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Abstract. Strategies for wake loss mitigation through the use of dynamic closed-loop wake steering are investigated using large

eddy simulations of conventionally neutral atmospheric boundary layer conditions, where the neutral boundary layer is capped

by an inversion and a stable free atmosphere. The closed-loop controller synthesized in this study consists of a physics-based

lifting line wake model combined with a data-driven Ensemble Kalman filter (EnKF) state estimation technique to calibrate the

wake model as a function of time in a generalized transient atmospheric flow environment. Computationally efficient gradient5

ascent yaw misalignment selection along with efficient state estimation enables the dynamic yaw calculation for real-time wind

farm control. The wake steering controller is tested in a six turbine array embedded in a statistically quasi-stationary conven-

tionally neutral flow with geostrophic forcing and Coriolis effects included. The controller statistically significantly increases

power production compared to baseline, greedy, yaw-aligned control provided that the EnKF estimation is constrained and in-

formed with a physics-based prior belief of the wake model parameters. The influence of the model for the coefficient of power10

Cp as a function of the yaw misalignment is characterized. Errors in estimation of the power reduction as a function of yaw

misalignment are shown to result in yaw steering configurations that under-perform the baseline yaw aligned configuration.

Overestimating the power reduction due to yaw misalignment leads to increased power over greedy operation while underesti-

mating the power reduction leads to decreased power, and therefore, in an application where the influence of yaw misalignment

on Cp is unknown, a conservative estimate should be taken. The EnKF-augmented wake model predicts the power production15

in yaw misalignment with a mean absolute error over the turbines in the farm of 0.02P1, with P1 as the power of the leading

turbine at the farm. A standard wake model with wake spreading based on an empirical turbulence intensity relationship leads

to a mean absolute error of 0.11P1, demonstrating that state estimation improves the predictive capabilities of simplified wake

models.
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1 Introduction

Modern horizontal axis wind turbines achieve performance approaching the Betz limit (Wiser et al., 2015). However, collec-

tions of wind turbines arranged in wind farms suffer from aerodynamic interactions which reduce wind farm power production

between 10 and 20% (Barthelmie et al., 2009) due to greedy control schemes which only consider the power maximization of

individual wind turbines at the farm. Recent work has focused on the operation of wind turbines in a collective fashion in order25

to increase the power production of the wind farm through the mitigation of wake interactions (see review by Boersma et al.,

2017).

Wind farm power optimization through wake interaction mitigation methods have generally relied on axial induction and yaw

misalignment control since these two methodologies do not require significant hardware modifications on traditional horizontal

axis wind turbines (Burton et al., 2011). Readers are directed to Knudsen et al. (2015) and Kheirabadi and Nagamune (2019) for30

recent reviews of wind farm power maximization methodologies. Previous simulation studies have shown that wake steering

may have more potential than static axial induction control for wind farm power maximization (Annoni et al., 2016; Gebraad

et al., 2016a; Campagnolo et al., 2016), although dynamic axial induction (Park and Law, 2016; Munters and Meyers, 2018;

Frederik et al., 2020) or more sophisticated dynamic blade pitch strategies (Frederik et al., 2019) may significantly increase

power production and require future field experimentation.35

Greedy wind turbine operation minimizes the yaw misalignment between the nacelle position and the incoming wind direc-

tion. Contemporary wind turbines often operate in small yaw misalignment due to sensor noise and uncertainty (Fleming et al.,

2014) leading to sub-optimal power production for the misaligned turbine. However, recent attention has focused on wake

steering, the intentional misalignment of certain turbines within a wind farm in order to deflect wakes laterally away from

downwind generators (Grant et al., 1997; Jiménez et al., 2010). While the yaw misaligned wind turbine’s power production is40

decreased (Medici, 2005; Burton et al., 2011), wake steering has been shown to increase the power production of downwind

generators in simulations (Fleming et al., 2016; Gebraad et al., 2017; Fleming et al., 2018; Archer and Vasel-Be-Hagh, 2019)

and wind tunnel experiments (Adaramola and Krogstad, 2011; Mühle et al., 2018; Bastankhah and Porté-Agel, 2019). Further,

the potential for wake steering to increase wind farm power production in wind conditions with wake losses has been observed

in full-scale field campaigns with two (Fleming et al., 2017, 2019) and six wind turbines (Howland et al., 2019).45

While wake steering has been shown to be a beneficial global wind farm control strategy compared to greedy operation,

the selection of the optimal yaw misalignment strategy for each wind turbine at a farm is challenging. The optimal yaw

misalignment angles depend on the wake interactions between wind turbines (Gebraad et al., 2017). These wake interactions

are dependent on wind speed, wind direction, atmospheric stability, turbulence intensity, local terrain, and other flow features

(see e.g. Hansen et al., 2012). Most wake steering control strategies have relied on static engineering wake models such as50

the FLORIS model (Gebraad et al., 2016a, b; Fleming et al., 2016) or a lifting line model (Shapiro et al., 2018; Howland

et al., 2019) to select the optimal yaw misalignment strategy based on a steady, time-averaged assumption of the wind farm

flow. However, these static model approaches may have challenges in establishing the optimal yaw misalignment strategy as a
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function of time in a transient flow environment such as the stable atmospheric boundary layer (ABL) or the full diurnal cycle

(see e.g. Wyngaard, 2010).55

Recent work has focused on the selection of the optimal yaw misalignment angles as a function of time for transient flow

applications. Ciri et al. (2017) used a model-free formulation and dynamic control to increase the power production of a

model wind farm in simulations. While model-free optimization is the subject of promising on-going work, this methodology

generally experiences slower rates of convergence and may be less suited to transient flow applications where wind conditions

shift rapidly, although future work should compare model-based and model-free formulations in transient flow applications.60

A significant challenge in transient flow environments is in accurately predicting the power production given greedy baseline

control, considering ABL and controller state uncertainty in a utility-scale wind farm. The Ensemble Kalman filter (EnKF)

has been leveraged to perform model state estimation as a function of time (Doekemeijer et al., 2017) and for low-order

model state estimation for the purpose of receding horizon frequency regulation control (Shapiro et al., 2017) and reference

power signal tracking applications (Shapiro et al., 2019). Doekemeijer et al. (2018) found that the EnKF has comparable state65

estimation performance given either nacelle-mounted LiDAR data or Supervisory Control and Data Acquisition (SCADA)

power production data alone. Since very few utility-scale wind turbines have nacelle-mounted LiDAR systems, the successful

performance of the EnKF based on SCADA data alone highlights the potential for online model calibration without additional

hardware installation.

Static wake model based dynamic control studies have utilized a quasi-static wake steering approach wherein the optimal yaw70

misalignment angles are computed and stored as a function of wind speed and direction based on static wake models with pre-

defined model parameters (Fleming et al., 2019). However, the pre-defined model parameters were calibrated for the Gaussian

wake model (Bastankhah and Porté-Agel, 2014) based on idealized large eddy simulations (LES) and their applicability to

a new utility-scale field implementation are unknown a priori. Further, there is additional uncertainty associated with the

freestream velocity and turbulence intensity measurements in a wind farm environment where the typical sensors are limited to75

nacelle-mounted anemometers placed directly behind the rotating rotor. The dynamic influence of yaw misalignment on these

sensors is unknown (Howland et al., 2019). Recently, Raach et al. (2019) used the FLORIS wake model to design a closed-

loop wake steering controller which relies on a downwind facing nacelle-mounted LiDAR system which was able to increase

power production in an example nine wind turbine LES case. In order to focus on a low-order methodology which does not

require additional hardware installations, we develop closed-loop wake model based wake steering control for the application80

of data-driven wind farm power maximization based on SCADA power production data. The algorithm was designed for real-

time control of utility-scale wind turbines without the requirement of additional hardware or sensor measurement systems and

utilizes the gradient-based optimal yaw algorithm developed by Howland et al. (2019). The dynamic wake steering controller

implemented in this study does not require historical data to be sorted into pre-selected wind speed and direction bins in order

to make optimal yaw misalignment decisions. This is beneficial since the sorting of SCADA data represents a major uncertainty85

associated with wake steering control (Fleming et al., 2019; Howland et al., 2019).

Analytic wake models require a number of simplifications of the flow physics and wind turbine operation in order to predict

wind farm power production in a computationally efficient fashion (see e.g. review by Stevens and Meneveau, 2017). However,
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Controller Wind farm

State
estimation

γ(t)

kw(t); σ0(t) P (t);α(t)

Figure 1. Diagram of the dynamic wake steering control system. The wake model parameters as a function of time are kw(t) and σ0(t)

and the yaw misalignment angles are given by γ(t). The power production and wind direction are given by P (t) and α(t), respectively. In

open-loop control, the model parameters kw and σ0 are fixed as a function of time.

compared to model-free control, the wake model encodes a prior belief of the physics of wind farm flows and establishes a

base performance given the initial model parameters preceding the perturbations applied by the EnKF (also see discussion by90

Schreiber et al., 2020). The selected model-based optimal yaw misalignment angles will depend on the wake deflection model

form and parameters, and the model for power production degradation as a function of the yaw misalignment angle. Further,

in a low-order, model-driven power optimization application, the selected yaw misalignment angles will depend on the wind

farm layout, wind direction and speed, and stability state of the ABL. The goal of the present study is to analyze the sensitivity

of wind farm power production to the design of the control system, model for power loss as a function of yaw misalignment,95

and wind farm layout when leveraging wake steering control.

This work represents Part 1 of the results and targets a canonical planetary boundary layer with conventionally neutral

stratification. Part 2 will focus on a sensitivity analysis of wake steering control with temporally varying stratification and

surface heat flux. Section 2 will introduce the dynamic wake steering methodology and EnKF state estimation technique. The

LES methodology is introduced in Section 3. In Section 4, the sensitivity to model architecture and parameters is tested in LES100

of the conventionally neutral ABL with realistic Coriolis forcing. Finally, conclusions are given in Section 5.

2 Dynamic wake steering methodology

The present methodology is focused on optimal closed-loop wake steering control as a function of time for transient flow

applications. The dynamic wake steering controller is illustrated in Figure 1. The controller entails a forward-pass wake model

described in Section 2.1 and a backward pass to compute analytic gradients for gradient-ascent power maximization (Section105

2.3). State estimation uses the ensemble Kalman filter described in Section 2.2. The wind farm is simulated using LES (Section

3).

2.1 Lifting line wake model

Following the observation of counter-rotating vortex pairs shed by wind turbines operating in yaw misalignment in experiments

and LES (Mikkelsen et al., 2003; Howland et al., 2016; Bastankhah and Porté-Agel, 2016), Shapiro et al. (2018) developed a110
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wake model for wind turbines in yaw based on Prandtl’s lifting line theory. The wake model derived by Shapiro et al. (2018)

was reformulated by Howland et al. (2019) to improve computational efficiency and to extract analytic gradients for the purpose

of gradient-based optimization. Readers are directed to Shapiro et al. (2018) for the derivation of the initial wake model and to

Howland et al. (2019) for the analytic formulation which eliminates the need for domain discretization. In the two dimensional

static wake model, the rotor averaged effective velocity at a downwind wind turbine j is given as115

ue,j(x) = u∞−
Nf∑
i

√
2πδui(x)dw,i(x)D

16σ0,i

[
erf

(
yT +D/2− yc,i(x)√

2σ0,idw,i(x)

)
− erf

(
yT −D/2− yc,i(x)√

2σ0,idw,i(x)

)]
, (1)

where u∞ is the incoming freestream velocity and δui and dw,i are the velocity deficit and the wake diameter as functions of

x associated with the upwind turbine i, respectively. The wind turbine rotor diameter is given by D. The downwind turbine

lateral centroid is yT and the lateral wake centroid is yc,i. The wake model parameters are kw, the wake spreading coefficient

and σ0, the proportionality constant for the presumed Gaussian wake. The velocity deficit trailing a single wind turbine is120

δui(x) =
δu0,i

d2
w,i(x)

1

2

[
1 + erf

(
x√

2D/2

)]
, (2)

with δu0,i = 2aiu∞ and axial induction factor ai = 1/2
(

1−
√

1−CT,i cos2(γi)
)

. The thrust coefficient is given by CT

and the yaw misalignment angle is given by γ. The wake model assumes the thrust force in the streamwise direction T ∼
cos2(γ) which may not be valid for all wind turbine models (see e.g. Bastankhah and Porté-Agel, 2016). In the present

LES cases, the wind turbine model enforces this thrust scaling (see §3) and therefore sensitivity analyses on this assump-125

tion are left for future work. Positive and negative yaw misalignment are defined as counter-clockwise and clockwise rota-

tions, respectively, when viewed from above. The wake diameter as a function of the streamwise location x is dw,i(x) =

1 + kw,i log(1 + exp[2(x/D− 1)]). Linear superposition of the individual wakes is assumed in Eq. 1 (Lissaman, 1979).

The wake centerline yc,i is given by

yc,i =

x∫
x0,i

−δvi(x′)
u∞

dx′, (3)130

where the spanwise velocity δv is given similar to Eq. 2 with the initial disturbance given analytically as (Shapiro et al., 2018)

δv0,i =
1

4
CT,iu∞ cos2(γi)sin(γi). (4)

The wind turbine model power is computed as

P̂i =
1

2
ρAiCpu

3
e,i, (5)

where A is the wind turbine rotor area and ρ is the density of the surrounding air. The model for the coefficient of power Cp as135

a function of the yaw misalignment remains an open question. Often, the power loss as a function of the yaw misalignment is

assumed to follow Pyaw ∼ P cosPp(γ), where Pp is a known parameter. Following actuator disk theory (Burton et al., 2011),

Pp = 3. However, simulations have shown for the NREL 5 MW turbine that Pp = 1.88 (Gebraad et al., 2016a). Recent work
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has shown that Pp differs for freestream and waked turbines (Liew et al., 2020). The value of Pp that results in a satisfactory

agreement with experimental data depends on the wind turbine model, ABL shear and veer, and atmospheric stability. In the140

present study, we will consider Pp an uncertain parameter and perform sensitivity analysis on it. The uncertainties of the wake

model parameters kw and σ0 are considered by the state estimation in Section 2.2. The coefficient of power is modeled as

CP,i = 4ηap,i(1− ap,i)2 cosPp(γi), (6)

with ap,i = 1
2

(
1−

√
1−CT,i

)
The parameter η is tuned to match the manufacturer provided yaw-aligned CP look-up table

(Gebraad et al., 2016a). The applicability of this model is limited to Region II of the wind turbine power curve which is145

typically between 4 and 15 m/s.

2.2 Ensemble Kalman filter state estimation

Engineering wake models rely on parameters which represent physical phenomena, such as the wake spreading rate kw. Gra-

dient optimization-based SCADA data assimilation was used by Howland et al. (2019) to select the model parameters which

minimize the model error in producing the site-specific wind farm greedy baseline power production. Howland and Dabiri150

(2019) subsequently used gradient descent coupled with a genetic algorithm for data assimilation.

Here, we will employ the EnKF (Evensen, 2003) state estimate technique along with the wake model described in Section

2.1. The EnKF filter was found to be computationally less expensive than the gradient-based data assimilation used by Howland

et al. (2019). The states and dimensions here represent the wake model instantiations and parameters, respectively. In our state

estimation case, the dimension space scales linearly with the number of turbines Nt, rather than with the N2
t or N3

t in a model155

with a domain discretization (see discussion by Howland et al., 2019). The SCADA power production of each wind turbine

is a function of time, denoted Pk, where k is the time step index. The goal is to estimate the wake model parameters given

SCADA power production data measurements, Pk ∈ IRNt , using the ensemble Kalman filter as a rapid gradient-free optimizer

(Cleary et al., 2020). This approach follows previous uses of the EnKF for wake model state estimation (Shapiro et al., 2017;

Doekemeijer et al., 2017) but the algorithm is reviewed here. The nonlinear wake model, denoted by h, also receives the wind160

speed and direction from the leading turbine, as well as the yaw misalignment of each turbine in the farm. There are two wake

model parameters for each upwind turbine and no parameters for the last turbine downwind. The model parameters with Nt

wind turbines at the kth time step are given by

ψk = [kw,1, ...,kw,Nt−1,σ0,1, ...,σ0,Nt−1]. (7)

The modeling and measurement errors are represented by χ= [χTkw ,χ
T
σ0

]T ∈ IR2(Nt−1) and ε ∈ IRNt , respectively. The model-165

ing errors χkw and χσ0
are zero mean and have prescribed variances of σ2

kw = 0.0009 and σ2
σ0

= 0.0009. The Gaussian random

measurement noise ε has zero mean and a prescribed standard deviation of σε = 0.03 ·P1. The hyperparameter variances were

selected based on tuning experiments (see Appendix A). In order to estimate the state model parameters, the EnKF uses an

ensemble of wake model evaluations. The ensemble is given by

Ψ = [ψ(1), ...,ψ(Ne)] ∈ IR2(Nt−1)×Ne , (8)170
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where (i) denotes the ensemble count and Ne is the total number of ensembles. The power predictions are given by the matrix

Π̂ = [π̂(1), ..., π̂(Ne)] ∈ IRNt×Ne . (9)

The statistical noise of the power production measurements is given by ε. The Gaussian random noise is added to the SCADA

measurements for each ensemble

ξ(i) = Pdata + ε(i). (10)175

The perturbed power production ensemble matrix is

Ξ = [ξ(1), ..., ξ(Ne)] (11)

with the perturbation matrix prescribed by

Σ = [ε(1), ...,ε(Ne)] (12)

The mean of the ensemble states and modeled power production is given by180

Ψ = Ψ1Ne
(13)

Π̂ = Π̂1Ne
(14)

where 1Ne ∈ IRNe×Ne is a full matrix where all entries are 1/Ne. The perturbation matrices are

Ψ′ = Ψ−Ψ (15)

Π̂′ = Π̂− Π̂. (16)185

The first step in the EnKF process is an intermediate forecast step

Ψk+ = [ψ
(1)
k +Bχ

(1)
k , ...,ψ

(Ne)
k +Bχ

(Ne)
k ] (17)

Π̂k+ = [h(ψ
(1)
k +Bχ

(1)
k ), ...,h(ψ

(Ne)
k +Bχ

(Ne)
k )]. (18)

where matrix B ∈ IR2(Nt−1)×2(Nt−1) is the identity matrix and h represents the nonlinear wake model described in Section

2.1.190

The measurement analysis step is given by

Ψk+1 = Ψk+ + Ψ′k+Π̂′Tk+(Π̂′k+Π̂′Tk+ + Σk+1ΣTk+1)−1 · (Ξk+1− Π̂k+). (19)

The final values of kw and σ0 for the k+1 time step are given as the columns of Ψk+1. The EnKF state estimation then assumes

that the parameters kw,k+1 and σ0,k+1 will be valid over the succeeding finite time from step k+1 until step k+2. A schematic

of the EnKF methodology is shown in Figure 2.195

The EnKF is a Kalman filter method which uses the Monte-Carlo sampling of model parameters according to a prescribed

Gaussian function to represent the covariance matrix of the probability density function (PDF) of the state vector Ψ. The

likelihood of the data is represented using observations Ξ and prescribed perturbations Σ. Using the prior PDF of the state (k)

and data likelihood, the posterior state (k+ 1) is estimated using Bayes’s rule (Eq. 19).
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Wake model

h(ψk + Bχk)
�ψk = [ �kw, �σ0]

Process noise
χk

Measurement noise
ε

Power data
Pdata

Posterior

estimate, Eq.(19)
�ψk+1 = [ �kw, �σ0]

Figure 2. Schematic of the ensemble Kalman filter parameter estimation methodology. The wake model predicts the power production given

wake model parameters ψk from time step k and the modeled process noise χ. The power data from the LES are augmented with modeled

measurement noise ε. The wake model predictions, h(ψk+Bχk), process and measurement noise, and power data are leveraged to compute

the parameters in the k+1 time step ψk+1 using the measurement analysis step (Eq. 19).

2.3 Optimal yaw misalignment optimization200

The optimal yaw misalignment angles depend on the wind speed, direction, turbulence intensity, and other key ABL conditions.

Within a given condition bin, the number of potential yaw misalignment angle combinations grows exponentially with the

number of wind turbines. As such, brute force optimization methods are not sufficient for the selection of the optimal yaw

misalignment strategy. Previous studies have considered genetic algorithms (Gebraad et al., 2016a), discrete gradient-based

optimization (Gebraad et al., 2017), and analytic gradient-based optimization (Howland et al., 2019). Using gradient-based205

Adam optimization (Kingma and Ba, 2014), the gradient update is given by

γt+1 = γt−α mt√
vt
, (20)

wheremt = β1m
t−1 +(1−β1)∂

∑
P̂

∂γ and vt = β2v
t−1 +(1−β2)(∂

∑
P̂

∂γ )2. The hyperparameters are set to the commonly used

values of β1 = 0.9 and β2 = 0.999, respectively (Kingma and Ba, 2014). The analytic gradients computed by Howland et al.

(2019) are used for the gradient-based wind farm power optimization.210

3 Large eddy simulation setup

Large eddy simulations are performed using the open-source pseudo-spectral code PadéOps1. The solver uses 6th order com-

pact finite differencing in the vertical direction (Nagarajan et al., 2003) and Fourier collocation in the horizontal directions.

Temporal integration uses a fourth order strong stability preserving Runge-Kutta variant (Gottlieb et al., 2011). The LES code

has previously been utilized for high Reynolds number ABL flows (Howland et al., 2020a; Ghaisas et al., 2020) and is de-215

scribed in detail by Ghate and Lele (2017). The ABL is modeled as an incompressible, high Reynolds number limit (Re→∞)

1https://github.com/FPAL-Stanford-University/PadeOps
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flow with the filtered, nondimensional momentum equations given by

∂ui
∂t

+uj
∂ui
∂xj

=− ∂p

∂xi
− ∂τij
∂xj

+ fi +
δi3
Fr2

(θ− θ0)− 2

Ro
εijkΩjuk −

∂PG

∂xi
, (21)

∂ui
∂xi

= 0 (22)

where ui is the velocity in the xi direction, p is the nondimensional pressure, and PG is the nondimensional geostrophic pres-220

sure. The subfilter scale stress tensor is given by τij and the sigma model is employed (Nicoud et al., 2011). The turbulent

Prandtl number used in the subfilter scale model is Pr = 0.4 (Ghate and Lele, 2017). Surface stress and heat flux is computed

using a local wall model based on Monin-Obukhov similarity theory with appropriate treatment based on the state of stratifi-

cation (Basu et al., 2008). The wind turbine forcing is represented by fi and a non-rotating actuator disk model is used (Calaf

et al., 2010). The actuator disk thrust force acts parallel to the rotor normal vector. The incident velocity is projected into the225

rotor disk plane and therefore the dependence of thrust on the yaw misalignment γ in uniform inflow conditions would be

cos2(γ), although it may deviate from this in sheared and veered inflow conditions. While the actuator disk model is lower

fidelity than the actuator line methods, it captures the far wake (far wake is approximately x/D & 3, see e.g. Bastankhah and

Porté-Agel (2017)) accurately for both aligned (Martínez-Tossas et al., 2015) and yaw misalignment wind turbines (Lin and

Porté-Agel, 2019). Since the goal of the present study is controller synthesis and sensitivity experiments, more computationally230

expensive actuator line simulations are left for future work given the large volume of simulations that are run.

Earth’s rotational vector is given by Ω = [0,cos(φ),sin(φ)], where φ is the latitude. The traditional approximation, which

neglects the horizontal component of Earth’s rotation (Leibovich and Lele, 1985; Howland et al., 2018), is not enforced.

Therefore, Earth’s full rotational vector is included resulting in wind farm dynamics which are sensitive to the direction of the

geostrophic wind (Howland et al., 2020b). For simplicity all simulations are performed with west to east geostrophic wind.235

The Coriolis terms are parameterized by the Rossby number Ro=G/ωL, where G is the geostrophic wind speed magnitude,

ω is Earth’s angular velocity, and L is the relevant length scale of the problem. All wind speeds used in this study will be

normalized by the geostrophic wind speed magnitude. The nondimensional potential temperature is given by θ. The buoyancy

term is parameterized by the Froude number Fr =G/
√
gL, where g is the gravitational acceleration. The equation for the

transport of the filtered nondimensional potential temperature is given by240

∂θ

∂t
+uj

∂θ

∂xj
=−

∂qSGSj

∂xj
, (23)

where qSGSj is the subgrid scale (SGS) heat flux.

The wind is forced by prescribing the geostrophic approximation where the geostrophic pressure gradient drives the mean

flow (Hoskins, 1975). The geostrophic pressure balance in the stable free atmosphere is given by

∂PG

∂xi
=− 2

Ro
εijkΩjGk, (24)245

with Gk representing the geostrophic velocity vector.

The simulations utilize a fringe region to force the inflow to a desired profile (Nordström et al., 1999). In the conventionally

neutral ABL cases, the concurrent precursor method is applied wherein a separate LES of the ABL is run without wind turbine
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models and the fringe region is used to force the primary simulation outflow to match the concurrent precursor simulation

outflow (see e.g. Munters et al., 2016; Howland et al., 2020a).250

There is an initial startup transience following the domain initialization. Detailed comments on the initialization for the

conventionally neutral case are given by Howland et al. (2020b). The simulation cases are run until statistical quasi-stationarity

is reached. The conventionally neutral case is statistically quasi-stationary due to inertial oscillations (see Allaerts and Meyers,

2015, for a detailed discussion on the conventionally neutral ABL statistical quasi-stationarity). Upon convergence, the wake

steering control strategy is initiated.255

The control is initialized with greedy baseline yaw alignment which is fixed for nT time steps. After nT simulation steps,

with the time averaged power production for each wind turbine measured over the previous nT −Ta time steps, with the

advection time scale given by Ta, the EnKF state estimation and optimal yaw calculations are performed (Figure 1). The

time-lag associated with the advection time scale of the wind farm is estimated by invoking Taylor’s hypothesis (see Appendix

C for a brief discussion). The yaw angles are then implemented and held fixed for nT time steps and the cycle repeats.260

The wind speed, wind direction, and power production are averaged in time over the window. The state estimation and yaw

misalignment update steps are performed concurrently with a period of nT simulation steps. In general, these two processes

can be decoupled, although this was not investigated in the present study. Typical utility-scale wind turbines have a yaw rate

of approximately 0.5◦/s (Kim and Dalhoff, 2014). For the largest yaw misalignment change in one control update step in this

study of approximately 30◦, when the wake steering control is initialized, the yawing action is completed in approximately265

one minute, which is significantly less than the advection timescale in the flow. Therefore, the yaw rate will not influence the

results presented in this study.

In order to compare the power production of the yaw misalignment control strategy with the baseline greedy control, a

separate LES case is run for each experiment with yaw aligned control. The two simulations are initialized from identical

domain realizations and the computational timestep ∆t is fixed between the two cases. Therefore, without the influence of270

variable turbine operation, the flow within and around the turbine array is identical to machine precision between the two yaw

aligned and yaw misaligned cases2. Since this study will consider the conventionally neutral ABL which contains turbulence

and inertial oscillations, this separate simulation must be used instead of a comparison with the power production of the first

yaw control update step (see Appendix B).

The wind turbines have a rotor diameter of 126 meters and a hub height of 100 meters. The thrust coefficient is CT = 0.75.275

The initial boundary layer height is 700 meters. The domain size is 12× 6× 2.4 kilometers in the x, y, and z directions,

respectively, with z representing the wall-normal coordinate. The number of grid points is 480×240×192 with a grid spacing

of 25m× 25m× 12.5m. The grid spacing is uniform and the mesh size is similar to previous studies (Allaerts and Meyers,

2015) and a grid convergence study was performed by (Howland et al., 2020b) for the conventionally neutral ABL. Six model

wind turbines are incorporated in the domain and the layout within the computational domain is shown in Figure 3. The Rossby280

2In chaotic dynamical systems, differences caused by changes in the compiler optimization will grow exponentially in time (Senoner et al., 2008). We

have ensured that these floating-point differences are eliminated by fixing compiler optimization and processor topology to allow for quantitative, temporal

comparisons between the LES cases. The results are therefore repeatable to machine precision.
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Figure 3. Conventionally neutral six wind turbine finite wind farm simulation setup. The geostrophic wind direction is west to east and the

x-axis is aligned with the geostrophic wind direction. The mean wind direction at hub height, tan−1(v/u)≈ 16◦ but is not known a priori

in the simulation and varies as a function of time. The wind turbine array is offset from alignment in the x-direction by 18◦. The initial

boundary layer height δ0 is 700 meters and does not change significantly during runtime (see Figure 4). Fringe functions are applied in the x

and y directions to establish a finite wind farm simulation.

(a) (b) (c)

Figure 4. Horizontally averaged concurrent precursor conventionally neutral ABL LES (a) velocity, (b) potential temperature in Kelvins, and

(c) turbulence intensity. Horizontally averaged profiles from two different time instances are shown with solid (early) and dashed (late) lines,

qualitatively demonstrating that the flow is statistically quasi-stationary (see further discussion by Howland et al., 2020a). Dashed-dotted

lines show the extents of the turbine rotor area.

number based on the wind turbine diameter is 544 and the Froude number is 0.14. The vertical profiles of velocity, potential

temperature, and streamwise turbulence intensity for the precursor simulation for two domain snapshots are shown in Figure 4.
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4 Dynamic wake steering conventionally neutral atmospheric boundary layer LES

In this section, we will utilize the closed-loop wake steering controller in the conventionally neutral ABL. While the conven-

tionally neutral ABL is statistically quasi-stationary, the optimal yaw misalignment angles will vary as a function of time due285

to turbulence, large-scale streamwise structures (Önder and Meyers, 2018), and inertial oscillations. A suite of LES cases is

run to test the influence of the controller architecture design, state estimation design, Pp estimate (Eq. 6), and the wind farm

layout on the power production increases over greedy baseline operation as a result of wake steering control. Each sensitivity

study represents a new LES case which is run using the concurrent precursor methodology described in Section 3.

All quasi-steady conventionally neutral ABL simulations have a yaw controller update of nT = 1000 time steps which290

approximately equal to τ = 3000 seconds or 50 minutes. The advection time scale from the first to the last wind turbine in the

array is approximately 9 minutes and the time lag is taken as two times the approximate advection time scale based on Taylor’s

Hypothesis. Therefore, each update contains approximately 30 minutes of statistical averaging, or about 600 time steps. The

long time averaging window was selected since the flow is statistically quasi-stationary and to ensure temporal averages with

reduced noise. In transitioning ABL environments, the time averaging window should likely be reduced (Kanev, 2020). The295

baseline case (Case NA) has yaw aligned control. The yaw alignment for each wind turbine in the array in the greedy baseline

controller is updated according to the same timescale τ based on the mean wind direction measured locally by each wind

turbine. The nacelle position for the yaw misaligned turbines is based on the wind direction measurement at each local turbine

as well as the controller estimated optimal yaw misalignment angles, i.e. nα = α+γ where nα is the nacelle position and α is

the wind direction incident to the wind turbine. Therefore, the LES accounts for the effects of secondary steering.300

This section is organized as follows: Section 4.1 examines the sensitivity of the wind turbine array power production to the

wake steering controller design. Section 4.2 tests the sensitivity to the state estimation methodology. The sensitivity of the

wake steering control to the estimate of Pp is discussed in Section 4.3. The accuracy of the wake model power predictions

is discussed in Section 4.4. Appendix E characterizes the influence of the wind farm alignment on the wake steering power

production increase.305

The conventionally neutral ABL wake steering LES cases and results are summarized in Table 1. Baseline yaw aligned

wind turbine operation is given by Case NA, where the yaw alignment is updated at the same temporal frequency as the

dynamic yaw control is updated to ensure quantitative comparisons as a function of time. Case NL approximates open-loop

lookup table operation, where the yaw misalignment is prescribed as a function of the incident wind speed and direction rather

than dynamically adapting to the local inflow conditions. Cases ND1, ND2, and ND3 use dynamic wake steering control with310

varying parameter estimation techniques. In Case ND1 the wake model parameters are optimized continuously based on a fixed

parameter initialization. Cases ND1 and NL are discussed in detail in §4.1. In Case ND2, the model parameters are optimized

continuously in time based on an initialization using the previous time step optimal parameters, and finally Case ND3 fixes the

wake model parameters after the estimation in the first control update step. The influence of the state estimation techniques are

discussed in detail in §4.2. Cases NDP2 and NDP4 modify the wake model estimate for Pp and are described in more detail in315
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Case Steering Static yaw Static kw,σ0 Advection Feedforward kw,σ0 P̂p

∑
P−

∑
Paligned∑

Paligned
(%)

∑
P ±STD(

∑
P )

Wind turbine column alignment 18◦

NA - - - - 3 - 3.01± 0.13

NL - 3 5.4 3.17± 0.14

ND1 - - 3 4.6 3.15± 0.12

ND2 - - - 3 0.2 3.01± 0.12

ND3 - - 3 5.7 3.18± 0.13

NDP2 - - 2 −3.0 2.92± 0.13

NDP4 - - 4 5.1 3.16± 0.16

ND6 - - - 3 4.2 3.13± 0.12

Wind turbine column alignment 14◦

NA14 - - - - 3 - 2.96± 0.09

ND141 - - 3 1.1 2.99± 0.10

ND142 - - 3 1.0 2.99± 0.11

Table 1. The conventionally neutral finite wind farm wake steering cases. The mean power production increase with respect to yaw aligned

operation is calculated over approximately 24 hours of physical wind farm operation. Case NA is yaw aligned wind farm operation. Case NL

approximates open-loop lookup table based control. Cases beginning with ND are dynamic, closed-loop control cases with various control

architectures as denoted in the table. The wake model estimate for Pp is P̂p.

§4.3. Finally, Case ND6 is the same as Case ND1 except it sets the advection time Ta = 0. Cases NA14, ND141, and ND142

modify the wind farm alignment to 14◦ with respect to the horizontal axis and are described in more detail in Appendix E.

The statistical significance of the array power productions for the various wake steering cases with respect to baseline control

Case NA are shown in Figure 5. The statistical significance is characterized with one-sided two-sample Kolmogorov-Smirnov

tests for the given case with respect to baseline control Case NA at a 5% significance level. The Kolmogorov-Smirnov test320

was selected since it does not enforce a normal distribution assumption on the data. Cases NL, ND1, ND3, NDP4, and ND6

produce significantly more power than baseline control Case NA. Case NDP2 produces significantly less power than baseline

control and Case ND2 is not significantly different than Case NA. None of the Cases NL, ND1, ND3, NDP4, and ND6 are

significantly different from each other. The power production for each turbine for each wake steering case is shown in Figure

6.325

4.1 Comparison between dynamic and quasi-static wake steering approaches

The dynamic wake steering controller described in Figure 1 is compared to lookup table static control in this section. Since the

flow is statistically quasi-stationary, the mean wind speed and direction at hub height do not change significantly as a function

of time. Therefore, during simulation, the flow remains at wind conditions which would be associated with one wind speed

and direction bin in tabulated lookup table wake steering control. The lookup table control is approximated by fixing the yaw330
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Figure 5. Time averaged sum of the six turbine array power production for the conventionally neutral ABL LES cases described in Table

1. The errorbars denote one standard deviation in the power production. The power production is normalized by the leading turbine P1 in

baseline control conditions. The statistical significance of the wake steering power production difference with respect to baseline control

Case NA are indicated by the colors. The statistical significance is characterized by a one-sided two-sample Kolmogorov-Smirnov test at a

5% significance level. Case NA is blue and Case ND2 does not have statistically significantly greater power production than Case NA. Green

cases have statistically significantly (p < 0.05) more power than Case NA. Red cases have statistically significantly (p < 0.05) less power

than Case NA.

Figure 6. Time averaged power production for each turbine in each wake steering case. The errorbars denote one standard deviation in the

power production. The power production is normalized by the leading turbine P1 in baseline control conditions.
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(a)

(b)

Figure 7. Time averaged wind speed
√
u2 + v2 at the wind turbine hub height of z = 100 meters for (a) baseline yaw aligned control Case

NA and (b) wake steering control Case NL. The wind turbines are shown with black lines. The yaw misalignment values for Case NL are

shown in Figure 8.

misalignment angles as a function of time after the initial optimal angles are computed during the first yaw controller update

(Case NL). Numerical experiments (not shown for brevity) demonstrated that modifying the control update step from which

the lookup yaw misalignment values were computed did not have a statistically significant influence on the results for Case

NL. The dynamic yaw controller is represented by Case ND1. The time averaged wind speed at the wind turbine hub height for

Cases NA and NL are shown in Figure 7. As a result of the positive yaw misalignment strategy in Case NL (Figure 7(b)), the335

individual and collective array wakes are deflected in the clockwise direction compared to the aligned configuration of Case

NA (Figure 7(a)).

The yaw misalignment angles as a function of the yaw controller updates for Cases NL and ND1 are shown in Figure 8. The

yaw angles in this study are defined as the misalignment with respect to the local inflow direction incident on the particular

turbine in the array. While the lifting line model does not explicitly incorporate the effects of secondary steering for which340

model development is on-going (see e.g. King et al., 2020), the model selects yaw misalignment angles which are large for the

first turbine and generally decrease further into the wind farm, which is consistent with the optimal values found by recent wind
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(a) (b)

Figure 8. Wind farm yaw misalignment angles γi for each turbine for (a) online control using the initial parameters to initialize the next state

(ND1) and (b) and the lookup table control (NL).

(a) (b)

Figure 9. Time averaged wind farm power production as a function of the control update steps for (a) online control using the initial

parameters to initialize the next state (ND1) and (b) and the lookup table control (NL). The wind farm power is normalized by the power

production of the aligned wind farm case.

tunnel experiments (Bastankhah and Porté-Agel, 2019). Since the flow is statistically quasi-stationary, the dynamic algorithm

yaw misalignment angles do not change significantly as a function of time. There are a few yaw misalignment changes on the

order of 10◦ during one yaw update. The time averaged power productions as a function of the yaw controller updates for the345

two cases are shown in Figure 9. The qualitative trends in power production are similar between the two cases. Quantitatively,

the lookup table static yaw misalignment Case NL increased the power production 5.4% with respect to the baseline greedy

control while the dynamic yaw Case ND1 increased the power by 4.6%.

The quantitative influence of wake steering is a function of the layout and ABL conditions. As the focus of the present

study is assessing the sensitivity of wake steering to controller architecture, model parameters, and wind farm layout, measures350

of the statistical significance of the results are useful. However, the statistical significance of the results (e.g. whether Case

NL significantly outperformed Case ND1) does not indicate, necessarily, that lookup table control is better than the dynamic

controller used in Case ND1 for all wake steering applications but rather, that it was better for the specific ABL setup and

computational time window of the experiment. The statistical significance of the power production increase with respect to

baseline control Case NA are shown in Figure 5. Cases NL and ND1 have significantly higher power than Case NA but the355

power in Case NL is not significantly higher than in Case ND1.
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(a) (b)

Figure 10. Relationship between the LES wind farm power production compared to the wake model wind farm power production prediction

for (a) online control using the initial parameters to initialize the next state (ND1) and (b) and the lookup table control (NL). The wind farm

power is normalized by the power production of the aligned wind farm case. The LES power production is given by P and the wake model

prediction is given by P̂ .

The relationship between the wake model power prediction and the measured LES power production is shown for the two

cases in Figure 10. The wake model overpredicts the power production in yaw misalignment more for the dynamic yaw control

than the lookup table control. After the first time step, the wake model no longer has any state information for the LES power

production with greedy baseline control since the previous state had yaw misalignment. When the wake model overpredicts360

the expected LES power, the wake model parameters are updated to a state which expects larger wake loss effects in baseline

control; therefore, the yaw misalignment angles are increased at the next time step. The yaw misalignment angles for the

leading turbine oscillate around the lookup table optimal forecast which was based on calibration with power data from greedy

baseline control alone (Figure 8). The dynamic yaw increased power slightly less than the static yaw misalignment case, but

not significantly less. However, eliminating the need to tabulate historical data and the complexity of implementing a lookup365

table-based controller could be beneficial in a practical controller setting. Further, the conventionally neutral boundary layer

does not occur often in practice (Hess, 2004). Therefore, in a practical setting, the wind direction and speed at hub height will

not be fixed for multiple hours as in this test problem.

In Case ND6, the power productions are time averaged over the full nT window without considering the advection time

scale in the controller design. The power production increase over greedy control is 4.2% in this case which is less than the370

4.6% increase when considering the advection time lag (Case ND1), although this difference is not significant. The dynamics

of the closed-loop controller over long experimental horizons are tested in a 50 control update simulation in Appendix D.

4.2 Influence of the state estimation

The influence of the state estimation methodology is tested in this section. Within the conventionally neutral ABL, three

experiments are run, focused on the state estimation initialization. The initial model parameters in the EnKF state estimation375

are held fixed at kw = 0.1 and σ0 = 0.25 in Case ND1. In Case ND2, the optimal EnKF estimated parameters from the previous

time step are used to initialize the state estimation of the current time step. Finally, Case ND3 fixes the model parameters after
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(a) (b) (c)

Figure 11. Time averaged wind farm power production as a function of the control update steps for (a) online control using the initial

parameters to initialize the next state (ND1), (b) online control using the previous optimal parameters to initialize the next state (ND2), and

(c) and the static state estimation control (ND3). The wind farm power is normalized by the power production of the aligned wind farm case.

the first time step. Case ND3 differs from Case NL from Section 4.1 since the optimal yaw misalignment angles may vary as a

function of time while the model parameters do not.

The power productions as a function of the yaw controller update for the three cases are shown in Figure 11. Case ND2380

has significantly less power production than Cases ND1 and ND3. The time averaged power production increases with respect

to the baseline, greedy control is 4.6%, 0.2%, and 5.7% for cases ND1, ND2, and ND3, respectively. The power production

in Cases ND1 and ND3 are significantly higher than Case NA while Case ND2 is not. Further, Cases ND1 and ND3 are

significantly better than ND2 but Case ND3 is not significantly better than ND1. In the EnKF methodology described in

Section 2.2, the update step to the wake parameters is limited by the imposed parameter variance (σkw and σσ0
). Therefore,385

the initialization of the EnKF with fixed parameters limits the perturbation of the estimated parameters as a function of time

whereas the initialization with the previous optimal parameters allows kw and σ0 to vary more significantly over time. The

EnKF estimated kw and σ0 for the three cases are shown in Figures 12 and 13, respectively. While the proportionality constant

σ0 of the presumed Gaussian wake does not have a clear trend for Case ND2, the estimated wake spreading rate kw is clearly

decreasing for all wind turbines as a function of time. For Case ND1, the estimated model parameters do not have a clear trend390

and remain approximately constant as a function of time. As the estimated wake spreading rate is decreased, the wake model

predicts worsening wake interactions and lower array power production given greedy baseline control. As a result, the model

predicted optimal yaw misalignment angles increase as a function of time for Case ND2 as shown in Figure 14(a). While Cases

ND1 and ND3 predict the optimal yaw misalignment for the most upwind turbine to be approximately 20◦, and decreasing γ

moving downwind, Case ND2 increases the yaw misalignment for the upwind turbine to as high as 30◦.395

The relationship between the model predicted and LES measured power production for the three cases is shown in Figure

15. Case ND2 has an increased occurrence of wake model over-prediction of the power production while Case ND3 has an

increased occurrence of wake model under-prediction. Case ND1 has approximately equal occurrence of under- and over-

prediction. The efficacy of the state estimation is shown in Figure 16. Both Cases ND1 and ND2 are able to estimate the power

production for the downwind turbine in the baseline, greedy operation (the first time step) and with yaw misalignment. Since400

Case ND3 uses static state estimation, there are some discrepancies between the LES power production and the lifting line
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(a) (b) (c)

Figure 12. Wake spreading coefficient for each turbine in the wind farm for (a) online control using the initial parameters to initialize the next

state (ND1), (b) online control using the previous optimal parameters to initialize the next state (ND2), and (c) and the static state estimation

control (ND3).

(a) (b) (c)

Figure 13. Proportionality constant for the presumed Gaussian wake for each turbine in the wind farm for (a) online control using the initial

parameters to initialize the next state (ND1), (b) online control using the previous optimal parameters to initialize the next state (ND2), and

(c) and the static state estimation control (ND3).

(a) (b) (c)

Figure 14. Yaw misalignment angles for each turbine in the wind farm for (a) online control using the initial parameters to initialize the next

state (ND1), (b) online control using the previous optimal parameters to initialize the next state (ND2), and (c) and the static state estimation

control (ND3).
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(a) (b) (c)

Figure 15. Relationship between the LES wind farm power production compared to the wake model wind farm power production prediction

for (a) online control using the initial parameters to initialize the next state (ND1), (b) online control using the previous optimal parameters

to initialize the next state (ND2), and (c) and the static state estimation control (ND3). The LES power production is given by P and the

wake model prediction is given by P̂ .

(a) (b) (c)

Figure 16. Time averaged power production for the first and second wind turbines in the wind farm as a function of the control update steps

for (a) online control using the initial parameters to initialize the next state (ND1), (b) online control using the previous optimal parameters

to initialize the next state (ND2), and (c) and the static state estimation control (ND3). The LES power production is given by P and the

wake model state estimation is given by P̂ .

model (Figure 16(c)). The power production for the most upwind turbine is modeled accurately using Pp = 3, although the

LES power production is generally slightly lower, indicating Pp > 3 for this ADM and ABL state.

The most successful dynamic control framework utilized in the conventionally neutral ABL is the static state estimation

methodology (Case ND3), although the differences between Cases ND1 (parameter estimation from standard initialization),405

ND3 (static parameters after first control step), and NL (static yaw angles after first control step) are not significant. While

the optimal yaw misalignment angles change slightly as a function of time (Figure 14), the wake model parameters are fixed.

Since the flow is statistically quasi-stationary, the wake model parameters should not change significantly as a function of

time. However, the wake model parameters may have a functional dependence on γ, the yaw misalignment for the upwind

turbines. This potential dependence of kw and σ0 on yaw misalignment was not incorporated explicitly in the present modeling410

framework, although it is incorporated implicitly through the state estimation, and is recommended for future work.
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(a) (b)

Figure 17. Time averaged wind farm power production as a function of the control update step for online control using the initial parameters

to initialize the next state and (a) P̂p = 2 (NDP2) and (b) P̂p = 4 (NDP4). The wind farm power is normalized by the power production of

the aligned wind farm case.

The static state estimation with dynamic yaw controller is able to outperform the lookup table control (Table 1). This

indicates that while the wake model parameters are fixed, the optimal yaw misalignment angles differ even with changes to

the mean wind direction less than 1◦. As such, the lookup table based yaw misalignment strategy is unlikely to be optimal

in a general setting since it relies on wind speed and direction bins of arbitrary size. Instead, in a lookup table approach, the415

wake model parameters could be tabulated instead of the optimal yaw misalignment angles. Optimal yaw misalignments can be

calculated dynamically, on-the-fly using the computationally efficient model described in Section 2.1 or a mid-fidelity model

(e.g. WFSim, Boersma et al., 2018) could be used to compute discrete yaw angles in wind condition bins and the continuous

optimal yaw function could be approximated using interpolating functions or a neural network, for example.

4.3 Influence of the estimate of Pp in the wake model420

The wind turbine power production as a function of the yaw misalignment in the wake model is given by Eq. 6. The parameter

Pp is uncertain. Following actuator disk theory, Pp ≈ 3, although experiments typically show Pp ≤ 2 for wind turbines and

wind turbine models with rotation (e.g. Medici, 2005). With the ADM used presently, Pp = 3 should be an accurate approxi-

mation but will be imperfect since actuator disk theory applies only to spatially uniform, steady flow. Since Pp is wind turbine

and likely site-specific, in a wake steering application, the precise value of Pp is generally unknown a priori. In this section, we425

will model Pp as P̂p = 2 (NDP2) and P̂p = 4 (NDP4) using the same control architecture as Case ND1, where P̂p denotes the

wake model estimate for Pp. P̂p = 2 will lead to an underestimate of the power production loss due to yaw misalignment and

P̂p = 4 will lead to an overestimate. Given that the value of Pp is turbine-specific, the influence of the Pp uncertainty described

in this section should be considered relative to the true value of Pp = 3, and the conclusions apply with respect to the scaled

values of P̂p/Pp. For a different turbine model with Pp = 2, for example, similar values of P̂p/Pp would yield qualitatively430

similar results.

The power productions as a function of the yaw update steps for Cases NDP2 and NDP4 are shown in Figure 17. Case

NDP2 with P̂p = 2 has 3.0% less power production than baseline greedy operation while Case NDP4 with P̂p = 4 has 5.1%

more power than baseline control. Case ND1 and NDP4 have significantly higher power production than NDP2. With P̂p = 2,
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(a) (b)

Figure 18. Yaw misalignment angles for each turbine in the wind farm for online control using the initial parameters to initialize the next

state and (a) P̂p = 2 (NDP2) and (b) P̂p = 4 (NDP4).

(a) (b)

Figure 19. Time averaged power production for the first and second wind turbines in the wind farm as a function of the control update steps

for online control using the initial parameters to initialize the next state and (a) P̂p = 2 (NDP2) and (b) P̂p = 4 (NDP4). The LES power

production is given by P and the wake model state estimation is given by P̂ .

the model prediction for the optimal yaw misalignment angles are high, with the first three upwind turbines misaligning by435

almost γ = 40◦ (Figure 18(a)). With P̂p = 4, the penalty for yaw misalignment is significant and no turbine misaligns more

than γ = 20◦ (Figure 18(b)). For the present conventionally neutral ABL and ADM implemented, 3< Pp < 4 for the leading

upwind turbine. The success of Case NDP4 with P̂p = 4 suggests that small yaw misalignments can still increase the wind

farm power production significantly with respect to the baseline greedy control.

The LES power productions and EnKF state estimated powers as a function of the yaw control updates are shown for the440

two P̂p cases in Figure 19. For Case ND4, the upwind turbine power production is significantly over-predicted. The EnKF does

not estimate the state for the most upwind turbine since there are no wake model parameters which influence its production.

The power production for the second wind turbine is accurately estimated even with P̂p = 2. This again shows that the state

estimation with a two-parameter model is likely overparameterized where the EnKF is compensating for the incorrect Pp model

by altering kw and σ0 unphysically, although the consequence of this effect in the accuracy of the power predictions will be445

discussed in §4.4. The power productions and EnKF estimations for the first two wind turbines for Case ND5 show that P̂p = 4

is a more accurate estimate than P̂p = 2. Again, the downwind turbine power is estimated accurately with the incorrect value

of P̂p.
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(a) (b)

Figure 20. Relationship between the LES wind farm power production compared to the wake model wind farm power production prediction

for online control using the initial parameters to initialize the next state and (a) P̂p = 2 (NDP2) and (b) P̂p = 4 (NDP4). The LES power

production is given by P and the wake model prediction is given by P̂ .

The comparison between the wake model power predictions against the LES power production are shown in Figure 20.

With P̂p = 2 (Figure 20(a)), the wake model significantly overpredicts the power production of the wind turbine array with450

expected power increases over the baseline of 25% but a power decrease with respect to the baseline realized. On the other

hand, with P̂p = 4 (Figure 20(b)), the wake model underpredicts the power production of the wind turbine array for nearly all

control update steps. Comparing Figures 15(b) and 20(b), it is clear that, in this simulation, the lifting line model prediction

of downwind turbine power is less conservative as a function of increasing γ. Therefore, the model is likely slightly over-

estimating the true optimal yaw misalignment angle magnitudes when Pp = 3.455

Overall, the sensitivity analysis on Pp suggests that given a model application where Pp is unknown, a conservative estima-

tion should be taken. With the present data-driven dynamic controller, underestimating Pp leads to the wake model estimating

a state which would lead to high wake losses with baseline greedy control. There is no pathway for the state estimation to

discern the discrepancy between an incorrect Pp model or, for example, changing atmospheric conditions which are giving

rise to worsening wake losses given baseline control. Future work should focus on methodologies to robustly estimate Pp460

from SCADA data. Further, the potential deviation of the wind turbine thrust from cos2(γ) (Bastankhah and Porté-Agel, 2016)

should be investigated in a similar manner as Pp in future work.

4.4 Accuracy of wake model predictions

The accuracy of the wake model power predictions are assessed in this section by comparing the LES power measurements to

the wake model power predictions from the previous time step. As detailed in Section 3, the simulation is initialized with greedy465

yaw alignment which is held fixed for nT time steps (control update 1), after which yaw misalignment angles are implemented

for nT steps (control update 2). The yaw angles are subsequently updated dynamically every nT simulation steps. At control

update 1, the previous nT steps of yaw aligned operation are used to compute Pbaseline, the time averaged power production for

each wind turbine. Pbaseline is used to estimate kw and σ0 using the EnKF such that |Pbaseline− P̂baseline| is minimized. With

the estimated model parameters, the optimal yaw misalignment angles are computed for each wind turbine. Using kw and σ0470

estimated and the optimal yaw angles computed at control update 1, P̂yaw is predicted which is attempting to represent Pyaw,
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(a) (b)

(c)

Figure 21. Wind turbine power production from LES P and wake model P̂ . P1,baseline is the LES power production for the leading upwind

turbine from control update step 1 where the wind farm is operated with greedy baseline control. P̂baseline is the wake model fit to Pbaseline

using EnKF estimation. Pyaw is the LES power production for control update step 2 with yaw misalignment incorporated. P̂yaw is the wake

model prediction of Pyaw using kw and σ0 fit based on control update step 1 and with the optimal yaw misalignment angles which were

implemented by control update step 1. The wake model estimate for Pp, given by P̂p is (a) P̂p = 2, (b) P̂p = 3, and (c) P̂p = 4. The error

bars represent one standard deviation in the power data as a function of time. The subscript ‘f’ denotes power predictions from the FLORIS

wake model (Annoni et al., 2018) with the Gaussian wake model (Bastankhah and Porté-Agel, 2014) and model parameters prescribed by

Niayifar and Porté-Agel (2016).

the average power production over the nT steps following control update 1. The computation of Pyaw is completed at control

update 2 and can be compared directly to P̂yaw to validate the predictive capabilities of the lifting line model and the estimated

model parameters. In short, P̂baseline represented Pbaseline and it is an estimation or fit because the model had knowledge of

Pbaseline. P̂yaw is a prediction since the model had no knowledge of Pyaw. The LES measured and wake model estimated and475

predicted power productions are shown in Figure 21 for P̂p = 2, 3, and 4.

The mean absolute error for the lifting line model power estimation was 0.0037 for all three cases since Pp does not affect

the fitting with yaw aligned control enforced. The mean absolute errors for the lifting line model power predictions were 0.044,

0.015, and 0.018, given as a fraction of P1,baseline, for P̂p = 2, 3, and 4, respectively. The mean absolute errors as a function
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Figure 22. The mean absolute errors for the lifting line model predictions as a function of the control update step for the conventionally

neutral ABL with P̂p = 2, 3, and 4.

of the control update steps for the three simulations are shown in Figure 22. The average over the control update steps of the480

mean absolute errors for the three cases are 0.05, 0.029, and 0.036 for P̂p = 2, 3, and 4, respectively. Qualitatively, P̂p = 3 and

4 results in predictions which are accurate and within one standard deviation of the mean. P̂p = 2 results in more inaccurate

predictions, with elevated inaccuracy for the leading upwind turbine. Overall, these results, in tandem with the field experiment

results of Howland et al. (2019), suggest that the lifting line model (Shapiro et al., 2018) provides accurate predictions of the

power production of wind farms within yaw misalignment given data-driven calibration to yaw aligned operational data.485

The baseline and yaw misaligned power predictions using the FLORIS wake model package (Annoni et al., 2018) is also

shown in Figure 21. The FLORIS model implementation uses the Gaussian wake model (Bastankhah and Porté-Agel, 2014)

with the wake spreading rate k∗ approximated using the empirical LES fit between k∗ and the turbulence intensity given by

Niayifar and Porté-Agel (2016). Since the Gaussian wake model parameters are not calibrated to the site-specific LES of this

wind farm, the inaccuracy in representing Pbaseline is expected according to the typical fidelity of engineering wake models490

(Stevens and Meneveau, 2017). The mean absolute error for the power production prediction in yaw misalignment averaged

over the six wind turbines in the array is 0.02P1,baseline and 0.11P1,baseline for the lifting line model with data assimilation

and the Gaussian model with an empirical wake spreading rate as a function of turbulence intensity, respectively. P1,baseline is

the power production of the leading upwind turbine in greedy control. The EnKF data assimilation has reduced the error in the

prediction of the power production in yaw misalignment by an order of magnitude compared to a priori prescribed empirical495

model parameters. Since the greedy wake losses in FLORIS differ from the LES power production, FLORIS will also predict

different yaw misalignment angles in its model-based optimization. For greenfield applications before wind farm construction,

SCADA data is not available and data assimilation methods cannot be used, necessitating empirical methods such as those

suggested by Niayifar and Porté-Agel (2016). For operational wind farm control optimization, site-specific data assimilation

increases the accuracy of the model predictions (Figure 21(b)).500
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5 Conclusions

A suite of large eddy simulations has been performed to characterize the performance of a dynamic, closed-loop wake steering

wind farm control strategy. The controller was designed for the application of real-time utility-scale wind farm control based on

only SCADA data without requiring a LiDAR on site. The analytic gradient ascent optimal yaw selection allows for real-time

dynamic wind farm control. The main technical contribution of this paper is the development of a closed-loop wake steering505

methodology for application in transient ABL flows which does not rely on an open-loop offline yaw misalignment lookup

table calculation.

Within the statistically quasi-stationary conventionally neutral ABL, the optimal yaw misalignment angles do not change

significantly with time. Within this simplified ABL environment, wake steering control with fixed, lookup table yaw misalign-

ment values, dynamic yaw values with continuous state estimation, and dynamic yaw values with fixed state estimation all510

yielded significantly more power than baseline control, although the differences between the three control architectures were

not significant. The highest power production occurred with a wake steering strategy where the model parameters were fixed

and the state estimation was not performed every control update step but the yaw misalignment angles were updated according

to the local wind conditions. This result suggests that in a lookup table wake steering approach, the wake model parameters

should be tabulated and the yaw angles should be calculated on-the-fly given exact local wind conditions, rather than direct515

optimal yaw misalignment angle tabulation.

The importance of the model for individual wind turbine power production degradation as a function of the yaw misalignment

angle, and in particular Pp, was demonstrated where P̂p = 3 or 4 lead to an increase in power production with respect to greedy

operation while P̂p = 2 lead to a loss in power, with the true Pp = 3. Since Pp depends on the wind turbine model and ABL

characteristics, this should be investigated in future work.520

The wake model does not capture all relevant physical phenomena present in this flow (see specific assumptions in wake

model derivation in §2.1), but the power production is fit accurately as a function of time with the two parameter model. While

this success may suggest that the site- and time-specific parameter estimation may correct for physics which are unresolved

in the model, with P̂p = Pp = 3, the wake model makes accurate forecasts of the power production over a future time horizon

given the yaw misalignment strategy that was implemented. In this study, the wake model forecast has low predictive error when525

the wake model parameter modifications are constrained in the EnKF estimation as in Case ND1, rather than unconstrained

as a function of time, as in Case ND2, which results in high predictive error and diminished wake steering performance.

The forecast accuracy gives confidence to the data-driven EnKF parameter estimation and lifting line wake model for the

application of wake steering control. The combined lifting line model and EnKF estimation has an order of magnitude reduced

predictive error than the Gaussian wake model with an empirical wake spreading rate in this conventionally neutral ABL530

simulation. The magnitude of model parameter modifications as a function of time are implicitly constrained in this study by

the hyperparameters of the EnKF estimation algorithm. Future work should investigate the predictive capabilities for combined

data-driven and wake model approaches with explicit constraints on the model parameters.
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While the conventionally neutral ABL cases were not designed to model a specific wind farm and to compare to field data,

this LES testbed paradigm is useful for the rapid prototyping of optimal wind farm control architectures. The main purpose535

of this study was predominantly to establish the dynamic wake steering framework and perform sensitivity analysis on the

controller architecture rather than the ABL or LES setup. The uncertainties and sensitivities in this study associated with the

wall model, subfilter scale model, wind turbine model, and ABL characteristics such as boundary layer inversion height were

not investigated in detail and are left for future work. More reliable and generalizable estimates for Pp (Liew et al., 2020),

or generally Cp as a function of γ, should be investigated. Future work should also investigate the influence of latitude and540

geostrophic wind direction on wake steering control performance (Howland et al., 2020b). Finally, the controller should be

tested using other LES codes and in field experiments to assess the generalization of the results. Part 2 of this study will

implement the dynamic optimal controller in transient ABL conditions such as the stable ABL and the diurnal cycle.

Code and data availability. The code is open-source and available at https://github.com/FPAL-Stanford-University/PadeOps. The GitHub

repository branch for incompressible wind farm simulations is ‘igridSGS.’ The data presented in this study can be accessed at https://purl.545

stanford.edu/py769sx2667

Appendix A: EnKF test model problem

The state estimation EnKF algorithm and implementation is tested using a six wind turbine model wind farm with artificial

data. Six 1.8 MW Vestas V80 wind turbines are modeled with incoming wind speed of u∞ = 7.5 m/s. The turbines are

spaced 6D apart in the streamwise direction and are directly aligned in the spanwise direction as shown in Figure A1(a).550

The test problem was used for hyperparameter selection to achieve estimations of the artificial power production with low

mean absolute error. The parameters selected for the EnKF algorithm are σkw = 0.001, σσ0
= 0.001, and σP = 0.1. The initial

wake model parameters were selected as kw = 0.1 and σ0 = 0.35 for each wind turbine in the array. The model is run with a

specified, artificial mean power production profile with Gaussian random noise superposed. The model is run over 1000 model

time step iterations with Ne = 100. The initial and final model calibrations are shown in Figure A1(b,c). The EnKF combined555

with the lifting line model is able to fit the artificial wind farm data with sufficient accuracy for two different power production

profiles.

As shown in Figure A1(b,c), the EnKF state estimation combined with the lifting line model are able to reproduce the

power production for the artificial data to high accuracy. While the ability for a two parameter analytic wake model to capture

arbitrarily generated power production profiles should be investigated in future studies, this data-driven framework is validated560

in the LES test cases in a comparison between model power predictions and LES power measurements (Section 4.4) where the

state estimation significantly reduces the power predictions compared to standard empirical wake model approaches.
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(a) (b)

(c) (d)

Figure A1. (a) Model problem setup. (b,c) The EnKF model fits for the model problem with two prescribed, artificial mean power profiles

and Gaussian random noise. (d) Model parameters shown with solid (b) and dashed (c) lines. The wake model parameters for the last turbine

downwind are not shown since they do not impact the state estimation accuracy.

Appendix B: Influence of local atmospheric conditions on wind turbine array power production

The quantification of the influence of new control methods on the wind farm power production is challenging in an experimental

setting. In a computational environment, simulations with identical initial conditions and fixed time stepping schemes can be565

used to quantify the influence of the operational modifications in a controlled experiment. In a field experiment environment,

since wind conditions are constantly changing and are not repeatable due to the nature of atmospheric flows, this quantification

is more challenging. Complex terrain and differences in the manufacturing and operation of turbines in standard control leads

to substantial discrepancies in the instantaneous power production of freestream turbines at wind farms. Therefore, comparing

yaw misaligned columns of turbines to yaw aligned leads to uncertainty in analysis. Further, conditional averages based on570

wind speed, direction, turbulence intensity, and atmospheric conditions may not sufficiently capture the potential physical

mechanisms which influence power production. To quantify this impact in the present simulations, the power productions

as a function of the control update steps can be compared to the first control update step in the statistically quasi-stationary

conventionally neutral ABL flow. Inertial oscillations, turbulence, and sampling error will cause discrepancies between the first

and subsequent control update steps even with the yaw aligned control strategy held fixed in the statistically quasi-stationary575

flow. The average power production compared to the first yaw control update step is 4.3% and 9.0% higher for the yaw aligned

(Case NA) and dynamic closed-loop control (Case ND1), respectively. The increase observed in Case NA indicates that the

simulation had not completely converged to the statistically quasi-stationary state upon control initialization although this does

not affect the qualitative conclusions of Section 4. The true increase in power production due to wake steering in Case ND1
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(a) (b)

Figure B1. Time averaged power production as a function of time normalized by the time averaged power production of the first control

update step for yaw aligned greedy control. (a) Yaw aligned greedy control (Case NA) and (b) closed-loop dynamic control (Case ND1).

compared to Case NA is 4.6% over the same simulation temporal window. These results highlight the need to develop robust580

statistical methods to analyze the impact of changing wind farm control strategies compared to the baseline.

Appendix C: Approximate advection timescale

Upon the yaw misalignment of an upwind turbine, there is a time lag associated with the advection time scale of the flow for the

control decision to influence a downwind turbine. While the advection time depends on the length scale of the turbulent eddy

(Del Álamo and Jiménez, 2009; Yang and Howland, 2018; Howland and Yang, 2018), the mean flow advection approximately585

follows the mean wind speed in wind farms (Taylor, 1938; Lukassen et al., 2018). The number of simulation time steps

associated with the approximate advection time between the first and last turbines is computed as T = ∆sx
uhub∆t , where ∆sx is

the distance between the first and last turbine in the streamwise direction, uhub is the mean streamwise velocity at the wind

turbine model hub height, and ∆t is the simulation time step. In the computation of wind farm statistics for the utilization

of static wake models, the advection time scale is accounted for by initializing the time averaging two advection time scales590

Ta = 2T after the yaw misalignments for the wind turbine array have been updated. To account for errors associated with the

simple advection model, the time lag is taken as double the advection time scale, Ta = 2T , although this advection time scale

did not have a statistically significant influence on the results as shown in Table 1 and Figure 5.

Appendix D: Extended conventionally neutral simulation

The conventionally neutral ABL Case ND1 is run for 50 control update steps and the results are shown in Figure D1. The595

controller does not become unstable as a function of time and the magnitude of yaw misalignment angles are approximately

constant.
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(a) (b) (c)

Figure D1. Wind farm (a) yaw misalignment angles, (b) kw, and (c) σ0 as a function of the control update steps for the extended ND1 case.

(a) (b)

Figure E1. Yaw misalignment angles for each turbine in the wind farm for online control using (a) the initial parameters to initialize the next

state (ND141) and (b) static state estimation parameters (ND142) for wind farm alignment at 14◦.

Appendix E: Influence of the wind farm alignment in the conventionally neutral ABL

The wake losses and potential for wake steering to increase wind turbine array power production depends on the wind turbine

layout (see e.g. experiments by Bossuyt et al., 2017). In the previous section, the six wind turbines were aligned at an angle600

of 18◦ from the horizontal (Figure 3). The mean wind direction at hub height is approximately 15◦-16◦ in this conventionally

neutral ABL. In this section, the wind turbine column alignment is changed to 14◦ from the horizontal and the array is em-

bedded within the same conventionally neutral ABL. As a result of this array alignment, the optimal yaw misalignment angles

will change from positive (counter-clockwise rotation viewed from above) to negative (clockwise). It should be noted that this

sensitivity analysis is not a controlled experiment to test the benefit of yawing in opposite directions since asymmetries exist605

in the conventionally neutral ABL as a result of the veer angle and the magnitude of partial waking is not held fixed between

the two layouts.

For the wind turbine array aligned at 14◦, the dynamic wake steering controller is tested with dynamic (ND141) and static

state estimation (ND142). With a wind farm alignment along 14◦ and the mean wind direction at hub height of approximately

15◦-16◦, the optimal yaw misalignment angles are negative (clockwise viewed from above). The yaw misalignment angles610

implemented as a function of the control update steps are shown in Figure E1 for dynamic and static state estimation architec-
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(a) (b)

Figure E2. Time averaged wind farm power production as a function of the control update step for online control using (a) the initial

parameters to initialize the next state (ND141) and (b) static state estimation parameters for wind farm alignment at 14◦ (ND142). The wind

farm power is normalized by the power production of the aligned wind farm case.

tures. The qualitative magnitude of the yaw misalignment angles are similar to the angles selected for the 18◦ alignment case

(Section 4.1).

The power productions for the two wake steering controllers are shown in Figure E2. The temporally averaged power produc-

tion increase over baseline, greedy operation is 1.1% and 1.0% for the dynamic and static state estimation cases, respectively.615

There is no significant difference in the mean power production between these two state estimation methodologies for this

wind farm alignment (see Table 1). Further, neither wake steering control case increases power significantly over greedy con-

trol. While the power production increase over the greedy control is less for the 14◦ case with negative yaw misalignment

than for the 18◦ case with positive yaw misalignment this is not a controlled experiment since the degree of partial waking

is different between the two cases. The wind farm has more direct wake interactions, with less partial waking, for the 14◦620

alignment as evidenced by the lower power production in greedy control (Table 1). Previous simulations have shown that for

a controlled experiment of direct wind farm alignment, positive yaw misalignment (counter-clockwise) is superior to negative

yaw misalignment (clockwise) (see e.g. Fleming et al., 2015; Miao et al., 2016), although this will depend on the specific ABL

and wind farm layout simulated. Archer and Vasel-Be-Hagh (2019) proposed that this difference is a function of Coriolis forces

in the ABL, although future work should quantify the effect of latitude and hemisphere locations as well as the influence of625

non-traditional effects (Howland et al., 2020b). The degree of power production increase as a result of wake steering is a strong

function of the wind farm alignment with respect to the wind direction at hub height, the turbine spacing, the shear, and veer.

The present simulations reveal that it is reasonable to capture increases in power production with negative (clockwise) wake

steering even with a wind turbine model with Pp ≈ 3.

Author contributions. M.F.H., S.K.L., and J.O.D. conceived the work. A.S.G. and M.F.H. developed the LES code. M.F.H. conducted anal-630

ysis. M.F.H. wrote the manuscript. All authors contributed to edits.

31



Competing interests. The authors declare no conflicts of interest.

Acknowledgements. M.F.H. is funded through a National Science Foundation Graduate Research Fellowship under Grant No. DGE-1656518

and a Stanford Graduate Fellowship. A.S.G. was funded by Tomkat Center for Sustainable Energy at Stanford University. S.K.L. acknowl-

edges partial support from NSF-CBET-1803378. All simulations were performed on Stampede2 supercomputer under the XSEDE project635

ATM170028. The authors would also like to thank the anonymous referees for their thoughtful comments and contribution to this work.

32



References

Adaramola, M. and Krogstad, P.-Å.: Experimental investigation of wake effects on wind turbine performance, Renewable Energy, 36, 2078–

2086, 2011.

Allaerts, D. and Meyers, J.: Large eddy simulation of a large wind-turbine array in a conventionally neutral atmospheric boundary layer,640

Physics of Fluids, 27, 065 108, 2015.

Annoni, J., Gebraad, P. M., Scholbrock, A. K., Fleming, P. A., and Wingerden, J.-W. v.: Analysis of axial-induction-based wind plant control

using an engineering and a high-order wind plant model, Wind Energy, 19, 1135–1150, 2016.

Annoni, J., Fleming, P., Scholbrock, A., Roadman, J., Dana, S., Adcock, C., Porte-Agel, F., Raach, S., Haizmann, F., and Schlipf, D.: Analysis

of control-oriented wake modeling tools using lidar field results, Wind Energy Science, 3, 819–831, 2018.645

Archer, C. L. and Vasel-Be-Hagh, A.: Wake steering via yaw control in multi-turbine wind farms: Recommendations based on large-eddy

simulation, Sustainable Energy Technologies and Assessments, 33, 34–43, 2019.

Barthelmie, R. J., Hansen, K., Frandsen, S. T., Rathmann, O., Schepers, J., Schlez, W., Phillips, J., Rados, K., Zervos, A., and Politis, E.:

Modelling and measuring flow and wind turbine wakes in large wind farms offshore, Wind Energy, 12, 431–444, 2009.

Bastankhah, M. and Porté-Agel, F.: A new analytical model for wind-turbine wakes, Renewable Energy, 70, 116–123, 2014.650

Bastankhah, M. and Porté-Agel, F.: Experimental and theoretical study of wind turbine wakes in yawed conditions, Journal of Fluid Mechan-

ics, 806, 506–541, 2016.

Bastankhah, M. and Porté-Agel, F.: Wind tunnel study of the wind turbine interaction with a boundary-layer flow: Upwind region, turbine

performance, and wake region, Physics of Fluids, 29, 065 105, 2017.

Bastankhah, M. and Porté-Agel, F.: Wind farm power optimization via yaw angle control: A wind tunnel study, Journal of Renewable and655

Sustainable Energy, 11, 023 301, 2019.

Basu, S., Holtslag, A. A., Van De Wiel, B. J., Moene, A. F., and Steeneveld, G.-J.: An inconvenient “truth” about using sensible heat flux as

a surface boundary condition in models under stably stratified regimes, Acta Geophysica, 56, 88–99, 2008.

Boersma, S., Doekemeijer, B., Gebraad, P. M., Fleming, P. A., Annoni, J., Scholbrock, A. K., Frederik, J., and van Wingerden, J.-W.: A

tutorial on control-oriented modeling and control of wind farms, in: 2017 American Control Conference (ACC), IEEE, 2017.660

Boersma, S., Doekemeijer, B., Vali, M., Meyers, J., and van Wingerden, J.-W.: A control-oriented dynamic wind farm model: WFSim, Wind

Energy Science, 3, 75–95, 2018.

Bossuyt, J., Howland, M. F., Meneveau, C., and Meyers, J.: Measurement of unsteady loading and power output variability in a micro wind

farm model in a wind tunnel, Experiments in Fluids, 58, 1, 2017.

Burton, T., Jenkins, N., Sharpe, D., and Bossanyi, E.: Wind Energy Handbook, John Wiley & Sons, 2011.665

Calaf, M., Meneveau, C., and Meyers, J.: Large eddy simulation study of fully developed wind-turbine array boundary layers, Physics of

fluids, 22, 015 110, 2010.
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