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Figure 21. Wind turbine power production from LES P and wake model P̂ . P1,baseline is the LES power production for the leading upwind
turbine from control update step 1 where the wind farm is operated with the greedy baseline control. P̂baseline is the wake model fit to Pbaseline
using EnKF estimation. Pyaw is the LES power production for control update step 2 with yaw misalignment incorporated. P̂yaw is the wake
model prediction of Pyaw using kw and σ0 fit based on control update step 1 and with the optimal yaw misalignment angles which were
implemented by control update step 1. The wake model estimate for Pp, given by P̂p, is (a) P̂p = 2, (b) P̂p = 3, and (c) P̂p = 4. The error
bars represent 1 standard deviation in the power data as a function of time. The subscript “f” denotes power predictions from the FLORIS
wake model (Annoni et al., 2018) with the Gaussian wake model (Bastankhah and Porté-Agel, 2014) and model parameters prescribed by
Niayifar and Porté-Agel (2016).

Figure 22. The mean absolute errors for the lifting line model pre-
dictions as a function of the control update step for the convention-
ally neutral ABL with P̂p = 2, 3, and 4.

control based on only SCADA data without requiring a lidar
on site. The analytic gradient ascent optimal yaw selection
allows for real-time dynamic wind farm control. The main
technical contribution of this paper is the development of
a closed-loop wake steering methodology for application in5

transient ABL flows which does not rely on an open-loop
offline yaw misalignment lookup table calculation.

Within the statistically quasi-stationary, conventionally
neutral ABL, the optimal yaw misalignment angles do not
change significantly with time. Within this simplified ABL 10

environment, wake steering control with fixed lookup table
yaw misalignment values, dynamic yaw values with contin-
uous state estimation, and dynamic yaw values with fixed
state estimation all yielded significantly more power than the
baseline control, although the differences between the three 15

control architectures were not significant. The highest power
production occurred with a wake steering strategy in which
the model parameters were fixed and the state estimation was
not performed for every control update step but the yaw mis-
alignment angles were updated according to the local wind 20

conditions. This result suggests that in a lookup table wake
steering approach, the wake model parameters should be tab-
ulated and the yaw angles should be calculated on the fly
given exact local wind conditions rather than direct optimal
yaw misalignment angle tabulation. 25

The importance of the model for individual wind turbine
power production degradation as a function of the yaw mis-
alignment angle, and in particular Pp, was demonstrated
when P̂p = 3 or 4 leads to an increase in power production
with respect to the greedy operation, while P̂p = 2 leads to a 30
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