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Figure 3. Estimated wind speed compared to rotor-averaged wind speed for a reference simulation.

by manufacturers. Any improvement on the methodology
would be beneficial for the procedure of load estimation pre-
sented in this work.

3.2 Thrust estimation

We compute the estimated thrust, Ta,est, using Eq. (17) and
the wind speed estimated in Sect. 3.1. In Fig. 4, we com-
pare the estimated thrust value to the unsteady aerodynamic
thrust from the simulation, Ta,ref. The values of Ta,tab(uref,
�ref, θp,ref) are also shown in the figure.

We observe that the thrust signal is obtained with a mean
relative error of 1.5 % over the range of operating conditions
considered. The use of the estimated wind speed produces
thrust values closer to the reference thrust than if uref is used.
In line with the discussions of Sect. 3.1, this supports the fact
that the estimated wind speed provides an effective velocity
that is consistent with the instantaneous state of the rotor but
different from the rotor-averaged wind speed. However, it is
also possible that compensating errors are at play, or that the
thrust is less sensitive to changes in wind speed or drivetrain
dynamics than the torque. Despite these open questions, we
continue by assuming that the method provides thrust esti-
mates with sufficient accuracy.

3.3 Reduced model of the mechanical system

In this section, we compare the 2-DOF mechanical model
presented in Sect. 2.1 to the advanced OpenFAST model
consisting of 16 DOFs. As mentioned in Sect. 2.1, we first
improve the generalized force formulation acting on qt. We
adopt the notations from Fig. 2. The resulting force and mo-
ment at the tower top are written as FN and MN . The contri-
bution of this load to the generalized force is fN = BN ·[FN ;
MN ], where, according to the virtual work principle, BN is
the velocity transformation matrix that provides the veloc-
ity of point N as a function of other DOFs. Further details
on this formalism are provided in Branlard (2019a). For the

single-tower DOFs considered, the B matrix consists of the
end values of the shape function deflection and slope (i.e.,
BN = [8t,1(Lt), 0, 0, 0, ν1, 0], where Lt is the length of the
tower, and ν1 is d8t,1

dz (Lt)). The shape functions are normal-
ized at their extremity (i.e., 8t,i(Lt)= 1) so that the general-
ized force is

fN = Fx,N + ν1My,N . (21)

We assumed that the main forces acting at the tower top are
the aerodynamic thrust and the gravitational force from the
rotor nacelle assembly (RNA) mass, MRNA. We then obtain
the loads as

Fx,N= Ta cos
(
αy + θtilt

)
, My,E = Ta [xNR sinθtilt

+zNR cosθtilt]+ gMRNA
[
xNG cosαy + zNG sinαy

]
, (22)

where, using Fig. 2, θtilt is the tilt angle of the nacelle; NR is
the vector from the tower top to the rotor center, where the
thrust is assumed to act; NG is the vector from the tower top
to the RNA center of mass; g is the acceleration of gravity;
and αy is the y rotation of the tower top induced by the tower
bending. For a single-tower mode, αy(t) equals qt(t)ν1. The
linearization of Eqs. (21) and (22) for small values of qt leads
to

fN= qt

{
−Taν1 sinθtilt+ ν

2
1gMRNAzNG

}
+ (Ta cosθtilt)

+Taν1 [xNR sinθtilt+ zNR cosθtilt]+ ν1gMRNAzNG, (23)

TS2where the term in parentheses is the main contribution,
which justifies the use of Ta in Eq. (1); the term in curly
brackets acts as a stiffness term. The presence of Ta in this
term introduces an undesired coupling, and this term is kept
on the right-hand side of Eq. (1). It is noted that the verti-
cal force, Fz,N , contributes to the softening of the tower. The
main softening effect attributed to the RNA mass is included
in the stiffness matrix, as described in Branlard (2019a). The
contribution of the thrust to the softening, as well as an addi-
tional contribution of quadratic velocity forces to the gener-
alized force, is neglected.
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