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Abstract. Methods of turbine wake modeling are being developed to more accurately account for spatially variant atmospheric

conditions within wind farms. Most current wake modeling utilities are designed to apply a uniform flow field to the entire do-

main of a wind farm. When this method is used, the accuracy of power prediction and wind farm controls can be compromised

depending on the flow-field characteristics of a particular area. In an effort to improve strategies of wind farm wake modeling

and power prediction, FLOw Redirection and Induction in Steady State (FLORIS) was developed to implement sophisticated5

methods of atmospheric characterization and power output calculation. In this paper, we describe an adapted FLORIS model

that features spatial heterogeneity in flow-field characterization. This model approximates an observed flow field by interpolat-

ing from a set of atmospheric measurements that represent local weather conditions. The objective of this method is to capture

heterogeneous atmospheric effects caused by site-specific terrain features, without explicitly modeling the geometry of the

wind farm terrain. The implemented adaptations were validated by comparing the simulated power predictions generated from10

FLORIS to the actual recorded wind farm output from the Supervisory Control And Data Acquisition (SCADA) recordings

and large eddy simulations (LES). When comparing the performance of the proposed heterogeneous model to homogeneous

FLORIS simulations, the results show a 14.6% decrease for Mean Absolute Error (MAE) in wind farm power output predic-

tions for cases using wind farm SCADA data, and a 18.9% decrease in LES case studies. The results of these studies also

indicate that the efficacy of the proposed modeling techniques may vary with differing site-specific operational conditions.15

This work quantifies the accuracy of wind plant power predictions under heterogeneous flow conditions and establishes best

practices for atmospheric surveying for wake modeling.

1 Introduction

Low-fidelity wake modeling utilities such as FLOw Redirection and Induction in Steady State (FLORIS) are typically used for

the estimation of wind farm power output or the implementation of wind farm controls that help improve the overall perfor-20

mance of a wind farm. This includes implementing real-time corrective strategies that aid in reducing stress-inducing loads on

turbines (Boersma et al., 2017), avoiding operational side effects like noise pollution (Leloudas et al., 2007) or shadow flicker

(Clarke, 1991), and maximizing power output through methods of wake steering and power grid optimization (Fleming et al.,

2017b). FLORIS, and most other controls-oriented wake modeling utilities, implement advanced wake modeling algorithms

that are capable of producing accurate results in a uniform set of atmospheric conditions (Fleming et al., 2019). However, the25

accuracy of any wake model is highly dependent on its ability to recreate the characteristics present. It is important for these
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models to be able to emulate the naturally occurring state of the wind farm as closely as possible for the controls processes and

power-prediction functionalities to operate with reliable accuracy. Most current controls-oriented wake modeling utilities use a

homogeneous approximation to characterize the initial state of the atmosphere, which can introduce major inaccuracies in the

simulation of wind farm flow interactions.30

The consequences are particularly evident when observing the accuracy of power predictions for wind farms located within

complex terrain, or wind farms that are otherwise subject to spatially variant conditions in the atmosphere. Because these

atmospheres are subject to dramatic changes in the velocity and direction of wind, it is difficult to anticipate how the resulting

wakes will form and what kind of power output should be expected. In Yang et al. (2019), an analysis of the impact of spatial

heterogeneity in wind farm flow is presented for a site within complex terrain. This study showed that using averaged values35

of wind conditions caused short-term wind power forecasting to be less accurate, due to spatial heterogeneity within the wind

field and the variability of wind turbine power curves. With these effects considered, the current version of FLORIS and many

other wake model utilities are not constructed to accurately model fluid flow under these conditions.

It should be noted that there are existing wake models that incorporate elements of heterogeneous wake effects caused by

varying atmospheric conditions. For example, one model presented in You et al. (2016) takes a statistical approach in repre-40

senting heterogeneous power deficit caused by wind farm-flow interactions in spatially variant weather conditions. Another

method discussed in Shao et al. (2019) proposes an interaction model used for calculating the turbulence intensity of over-

lapping wakes, and represents the relative positions of wind turbines under arbitrary and varying wind direction conditions.

Brogna et al. (2020) presents a technique that superimposes the centerlines of wind turbine wakes in complex terrain by follow-

ing the streamlines of the background flow field. Clustering methods have also been implemented, such as Katic et al. (1986)45

and Clifton and Lundquist (2012), where the turbines of a wind farm are sectioned into groups, assigning differing atmospheric

characteristics to each cluster of turbines to mimic the heterogeneous conditions observed in natural atmospheres. Additionally,

many approaches implement data-driven wake model correction parameters to achieve more accurate solutions, such as those

proposed by Schreiber et al. (2019); Shapiro et al. (2019); Howland et al. (2020); Teng and Markfort (2020).

The aforementioned models present many methods for approximating farm-flow interaction in heterogeneous conditions.50

As a contribution to this area of research, this article will present a modified version of FLORIS that features an advantageous

capability in modeling wind farms with spatially variant weather conditions and complex terrain. This adapted version of

FLORIS presents several novel developments within the scope of controls-oriented wake modeling research: an interpolation

algorithm is implemented, which allows the user to define a gradient of atmospheric characteristics across the flow field,

based on several measurements within or adjacent to the wind farm; elements of spatially variant wind direction, wind speed,55

and turbulence intensity are integrated into wake calculations of the preexisting FLORIS model; and an additional method is

introduced to minimize error in power-prediction accuracy caused from high-turbulence intensity and wind speed variance.

The objective in developing this proposed model is to capture a more accurate representation of the effects of wind farm

wake interactions within complex terrain without actually resolving any terrain geometry during simulation. This study aims

analyze the accuracy of power output predictions and wake modeling performance for the proposed wake model, through60

comparisons to Large Eddy Simulations (LES) wind farm Supervisory Control And Data Acquisition (SCADA) records.
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2 Existing FLORIS model

FLORIS (NREL, 2020) is a wake modeling utility that is equipped with tools designed for the control and optimization of wind

farms, and is being developed at the National Renewable Energy Laboratory (NREL) in collaboration with Delft University

of Technology. This tool uses several computational modeling techniques paired with controls algorithms to approximate and65

optimize wind turbine wake interactions through integration of real-time Supervisory Control And Data Acquisition (SCADA)

data recorded from wind farms. FLORIS implements the concept of steady-state averaging to simulate the observed dynamic

behavior within a wind farm for each iteration in time, and can also be used as a simulation tool to compute farm-flow

interactions in wind farms under user-defined atmospheric conditions. This section will give an overview of the mathematical

theory in which the formulations of the wake models of FLORIS were based. These concepts are also explained in greater70

detail in Annoni et al. (2018) and Hamilton et al. (2020).

2.1 Turbine power-output model

The operation and performance of a turbine is modeled with respect to the relationship between the thrust coefficient, CT , and

power coefficient, CP . The dependence between these two terms characterizes a turbine’s power output and wake propagation,

therefore making the understanding of this relationship fundamental to the design and operation of wind farm controls. To75

model the performance behaviors of a given turbine, a table is constructed inside of FLORIS that tabulates CT and CP with

respect to wind speed. This table can be set to a user’s self-obtained data, generated independently by NREL’s FAST (Jonkman,

2010), or by integrating CCBlade (Ning, 2013) with FLORIS. The relationship betweenCT andCP can also be defined through

the concept of actuator disk theory. This theory relates the turbine power output and thrust through the axial induction factor,

a, which can be calculated using the definitions from Burton et al. (2002) and Bastankhah and Porté-Agel (2016):80

CP = 4a(1− a)2 (1)

CT = 4a(1− a) (2)

From these values, the power can then be calculated for turbines under steady-state and yaw-misalignment conditions, using

the following relationship provided by Burton et al. (2002):

P =
1

2
ρACPu

3cos(γp) (3)85

where ρ is the air density, A is the rotor-swept area, u is the rotor-averaged wind speed, and p is a tuneable parameter that

accounts for the power losses due to yaw misalignment seen in simulations (Burton et al., 2002; Fleming et al., 2017a). Thus far,

the turbine model discussed in this section does not consider the effects that turbulence may have on the relationship between

power output and wind speed. However, Sheinman and Rosen (1992) analyze the effects of turbulence intensity on wind

farm power output. In this study, it is shown that turbine power output can be overestimated by more than 10% if turbulence90

intensity is not considered. Many empirical and machine-learning methods have been proposed to solve this issue. However, a
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nonparametric statistical averaging model may be preferred, such as the model developed in Hedevang (2014). In Section 3.5,

a new method of implementing a turbulence-dependent correction to power will be discussed for FLORIS applications.

2.2 Velocity deficit

FLORIS provides an option to select particular models for wake velocity deficit and wake deflection separately to suit the95

user’s performance needs. The variety in modeling capabilities reflects a range of trade-offs between computational efficiency

and the number of detailed physics applications applied to calculations. If a model is more computationally expensive, it is

likely to implement more sophisticated algorithms as well, in hopes of achieving a more accurate result. These models all have

a different approach to modeling turbine wake interactions, and offer different strengths and weaknesses in functionality. Most

models can either be classified as a velocity deficit, or a wake deflection calculation, but there are also the Gaussian and Curl100

models that incorporate both calculations and extend further into the overall FLORIS wake modeling structure and control

tools. For the purposes of this article, only the Gaussian wake model will be explained in-depth. See Annoni et al. (2018),

Martínez-Tossas et al. (2019), and Bay et al. (2019) for details on additional models in FLORIS.

2.3 Gaussian wake

The Gaussian Wake Model is comprised from a series of papers, including Bastankhah and Porté-Agel (2014); Abkar and Porté-105

Agel (2015); Niayifar and Porté-Agel (2015); Bastankhah and Porté-Agel (2016); Dilip and Porté-Agel (2017). This model

is a method of calculation that is integrated into the structure of all FLORIS wake modeling and control tools. It integrates

the concepts of the Bastankhah and Porté-Agel wake deflection model, the self-similar velocity deficit model, and elements of

atmospheric stability into one comprehensive method based off of the concept of a Gaussian wake (Pope, 2000). This section

will describe the different concepts that are implemented in this model.110

2.3.1 Self-Similar Velocity Deficit

The Gaussian model computes the streamwise velocity deficit at any point in a turbine’s wake by using analytical formulations

of Reynolds-averaged Navier-Stokes (RANS) equations to an assumed Gaussian wake profile. The Gaussian wake is based on

the self-similarity theory used for free shear flows (Pope, 2000), and is developed under the assumption of no pressure gradients

within the initial undisturbed free-stream flow and uniform flat terrain (Bastankhah and Porté-Agel, 2014). To calculate the115

velocity deficit, u(x,y,z), behind the rotor of a turbine:

u(x,y,z) = U∞

(
1−C

[
exp
(
−(y− δ)2/2σ2

y

)
· exp

(
−(z− zh)

2
/2σ2

z

)])
(4)

C = 1−

√
1− (σy0σz0)C0(2−C0)

σyσz

C0 = 1−
√

1−CT ,
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where U∞ is the freestream velocity; x,y, and z represent the spatial coordinates in the streamwise, spanwise, and vertical120

directions, respectively; and zh is the turbine hub height. C is the velocity deficit at the wake center; δ represents the wake

deflection computed with equations from Bastankhah and Porté-Agel (2016); and σ denotes the wake width in the lateral (y),

and vertical (z) directions. The subscript "0" references a term’s initial value at the start of the far wake.

The wake width in the y and z directions, σy and σz , are determined by the thrust coefficient, CT , and the wake expansion

rate, which is parameterized by ky and kz:125

σz
D

= kz
(x−x0)

D
+
σz0
D

, where
σz0
D

=
1

2

√
uR

U∞+u0
, (5)

σy
D

= ky
(x−x0)

D
+
σy0
D

, where
σy0
D

=
σz0
D

cosγ, (6)

whereD is the rotor diameter, uR is the velocity at the rotor, γ denotes the turbine’s yaw offset, and u0 represents the maximum

velocity deficit in the wake. Parameters ky and kz are dependent on the value the ambient turbulence intensity, I0, as noted in

Eq. 8.130

The findings of Abkar and Porté-Agel (2015) demonstrate that ky and kz grow at different rates, but in order to simplify

the model, ky and kz are usually set as equal. The total velocity deficit at any point in the domain of fluid flow can then be

calculated by combining the wakes using the sum-of-squares method described in Katic et al. (1986).

In the scope of this study, it is important to note that the introduction of spatial heterogeneity in initial wind conditions

(which is a key principle in the proposed model) violates the original assumption of no pressure gradient for the derivation of135

the Gaussian wake model. Although this limits the model’s ability to conserve key principles that govern the physical dynamics

of fluid flow, the results of this study show that the measured improvements in model accuracy outweigh the consequences of

incomplete conservation. In Brogna et al. (2020), a modified Gaussian wake model is implemented to simulate wind farms in

complex terrain, but the spatial U∞ evolution is considered only in the superposition of wakes and is omitted for the calculation

of the velocity itself. The benefits of an approach similar to this could be investigated in future FLORIS developments to140

improve overall momentum conservation for the heterogeneous model.

2.3.2 Atmospheric Stability

The Gaussian model also implements methods proposed by Abkar and Porté-Agel (2015); Niayifar and Porté-Agel (2015),

which characterize the effects of atmospheric stability by analyzing the levels of veer, shear, and changes to turbulence intensity

in the fluid flow. Stull (2012) discusses that an accurate representation of atmospheric stability requires the measurement of145

many other variables in the atmosphere; but without detailed recordings of elements such as temperature profiles and vertical

flux, the three chosen parameters are able to give a rough idea of the state of the atmosphere in the FLORIS model.
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To implement the effects of shear, αs, the power-log law of wind is used to define the initial wind speed in the flow field,

Uinit:

Uinit

U∞
=

(
z

zh

)αs

, (7)150

where a high shear coefficient (αs > 0.2) is indicative of stable atmospheric conditions, and a low shear coefficient (αs < 0.2)

characterizes an unstable atmosphere (Stull, 2012).

The Gaussian model was designed to avoid the inaccuracies caused by neglecting the effects of turbulence intensity by

implementing methods introduced by Niayifar and Porté-Agel (2015). This also includes added turbulence caused by nearby

turbine operation to more accurately calculate the rate of wake expansion. Many other linear-flow models use a constant155

parameter that defines the rate of wake expansion and has no dependency on the operating conditions of the turbine (Jensen

(1983)). From the concepts of Niayifar and Porté-Agel (2015), the Gaussian model relates the rate of wake expansion in

the lateral and vertical directions directly to the ambient turbulence intensity present at a turbine and two tuned parameters,

ka = 0.38371 and kb = 0.003678:

ky = kz = kaI + kb. (8)160

The turbulence intensity, I , is calculated by superimposing the initial ambient turbulence intensity (I0) with the sum of the

added turbulence caused by the operation of each influencing upstream turbine, j and I+j . The following relationship is used

in FLORIS to calculate the ambient turbulence intensity at a given turbine with respect to neighboring turbine wakes:

I =

√√√√ N∑
j=0

(
I+j
)2

+ I20 . (9)

N refers to the number of upstream turbines that create a wake that adds to the ambient turbulence intensity at a downstream165

turbine’s location. In Niayifar and Porté-Agel (2015), this number was assumed to be one, and the closest turbine was only

taken into account because it would theoretically give the maximum amount of added turbulence. In the Gaussian model used

in FLORIS, all turbines within a distance of 15D upstream and 2D in the span-wise (y) direction are included. Although the

saturation effects of turbulence are not yet fully understood in this context, this formulation was shown to be a more accurate

method of calculating added turbulence intensity in the findings Chamorro and Porté-Agel (2011), which found that turbulence170

intensity typically accumulates over two to three turbine rows, but then levels off to an equilibrium at this point.

Based on the original definition proposed in Crespo and Hernández (1996), the following expression in Eqn. 10 has been

tuned through comparisons to high fidelity CFD simulations (King et al., 2020b) and several field studies (Fleming et al., 2019,

2020b) to accurately calculate the added turbulence due to upstream turbine j:

I+j =Aoverlap
(
0.5a0.8j I0.10 (x/Dj)

−0.32) , (10)175
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where Dj denotes the diameter of turbine j, and Aoverlap refers to the fraction of the rotor-swept area of the downstream turbine

that intersects with the cross-sectional area of the wake from the upstream turbine. The axial induction factor, aj is evaluated

based on the value of CT , as defined in Burton et al. (2002) and Bastankhah and Porté-Agel (2016).

As noted earlier, the Gaussian wake model was developed under the assumption of flat terrain. Since the heterogeneous

model was specifically designed to best benefit wind farms located in complex terrain, it important to know the consequences180

of violating this assumption. In Fleming et al. (2020b), a field study is presented that focuses on analyzing the performance

of the tuned parameters in Eqn. 10, by comparing two campaigns located in comparatively simple and complex terrains.

The findings of this study indicate that inaccurate tuning of the tuned variables may worsen FLORIS’s typical tendency to

underpredict wake losses in areas with complex terrain.

3 Changes to the FLORIS model185

Previously, FLORIS derived the initial wind speed, wind direction, and turbulence intensity by using one value to represent the

entire flow-field domain. In this article, we describe the modifications to FLORIS to accommodate heterogeneous flows. This

section will explain the methods used to calculate wakes based on the gradient of values observed in the undisturbed flow field

without wake effects. The motivation behind this development was to create a more detailed characterization of the initial state

of the atmosphere, which leads to improvements in the power predictions of a wind farm.190

3.1 Initializing the heterogeneous flow field

To implement heterogeneity in FLORIS, an interpolation is performed based on several input values assigned to spatially

varying coordinates inside or adjacent to the wind farm (see Fig. 2a). These initial inputs are used to approximate the value

of atmospheric characteristics at the location of every turbine within the wind farm, and at each individual grid point of the

FLORIS flow field. FLORIS performs methods of interpolation and extrapolation using software packages provided by SciPy:195

an open-source scientific computing library for the Python programming language (Virtanen et al., 2020). The packages used

in this method include a piecewise linear interpolant and a nearest neighbour interpolant, which are combined to create an

algorithm that calculates a unique value for each x and y coordinate within the flow field. Fig. 1 shows a pseudo-code diagram

of this process for reference.
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Figure 1. A diagram representing the processes performed during the initialization of the heterogeneous FLORIS model.

The process begins with implementing a piecewise linear interpolation method for all points within the region defined by the200

input coordinates. First, Delaunay triangulation is performed using the Quickhull algorithm discussed in Barber et al. (1996).

This method forms triangular connections between input points, based on their relative coordinates, and defines each triangle

by ensuring its circumcircle remains empty. The result of this triangulation generates a mesh of triangular elements called a

simplicial complex. Further details on the concept of Delaunay triangulation are explained in-depth in Shewchuk (1999) and

Barber et al. (1996).205

The next step in determining the interpolated values is to use the established triangular elements to perform barycentric

interpolation. During this step, the barycentric coordinates of each point of interest are determined relative to the triangular

element in which it resides. Based on each set of barycentric coordinates, the interpolated result is calculated using a weighted

average of the values defined at the triangle’s vertices (Floater, 2015). A visual depiction of the methods utilized in this

piecewise interpolation method (Delaunay Triangulation and Barycentric Interpolation) are shown in Fig. 2b. After these210

processes are complete, FLORIS assigns the interpolated values to each flow-field grid point and turbine location inside the

triangulated region bounded by the input coordinates. Any points that fall outside of this region must be determined through

additional extrapolation processes.

8



Figure 2. A visual depiction of the methods used interpolate and define atmospheric characterization values at specific points within the
input coordinates.

Linear Barycentric interpolation was chosen to implement for this step because it is relatively efficient in computation and

can be easily implemented without requiring any input parameters other than the locations and values of wind measurements.215

Although it must be noted that the accuracy of the interpolated values is dependent on the quality of input measurements

provided, the complexity of the terrain geometry, and the weather patterns observed in the physical wind farm.

The extrapolation process implements a nearest-neighbor interpolant to calculate all remaining unknown values. Using the

recently interpolated point values in addition to the original input values, this method operates by selecting a single value at

the nearest location to the point being extrapolated, and assigning this nearest value to the extrapolated point. A visualization220

of this calculation is depicted in Fig. 3.

Figure 3. The extrapolation process used to define the remaining values for characterization of the initial state of fluid flow.
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The nearest-neighbor extrapolation method was chosen because it defines a feasible relationship between input measure-

ments and does not attempt to extrapolate using a formula derived from a curve-fitting or trend-predictive algorithm. Many

other extrapolation methods attempt to predict a rate of change outward of the interpolation domain by implementing a function

that approximates a predicted progression of extrapolated values. For example, it was found that the analytic continuation of225

Radial Basis Functions (RBF) and fitted polynomial splines outside of the initial domain often produced a non-feasible output

that did not respect the physical limitations of the atmospheric characteristic being extrapolated. Although it was speculated

that these methods could likely be adjusted with tuning factors to fit extrapolated data within feasible bounds, efforts to do

this were not explored in this study. Instead, the nearest-neighbor algorithm was chosen to simplify implementation of realistic

extrapolation within the model.230

When solving for the interpolated and extrapolated values for turbulence intensity and wind speed, values are easily com-

puted because they are defined by values on a non-cyclical scale. Because wind direction is represented using angles in degrees,

the interpolation and extrapolation methods must be circular. The issue of interpolating circular data was addressed by simply

computing the interpolation twice for each angle of wind direction, Φ: once for the cosine component, α, and again for the sine

component, β. The wind direction in a wind farm, Φ, can be defined as:235

Φ = arctan2

(
β

α

)
(11)

Where α= cosΦ, and β = sinΦ. After Φ is computed, the wind direction interpolation can then be defined for the entire wind

farm.

It should be noted that the vertical (z) dimension is not considered when interpolating and extrapolating from the atmo-

spheric inputs. Instead, all input values are assumed to be at the same z location, and the interpolation is performed on a240

two-dimensional plane at this height. Although this approximation may result in a less accurate result, this approach allows the

interpolation and extrapolation algorithm to operate with less computational cost. Differences in wind speed due to variations

in turbine hub height are calculated using the power law in Eq. 7, as described in subsection 3.2.

3.2 Heterogeneous wind speed

Before FLORIS performs any calculations for velocity deficit in wakes, it first assigns an initial value of wind speed (U ) to each245

grid point in the flow-field grid. In a homogeneous case, these grid points would all have the same value across an x−y plane,

but in a heterogeneous case, these grid points all have different values, dependent on the initial values that have already been

established through interpolation. After U is defined at each grid point, the wind-speed values at each x, y, and z coordinate

in the flow-field domain are defined as Uinit, calculated using the power law in Eq. 7. From this point, the calculation of

wakes proceeds in the same way as the homogeneous cases, with the exception of a more complex algorithm for accounting250

for changes in wind direction, as explained in Section 3.3. The velocity deficit behind each turbine is calculated by applying

Eq. 4 from Section 2.3.1, where the free-stream velocity (U∞) in Eq. 4 is defined as the local Uinit values at each flow-field
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grid point. Figure 4 shows visualizations of the resulting wakes after subtracting the calculated velocity deficit from the initial

free-stream velocity at each flow-field grid point.

Figure 4. Visualizations of two planes showing the FLORIS flow field during a simulation with heterogeneous wind speed.

3.3 Heterogeneous wind direction255

Similar to wind speed, an interpolation of wind direction is initially established across the flow-field grid through the methods

of interpolation discussed in Section 3.1. The input values of wind direction are defined so that 270 degrees represents wind

movement from west to east (see Fig. 5a), then once FLORIS begins computations with these wind directions, the values are

converted so that 0 degrees represents the wind traveling from west to east (see Fig. 5b). Using these wind direction values, the

turbine coordinates are rotated about the center of the simulation domain at these angles, as exemplified in Fig. 5b.260
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Figure 5. A depiction of the initial processes before the calculation of wakes. Figure 5a shows the result of wind direction interpolation, and
Fig. 5b shows the process used to define the location of the rotated turbine map. The turbines will be referred to individually as T1, T2, ...
T6, as defined in Fig. 5a.

Using the rotated turbine map shown in Fig. 5b for reference, the flow field is adjusted to calculate each turbine wake

independently, starting with the turbine that is the furthest upstream. To initiate the rotation of the flow-field grid, the grid

points are rotated to the angle that is defined at the given turbine. This initial step is exemplified in Fig. 6 for the calculation

of the velocity deficit behind turbine T6 only, but this will also be repeated for each turbine in the entire wind farm. This step

is necessary to put the original non-rotated grid points in a frame of reference relative to the each specific turbine as their265

particular wake is calculated.

Figure 6. Depiction of the process performed in FLORIS to align the flow-field grid with the location and wind direction of turbine T6 (as
defined in Fig. 5a).

12



Next, to calculate the velocity deficit caused by each turbine’s wake, all of the grid points in the flow field are rotated to

replicate the effects of changing wind direction. These rotated grid points represent the redirection of the flow in response

to changing wind direction within the flow field (see Fig. 7a). Once the velocity deficit has been calculated using the rotated

grid points, the points are rotated back to their original positions in the flow field. Fig. 7b shows the product of the final step,270

where the calculated velocity deficit is subtracted from the initial free-stream velocity at each flow-field grid point to reveal the

resulting shape of the wake.

Figure 7. Visualizations of FLORIS calculating velocity deficit turbine T6 in conditions of heterogeneous wind direction. The velocity deficit
is calculated using the grid points in the fully rotated position (Fig. 7a), and then applied to the free-stream velocity defined at the grid points
in their original non-rotated location (Fig. 7b).

As discussed in Section 2.2, there is a minor computational expense in simulating the flow field independently for each

turbine in the wind farm. This is because FLORIS determines a unique set of rotated grid points relative to the wind direction

and coordinates of each turbine separately. The grid spacing in the streamwise (x) direction relative to the direction of flow is275

kept uniform throughout each iteration of the rotated grid, but the spanwise (y) spacing is adjusted with respect to the local

wind direction inside the flow field. This allows the model to replicate a gradual change in wind direction throughout the flow

field. The resulting flow-field wake calculation is shown in Fig. 8.

13



Figure 8. Visualization of a flow field with heterogeneous wind direction. Turbine rotors are indicated by black lines.

The grid point spacing in the x direction must be kept constant to avoid elongation or distortion of wake propagation and

placement. Because the grid spacing in the y direction is not kept uniform, it must be noted that this capability of emulating a280

gradual change in wind direction may prevent the model from conserving momentum in some situations. Methods of enforcing

uniform spacing in the y direction for each individual turbine wake have been developed, but are not currently implemented

because doing so limits the model’s ability to create a gradient of wind directions within the flow field. In future work, methods

of enforcing momentum conservation in this algorithm will be further investigated.

To further exemplify the applications of this functionality, Fig. 9 shows a more complex simulation of non-constant hetero-285

geneous wind direction simulation in an irregularly spaced wind farm. The steps that FLORIS performs to evaluate this flow

condition are identical to the ones displayed in Figs. 5 - 7, except it is personalized to the more complex variations of the

depicted state of flow.
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Figure 9. A second visualization of a flow field with more complex heterogeneous wind direction. Wind input measurements are indicated
using diamond markers, and turbine rotors are shown with black lines.

It is important to consider that this model was not designed to calculate the effects of changes in wind direction that are

extremely dynamic. A change in wind direction that is too drastic will cause grid points in the rotated flow-field grid (the red290

points shown in Fig. 7a) to overlap each other within the same coordinate system, which may result in erroneous assignment

of velocity deficit to these overlapped points. The limiting amount of wind direction change for the heterogeneous model is

therefore the amount that causes the flow-field grid points to overlap in this manner. This limit must be determined for each

wind farm independently, since it is dependent on the site-specific layout geometry and wind conditions of each case.

Although it may be possible for the wind direction within a wind farm to change this drastically, these conditions often295

involve multiple adjacent domains of flow that are separated by a boundary, which are difficult to represent in this model.

These weather conditions are also most often observed in instances of lower wind speeds, and therefore can be considered

not as lucrative in regards to power production. Plans for future developments to FLORIS involve designing a more inclusive

model that is capable of mitigating issues concerning rapid changes in wind direction.

3.4 Heterogeneous turbulence intensity300

The geographic distribution of turbulence intensity is established for the initial state of the flow field through the interpolation

methods discussed in section 3.1. This strategy of defining a more detailed variation of turbulence intensity in the flow field

makes approximation of wake dissipation and deflection more accurate, therefore improving the estimation of the effect of

nearby turbine operation within a wind farm. The implementation of heterogeneous turbulence intensity and heterogeneous

wind speed are similar, in that the initial heterogeneous conditions are established throughout the flow field by interpolating305

from the input values, and then waked conditions are updated throughout FLORIS computations of flow-field interactions.

During the calculation of wakes, the ambient turbulence intensity that is initially defined at each turbine location is continuously

recalculated to account for added turbulence intensity resulting from turbine wakes up to 15D upstream, as previously discussed
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in Section 2.3.2 and in Niayifar and Porté-Agel (2015). A horizontal plane of a FLORIS simulation featuring heterogeneous

turbulence intensity can be observed in Fig. 10.310

Figure 10. Visualization of a flow field with heterogeneous turbulence intensity. The turbines that experience higher turbulence intensity
show a faster rate of wake recovery, and vice versa. Turbine rotors are indicated by black lines.

It is important to note that in the interest of conserving computational efficiency, calculations for evaluating the rate of wake

expansion and recovery are only dependent on the updated turbulence intensity at the location of the turbine creating the wake.

3.5 Turbulence correction

In addition to the heterogeneous features, developments were also made to reduce inaccuracies in power-output predictions

caused by turbulent operating conditions. As mentioned in Section 2.1, the accuracy of the zero-turbulence power curve is315

compromised in conditions of varying turbulence intensity. The revised power calculation, presented in this section, includes a

parameter that approximates the effect of turbulence intensity on the power output of a turbine in a wind farm.

Specifically, this approach adjusts the power output with respect to the level of turbulence intensity at a turbine. The adjusted

power is calculated by using distribution of the wind-speed fluctuations at the turbine, based on calculations that consider

the original wind speed and the standard deviation in wind speed. The first step in this algorithm is to create a normalized320

probability density function, f(x), of wind speeds, x, evenly distributed within the domain of one standard deviation from the

mean wind speed, µ. The standard deviation, σ, is determined by multiplying the turbulence intensity at the turbine by the

mean wind speed, µ. Wind speeds that are greater than the cutout wind speed are omitted.

The value of the power coefficient, CP , in the power table is also determined at each wind speed, xi, and at the original wind

speed (µ). The ratio of the adjusted power (Padj) to the original value of power (P0) is referred to as the turbulence parameter,325

Λ. The turbulence parameter can be calculated by summing the weighted adjusted values of power in the following expression,

for each wind speed, xi, in the domain of the probability density function, f(xi):

Λ =
Padj
P0

=

∫ x100

x1
f(xi,µ,σ)CP,ix

3
i dxi

CP,µµ3
=

∑100
i=1 f(xi,µ,σ)CP,ix

3
i

CP,µµ3
, (12)
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where the integral of f(xi) is approximated by taking 100 samples of the f(xi). The resulting power curves depending on

turbulence intensity are shown in Fig. 11. As the turbulence intensity increases, the power output increases in Region 2 and330

decreases across Region 3.

Figure 11. Adjusted power curve for the NREL 5-MW reference turbine for different turbulence intensities. The dashed lines denote the
cut-in, rated, and cut-out wind speeds, and also represent the boundaries of the first, second, and third regions, respectively.

The following expression may be used to calculate the final value of adjusted power output, Padj , with respect to the current

turbulence intensity at a turbine:

Padj = P0Λ =
1

2
ρACP,µ cos(γ)pµ3Λ. (13)

Where γ is the yaw angle of the turbine, and Λ represents the turbulence parameter. The value of Λ must always be greater335

than zero.

In future work, this turbulence-correction model could be improved by implementing a similar consideration of the thrust

coefficient, CT . Because the velocity deficit computations in this model rely on the value of CT , it may be advantageous to

expand this method to calculate an adjustment parameter for the effects of turbulence on rotor thrust.

It is important to note that similar models have been developed that incorporate methods of turbulence re-normalization340

based on machine-learned or empirically-derived data (Clifton and Wagner, 2014). The proposed method discussed in this

section was developed to attempt to represent the variation of power output due to turbulence effects, while using a simple

strategy that is not dependent on the availability of data other than the current wind farm atmospheric measurements, and

the power curve provided by the turbine manufacturer. In future work, it may be advantageous to incorporate more complex

techniques that are able to capture the effects of turbulence intensity with greater detail and accuracy.345
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4 Model validation and analysis

Two validation studies are presented to analyze the effectiveness of the adapted FLORIS wake model. In Section 4.1, a 38-

turbine wind farm is simulated using the heterogeneous FLORIS model and compared to results from large eddy simulations

to evaluate the accuracy of wind farm power predictions. Additionally, Section 4.2 presents a study where a large wind farm is

simulated using the heterogeneous FLORIS model and turbulence power calculations. The results of these FLORIS simulations350

are compared to the wind farm’s SCADA data records to furhter evaluate the model’s power prediction accuracy and wake

model performance.

4.1 Comparisons to LES

This section presents a validation study that evaluates the power prediction accuracy of the proposed heterogeneous FLORIS

model in comparison to large eddy simulations of a 38-turbine array, calculated using NREL’s tool Simulator fOr Wind Farm355

Applications (SOWFA) (Fleming et al., 2013). The simulated wind farm contains 38 turbines modeled with NREL’s 5MW

reference turbine design criteria (Jonkman et al., 2009) and arranged in a concentric circular layout (similar to Thomas et al.

(2019); Fleming et al. (2020a); King et al. (2020a)).

Twelve test cases were evaluated for this study; each were simulated using different wind directions, varying from 10 degrees

to 340 degrees in 30 degree intervals. Spatially homogeneous inputs were used to simulate wind direction and turbulence360

intensity, where turbulence intensity was at 9% for all cases. The free-stream wind speed remained close to 8 m/s for all cases,

with minor spatial variations. The FLORIS wind speed inputs were obtained by extracting the free-stream velocity magnitude

from LES results at locations upwind of turbines in undisturbed flow. These extracted values create a velocity gradient in the

direction normal to the wind direction in the heterogeneous FLORIS model, as seen on the right in Fig. 12. The wind speed

input for the homogeneous FLORIS model was obtained by taking an average of the heterogeneous input values for each case.365
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Figure 12. Horizontal cut-planes of the FLORIS simulations with wind direction at 270 degrees. Wake losses were calculated using the
homogeneous FLORIS model (left) and heterogeneous FLORIS model (right). Turbine rotors are indicated by black lines.

To analyze the effects of wake losses for the simulated wind farm, additional heterogeneous and homogeneous FLORIS

simulations were conducted excluding all FLORIS wake calculations. Fig. 13 shows the total wind farm output predictions

from all four FLORIS simulation models, and compares them to the LES case result (shown in black). The trends observed

Fig. 13 indicate that the models which neglect wake loss calculations produced drastic over-estimations of power output,

with the heterogeneous model reporting more accurate power predictions overall. Alternatively, the FLORIS models that did370

perform wake loss calculations produced a much more accurate estimation of wind farm power output.

Figure 13. Total wind farm power output calculated using the homogeneous and heterogeneous FLORIS models, with and without wake
losses. The results of the SOWFA simulation are also plotted for reference in black.
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The Mean Absolute Error (MAE) of the total wind farm power output was calculated to evaluate power prediction accuracy

for the heterogeneous and homogeneous FLORIS models, using the formula presented in Eq. 14.

MAE =
1

n

n∑
i=1

|Pmodel,i−Pactual,i| (14)

where n is the number of cases simulated in the study, Pactual,i is the LES-generated wind farm power output for case i, and375

Pmodel,i represents the predicted power output from the FLORIS model in case i.

The comparison of this metric, shown in Fig. 14, indicates that the heterogeneous model is more effective than the ho-

mogeneous at producing wind farm power output predictions accurately. Although the improvement may not be particularly

apparent when comparing the data visually in Fig. 14, Table B1 lists the average absolute error of each model’s wind farm

power predictions. In this table, an 18.9% decrease in mean absolute error is reported when using the heterogeneous model380

compared to the homogeneous model.

Figure 14. Absolute error in total farm power output calculated using the homogeneous and heterogeneous FLORIS models, with and without
wake losses.

An average MAE was also calculated for the power predictions at each individual turbine within the wind farm, which

are presented in Fig. 15. In comparison to Fig. 14, Fig. 15 seems to indicate a more observable and consistent disparity in

power output accuracy between the results of heterogeneous and homogeneous FLORIS simulations. Table B2 confirms this

observation by reporting a 19.5% decrease in MAE at each turbine when using the heterogeneous model. The data provided in385

this comparison confirms that the proposed heterogeneous model offers substantial advancements in the generation of accurate

power predictions at individual turbines within a wind farm.
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Figure 15. Average absolute error of individual turbine power output predictions calculated using the homogeneous and heterogeneous
FLORIS models, with and without wake losses.

4.2 Comparisons to wind farm SCADA data

This section summarizes a validation study presenting comparisons of FLORIS power predictions to SCADA-recorded power

outputs from an observed operational wind farm. A large, utility-scale wind farm located within mountainous terrain was390

chosen for this study because it is often subject to unpredictable and dramatic shifts in weather conditions. More information

regarding the physical layout and characteristics of this wind farm can be found in Appendix A. The motivation behind perform-

ing these simulations was to quantify the effect of the recent developments to FLORIS in reducing the error in power-output

predictions for wind farms in complex terrain.

FLORIS simulations were performed using heterogeneous inputs of wind direction, turbulence intensity, and wind speed,395

which were taken from the wind farm’s SCADA records. These inputs include four wind measurement values for each at-

mospheric characteristic, derived from Meteorological (MET) tower measurements placed in various locations throughout the

wind farm. Similar simulations were performed using an identical FLORIS model, but with a singular homogeneous input for

wind speed, wind direction, and turbulence intensity. These homogeneous inputs were derived by evaluating the average of the

five heterogeneous input values at each time step. The resulting power output of all simulations was recorded with the inclusion400

of the turbulence correction and without. All cases were simulated using data averaged at time steps of 10 minutes over a range

of 2 months.

In the following discussion, the results from all FLORIS simulations are presented and analyzed to determine the accuracy

of power predictions from each test case. Fig. 16 includes two horizontal planes showing a partial section of heterogeneous

flow calculations during these simulations. This figure demonstrates the visual capabilities of the heterogeneous model and405
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how the effects of the new wake calculations can be translated into visual information for further analysis of wake interactions

within a wind farm.

Figure 16. Horizontal planes of two different FLORIS simulations, taken at the same time-step iteration.

Although these visualizations do not give direct estimates of power prediction, they are helpful in translating the input mea-

surements into a form that characterizes the general behavior of wind farm dynamics for the interpretation of the observer.

The cut plane visualization is helpful in performing qualitative analysis of turbine wake interactions, and is more useful when410

displaying the estimated weather conditions characteristic of each location in the flow field, which is improved in the hetero-

geneous model.

When comparing the performance of the simulations, the calculated power output was tabulated and compared, for accuracy.

In Fig. 17, the sum of wind farm power output from each FLORIS simulation is normalized with respect to the rated power

output for the wind farm, and plotted along with the recorded SCADA output. This approach highlights any weaknesses in415

each model, relative to the overall performance of the others. A 24-hour period was chosen to demonstrate how the models

performed under average diurnal conditions. Figure 17 shows a day with relatively variant weather conditions and many rapid

shifts in power output.
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Figure 17. Power output calculated by FLORIS for homogeneous (red), heterogeneous without the turbulence correction (blue), and hetero-
geneous with the turbulence correction (green), compared with SCADA data shown in black. Each shaded region represents the difference
between predictions of power output, and the measured power output from SCADA data.

In Figure 17, it is evident that the heterogeneous models are predicting the power output more accurately than the homo-

geneous model. The trend line of the heterogeneous simulations consistently follows closer to the line representing the power420

output recorded from SCADA data. Additionally, the heterogeneous simulation that included turbulence-intensity corrections

showed an extra advantage in estimating turbine performance, following closely to the trend line of the heterogeneous sim-

ulation, and also reliably contributing error-reducing improvements to the heterogeneous model. While this juxtaposition is

effective in ranking each model’s ability to estimate total farm power output, it should be noted this comparison only indicates

the accuracy of a calculations for the entire wind farm power output collectively, without considering the accuracy at each425

turbine individually.

It is possible for wake models to overpredict the power output of some turbines, and underpredict others, in a way that

produces a total wind farm power estimate that seems accurate, but is not using reliable and precise methods of calculation.

To verify that the recent additions to FLORIS have improved the power-predicting capabilities, it must be confirmed that the

new model produces a consistently accurate estimate with respect to each iteration in the time series and each turbine within430

the wind farm individually. To prove this model’s consistency in accuracy, the normalized absolute error was calculated at each

turbine at each iteration of the time series for this same day. The sum of the absolute error at all turbines within the wind farm

is calculated for each simulation model at each time iteration. To calculate the sum of absolute error (SAE) for all turbines, the

following formula was applied to each time iteration of the simulation.

SAE =

n∑
i=1

|Pmodel,i−Pactual,i|, (15)435
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where n is the number of turbines in the wind farm, Pactual,i is the measured power output of turbine i, and Pmodel,i is the

predicted power output of turbine i from a given FLORIS model. The results of each FLORIS model were calculated and

plotted on the same set of axes in Figure 18.

Figure 18. Sum of the normalized absolute error at each turbine in the wind farm, computed at each time step.

The trends observed in Fig. 18 exhibit similar characteristics that indicate the accuracy of the model at each turbine is

increasing with the application of the heterogeneous model and turbulence-intensity correction parameter. The heterogeneous440

model reliably produces less error when calculating the power at each turbine over the time series, which ensures that the

power predictions of the entire farm are not self-compensating because of simultaneous overpredictions and underpredictions

of individual turbine outputs. Furthermore, if Figure 18 is analyzed with respect to the trends of normalized power in Figure 17,

it is evident that the addition of heterogeneity and turbulence-intensity corrections contributes to improving the accuracy of

FLORIS power predictions in instances of overprediction and underprediction, and transitions between the two with relative445

consistency.

To ensure these same trends of accuracy persist over the entire two-month period, the percent error of the total wind farm

power output was calculated at each time-step iteration using the following equation.

Percent Error =
|Pmodel−Pactual|
|Pactual|

, (16)

where Pactual is the measured power output of the wind farm, and Pmodel is the power output of the wind farm predicted by a450

given FLORIS model. The results of these calculations were grouped into three separate domains: wind speeds of less than 5

m/s, wind speeds in the range of 5 to 11 m/s, and wind speeds greater than 11 m/s. Time iterations when wind speed was less

than the cut-in wind speed (2.5 m/s) were considered negligent in regards to power production and therefore omitted from the
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data set. A histogram of the percent error in each wind-speed domain was computed over the entire time series to display the

distribution of error with respect to each simulation (Fig. 19).455

Figure 19. Percent error of all three FLORIS models, plotted for comparison within varying ranges of wind speeds.

Although the plots for the wind-speed domains vary slightly in distribution, it is clear that each histogram exemplifies a

trend toward accuracy in simulations that incorporate heterogeneity and turbulence-correction calculations. It is important to

note that only the data points shown in the percent-error range of each histogram were used to calculate the respective binned

averages. The outliers were omitted because they tend to skew the presentation of the data set in a way that obscures the actual

trend of data.460

The mean absolute percent error (MAPE) of all time-step iterations are also reported in Table 1. The data for this table was

calculated by evaluating the percent error of FLORIS power predictions for the full wind farm at each time step, and then

solving for the mean over the entire time series. This calculation is expressed as:

MAPE =
1

n

n∑
i=1

|Pmodel,i−Pactual,i|
|Pactual,i|

, (17)
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where n is the number of time steps in the total simulation, Pactual,i is the recorded power output of the wind farm at time step465

i, and Pmodel,i denotes the predicted power output from the FLORIS model at time step i.

Table 1. Mean absolute percent error in total wind farm power output for all FLORIS models, tabulated for comparison within varying ranges
of wind speeds.

Mean Absolute Percent Error at Wind Speed (%)
FLORIS Simulation Model

< 5 m/s 5 - 11 m/s > 11 m/s all
Homogeneous 43.2 16.3 10.0 22.4
Heterogeneous 48.2 14.5 8.0 22.5
Heterogeneous with Turbulence- 61.4 11.8 5.5 24.2
Intensity Correction

When comparing the MAPE values in Table 1 with the histograms of Fig. 19, an increase in MAPE is observed in Table 1

for lower wind speeds of simulations that implemented heterogeneous and turbulence correction models. This is a trend that is

not characteristic of the histograms depicted in Fig. 19b. In reference to this observation, is important to note that the metric

of MAPE penalizes overpredictions with more weight than underpredictions. Furthermore, MAPE calculates mean with equal470

weight for all time steps in the data set, which is not always ideal for an indication of overall farm power output accuracy.

It is possible that the reported increase in MAPE with lower wind speeds may be an indication that the heterogeneous and

turbulence intensity correction models tend to produce more frequent overpredictions of power output in conditions where

wind speeds are near the cut-in speed. If this is true, further investigations may be conducted in future work to determine why

this is happening and how it could be circumvented.475

Although MAPE is an informative metric for analyzing the average percent error relative to a specific power output range,

methods that use unweighted averaging are sometimes misleading in the analysis of overall power prediction accuracy. The

relative error during time-step iterations with lower power output can seem large, even when the absolute error is insignificant

in comparison to the magnitude of total farm output.

A more comprehensive representation of relative model accuracy is presented in the following table, where the mean absolute480

error (MAE) is evaluated for total wind farm output. This was calculated by evaluating the absolute error at each time step,

and then taking the mean of these error values. This calculation is performed using Eq. 14, where n is the total number of time

steps in the simulation, Pactual,i is the recorded power output of the wind farm at time step i, and Pmodel,i is the predicted

power output from the FLORIS model at time step i.

By taking an average of absolute errors instead of relative errors, MAE is a more effective metric in representing the overall485

accuracy of total wind farm power prediction. The resulting MAE values are shown in Table 2, where a clear trend of increased

accuracy is observed for models that implement heterogeneity and turbulence-adjustment calculations, including the cases

where wind speeds are below 5 meters per second.

26



Table 2. Mean absolute error in total wind farm power output for all FLORIS models, tabulated for comparison within varying ranges of
wind speeds. Total rated wind farm output was scaled to 100 MW for reference.

Mean Absolute Error at Wind Speed (MW)
FLORIS Simulation Model

< 5 m/s 5 - 11 m/s > 11 m/s all
Homogeneous 4.7 25.7 38.7 22.6
Heterogeneous 4.2 22.8 31.4 19.4
Heterogeneous with Turbulence- 4.1 19.0 22.0 15.5
Intensity Correction

Lastly, values of MAE were also calculated to represent the accuracy of the model at each individual turbine within the

wind farm. Using this metric, Table 3 shows that simulations implementing the heterogeneous model and turbulence correc-490

tion calculations outperformed the homogeneous model in the prediction of individual turbine power output. This should be

expected, since the overall farm output in Table 2 followed a similar trend. The marked improvement of power predictions at

individual turbines suggests that the addition of the proposed heterogeneous and turbulence correction methods enhance the

FLORIS wake model by simulating farm-flow interactions with more thorough detail and greater accuracy.

Table 3. Mean absolute error in individual turbine power output for all FLORIS models, tabulated for comparison within varying ranges of
wind speeds. Total rated wind farm output was scaled to 100 MW for reference.

Mean Absolute Error at Wind Speed (MW)
FLORIS Simulation Model

< 5 m/s 5 - 11 m/s > 11 m/s all
Homogeneous 0.046 0.244 0.199 0.152
Heterogeneous 0.041 0.208 0.191 0.133
Heterogeneous with Turbulence- 0.041 0.202 0.179 0.129
Intensity Correction

To analyze the influence of wake effects in this study, an identical set of simulations were performed excluding FLORIS495

wake loss calculations, and the results for MAE at the overall farm and individual turbine levels are reported in Tables B3

and B4 in Appendix B. These simulations seem to indicate that the wake losses at the observed subject wind farm are relatively

small, due to the large spacing between turbines in the stream-wise direction. The study presented in Section 4.1 analyzes the

performance of the proposed heterogeneous model in a wind farm with more influential wake losses to give a more detailed

analysis of the effects of wake losses.500

As noted in Section 3.3, the implementation of methods utilized to simulate spatially variant wind direction causes the

heterogeneous model to be marginally less efficient in computation. To quantify this increased computational cost, each sim-

ulation was timed in this study. On average, these time records show that the simulations using the heterogeneous model took

less than 10% longer to compute than those using the homogeneous model. The choice to sacrifice computational efficiency

in the heterogeneous model was seen as a necessary trade-off to achieve greater detail and accuracy in simulations of more505

dynamic environments. Future developments to FLORIS will attempt to optimize the efficiency of this model, and reduce the

time necessary to simulate the effects of changing wind direction.
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5 Conclusions

This article introduces a method to include heterogeneous flow fields into the FLORIS simulation tool, as well as a turbulence

correction to the power reported at each turbine. To analyze the developed model’s improvements in accuracy, several FLORIS510

simulations with and without these changes were compared to large eddy simulations and SCADA data from a utility-scale

wind farm. The results of the FLORIS simulations indicate that these two modifications improve power predictions of the

wind farm at the turbine and wind farm level. The increased accuracy of this model’s power-prediction capabilities shows that

this method is more precise in predicting farm-flow interaction in heterogeneous and turbulent environments, which previous

versions of FLORIS were not able to simulate.515

Overall, the heterogeneous and turbulence-intensity correction modifications presented in this article showed a positive effect

on the accuracy of FLORIS capabilities. This improved model provides a more detailed quantitative and qualitative analysis of

wind farm flow, including the demonstration of heterogeneous flow in cut-plane velocity plots, and improved accuracy in power

prediction at individual turbines as well as total wind farm power output. Comparing FLORIS power predictions to LES, the

heterogeneous FLORIS model showed an 18.9% decrease in Mean Absolute Error (MAE) for total wind farm power output,520

and a 19.5% decrease in MAE for individual turbine power predictions compared to the homogeneous FLORIS model. In

comparisons to SCADA data, FLORIS simulations that implemented the heterogeneous flow model showed a 14.6% decrease

MAE for wind farm power output predictions compared to homogeneous model simulations. With the use of the proposed

Turbulence Intensity Correction method in addition to the heterogeneous model, the MAE in farm power output predictions

showed a 31.42% MAE decrease compared to the homogeneous model.525

These modifications to FLORIS have outlined a framework for a wake model that features atmospheric heterogeneity and

turbulence-intensity corrections to the power curve, and provides a platform for further developments in this area of research.

In agreement with this study, the findings of Fleming et al. (2020a) also indicate that this model shows promise in enhancing

the performance of FLORIS’s existing wind farm optimization controls, in addition to improving the accuracy of wind farm

power predictions.530

Further studies relating to the effectiveness of this model when applied to wind farm controls would be very beneficial

in determining future developments to these algorithms. Additionally, more extensive investigations should be considered

to evaluate the efficacy of the proposed model in a wider variety of operational conditions, particularly those with lower

wind speeds and extreme variations in wind direction. Other future work will investigate alternative interpolation methods for

the flow-field that consider the wind farm terrain map, capabilities for simulating more dynamic changes in wind direction,535

implementing enforcement of momentum conservation, and optimizing the model’s computational efficiency.
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Appendix A: Wind Farm characterization

Figure A1. Map of a selected section of the observed wind farm discussed in Section 4.2. This plot show the inter-distance between turbine
locations in the Northing (y) and Easting (x) directions. The distances shown on each axis are labeled relative to the average rotor diameter
(D) of the turbines in the wind farm.

Table A1. This table lists several key attributes that characterize the nature of the terrain and turbine layout of the observed wind farm
discussed in Section 4.2. Distance values are reported relative to the average turbine rotor diameter (D). Span-wise and stream-wise directions
are defined to be perpendicular and parallel to the average wind direction during the wind farm, respectively.

Measured Quantity Distance in terms of average rotor diameter (D)
Average stream-wise inter-distance 20.0 D
Average span-wise inter-distance 2.0 D
Range of elevation variation 2.2 D
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Appendix B: Additional Results

Table B1. Mean absolute error of total wind farm power output predictions for four different FLORIS models compared to LES simulations,
as discussed in Section 4.1.

FLORIS Simulation Model MAE of Wind Farm
Power Output (MW)

Heterogeneous 0.636
Homogeneous 0.784
Heterogeneous without wake losses 12.796
Homogeneous without wake losses 13.450

Table B2. Average mean absolute error of individual turbine power outputs for four different FLORIS models compared to LES simulations,
as discussed in Section 4.1.

FLORIS Simulation Model Average MAE of Individual Turbine
Power Output (MW)

Heterogeneous 0.124
Homogeneous 0.154
Heterogeneous without wake losses 0.389
Homogeneous without wake losses 0.428

Table B3. Analysis of wake influence in the observed wind farm discussed in Section 4.2. This table shows the mean absolute error in total
wind farm power output for three different FLORIS models, omitting FLORIS wake loss calculations. Total rated wind farm output was
scaled to 100 MW for reference.

MAE for Overall Wind Farm Power Output (MW)
FLORIS Simulation Model

< 5 m/s 5 - 11 m/s > 11 m/s all
Homogeneous 4.9 26.1 38.2 22.7
Heterogeneous 4.6 28.1 13.0 18.6
Heterogeneous with Turbulence- 4.0 24.9 21.9 18.5
Intensity Correction

Table B4. Analysis of wake influence in the observed wind farm discussed in Section 4.2. This table shows the average mean absolute error
of individual turbine power output for three different FLORIS models, omitting FLORIS wake loss calculations. Total rated wind farm output
was scaled to 100 MW for reference.

Average MAE of Individual Turbine Power Outputs (MW)
FLORIS Simulation Model

< 5 m/s 5 - 11 m/s > 11 m/s all
Homogeneous 0.045 0.244 0.198 0.152
Heterogeneous 0.0415 0.229 0.263 0.155
Heterogeneous with Turbulence- 0.042 0.223 0.263 0.152
Intensity Correction
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