P̂p = 3, and

(c) Pp = 4
:::::
P̂p = 4. The error bars represent one standard deviation in the power data as a function of time. The subscript ‘f’ denotes power

predictions from the FLORIS wake model (Annoni et al., 2018) with the Gaussian wake model (Bastankhah and Porté-Agel, 2014) and

model parameters prescribed by Niayifar and Porté-Agel (2016).
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Figure 22. The mean absolute errors for the lifting line model predictions as a function of the control update step for the conventionally

neutral ABL with Pp = 2
::::::
P̂p = 2, 3, and 4.

0.015, and 0.018, given as a fraction of P1,baseline, for Pp = 2
::::::
P̂p = 2, 3, and 4, respectively. The mean absolute errors as a

function of the control update steps for the three simulations are shown in Figure 22. The average over the control update steps615

of the mean absolute errors for the three cases are 0.05, 0.029, and 0.036 for Pp = 2
::::::
P̂p = 2, 3, and 4, respectively. Qualitatively,

Pp = 3
::::::
P̂p = 3 and 4 results in predictions which are accurate and within one standard deviation of the mean. Pp = 2

::::::
P̂p = 2

results in more inaccurate predictions, with elevated inaccuracy for the leading upwind turbine. Overall, these results, in tandem

with the field experiment results of Howland et al. (2019), suggest that the lifting line model (Shapiro et al., 2018) provides

accurate predictions of the power production of wind farms within yaw misalignment given data-driven calibration to yaw620

aligned operational data.

The baseline and yaw misaligned power predictions using the FLORIS wake model package (Annoni et al., 2018) is also

shown in Figure 21. The FLORIS model implementation uses the Gaussian wake model (Bastankhah and Porté-Agel, 2014)

with the wake spreading rate k∗ approximated using the empirical LES fit between k∗ and the turbulence intensity given by

Niayifar and Porté-Agel (2016). Since the Gaussian wake model parameters are not calibrated to the site-specific LES of this625

wind farm, the inaccuracy in representing Pbaseline is expected according to the typical fidelity of engineering wake models

(Stevens and Meneveau, 2017). The mean absolute error for the power production prediction in yaw misalignment averaged

over the six wind turbines in the array is 0.02P1,baseline and 0.11P1,baseline for the lifting line model with data assimilation

and the Gaussian model with an empirical wake spreading rate as a function of turbulence intensity, respectively. P1,baseline is

the power production of the leading upwind turbine in greedy control. The EnKF data assimilation has reduced the error in the630

prediction of the power production in yaw misalignment by an order of magnitude compared to a priori prescribed empirical

model parameters. Since the greedy wake losses in FLORIS differ from the LES power production, FLORIS will also predict

different yaw misalignment angles in its model-based optimization. For greenfield applications before wind farm construction,

SCADA data is not available and data assimilation methods cannot be used, necessitating empirical methods such as those

suggested by Niayifar and Porté-Agel (2016). For operational wind farm control optimization, site-specific data assimilation635

increases the accuracy of the model predictions (Figure 21
::
(b)).
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4.5 Influence of the wind farm alignment

The wake losses and potential for wake steering to increase wind turbine array power production depends on the wind turbine

layout (see e.g. experiments by Bossuyt et al., 2017). In the previous section, the six wind turbines were aligned at an angle of

18◦ from the horizontal (Figure 3). The mean wind direction at hub height is approximately 15◦-16◦ in this conventionally640

neutral ABL. In this section, the wind turbine column alignment is changed to 14◦ from the horizontal and the array is

embedded within the same conventionally neutral ABL. As a result of this array alignment, the optimal yaw misalignment

angles will change from positive (counter-clockwise rotation viewed from above) to negative (clockwise). It should be noted

that this sensitivity analysis is not a controlled experiment to test the benefit of yawing in opposite directions since asymmetries

exist in the conventionally neutral ABL as a result of the veer angle and the magnitude of partial waking is not held fixed645

between the two layouts.

Yaw misalignment angles for each turbine in the wind farm for online control using (a) the initial parameters to initialize the

next state (ND141) and (b) static state estimation parameters (ND142) for wind farm alignment at 14◦.

Time averaged wind farm power production as a function of the control update step for online control using (a) the initial

parameters to initialize the next state (ND141) and (b) static state estimation parameters for wind farm alignment at 14◦650

(ND142). The wind farm power is normalized by the power production of the aligned wind farm case.

For the wind turbine array aligned at 14◦, the dynamic wake steering controller is tested with dynamic (ND141) and static

state estimation (ND142). With a wind farm alignment along 14◦ and the mean wind direction at hub height of approximately

15◦-16◦, the optimal yaw misalignment angles are negative (clockwise viewed from above). The yaw misalignment angles

implemented as a function of the control update steps are shown in Figure E1 for dynamic and static state estimation architectures.655

The qualitative magnitude of the yaw misalignment angles are similar to the angles selected for the 18◦ alignment case (Section

4.1).

The power productions for the two wake steering controllers are shown in Figure E2. The temporally averaged power

production increase over baseline, greedy operation is 1.1% and 1.0% for the dynamic and static state estimation cases,

respectively. There is no significant difference in the mean power production between these two state estimation methodologies660

for this wind farm alignment (see Table 1). Further, neither wake steering control case increases power significantly over greedy

control. While the power production increase over the greedy control is less for the 14◦ case with negative yaw misalignment

than for the 18◦ case with positive yaw misalignment this is not a controlled experiment since the degree of partial waking

is different between the two cases. The wind farm has more direct wake interactions, with less partial waking, for the 14◦

alignment as evidenced by the lower power production in greedy control (Table 1). Previous simulations have shown that for665

a controlled experiment of direct wind farm alignment, positive yaw misalignment (counter-clockwise) is superior to negative

yaw misalignment (clockwise) (see e.g. Fleming et al., 2015; Miao et al., 2016), although this will depend on the specific ABL

and wind farm layout simulated. Archer and Vasel-Be-Hagh (2019) proposed that this difference is a function of Coriolis forces

in the ABL, although future work should quantify the effect of latitude and hemisphere locations as well as the influence of

non-traditional effects (Howland et al., 2020b). The degree of power production increase as a result of wake steering is a strong670

31



function of the wind farm alignment with respect to the wind direction at hub height, the turbine spacing, the shear, and veer.

The present simulations reveal that it is reasonable to capture increases in power production with negative (clockwise) wake

steering even with a wind turbine model with Pp ≈ 3.

5 Conclusions

A suite of large eddy simulations has been performed to characterize the performance of a dynamic, closed-loop wake steering675

wind farm control strategy. The controller was designed for the application of real-time utility-scale wind farm control based

on only SCADA data without requiring a LiDAR on site. The physics- and data-driven ensemble Kalman filter and wake

model based controller was validated in uniform inflow LES before being tested in conventionally neutral ABL conditions

with Coriolis, shear, and veer. The
:::
The

:
analytic gradient ascent optimal yaw selection allows for real-time dynamic wind farm

control. The sensitivity of the power production increase via wake steering over greedy, yaw aligned control was characterized680

as a function of the controller architecture, Pp, state estimation architecture, wind farm layout, and ABL conditions.
::::
main

:::::::
technical

::::::::::
contribution

:::
of

:::
this

:::::
paper

::
is

:::
the

::::::::::
development

::
of
::
a
::::::::::
closed-loop

::::
wake

:::::::
steering

:::::::::::
methodology

:::
for

:::::::::
application

::
in
::::::::
transient

::::
ABL

:::::
flows

:::::
which

::::
does

:::
not

::::
rely

:::
on

::
an

:::::::::
open-loop

:::::
offline

::::
yaw

:::::::::::
misalignment

::::::
lookup

:::::
table

::::::::::
calculation.

Within the
:::::::::
statistically

:
quasi-stationary conventionally neutral ABL, the optimal yaw misalignment angles do not change

significantly with time. Within this simplified ABL environment, a static wake steering strategy, where the yaw misalignments685

do not change, increased power production by 5.4% with respect to baseline greedy control. Dynamic wake steering with

dynamic state estimation increased power production by 4.6%, slightly less than the static yaw misalignment strategy but not

significantly
::::
wake

:::::::
steering

::::::
control

:::::
with

:::::
fixed,

::::::
lookup

:::::
table

::::
yaw

:::::::::::
misalignment

:::::::
values,

:::::::
dynamic

::::
yaw

::::::
values

::::
with

::::::::::
continuous

::::
state

:::::::::
estimation,

:::
and

::::::::
dynamic

:::
yaw

::::::
values

::::
with

::::
fixed

::::
state

:::::::::
estimation

:::
all

::::::
yielded

::::::::::
significantly

:::::
more

:::::
power

::::
than

:::::::
baseline

:::::::
control,

:::::::
although

:::
the

:::::::::
differences

::::::::
between

:::
the

::::
three

:::::::
control

::::::::::
architectures

:::::
were

:::
not

:::::::::
significant. The highest power production occurred690

with a wake steering strategy where the model parameters were fixed and the state estimation was not performed every control

update step but the yaw misalignment angles were updated according to the local wind conditions. This result indicates
:::::::
suggests

that in a lookup table wake steering approach, the wake model parameters should be tabulated and the yaw angles should be

calculated on-the-fly given exact local wind conditions, rather than direct optimal yaw misalignment angle tabulation. All three

of these wake steering cases increased power significantly over greedy, aligned control although the differences between the695

three control architectures were not significant.

The importance of the model for individual wind turbine power production degradation as a function of the yaw misalignment

angle, and in particular Pp, was demonstrated where Pp = 3
:::::
P̂p = 3

:
or 4 lead to an increase in power production with respect

to greedy operation while Pp = 2
::::::
P̂p = 2 lead to a loss in power. Wake steering cases with

:
,
::::
with

:::
the

::::
true Pp = 3and 4 led

to a significant increase in power production compared to greedy control while Pp = 2 did not.
:
. Since Pp depends on the700

wind turbine model and ABL characteristicsand there is no accepted general framework for determining Pp, this should be

investigated in future work. With Pp = 3, the
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:::
The

:::::
wake

::::::
model

::::
does

:::
not

:::::::
capture

::
all

:::::::
relevant

:::::::
physical

::::::::::
phenomena

:::::::
present

::
in

:::
this

:::::
flow

:::
(see

:::::::
specific

:::::::::::
assumptions

::
in

:::::
wake

:::::
model

::::::::
derivation

:::
in

:::::
§2.1),

:::
but

:::
the

:::::
power

:::::::::
production

::
is

::
fit

:::::::::
accurately

::
as

:
a
:::::::
function

:::
of

::::
time

::::
with

::
the

::::
two

::::::::
parameter

::::::
model.

::::::
While

:::
this

::::::
success

::::
may

:::::::
suggest

::::
that

:::
the

::::
site-

:::
and

:::::::::::
time-specific

::::
state

:::::::::
estimation

::::
may

::::::
correct

:::
for

:::::::
physics

:::::
which

:::
are

::::::::::
unresolved

::
in

:::
the705

::::::
model,

:::::
with

:::::::::::
P̂p = Pp = 3,

:::
the wake model makes accurate forecasts of the power production over a future time horizon given

the yaw misalignment strategy that is implemented,
::::::::
provided

:::
that

:::
the

:::::
wake

::::::
model

::::::::
parameter

::::::::::::
modifications

::
are

::::::::::
constrained

:::
by

::
the

:::::
state

:::::::::
estimation

::::::::
algorithm

:::::::::::
initialization

::
as

::
in

:::::
Case

::::
ND1,

::::::
rather

::::
than

::::::::::::
unconstrained

::
as

:
a
::::::::
function

::
of

::::
time

::
as

::
in

:::::
Case

::::
ND2.

This accuracy gives confidence to the data-driven EnKF state estimation and lifting line wake model for the application of wake

steering control. The combined lifting line model and EnKF state estimation has an order of magnitude reduced predictive error710

than the Gaussian wake model with an empirical wake spreading rate in this conventionally neutral ABL simulation.

The results are qualitatively similar when a wind farm of different alignment is embedded within the conventionally neutral

ABL. The power production is decreased with a wind farm alignment of 14◦ compared to 18◦ and with a clockwise yaw

misalignment compared to a counter-clockwise, although this was not a controlled experiment of the influence of the direction

of yaw misalignment.
:::
The

:::::::::
magnitude

::
of

::::::
model

::::::::
parameter

:::::::::::
modifications

:::
as

:
a
:::::::
function

::
of

::::
time

:::
are

:::::::::
implicitly

:::::::::
constrained

::
in

::::
this715

::::
study

:::
by

:::
the

::::::::::::::
hyperparameters

::
of

:::
the

:::::
EnKF

:::::::::
estimation

:::::::::
algorithm.

:::::
Future

:::::
work

::::::
should

:::::::::
investigate

:::
the

::::::::
predictive

::::::::::
capabilities

:::
for

::::::::
combined

:::::::::
data-driven

::::
and

::::
wake

::::::
model

:::::::::
approaches

:::::
with

::::::
explicit

:::::::::
constraints

:::
on

:::
the

:::::
model

::::::::::
parameters.

While the conventionally neutral ABL cases were not designed to model a specific wind farm and to compare to field data,

this LES testbed paradigm is useful for the rapid prototyping of optimal wind farm control architectures. The main purpose

of this study was predominantly to establish the dynamic wake steering framework and perform sensitivity analysis on the720

controller architecture rather than the ABL or LES setup. The uncertainties and sensitivities in this study associated with the

wall model, subfilter scale model, wind turbine model, and ABL characteristics such as boundary layer inversion height were

not investigated in detail and are left for future work. More reliable and generalizable estimates for Pp (?)
:::::::::::::::
(Liew et al., 2020)

, or generally Cp as a function of γ, should be investigated. Future work should also investigate the influence of latitude and

geostrophic wind direction on wake steering control performance (Howland et al., 2020b). Finally, the controller should be725

tested using other LES codes and in field experiments to assess the generalization of the results. Part 2 of this study will

implement the dynamic optimal controller in transient ABL conditions such as the stable ABL and the diurnal cycle.

Code and data availability. The code is open-source and available at https://github.com/FPAL-Stanford-University/PadeOps. The GitHub

repository branch for incompressible wind farm simulations is ‘igridSGS.’ The data will be open-access and published on the Stanford

Digital Repository (https://sdr.stanford.edu/) upon publication.730

Appendix A: EnKF test model problem

The state estimation EnKF algorithm and implementation is tested using a six wind turbine model wind farm with artificial

data. Six 1.8 MW Vestas V80 wind turbines are modeled with incoming wind speed of u∞ = 7.5 m/s. The turbines are
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(a) (b)

(c) (d)

Figure A1. (a) Model problem setup. (b,c) The EnKF model fits for the model problem with two prescribed, artificial mean power profiles

and Gaussian random noise. (d) Model parameters shown with solid (b) and dashed (c) lines. The wake model parameters for the last turbine

downwind are not shown since they do not impact the state estimation accuracy.

spaced 6D apart in the streamwise direction and are directly aligned in the spanwise direction as shown in Figure A1(a).

The
:::
test

:::::::
problem

::::
was

::::
used

:::
for

:::::::::::::
hyperparameter

::::::::
selection

::
to
:::::::

achieve
::::::::::
estimations

::
of

:::
the

::::::::
artificial

:::::
power

::::::::::
production

::::
with

::::
low735

::::
mean

:::::::
absolute

:::::
error.

::::
The parameters selected for the EnKF algorithm are σkw = 0.001, σσ0

= 0.001, and σP = 0.1. The initial

wake model parameters were selected as kw = 0.1 and σ0 = 0.35 for each wind turbine in the array. The model is run with a

specified, artificial mean power production profile with Gaussian random noise superposed. The model is run over 1000 model

time step iterations with Ne = 100. The initial and final model calibrations are shown in Figure A1(b,c). The EnKF combined

with the lifting line model is able to fit the artificial wind farm data with sufficient accuracy for two different power production740

profiles.

As shown in Figure A1(b,c), the EnKF state estimation combined with the lifting line model are able to reproduce the

power production for the artificial data to high accuracy. The
::::
While

::::
the ability for a one or two parameter analytic wake

model to capture arbitrarily generated power production profiles should be investigated in future studiesas the model may

enforce unrealistic model parameters to represent neglected physics (Schreiber et al., 2019). The validity of
:
, this data-driven745

framework is validated in the LES test cases in a comparison between model power predictions and LES power measurements

(Section 4)
:::
4.4)

:::::
where

:::
the

:::::
state

::::::::
estimation

:::::::::::
significantly

:::::::
reduces

:::
the

:::::
power

::::::::::
predictions

::::::::
compared

::
to
::::::::

standard
::::::::
empirical

:::::
wake

:::::
model

::::::::::
approaches.

Appendix B: Extended conventionally neutral simulation
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The conventionally neutral ABL Case ND2 is run for 50 control update steps and the results are shown in Figure D1. The750

controller does not become unstable as a function of time and the magnitude of yaw misalignment angles are approximately

constant.

Wind farm (a) yaw misalignment angles, (b) kw, and (c) σ0 as a function of the control update steps for the extended ND2

case.

Appendix B: Influence of local atmospheric conditions on wind turbine array power production755

The quantification of the influence of new control methods on the wind farm power production is challenging in an experimental

setting. In a computational environment, simulations with identical initial conditions and fixed time stepping schemes can be

used to quantify the influence of the operational modifications in a controlled experiment. In a field experiment environment,

since wind conditions are constantly changing and are not repeatable due to the nature of atmospheric flows, this quantification

is more challenging. Complex terrain and differences in the manufacturing and operation of turbines in standard control leads760

to substantial discrepancies in the instantaneous power production of freestream turbines at wind farms. Therefore, comparing

yaw misaligned columns of turbines to yaw aligned leads to uncertainty in analysis. Further, conditional averages based on

wind speed, direction, turbulence intensity, and atmospheric conditions may not sufficiently capture the potential physical

mechanisms which influence power production. To quantify this impact in the present simulations, the power productions

as a function of the control update steps can be compared to the first control update step in the
:::::::::
statistically

:
quasi-stationary765

conventionally neutral ABL flow. Inertial oscillations, turbulence, and sampling error will cause discrepancies between the first

and subsequent control update steps even with the yaw aligned control strategy held fixed in the
:::::::::
statistically

:
quasi-stationary

flow. The average power production compared to the first yaw control update step is 4.3% and 9.0% higher for the yaw aligned

(Case NA) and dynamic closed-loop control (Case ND2
::::
ND1), respectively. The increase observed in Case NA indicates that

the simulation had not completely converged to the
:::::::::
statistically quasi-stationary state upon control initialization although this770

does not affect the qualitative conclusions of Section 4. The true increase in power production due to wake steering in Case

ND2
::::
ND1 compared to Case NA is 4.6% over the same simulation temporal window. These results highlight the need to

develop robust statistical methods to analyze the impact of changing wind farm control strategies compared to the baseline.

Appendix C:
:::::::::::
Approximate

:::::::::
advection

::::::::
timescale

::::
Upon

::::
the

::::
yaw

:::::::::::
misalignment

:::
of

::
an

:::::::
upwind

:::::::
turbine,

::::
there

::
is
::

a
::::
time

:::
lag

:::::::::
associated

:::::
with

:::
the

::::::::
advection

::::
time

:::::
scale

::
of

::::
the

::::
flow775

::
for

::::
the

::::::
control

::::::::
decision

::
to

::::::::
influence

::
a
:::::::::
downwind

:::::::
turbine.

::::::
While

:::
the

:::::::::
advection

:::::
time

:::::::
depends

:::
on

:::
the

::::::
length

:::::
scale

::
of

::::
the

:::::::
turbulent

:::::
eddy

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Del Álamo and Jiménez, 2009; Yang and Howland, 2018; Howland and Yang, 2018)

:
,
:::
the

:::::
mean

::::
flow

::::::::
advection

::::::::::::
approximately

::::::
follows

:::
the

:::::
mean

:::::
wind

:::::
speed

::
in

:::::
wind

:::::
farms

::::::::::::::::::::::::::::::
(Taylor, 1938; Lukassen et al., 2018)

:
.
::::
The

::::::
number

:::
of

:::::::::
simulation
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(a) (b)

Figure B1. Time averaged power production as a function of time normalized by the time averaged power production of the first control

update step for yaw aligned greedy control. (a) Yaw aligned greedy control (Case NA) and (b) closed-loop dynamic control (Case ND2
::::
ND1).

::::
time

::::
steps

:::::::::
associated

::::
with

:::
the

::::::::::
approximate

:::::::::
advection

::::
time

:::::::
between

:::
the

:::
first

::::
and

:::
last

:::::::
turbines

::
is

::::::::
computed

::
as

:

T =
∆sx

uhub∆t
,

:::::::::::

(C1)780

:::::
where

::::
∆sx::

is
:::
the

::::::::
distance

:::::::
between

:::
the

::::
first

::::
and

:::
last

:::::::
turbine

::
in

:::
the

::::::::::
streamwise

::::::::
direction

:::
and

:::::
uhub ::

is
:::
the

:::::
mean

::::::::::
streamwise

::::::
velocity

:::
at

:::
the

:::::
wind

::::::
turbine

::::::
model

:::
hub

::::::
height

::
at
:::

the
:::::::

leading
:::::::
turbine

::
in

:::
the

:::::
farm.

::::
The

:::::::::
simulation

::::
time

::::
step

::
is
:::::

fixed
::::
and

::
is

:::
∆t,

:::::
which

:::::::::::
corresponds

::
to

:
a
::::
CFL

:::
of

:::
less

::::
than

::
1

:::::::::
persistently

::::::
during

::::::::
runtime.

::
In

:::
the

::::::::::
computation

:::
of

::::
wind

::::
farm

::::::::
statistics

:::
for

:::
the

::::::::
utilization

::
of

:::::
static

::::
wake

:::::::
models,

:::
the

::::::::
advection

::::
time

:::::
scale

:
is
:::::::::
accounted

:::
for

::
by

:::::::::
initializing

:::
the

::::
time

::::::::
averaging

::::
two

::::::::
advection

::::
time

:::::
scales

:::::::
Ta = 2T

:::::
after

:::
the

::::
yaw

::::::::::::
misalignments

:::
for

:::
the

:::::
wind

::::::
turbine

:::::
array

::::
have

:::::
been

:::::::
updated.

:::
To

:::::::
account

:::
for

:::::
errors

:::::::::
associated785

::::
with

:::
the

::::::
simple

::::::::
advection

::::::
model,

:::
the

::::
time

:::
lag

::
is
:::::
taken

::
as

::::::
double

::::
the

::::::::
advection

::::
time

:::::
scale,

::::::::
Ta = 2T ,

::::::::
although

:::
this

:::::::::
advection

::::
time

::::
scale

:::
did

:::
not

::::
have

::
a
:::::::::
statistically

:::::::::
significant

::::::::
influence

:::
on

::
the

::::::
results

::
as

::::::
shown

::
in

:::::
Table

::::
1and

::::::
Figure

::
5.

:

Appendix D:
::::::::
Extended

:::::::::::::
conventionally

:::::::
neutral

:::::::::
simulation

:::
The

:::::::::::::
conventionally

::::::
neutral

::::
ABL

:::::
Case

:::::
ND1

::
is

:::
run

:::
for

:::
50

::::::
control

::::::
update

:::::
steps

:::
and

:::
the

::::::
results

:::
are

::::::
shown

::
in
::::::

Figure
::::
D1.

::::
The

::::::::
controller

::::
does

:::
not

:::::::
become

:::::::
unstable

:::
as

:
a
:::::::
function

:::
of

::::
time

:::
and

:::
the

:::::::::
magnitude

::
of

::::
yaw

::::::::::::
misalignment

::::::
angles

:::
are

::::::::::::
approximately790

:::::::
constant.

:

Appendix E:
::::::::
Influence

::
of

:::
the

:::::
wind

::::
farm

::::::::::
alignment

::
in

:::
the

:::::::::::::
conventionally

::::::
neutral

:::::
ABL

:::
The

:::::
wake

:::::
losses

:::
and

::::::::
potential

:::
for

:::::
wake

::::::
steering

::
to
::::::::
increase

::::
wind

::::::
turbine

:::::
array

:::::
power

:::::::::
production

::::::::
depends

::
on

:::
the

:::::
wind

::::::
turbine

:::::
layout

:::::::::::::::::::::::::::::::::::::
(see e.g. experiments by Bossuyt et al., 2017).

:::
In

::
the

::::::::
previous

::::::
section,

:::
the

:::
six

:::::
wind

:::::::
turbines

::::
were

::::::
aligned

::
at
:::
an

:::::
angle

::
of

:::
18◦

::::
from

::::
the

::::::::
horizontal

:::::::
(Figure

:::
3).

:::
The

:::::
mean

:::::
wind

::::::::
direction

::
at

::::
hub

:::::
height

::
is
::::::::::::
approximately

::::::::
15◦-16◦

::
in

:::
this

:::::::::::::
conventionally795

::::::
neutral

:::::
ABL.

::
In

::::
this

:::::::
section,

:::
the

:::::
wind

:::::::
turbine

::::::
column

:::::::::
alignment

::
is
::::::::

changed
::
to

::::
14◦

:::::
from

:::
the

:::::::::
horizontal

:::
and

::::
the

:::::
array

::
is

::::::::
embedded

::::::
within

:::
the

:::::
same

::::::::::::
conventionally

:::::::
neutral

:::::
ABL.

:::
As

:
a
:::::
result

:::
of

:::
this

:::::
array

:::::::::
alignment,

:::
the

:::::::
optimal

::::
yaw

::::::::::::
misalignment

:::::
angles

::::
will

::::::
change

:::::
from

::::::
positive

::::::::::::::::
(counter-clockwise

:::::::
rotation

::::::
viewed

:::::
from

::::::
above)

::
to

:::::::
negative

:::::::::::
(clockwise).

:
It
::::::
should

:::
be

:::::
noted
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(a) (b) (c)

Figure D1.
::::
Wind

:::
farm

:::
(a)

:::
yaw

::::::::::
misalignment

::::::
angles,

::
(b)

:::
kw,

::::
and

::
(c)

::
σ0::

as
:
a
:::::::

function
::
of

::
the

::::::
control

:::::
update

::::
steps

:::
for

::
the

:::::::
extended

::::
ND1

::::
case.

:

(a) (b)

Figure E1.
::::
Yaw

::::::::::
misalignment

:::::
angles

::
for

::::
each

::::::
turbine

:
in
:::
the

::::
wind

::::
farm

::
for

:::::
online

::::::
control

::::
using

:::
(a)

::
the

:::::
initial

::::::::
parameters

::
to

:::::::
initialize

::
the

::::
next

:::
state

:::::::
(ND141)

:::
and

:::
(b)

::::
static

::::
state

::::::::
estimation

::::::::
parameters

:::::::
(ND142)

:::
for

::::
wind

::::
farm

:::::::
alignment

::
at

::::
14◦.

:::
that

:::
this

:::::::::
sensitivity

:::::::
analysis

::
is

:::
not

:
a
::::::::
controlled

::::::::::
experiment

::
to

:::
test

:::
the

::::::
benefit

::
of

::::::
yawing

::
in

:::::::
opposite

:::::::::
directions

::::
since

:::::::::::
asymmetries

::::
exist

::
in

:::
the

:::::::::::::
conventionally

::::::
neutral

:::::
ABL

::
as

:
a
::::::

result
::
of

:::
the

::::
veer

:::::
angle

::::
and

:::
the

:::::::::
magnitude

::
of

::::::
partial

:::::::
waking

::
is

:::
not

::::
held

:::::
fixed800

:::::::
between

:::
the

:::
two

:::::::
layouts.

(a) (b)

Figure E2.
::::
Time

:::::::
averaged

::::
wind

::::
farm

:::::
power

:::::::::
production

::
as

:
a
:::::::

function
::
of

:::
the

::::::
control

:::::
update

::::
step

:::
for

:::::
online

::::::
control

::::
using

:::
(a)

:::
the

:::::
initial

::::::::
parameters

::
to

::::::
initialize

:::
the

::::
next

:::
state

:::::::
(ND141)

:::
and

:::
(b)

::::
static

::::
state

::::::::
estimation

::::::::
parameters

:::
for

::::
wind

::::
farm

:::::::
alignment

::
at

:::
14◦

:::::::
(ND142).

::::
The

::::
wind

:::
farm

:::::
power

::
is

::::::::
normalized

:::
by

::
the

:::::
power

:::::::::
production

:
of
:::

the
::::::
aligned

::::
wind

::::
farm

::::
case.
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:::
For

:::
the

::::
wind

:::::::
turbine

::::
array

:::::::
aligned

::
at

::::
14◦,

:::
the

:::::::
dynamic

:::::
wake

:::::::
steering

::::::::
controller

::
is

:::::
tested

::::
with

::::::::
dynamic

:::::::
(ND141)

::::
and

:::::
static

::::
state

:::::::::
estimation

::::::::
(ND142).

::::
With

::
a

::::
wind

::::
farm

:::::::::
alignment

:::::
along

:::
14◦

::::
and

:::
the

::::
mean

:::::
wind

::::::::
direction

:
at
::::
hub

:::::
height

:::
of

::::::::::::
approximately

:::::::
15◦-16◦,

:::
the

:::::::
optimal

::::
yaw

:::::::::::
misalignment

::::::
angles

:::
are

::::::::
negative

:::::::::
(clockwise

::::::
viewed

:::::
from

:::::::
above).

:::
The

::::
yaw

::::::::::::
misalignment

::::::
angles

::::::::::
implemented

::
as
::
a
:::::::
function

::
of

:::
the

::::::
control

:::::
update

:::::
steps

:::
are

:::::
shown

::
in

::::::
Figure

::
E1

:::
for

:::::::
dynamic

::::
and

::::
static

::::
state

:::::::::
estimation

:::::::::::
architectures.805

:::
The

:::::::::
qualitative

:::::::::
magnitude

::
of

:::
the

:::
yaw

::::::::::::
misalignment

:::::
angles

:::
are

::::::
similar

::
to

:::
the

::::::
angles

::::::
selected

:::
for

:::
the

:::
18◦

:::::::::
alignment

::::
case

:::::::
(Section

::::
4.1).

:::
The

::::::
power

::::::::::
productions

:::
for

:::
the

::::
two

:::::
wake

:::::::
steering

::::::::::
controllers

:::
are

::::::
shown

::
in

::::::
Figure

::::
E2.

::::
The

:::::::::
temporally

::::::::
averaged

::::::
power

:::::::::
production

:::::::
increase

::::
over

::::::::
baseline,

::::::
greedy

:::::::::
operation

::
is

:::::
1.1%

::::
and

:::::
1.0%

:::
for

:::
the

::::::::
dynamic

::::
and

:::::
static

::::
state

:::::::::
estimation

::::::
cases,

::::::::::
respectively.

:::::
There

::
is

::
no

:::::::::
significant

::::::::
difference

::
in
:::
the

:::::
mean

::::::
power

:::::::::
production

:::::::
between

::::
these

::::
two

::::
state

:::::::::
estimation

::::::::::::
methodologies810

::
for

::::
this

::::
wind

::::
farm

:::::::::
alignment

:::
(see

:::::
Table

:::
1).

::::::
Further,

::::::
neither

:::::
wake

:::::::
steering

::::::
control

::::
case

:::::::
increases

::::::
power

::::::::::
significantly

::::
over

::::::
greedy

::::::
control.

::::::
While

:::
the

:::::
power

:::::::::
production

:::::::
increase

::::
over

:::
the

::::::
greedy

:::::::
control

:
is
::::
less

:::
for

:::
the

:::
14◦

::::
case

::::
with

:::::::
negative

::::
yaw

::::::::::::
misalignment

:::
than

:::
for

::::
the

:::
18◦

::::
case

::::
with

:::::::
positive

::::
yaw

::::::::::::
misalignment

:::
this

::
is
:::
not

::
a
:::::::::
controlled

:::::::::
experiment

:::::
since

:::
the

::::::
degree

::
of

::::::
partial

:::::::
waking

:
is
::::::::

different
:::::::
between

:::
the

::::
two

:::::
cases.

::::
The

:::::
wind

::::
farm

::::
has

:::::
more

:::::
direct

:::::
wake

::::::::::
interactions,

::::
with

::::
less

::::::
partial

:::::::
waking,

:::
for

:::
the

::::
14◦

::::::::
alignment

::
as

:::::::::
evidenced

::
by

:::
the

:::::
lower

::::::
power

:::::::::
production

::
in
::::::
greedy

:::::::
control

:::::
(Table

:::
1).

:::::::
Previous

::::::::::
simulations

:::::
have

:::::
shown

::::
that

:::
for815

:
a
:::::::::
controlled

:::::::::
experiment

::
of

:::::
direct

:::::
wind

::::
farm

:::::::::
alignment,

:::::::
positive

::::
yaw

:::::::::::
misalignment

:::::::::::::::::
(counter-clockwise)

:
is
:::::::
superior

:::
to

:::::::
negative

:::
yaw

::::::::::::
misalignment

:::::::::
(clockwise)

:::::::::::::::::::::::::::::::::::::::
(see e.g. Fleming et al., 2015; Miao et al., 2016)

:
,
:::::::
although

::::
this

:::
will

::::::
depend

:::
on

:::
the

::::::
specific

:::::
ABL

:::
and

::::
wind

::::
farm

::::::
layout

:::::::::
simulated.

::::::::::::::::::::::::::::
Archer and Vasel-Be-Hagh (2019)

:::::::
proposed

::::
that

:::
this

::::::::
difference

::
is
:
a
::::::::
function

::
of

::::::
Coriolis

::::::
forces

::
in

:::
the

:::::
ABL,

:::::::
although

::::::
future

::::
work

::::::
should

::::::::
quantify

:::
the

:::::
effect

::
of

:::::::
latitude

:::
and

::::::::::
hemisphere

::::::::
locations

::
as

::::
well

::
as

::::
the

:::::::
influence

:::
of

::::::::::::
non-traditional

::::::
effects

:::::::::::::::::::
(Howland et al., 2020b)

:
.
:::
The

::::::
degree

::
of

:::::
power

:::::::::
production

:::::::
increase

:::
as

:
a
:::::
result

::
of

::::
wake

:::::::
steering

::
is

:
a
::::::
strong820

:::::::
function

::
of

:::
the

::::
wind

:::::
farm

::::::::
alignment

::::
with

:::::::
respect

::
to

:::
the

::::
wind

::::::::
direction

::
at

:::
hub

::::::
height,

:::
the

:::::::
turbine

:::::::
spacing,

:::
the

:::::
shear,

:::
and

:::::
veer.

:::
The

::::::
present

::::::::::
simulations

::::::
reveal

:::
that

::
it
::
is

:::::::::
reasonable

::
to

:::::::
capture

::::::::
increases

::
in

:::::
power

::::::::::
production

::::
with

:::::::
negative

::::::::::
(clockwise)

:::::
wake

::::::
steering

:::::
even

::::
with

:
a
::::
wind

:::::::
turbine

:::::
model

::::
with

:::::::
Pp ≈ 3.

Appendix F:
:::::::
Dynamic

:::::
wake

::::::::
steering

:::::::
uniform

::::::
inflow

::::
LES

::
In

:::
this

:::::::
section,

:::
the

::::::::
dynamic

:::::::::
closed-loop

:::::
wake

:::::::
steering

:::::::::
controller

::::::::
described

::
by

::::::
Figure

::
1
::::
will

::
be

::::
used

:::
in

::::
LES

::
of

::::
two

:::::::
turbines825

::::::::
operating

::
in

::::::
uniform

::::::
inflow.

::::::::
Uniform

:::::
inflow

::
is

:::
not

:::::::
physical,

::::
and

::::::::
depending

:::
on

:::
the

::::
LES

:::::::::
resolution,

:::
the

:::::
results

::::
will

::
be

:::::::::
dependent

::
on

:::
the

:::::::
sub-grid

::::
scale

::::::
model

:::
due

::
to

:::
the

::::
sharp

:::::
shear

::::
layer

::::
and

::::::
reduced

::::::
mixing

::
of

:::
the

:::
test

::::
case

::::::::::::::::::::::::::::::::::::::::
(see detailed discussion by Howland et al., 2016)

:
.
::::::::
However,

:::::::
uniform

:::::
inflow

:::::::
provides

::
a
:::::
useful

::::::::::
statistically

::::::::
stationary

:::
test

::::
case

:::
for

:::
the

::::::::
validation

:::
of

::
the

::::::::::
closed-loop

:::::
wake

:::::::
steering

:::::::::::
methodology.

::::
The

::::::
domain

::::
has

::::::
lengths

::
of

:::::
25D,

:::::
10D,

:::
and

:::::
10D

::
in

:::
the

::
x,

::
y,
::::

and
::
z

:::::::::
directions,

::::::::::
respectively,

::::
and

:::
the

::::::
number

:::
of

:::
grid

::::::
points

:::
are

::::
128,

:::
64,

:::
and

:::
64.

::::
Two

:::::::
actuator

::::
disk

::::::
model

::::
wind

:::::::
turbines

:::
are

:::::::::
simulated

::
in

:::::::
uniform

:::::
inflow

::::
with

::::
slip

:::::
walls

::
on

:::
all830

::::
sides

:::
and

::
a
:::::
fringe

::::::
region

::
at

:::
the

:::::::
domain

:::
exit

::
to

:::::
force

:::
the

::::::
inflow

::
to

:
a
:::::::
uniform

:::::::
profile.

:::
The

::::::
fringe

:
is
:::::

used
::
in

:::
the

:::
last

::::
25%

:::
of

:::
the

:::::::::::
computational

::
x
:::::::
domain.

::::
The

:::::::
turbines

:::
are

:::::::
located

:::
4D

::::
apart

:::
in

:::
the

:::::::::
streamwise

::::::::
direction

::::
and

:::
are

:::::::::
misaligned

:::
by

:::::
0.25D

:::
in

:::
the

:::::::
spanwise

::::::::
direction

::
as

::::::
shown

::
in

::::::
Figure

:::
F1.

::::
Due

::
to

:::
the

:::::::
spanwise

::::::::::::
misalignment,

:::
the

::::::::::
preferential

::::
yaw

:::::::::::
misalignment

::::::::
direction

:::
for

::
the

:::::::
upwind

::::::
turbine

::
is

:::::::
positive

:::::::::::::::
(counter-clockwise

:::::::
rotation

::::::
viewed

:::::
from

::::::
above).

:
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Figure F1.
::::::
Uniform

:::::
inflow

::::
LES

::::::::
simulation

::::::
actuator

::::
disk

:::::
model

:::::
layout.

::::
The

:::::
fringe

:::::
region

::
is

::::::::
represented

:::
by

:::
the

:::::
dashed

:::::
black

:::
line

:::
and

:::
the

::::
wind

::::::
turbines

::
are

::::::
shown

::
as

::::
solid

::::
black

::::
lines.

(a) (b)

Figure F2.
:::

Two
::::
wind

:::::
turbine

:::::
model

:::::::
uniform

:::::
inflow

::::
LES

::
(a)

:::::
power

:::::::::
production.

::
(b)

::::
The

:::
yaw

::::::::::
misalignment

:::::
angle

:
γ
:::

for
:::
the

::::::
upwind

::::::
turbine.

:::
The

::::::::
downwind

:::::
turbine

:::::::
remains

:::
yaw

::::::
aligned

:::::
during

::
the

:::::::::
simulation.

:::
The

::::
flow

::
is

::::::::::
statistically

::::::::
stationary

::::
after

:::
the

:::::
initial

::::::
startup

::::::::
transient

:::
has

:::::::
decayed

:::
and

::::::::
therefore

:::
the

:::::::
optimal

:::
yaw

::::::::::::
misalignment835

:::::
angles

:::
for

:::
the

::::
two

:::::
wind

:::::::
turbines

:::
are

:::
not

:
a
::::::::

function
::
of

:::::
time.

::::
The

::::
flow

::
is

::::::::
initialized

:::::
with

:::::
u= 1.

:::::
Upon

:::::::::
statistical

::::::::::
stationarity,

::
the

::::::::::
closed-loop

:::::
wake

:::::::
steering

::::::::
controller

::
is
:::::::::
initialized

:::
and

:::
the

::::
flow

::
is
::::
run

::
for

:::::::::::
nT = 10000

::::
LES

::::
time

:::::
steps

::
to

::::::
ensure

::::::::
sufficient

::::::::
averaging.

::::
The

::::
time

::::::::
averaging

::
is
:::::::::
initialized

::::::::
following

:::
the

::::::::
advection

::::
time

::
of
:::

the
:::::
wind

::::
farm

::::
(see

:::::::
Section

::
C)

:::
and

::::::::
therefore

:::::
there

::
are

::::::::
nT −Ta ::::::::

timesteps
:::::
within

:::::
each

::::
time

::::::::
averaging

:::::::
window.

:

:::
The

::::
sum

::
of

:::::
power

::::::::::
production

::
for

:::
the

::::
two

::::::
turbine

::::
pair

::
as

:
a
:::::::
function

::
of

:::
the

::::::
control

::::::
update

:::::
steps

:
is
::::::
shown

::
in

::::::
Figure

:::::
F2(a).

::::
The840

:::::
power

:::::::::
production

::
is

:::::::::
normalized

:::
by

:::
the

:::::
greedy

::::::
control

::::::::::
simulation.

:::
The

::::::
power

:::::::::
production

:::
for

:::
the

:::
first

::::
yaw

::::::::
controller

::::::
update

::::
time

:::
step

::
is

:::::
equal

::
to

::
1

::::
since

::::
yaw

::::::::::::
misalignment

:::
has

:::
not

::::
been

:::::::::::
implemented

::::
and

:::
the

:::::
model

::
is
::::::::
gathering

::::::
power

:::::::::
production

::::
data

::
to

:::
be

::::
used

::
for

:::
the

::::
first

:::::
EnKF

::::
data

::::::::::
assimilation

::::
pass.

::::
The

:::::
power

:::::::::
production

::::::::
increases

::
in

:::
the

::::::
second

::::
time

::::
step

:::::
when

:::
yaw

::::::::::::
misalignment

::
in

::::::::::
incorporated

:::
for

:::
the

:::::::
upwind

::::::
turbine

::::::
(Figure

::::::
F2(b)).

::::
The

::::::::
controller

::::::::
correctly

:::::::::
commands

:::
the

:::::::
upwind

::::::
turbine

::
to

:::::::
positive

::::
yaw

:::::::::::
misalignment.

::::::
While

:::
the

::::
flow

::
is

:::::::::
statistically

:::::::::
stationary,

:::
the

:::::::
upwind

::::::
turbine

::::
yaw

:::::::::::
misalignment

:::::
angle

:::::::
changes

:::::::::
marginally

:::::
after845

::
the

:::::::
second

::::
time

::::
step.

:::::
These

:::::::
changes

::::
can

::
be

::::::::
attributed

::
to

::::::::::::
modifications

::
to

:::
the

::::
wake

::::::
model

:::::::::
parameters

:::
as

:
a
:::::::
function

::
of

:::::
time

::
as

::::::::
estimated

::
by

:::
the

::::::
EnKF

::::::
(Figure

::::::
F3(a)).

::::
The

:::::::::
estimated

:::::
model

::::::::::
parameters

::::
vary

::
in

::::
time

::
in

::::
this

::::::::::
statistically

::::::::
stationary

::::
flow

::::
due
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(a) (b)

Figure F3.
::::
Two

::::
wind

:::::
turbine

:::::
model

::::::
uniform

:::::
inflow

::::
LES

::
(a)

:::
kw:::

and
::
σ0:::

for
:::
the

::::::
upwind

:::::
turbine

:::
and

:::
(b)

::
P̂

:::
and

:
P
:::

for
:::
the

::::::::
downwind

::::::
turbine.

::
to

:::::::
standard

::::
error

:::
of

:::
the

:::::
mean

::::
with

::::::
limited

:::::::
samples

::::::
within

:
a
:::::
given

::::
time

:::::::
window

:::
of

:::::
length

:::
T ,

:::
due

:::
to

:::
the

::::::::
influence

::
of

:::
the

::::
yaw

:::::::::::
misalignment

::
of

:::
the

::::::::
dynamics

:::
on

:::
the

:::::
wake,

:::
and

::::
due

::
to

:::
the

::::::
limited

::::::
number

:::
of

::::::::
ensembles

:::
Ne::

in
:::
the

::::::
EnKF.

:::
The

:::::
wake

:::::
model

:::::::::
parameters

::::
have

::
a

::::::::
functional

::::::::::
dependence

::
on

:::
the

::::
yaw

:::::::::::
misalignment

::
of

:::
the

:::::::
turbines

:::::
within

:::
the

:::::
wind

::::
farm.

::::
The850

::::
wake

::
of

::
a

:::
yaw

::::::::::
misaligned

::::::
turbine

:
is
::::::::
narrower

::::
than

:::
the

::::
same

::::::
turbine

:::::
when

::::
yaw

::::::
aligned

:::::::::::::::::::::::::::::
(Archer and Vasel-Be-Hagh, 2019).

::::
The

::::
wake

::::::::
spreading

::::
rate

:::
kw::::::

dictates
:::
the

:::::
wake

::::::::
recovery

::::
rate.

::::
Yaw

:::::::::::
misalignment

::::
also

::::::
reduces

:::
the

:::::
axial

::::::::
induction

:::::
factor

::
of

:::
the

:::::
wind

::::::
turbine

:::
and

::::::::
therefore

::::::
affects

::
the

:::::
wake

::::::::
recovery.

:::::::
Further,

::::
since

:::::
wind

:::::::
turbines

::
in

::::
yaw

:::::::::::
misalignment

:::::::
generate

:::::::::
large-scale

:::::::
counter

::::::
rotating

:::::::
vortices

::::::::::::::::::
(Howland et al., 2016)

:
,
:::
the

::::
wake

:::::::
recovery

::::
rate

:::
will

:::::
likely

:::
be

:::::::
enhanced

::
in
::::
yaw

:::::::::::
misalignment

:::::::::::::::::::
(Fleming et al., 2018)

:::
due

::
to

:
a
::::::::
reduction

::
in

:::
the

::::
axial

::::::::
induction

::::
and

::::
yaw

:::::
added

:::::::
recovery

:::::::::::::::
(King et al., 2020)

:
.
:::
As

:
a
:::::
result

::
of

::::
these

::::::::
vortices,

:::
the

::::
wake

::::
will855

::::
have

::::::::
top-down

:::::::::
asymmetry

:::
and

::::
this

:::
will

::::::::
influence

:::
σ0.

:::::
While

:::
the

::::::
present

::::::
model

:::::::
neglects

:::
the

::::::
vertical

:::::::::
dimension,

:::
the

:::::::::::
development

::
of

:
a
::::::::::::::
controls-oriented

::::::
model

:::::
which

:::::::::::
incorporates

:::
the

:::::
curled

:::::
wake

:::::::::
asymmetry

::
is

:::::::
ongoing

::::::::::::::::::::::::
(Martínez-Tossas et al., 2019)

:
.
::::::
Future

::::
work

::::::
should

::::::::::
characterize

:::
the

::::::::
influence

::
of

::::
yaw

:::::::::::
misalignment

:::
on

:::
the

::::
wake

:::::::::
spreading

::::
rate.

:::
The

:::::::::::::
state-estimated

:::::
power

:::::::::
production

:::
for

:::
the

:::::::::
downwind

::::::
turbine

::
is
:::::::::
compared

::
to

:::
the

::::
LES

:::::
power

:::::::::
production

::
in
::::::

Figure
::::::
F3(b).

:::
The

:::::::::
downwind

::::::::
turbine’s

:::::
power

:::::::::
production

:::
in

:::
the

::::::
greedy

::::::
control

:::::::
strategy

::
is

:::
low

:::::::::::::
(approximately

::::::
0.2P1)

::::
due

::
to

:::
the

:::::::::
freestream860

:::::
inflow

::::::::
condition

::::
and

::::
close

::::::::::
streamwise

::::::::
direction

:::::::
spacing.

:::
The

::::::
EnKF

:::::
results

:::
in

::
an

:::::::
accurate

::::::
power

:::::::::
production

:::::::::
estimation

:::::
using

::
the

::::::
lifting

:::
line

::::::
model.

:::::
While

:::
the

:::::
wake

:::::
model

:::::::::
parameters

:::
are

::::::::
changing

::
as

:
a
:::::::
function

::
of

::::
time

:::::::
(Figure

:::::
F3(a)),

:::
the

::::::
power

:::::::::
production

:::::::
estimate

:::
for

:::
the

:::::::::
downwind

::::::
turbine

::
is
::::

not
::::::::::
significantly

::::::::
affected.

::::
The

:::::
wake

:::::
model

::::::::::
parameters

:::
kw:::

and
:::
σ0:::

are
:::::::::::::

anti-correlated

::
as

:
a
::::::::

function
::
of

:::::
time.

:::::::
Within

:::
the

::::::::::::
two-parameter

::::::
lifting

::::
line

::::::
model,

:::::::::
increasing

:::
kw:::

or
:::
σ0 :::::::

reduces
:::
the

:::::
wake

:::::
effect

:::
for

::::
the

::::::::
downwind

:::::::
turbine.

::::
With

:::
the

:::::
LES

:::::
power

:::::::::
production

::
of

:::
the

:::::::::
downwind

::::::
turbine

::::
and

:::
the

::::
yaw

:::::::::::
misalignment

::
of

:::
the

:::::::
upwind

::::::
turbine865

::::::::::::
approximately

:::::
fixed,

:::
the

::::
state

:::::::::
estimation

::::::::
increases

:::
one

:::::::::
parameter

:::
and

:::::::
reduces

:::
the

::::
other

:::::::::
parameter

::
to

::::::
remain

:::::::::
consistent

::
in

:::
the

::::::::
estimation

:::
of

:::
the

:::::::::
downwind

::::::
power.

::::
This

::::::::
indicates,

::::::::
similarly

::
to

:::
the

::::::
results

::
in

::::::::
Appendix

:::
A,

:::
that

:::
the

::::
two

:::::::::
parameter

:::::
lifting

::::
line

:::::
model

::::
may

::
be

::::::::::::::::
overparameterized,

:::
and

::
a
:::::
single

:::::::::
parameter

::::::
model,

::::
with

::::
fixed

:::
σ0 ::

for
::::::::
example,

::::
may

::::::
suffice

:::::::::::::::::
(Shapiro et al., 2019)

:
.

:::
The

::::::::
accuracy

::
of

:::
the

:::::
EnKF

::::
state

:::::::::
estimation

:::
and

:::::
lifting

::::
line

:::::
model

::
in

:::
the

::::::::
prediction

::
of

:::
the

::::::
power

:::::::::
production

::
in

:::
yaw

::::::::::::
misalignment

:
is
:::::
tested

:::
in

::::::
Section

::::
4.4.

::::
This

:::::::
accuracy

::::
will

::::::::
implicitly

:::::::
measure

:::
the

::::::
impact

::
of

:::
the

::::::::::
site-specific

::::::
fitting

::
in

:::
the

::::::
model.870

:::
The

::::::
control

::::::::::
architecture

:::::
used

::
in

:::
the

:::::::
uniform

::::::
inflow

::::
case

::
is

:::
the

::::
same

:::
as

::::
Case

:::::
ND2,

:::::
where

::::
the

::::::::
estimated

:::::
model

::::::::::
parameters

::::
from

:::
the

::::::::
previous

::::
time

::::
step

:::
are

:::::
used

::
to

::::::::
initialize

:::
the

:::::::::
parameters

:::
for

::::
the

:::::::::
estimation

::
at

:::
the

::::
next

:::::
time

::::
step.

:::
As

::::::::
discussed

:::
in
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(a)

(b)

Figure F4.
:::
Two

::::
wind

::::::
turbine

:::::
model

::::::
uniform

:::::
inflow

::::
LES

::::::::::
instantaneous

:::::::::
streamwise

::::::
velocity

::
u

:::::::
snapshot

:::
with

:::
(a)

::
no

::::
yaw

::::::::::
misalignment

:::
(b)

:::
after

:::
the

:::
last

::::
time

:::
step

::
of

::::::
dynamic

:::::
wake

::::::
steering.

::::
§4.2,

::::
this

:::::
allows

:::
the

::::::::::
parameters

::
to

::::::
change

:::::::::::
significantly

::::
over

::::
time

:::::::::
compared

::
to

::::
their

:::::::::::
initialization

:::::
state.

:::
By

:::::
fixing

:::
the

::::::
EnKF

::::::::::
initialization

:::
(as

::::
done

::
in
:::::

Case
:::::
ND1),

:::
the

::::::::::::
modifications

::
to

:::
the

:::::
wake

:::::
model

:::::::::
parameters

:::
are

:::::::
limited

::
by

:::
the

::::::::::::::
hyperparameters

::::
σkw

:::
and

::::
σσ0

.
:::::
Since

::::
there

::
is

::
no

:::::
wake

:::::::::
impinging

::
on

:::
the

::::::
upwind

:::::::
turbine,

:::
the

::::
state

:::::::::
estimation

:::
has

::
no

::::::
impact

:::
on

:::
the

:::::
power

:::::::::
prediction

::
of875

::
the

:::::::
upwind

::::::
turbine

:::::
since

::::
there

:::
are

::
no

:::::
wake

:::::
model

::::::::::
parameters

::
to

:::::::
estimate.

::::
The

:::::::
accuracy

::
of

:::
the

:::::::
upwind

::::::
turbine

:::::
model

:::::::::
prediction

:::
will

::
be

::::::::
governed

:::
by

:::
the

::::::
fidelity

::
of

:::
the

::::::
cosine

:::::
model

::::
and

:::
Pp,

:::::
given

::
by

:::
Eq.

::
6.
:

:::
The

::::::::::::
instantaneous

:::::::::
streamwise

:::::::
velocity

::
is
:::::::::
visualized

::
in

:::::::
Figures

:::::
F4(a)

:::
and

:::
(b)

:::
for

::::
the

:::::::
baseline

::::::
greedy

::::
yaw

::::::
control

::::
and

:::
the

::::::
optimal

::::
yaw

::::::::::::
misalignment

:::::
angle,

:::::::::::
respectively.

:::
As

:
a
:::::
result

::
of

::::
the

:::
yaw

::::::::::::
misalignment,

::::
the

::::
wake

::
is
::::::::

partially
:::::::
laterally

::::::::
deflected

::::
away

:::::
from

:::
the

:::::::::
downwind

:::::::
turbine.

::::
The

::::
yaw

:::::::::::
misalignment

:::::::::
increases

:::
the

:::::::::
magnitude

::
of

:::
the

::::::::::
streamwise

:::::::
velocity

:::
in

:::
the

:::::
wake880

::::::
region.
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