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Figure 6. Time-averaged power production for each turbine in each wake steering case. The error bars denote 1 standard deviation in the
power production. The power production is normalized by the leading turbine P1 in baseline control conditions.

Figure 7. Time-averaged wind speed
√
u2+ v2 at the wind turbine

hub height of z= 100 m for (a) baseline yaw-aligned control Case
NA and (b) wake steering control Case NL. The wind turbines are
shown with black lines. The yaw misalignment values for Case NL
are shown in Fig. 8.

the two cases are shown in Fig. 9. The qualitative trends in
power production are similar between the two cases. Quanti-
tatively, the lookup table static yaw misalignment Case NL
increased the power production 5.4 % with respect to the
baseline greedy control, while the dynamic yaw Case ND15

increased the power by 4.6 %.
The quantitative influence of wake steering is a function of

the layout and ABL conditions. As the focus of the present
study is assessing the sensitivity of wake steering to con-
troller architecture, model parameters, and wind farm lay-10

out, measures of the statistical significance of the results
are useful. However, the statistical significance of the re-
sults (e.g., whether Case NL significantly outperformed Case
ND1) does not indicate, necessarily, that lookup table con-

Figure 8. Wind farm yaw misalignment angles γi for each turbine
for (a) online control using the initial parameters to initialize the
next state (ND1) and (b) the lookup table control (NL).

Figure 9. Time-averaged wind farm power production as a function
of the control update steps for (a) online control using the initial pa-
rameters to initialize the next state (ND1) and (b) the lookup table
control (NL). The wind farm power is normalized by the power pro-
duction of the aligned wind farm case.

trol is better than the dynamic controller used in Case ND1 15

for all wake steering applications but rather that it was better
for the specific ABL setup and computational time window
of the experiment. The statistical significance of the power
production increase with respect to the baseline control Case
NA is shown in Fig. 5. Cases NL and ND1 have significantly 20

higher power than Case NA, but the power in Case NL is not
significantly higher than in Case ND1.

The relationship between the wake model power predic-
tion and the measured LES power production is shown for
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