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Abstract. Machine learning is quickly becoming a commonly used technique for wind speed and power forecasting. Many of

these methods utilize exogenous variables as input features, but there remains the question of which atmospheric variables pro-

vide the most predictive power, especially in handling non-linearities that lead to forecasting error. This investigation addresses

this question via creation of a hybrid model that utilizes an autoregressive integrated moving average (ARIMA) model to make

an initial wind speed forecast followed by a random forest model that attempts to predict the ARIMA forecasting error using5

knowledge of exogenous atmospheric variables. Variables conveying information about atmospheric stability and turbulence

as well as inertial forcing are found to be useful in dealing with non-linear error prediction. Wind direction and temperature are

found to be the most beneficial individual input features. Streamwise wind speed, time of day, turbulence intensity, turbulent

heat flux, wind direction, and temperature are found to be particularly useful when used in unison. The prediction accuracy of

the ARIMA-RF hybrid is compared to that of the persistence and bias-corrected ARIMA models. The ARIMA-RF model is10

shown to improve upon the latter commonly employed modeling methods, reducing hourly forecasting error by approximately

30% below that of the bias-corrected ARIMA model.

1 Introduction

Global wind power capacity reached almost 600 GW at the end of 2018 (GWEC, 2019), making wind energy a vital component

of international electricity markets. Unfortunately, integrating wind power into an existing electrical grid is difficult because15

of wind resource intermittency and forecasting complexity. For utility companies employing wind power, it is important to

estimate the aggregated load over a period of time to better balance grid resources, including long-term (1+ days ahead), short-

term (1-3 hours ahead) and very-short term (15 minutes ahead) forecasts (Soman et al., 2010; Wu et al., 2012). Forecasting

accuracy depends on site conditions, surrounding terrain, and local meteorology. Many wind farms are built in locations which

are known to amplify winds due to surrounding terrain (such as Lake Turkana in Kenya, Tehachapi Pass in California etc.),20

requiring bespoke forecasts for accurate predictions. Numerical weather prediction models (NWPs) fail at such complex sites

due to a lack of appropriate parameterization schemes suitable for local conditions (Akish et al., 2019; Bianco et al., 2019;

Olson et al., 2019; Stiperski et al., 2019). Therefore, statistical models and computational learning systems (such as an artificial

neural network or random forest) are likely better suited to provide accurate power forecasts. Since wind power production is
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heavily reliant upon environmental conditions, improvements in wind speed forecasting would allow for more reliable wind

power forecasts.

If we simplify our wind speed prediction process down to its core (which has no true relation to atmospheric motions), we

can imagine a system of atmospheric flow without external forcing. This would result in a constant streamwise wind speed

U (i.e. Uτ = Uτ−1; U is streamwise wind speed, τ a timestep; this assumes discrete timesteps for simplicity). In this case,5

a persistence or autoregressive forecast would have zero forecasting error and uncertainty. However, uncertainty increases

once we add an external force that we may represent by some variable x1. Now future wind speed may be seen to be Uτ =

f(Uτ−1,x1,τ−1). Assuming the external force is notable in strength and coupled with the inertia associated with winds, the

previous autoregressive model will now struggle to predict Uτ because it does not take into account our external forcing x1,τ−1,

resulting in an error ε (ετ is abbreviated to ε for simplicity). We can then break down our future wind speed into two parts:10

Uτ = Ûτ +ε where Ûτ is our autoregressive forecast that is only dependent on Uτ−1 (i.e. Ûτ = f(Uτ−1)). The prediction error

is thus skewed to represent the effects of the external force x1,τ−1 upon Uτ−1.

If we continue to add external forces (x1, x2, ... xn; n is the number of external forcing variables), our atmospheric sys-

tem becomes much more complex and non-linear due to interactions between forcing mechanisms. We can again obtain our

forecasting error as ε= f(Uτ−1,x1,τ−1,x2,τ−1, ... xn,τ−1), which we can discretize as ε= µε+ε′ (µε is the error bias, ε′ the15

error fluctuations about µε) given that we have a statistically significant sample size and the process is stationary. Squaring this

equation and taking the average gives us the discretized equation for the mean squared error ε2 = µ2
ε + ε′2, with ε′2 represent-

ing the error variance and overlines denoting the average over all samples (Lange, 2005). µ2
ε represents the bias and may be

removed via a simple bias-correction. The true concern is the error fluctuation term (ε′) which constitutes the error variance.

Assuming the external forcing variables (x’s) are normally distributed, we can break down ε′2 into two constituents (Ku et al.,20

1966):

ε′2 = σ2
xj

(
∂ε

∂xj

)2

+ 2

[
σxj ,xk

∂ε

∂xj

∂ε

∂xk

]
, j 6= k (1)

where σ2
xj

is the variance of xj and σxj ,xk
is the co-variance between xj and xk (subscript τ removed for simplicity).

Unless external forcing (or its coupling with Uτ−1) is minimal, the error is likely highly non-linear and chaotic (i.e. large ε′2).

Therefore, it behooves us to discover which forcing mechanisms and atmospheric variables are the best predictors of individual25

fluctuations ε′, which we will call "exogenous error".

Many studies that use machine learning (ML) techniques for wind speed or power forecasting utilize a handful of unadulter-

ated atmospheric variables such as wind speed, pressure, and temperature as input features (Mohandes et al., 2004; Ramasamy

et al., 2015; Lazarevska, 2018; Chen et al., 2019). Recently, a handful of investigations have begun to determine which vari-

ables may be most useful for these models. Vassallo et al. (2020a) showed that invoking turbulence intensity (TI) can vastly30

improve vertical wind speed extrapolation accuracy. Similarly, Li et al. (2019) showed that TI improves wind speed forecast-

ing on multiple timescales, while Optis and Perr-Sauer (2019) showed that both atmospheric stability and turbulence levels are

important indicators for wind power forecasting. Markedly, it has been shown by Cadenas et al. (2016) that multivariate sta-
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tistical models consistently outperform univariate models for wind speed forecasting. However, to the authors’ knowledge, the

question of which atmospheric variables are most useful in predicting exogenous error has not been addressed in the literature.

This investigation aims to determine if exogenous error may be, at least in part, predicted via a list of common meteorolog-

ical measurements by following a methodology similar to that performed by Cadenas and Rivera (2010). The autoregressive

integrated moving average (ARIMA) model first obtains an autoregressive forecast, and the forecasting error is extracted and5

bias-corrected. A random forest model is then utilized to discover patterns in the exogenous variables (and their relations to

the endogenous variable U ) that are predictive of exogenous error. The ARIMA-random forest hybrid model so constructed is

referred to as the ARIMA-RF model.

This study is not intended to provide a catch-all list of input features that should or should not be used for every future

study. Rather, it aims to inform future researchers and industry professionals as to what types of meteorological information10

must be used as ML inputs to predict the non-linear interactions between various atmospheric forces. Section 2 describes

the Perdigão field campaign (the data source for the work), site characteristics, and instrumentation used for data collection.

Section 3 provides an overview of the models utilized, testing process, and feature extraction/selection methodology. Section

4 provides testing results and Section 5 includes a brief discussion of the obtained results. Finally, conclusions can be found in

Section 6.15

2 Site, Data, & Instrumentation

Data for this study were taken from the Perdigão campaign, a multinational project located in central Portugal that took place

in the spring of 2017 (Fernando et al., 2019). The project site is characterized by two parallel ridges, both about 5 km in length

with a 1.5 km wide valley between them. These ridges, which are represented by the elevated contours in Fig. 1, run northwest

to southeast and rise about 250 m above the surrounding topography, making the site highly complex and increasing forecasting20

difficulty. The ridges will be referred to as the northern and southern ridge.

A variety of remote and in situ sensors were positioned in and around the valley to provide an accurate and thorough

description of the surrounding flow field. Foremost among these sensors was a grid of meteorological towers which ran both

parallel and normal to the ridges. One 100 m tower located on top of the northern ridge (white star in Fig. 1) is utilized in this

study. This tower had sonic anemometers (20 Hz native measurement resolution) at 10, 20, 30, 40, 60, 80, and 100 m above25

ground level (AGL) as well as temperature sensors at 2, 10, 20, 40, 60, 80, and 100 m AGL. Information about tower data

quality control, including corrections for boom orientation and tilt, may be found in NCAR/UCAR (2019). No clear tower

wake effects could be discerned. The tower data in the Perdigão database has been averaged into 5-minute increments by data

managers at NCAR.

Sensors at 20 and 100 m AGL were chosen because of the high percentage (> 99% for all variables except temperature at30

100 m AGL, which was available for ∼ 95% of the periods) of clean data at these elevations. The utilized data spans three

months, running from 10 March – 16 June 2017. Data at 100 m were correlated with that at 20 m, and missing data were filled

using the variance ratio measure-correlate-predict method (Rogers et al., 2005). Any periods unavailable at both heights were
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Figure 1. Contour plot of the campaign topography in meters above mean sea level (MSL). The white star represents the 100 m tower

location on the northern ridge.

filled using linear interpolation with Gaussian noise. All periods are required for proper functionality and assessment of the

ARIMA model, and manually filled periods are not expected to make a noticeable difference in the findings.

The augmented data were averaged into 10-minute, hourly, and three-hour segments at a 5-minute moving average in order

to create a robust dataset (over 28,000 samples). These three datasets (representing the same information at different averaging

intervals) were then randomly split into training (75% of the input-output pairs) and testing (the final 25% of input-output pairs)5

sets. To ease concerns of the model overfitting the overlapping dataset, each internal node in the random forest model (which

already has built-in mechanisms that severely hinder overfitting, as described by Breiman (2001) and James et al. (2013); model

described in Section 3.2) was required to contain at least 100 samples in order to split (i.e. each branch of every decision tree

stops splitting once there are less than 100 samples).

The target streamwise wind speed, or that to be forecasted, is located at 100 m AGL. Squared buoyancy frequency (N2),10

Richardson numbers (flux Rif and gradient Rig), and temperature gradient (∂T/∂z) were calculated between 20 – 100 m AGL.

Friction velocity (u∗) was found at 20 m, just above surface roughness height (Fernando et al., 2019). All other input variables

utilized were from 100 m AGL.

3 Methodology

This investigation utilizes two modeling methods, ARIMA and random forest regression, to create a hybrid model (ARIMA-15

RF) wherein the ARIMA model is first used to get a linear, univariate wind speed forecast. The ARIMA forecast is bias-

corrected and the exogenous error is then extracted and used as the target variable for the random forest. The random forest’s
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goal (and the goal of the study) is to determine which atmospheric variables and forcing categories are useful for the prediction

of exogenous error. After the most important individual variables have been established, combinations of these input features

are tested in an effort to determine whether multiple variables and/or informational categories can be coupled to improve

exogenous error prediction. Finally, the ARIMA-RF results are compared with those of the persistence method and bias-

corrected ARIMA model. 75% of the samples (input-output pairs representing the training set) are randomly selected and used5

for model construction and bias calculation. The final 25% of the samples are set aside for testing to enable a direct, blind

comparison between all models. Section 3.1 details the ARIMA model, while Section 3.2 describes random forest regression.

Sections 3.3 and 3.4 provide more detail on the feature extraction and selection methodology as well as the testing procedure.

3.1 ARIMA

ARIMA (Box et al., 2015) is a univariate statistical model used for time series forecasting. It is predicated on the combination10

of three functions: an autoregressive function that uses lagged values as inputs, a moving average function that uses past

forecasting errors as inputs, and a differencing function used to make a time series stationary. In its simplest form, the next

term in a time series sequence, yτ , is given by

yτ =

p∑
i=1

φiyτ−i +

q∑
j=1

Θjετ−j + ετ (2)

where p and q are the orders of the autoregressive and moving average functions, respectively, φi and Θj the ith autoregres-15

sive and jth moving average parameters, respectively, yτ−i the ith lagged value, ετ−j the jth past prediction error, and ετ the

error term at time τ . The order of differencing is given by the parameter d and does not show up directly in Eqn. 2.

The dataset was tested for long-term statistical stationarity via the Augmented Dickey Fuller Test (Dickey and Fuller, 1979)

using the statsmodels Python module (Seabold and Perktold, 2010). The test, to a statistically significant degree, proved that the

wind speed data contains no embedded trends or drift (e.g. changes in the mean or variance of the wind speed due to long-term20

variability). Therefore, the differencing parameter d was set to 0 (This turns the ARIMA model into an ARMA model, but we

stick with the term ARIMA for uniformity). The autoregressive and moving average parameters used, p= 2 and q = 1, were

determined via minimization of the Akaike information criterion (Shibata, 1976) and empirical testing. Increasing parameters

beyond this point did not lead to improved ARIMA accuracy. Although the wind speed data is stationary, general atmospheric

seasonality (Chervin, 1986; Ramana et al., 2004) is expected to have an impact on multiple input features, requiring training25

and testing data to be randomly shuffled.

3.2 Random Forest Regression

Random forest regression (Breiman, 2001) is an ensemble method that is made up of a population of decision trees. Bootstrap

aggregation (bagging) is used so that each tree can randomly sample from the dataset with replacement, while only a random

subset of the total feature set is given to each individual tree. The trees can be pruned (truncated) to add further diversification.30
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After construction, the population’s individual predictions are averaged to give a final prediction of the target variable. Ideally,

this process results in a diversified and decorrelated set of trees whose predictive errors cancel out, producing a more robust

final prediction.

An advantage of random forests is their ability to determine the importance of all input features for the predictive process.

This is done by calculating the mean decrease impurity, or the decrease in variance that is achieved during a given split in each5

decision tree. The decrease in impurity for each input feature can be averaged over the entire forest, providing an approximation

of the feature’s importance for the prediction (feature importance estimates sum to 100% to ease interpretability). However,

if two input variables are highly correlated (as is expected when testing atmospheric forcing), it is highly unlikely that the

reported values will accurately represent each variable’s significance (Breiman, 2001). Therefore, each variable is first tested

individually to determine its individual benefits prior to coupling with other exogenous variables. To assist the random forest10

in representing the dynamic nature of atmospheric processes, input variables are taken from the previous two timesteps (i.e.

input feature U comprises Uτ−1 and Uτ−2).

The constructed random forest model contains 1,000 trees for tests of individual variables and 1,500 trees for tests of variable

combinations. This was found to be sufficiently large to ensure prediction stability (to within a root mean square error of±0.001

m s−1), and the inclusion of additional trees does not result in higher prediction accuracy. To ease concerns of overfitting, each15

internal node was required have at least 100 samples in order to split (this truncation is a form of regularization). The random

forest model was built using the scikit-learn Python library (Pedregosa et al., 2011).

3.3 Feature Extraction and Selection

In an effort to ensure that the findings are applicable to real-world campaigns, we limit our sources of information to those

which may be measured by a typical meteorological mast containing sonic anemometers alongside temperature sensors. Using20

this information, we can write our future wind speed Uτ as a function of the following variables, which were broken down into

their mean and fluctuating values:

Uτ = f
(
Ui,θi,Wi,Ti, ti,u

′
i,θ
′
i,w
′
i,T
′
i

)
(3)

where Ui and θi are the mean streamwise wind speed and direction, respectively, Wi the mean vertical wind speed, Ti the

mean temperature, ti the time of day, u′i the fluctuating horizontal velocity, θ′i the fluctuating wind direction, w′i the fluctuating25

vertical velocity, and T ′i the fluctuating temperature at each previous timestep i. Unfortunately, θ′ was not available within the

dataset utilized (which had already been 5-minute averaged) and is therefore ignored for this study. Previous analysis, however,

has shown that θ′ varies inversely with U in complex terrain (Papadopoulos et al., 1992), and we may therefore assume its

influence is largely captured by U .

Although these unadulterated features give us an idea as to how the system is working at the moment, they may not explicitly30

represent the relevant atmospheric forcing mechanisms. Our list of measurements allows us to break down our system into two

principal forcing components: buoyancy and inertial forcing (which indirectly includes pressure gradient forces). Each of these
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Figure 2. Illustrative breakdown of the scales and variables related to inertial and buoyant forcing. θ′ is not shown as it is not utilized in the

analysis.

forces can be further discretized into large and small scales (also called mean and fluctuating values; typically separated by at

least one order of magnitude).

Fig. 2 shows an illustrative breakdown of the two main forcing mechanisms alongside a list of extracted descriptor variables.

The definitions and formulations of all non-obvious extracted variables used in this study can be found in Appendix A. From

this figure, it is clear that the variables in Eqn. 3, when manipulated, are able to describe both the inertial and buoyant forces5

at multiple scales. Large-scale inertial forcing can be described by the local mean wind speed and direction (U and θ) or

vertical velocity W , while small-scale inertial forcing can be described by variables such as the fluctuating (standard deviation

of) velocity σu, friction velocity u∗, and the turbulence kinetic energy TKE. Likewise, large-scale buoyancy forcing can be

described by the squared buoyancy frequency N2, the temperature gradient ∂T /∂z , or by proxy values such as the time of

day t or temperature T (which, on average, is higher during the day and lower at night; stability parameters based on Monin-10

Obukhov similarity theory have been considered ill-suited for complex terrain flows because of the breakdown of underlying

assumptions (Fernando et al., 2015), and hence were not used in this study). Small-scale buoyancy effects can be described

by the turbulent heat flux w′T ′. The correspondence between forces and internal parameters can also be described by non-

dimensional variables such as the gradient Richardson number Rig , flux Richardson number Rif , turbulence intensity TI , and

normalized friction velocity u∗/U . These derived non-dimensional variables, or extracted features, are typically ignored by15

current ML models in lieu of raw features such as those listed in Eqn. 3.

Extracted variables like those in Fig. 2 may not provide any more information than the raw variables in Eqn. 3. However,

they may ease the burden on the model by discretizing (or directly relating) informational categories, therefore reducing infor-

mational overlap and noise, providing more periodic/predictive power, and more accurately describing the underlying system.
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Further, such well-conceived meteorological variables have been seen to be useful for atmospheric prediction (Kronebach,

1964; Li et al., 2019). In theory, given enough data, the model should be able to decipher and interpret these extracted fea-

tures on its own. Unfortunately there often isn’t enough collected data for this to happen organically. Instead, by providing

better information we can create a simpler, cheaper, more robust model that requires less training data and construction time.

Selected features will ideally represent the underlying system as accurately as possible without providing noisy or redundant5

information.

3.4 Testing

In an effort to understand the predictive capabilities of each variable, initial tests only include individual atmospheric input

features. Once each input feature has been tested separately, a feature set that utilizes all input features is tested. Feature

importance estimates are then extracted from the random forest model and various user-selected combinations of the most10

important input features are tested. It must be noted that only select input feature sets were tested in this investigation due to

the sheer multitude of potential feature sets.

In order to relieve any timescale bias, forecasts are made across multiple timescales. Typically, wind power utility operators

require single-step short range power forecasts run hour-by-hour for a few days to reduce unit commitment costs. The forecast

skill of observation-based methods generally reduces with forecast lead time within an hour, and numerical models have higher15

skill in forecasting larger time leads (> 3 hours) (Haupt et al., 2014). Statistical learning methods have proved to be particularly

effective from about 30 minutes to approximately three hours ahead (Mellit, 2008; Wang et al., 2012; Yang et al., 2012; Morf,

2014), and roughly this time frame is thus the focus for this study. The shortest forecast predicts wind speeds 10 minutes

ahead, roughly within the turbulent spectral band (Van der Hoven, 1957). Forecasts are also made one and three hours ahead,

which are within the spectral gap between the turbulent and synoptic spectra and approach the six-hour period wherein NWP20

models become particularly useful (Dupré et al., 2019). These are all single-step forecasts, which is to say that the averaging

timescale increases with the forecasting timescale (e.g. a 10-minute forecast predicts 10-minute averaged wind speed, whereas

a three-hour forecast predicts three-hour averaged wind speed). Each test is performed 10 times to ensure forecasting stability.

Two metrics are utilized to determine how well the random forest predicts exogenous error. The root mean squared error

(RMSE) of the bias-corrected ARIMA model is found, giving a metric of the true exogenous error. The random forest model is25

then trained to predict the exogenous error, combined with the ARIMA model, and the newly constructed ARIMA-RF is used

to forecast wind speeds. The reduction in RMSE (which comes exclusively from the random forest’s prediction of exogenous

error) is then found for the test set. The coefficient of determination (R2) between the true and predicted exogenous error is

used to determine the amount of error variability captured by the random forest model. Eqn. 4 and Eqn. 5 describe both metrics,
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Figure 3. Percent reduction (or increase) in RMSE obtained by the random forest model when given select meteorological inputs. Blue,

orange, and grey bars represent inertial, stability, and turbulence input features, respectively.

wherein Um is the target wind speed, Ûm the predicted wind speed, ε′m the true exogenous error, ε̂′m the predicted exogenous

error, ε′ the mean exogenous error (approximately zero), m each individual sample, and M the sample size.

RMSE =

√√√√ 1

M

M∑
m=1

(Um− Ûm)2 (4)

R2 = 1−
∑M
m=1(ε′m− ε̂′m)2∑M
m=1(ε′m− ε̄′)2

(5)

4 Results5

Fig. 3 shows the reduction (or increase) in forecasting RMSE obtained via the random forest model for each individual in-

put feature. Specific RMSE and R2 values obtained for these cases may be found in Table B1 in Appendix B. The variables

are broken down into three distinct categories: inertial (large scale dimensional variables signifying inertial forces in Fig. 2),

stability (blue and purple regions in Fig. 2 which are akin to atmospheric stability), and turbulence variables (small scale

and non-dimensional inertial variables in Fig. 2). It is immediately clear that there is a distinction between the results for the10

10-minute forecast and those for the hourly and three-hour forecasts. Each random forest prediction of 10-minute exogenous

error using individual input features resulted in an increase in RMSE (or negative RMSE reduction; Fig. 3a), indicating that
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Figure 5. Correlation between true and predicted exogenous error using all input features. a) shows correlation for the 10-minute prediction,

b) for the hourly prediction, and c) for the three-hour prediction. Black line denotes the best-fit line, an equation for which is given above

each plot. Corresponding R2 values are given in the bottom row of Table B2.

exogenous error at such small timescales is highly chaotic and unpredictable based off of the information from any single atmo-

spheric variable. In fact, these tests show that any correlative patterns observed between the utilized meteorological variables

and exogenous error are likely circumstantial and lead to deleterious predictions.

Fig. 3b and c show reduction in RMSE for hourly and three-hour forecasts, respectively. Both θ and T appear to be the most

beneficial individual input features at these timescales, while t and Rig are the least helpful. TI , σu, and TKE are the most5

beneficial turbulence variables and provide similar levels of improvement at both the hourly and three-hour timescales. Inter-

estingly, turbulence variables as a group continue to provide valuable information even for multi-hour forecasting timesteps.

The heterogeneity of improvement (over all individual input features) increases with prediction timescale, with θ reducing

exogenous error by over 12% for the three-hour forecast.
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Figure 6. Feature importance for the prediction of exogenous error when all input features are given to the random forest model. a) shows

importance for the 10-minute prediction, b) for the hourly prediction, and c) for the three-hour prediction. Blue bars denote inertial variables,

orange denote stability variables, and grey bars denote turbulence variables. Importance values for each test sum to 100%.

Utilizing all input features within the random forest resulted in drastic improvements in exogenous error prediction. Fig. 4

shows a comparison of the RMSE obtained by the ARIMA-RF model to that obtained by the persistence and bias-corrected

ARIMA models. The bias-corrected ARIMA model’s RMSE amounted to 0.523, 0.852, and 1.251 m s−1 for the 10-minute,

hourly, and three-hour forecasts, respectively. The random forest model, utilizing all input features, reduced these RMSE

values by 7%, 32%, and 56%, respectively (RMSE values given in Table B2 in Appendix B). The correlation between true and5

predicted exogenous error can be seen in Fig. 5. It is clear that, as prediction timescale increases, the correlation between true

and predicted exogenous error increases, with the three-hour prediction having an R2 value of 0.801.

Feature importance estimates were also obtained from the all-input test cases and can be seen in Fig. 6. A handful of

variables, namely θ, U , TI , t, T , and w′T ′, are particularly useful for the hourly and three-hour predictions. Because U , θ,

and t are all variables that can be obtained from a simple cup anemometer and wind vane, they are used as the "base variables"10

when testing discriminate input feature combinations. The results of these tests, which may be found in Table B2 in Appendix

B, prove that a large majority of the model’s predictive power (i.e. a majority of the relevant input information) is contained

within these six variables.

5 Discussion

There is a clear distinction between the results obtained for the 10-minute exogenous error predictions and those obtained15

for the hourly and three-hour predictions. All atmospheric input features, when used individually for the 10-minute forecasts,

resulted in a faulty prediction of error. This is likely due to the highly chaotic nature of wind speeds at the 10-minute timescale.

Typically the large-eddy turnover timescale for the lower atmosphere is 10-20 minutes (specifically during daytime), and
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averaging timescales approaching or less than this timescale exclude information on more stable and deterministic large eddies,

thus making predictions more prone to random errors. This is exemplified by the work of Van der Hoven (1957), who shows

that a 10-minute average is within the turbulent peak of the wind speed spectrum. The lack of large eddy influence results

in a wind speed signal that is replete with random fluctuations originating in the inertial subrange, adding substantial noise

to the prediction. These fluctuations overwhelm the ML model’s pattern recognition capabilities, reducing the random forest5

prediction to a noisy guess. Such ML models will always make predictions based on patterns in the training data, even when

those patterns are erroneous and do not hold for the testing dataset. This results in error predictions that are not correlated with

the true exogenous error (as indicated by 10-minute R2 values in Table B1).

As the forecasting timescales increase, smaller-scale turbulent fluctuations average out and the random forest model can

recognize predictive patterns between atmospheric input features and the non-linear exogenous error. Tests involving individual10

atmospheric variables effectively represent the magnitude of the first term on the right side of Eqn. 1. These tests show that

predictions involving individual variables (or at least those tested) can only reduce exogenous error by approximately 4% and

12% for the hourly and three-hour predictions, respectively. While this is a considerable error reduction, the meteorological

variables are most beneficial when utilized in unison.

A list of feature importance estimates, as determined by a test incorporating all input features, is shown in Fig. 6. Many of15

the features are correlated, meaning that exact importance values are likely misleading. Nevertheless, the reported importance

estimates are likely a good indicator as to which features, when used in combination with others, are most useful in predicting

exogenous error. θ is both the best individual predictor and the most important feature for all tests, likely because our measure-

ments are taken atop an asymmetric ridge in complex terrain. As is detailed in Fernando et al. (2019), the complex terrain leads

to an ensemble of topographically induced ridge-top flow features such as jetting, mountain waves, and reversed flows which20

have a large impact at the measurement location.

Fig. 7 shows how the ARIMA-RF model (utilizing the full input feature set) performs across the domain of an integral set

of inertial, turbulence, and stability input features. The 10-minute prediction performs best at wind speeds up to 4 m s−1 (Fig.

7a). Above this limit, the model’s RMSE gradually increases with increasing wind speed. Hourly and (particularly) three-hour

predictions perform worse than the 10-minute predictions for wind speeds below 3 m s−1. However, both models are most25

accurate at moderate wind speeds between 3-7 m s−1. Faster wind speeds (≥8 m s−1) tend to cause an increase in RMSE for

all three models, perhaps due to a relatively low sample size. Wind speeds between 3-7 m s−1 make up more than 50% of the

observed periods, whereas wind speeds ≥ 8 m s−1 make up less than 20% of the periods. All models observed are accurate to

within 0.7 m s−1 in the operating region of most wind turbines (4 – 12 m s−1; RMSE values above this limit are not shown

due to a statistically insignificant number of testing samples). The ARIMA-RF hourly forecast obtains a correlation coefficient30

of 0.71 with the true wind speed, akin to that of numerical models in complex terrain (Yang et al., 2013).

The ARIMA-RF model’s accuracy as a function of time is shown in Fig. 7b. The difference between the 10-minute and

hourly/three-hour forecasts is apparent, as the former is more accurate during nocturnal conditions because of the smaller

integral timescale of turbulence (∼O(1) minute) whereas the latter is most accurate during the afternoon hours (integral

timescales ∼O(10) minutes). This discrepancy is largely based upon atmospheric stability, as the 10-minute prediction is35
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Figure 7. RMSE obtained by the ARIMA-RF tests incorporating all input features partitioned by (a) wind speed, (b) hour of the day (local

time), (c) wind direction, and (d) TKE.

∼10% more accurate during stable periods than unstable; the opposite is true for hourly and three-hour timescales, which

perform 17% and 9% better, respectively, during stable periods (Table B3 in Appendix B). Relatively high turbulence during

the daytime clearly hampers the model when forecasting 10 minutes ahead (Fig. 7d). However, as these fluctuations average

out over larger timescales, the model is able to more accurately predict future wind speeds. Interestingly, the model struggles

to predict an hour or more ahead during stable conditions, as the RMSE of both the hourly and three-hour models spike during5

the nocturnal transition (sunset typically between 2000 – 2100 local time). This spike in RMSE coincides with peak wind ramp

hours (defined as wind speed changes of 20% and 50% for hourly and three-hour forecasts, respectively) which tend to occur

between 1900 – 2300 local time (not shown). Stable atmospheric conditions can lead to phenomena such as mountain waves

and flow jetting (Fernando et al., 2019; Vassallo et al., 2020b), features which could lead to such wind ramp events and would

be difficult for the statistical models to predict 1-3 hours ahead.10

Fig. 7c shows that the ARIMA-RF model performs significantly better for northeasterly flows compared to westerly flows.

This discrepancy, particularly on the 10-minute timescale, is a result of complex topography upstream (during periods with

westerly winds) which tends to create turbulent bursts that are averaged out at larger lead times. Fig. 7d shows that 10-minute

forecasts perform approximately 40% better during low TKE (≤ 0.1 m2 s−2) periods compared to high TKE (≥ 0.8 m2
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s−2) periods. However, the nearly constant RMSE for hourly and three-hour forecasts shows that the ARMIA-RF model is not

affected by varying stochastic processes at larger averaging scales. There is a clear point of directional discontinuity on the

10-minute timescale, as the model performs drastically better when wind is north-northeasterly (NNE; 0-30◦) as opposed to

north-northwesterly (NNW; 330-360◦). This can be explained by the fact that NNW flows tend to exhibit much higher TKE

values than do NNE flows (Fig. B1 in Appendix B). Many of the input features are clearly interrelated, adding another layer5

of complexity to the prediction process and further emphasizing the need to extract necessary meteorological information via

prudent feature engineering.

The six most important features for the hourly and three-hour predictions are identical (although scrambled), and were

therefore used to test discriminate feature set combinations. All tests with multiple input features contained U , θ, and t.

There are two reasons for prioritizing these three variables: they prove to be some of the most important input features for10

all timescales (Fig. 6) and they can all be captured by a simple cup anemometer and wind vane rather than a more expensive

sonic anemometer. These three features, when used in conjunction, were able to capture about 66% of the maximum error

reduction seen for all timescales. Discriminate input sets incorporating only U , θ, t, TI , w′T ′, and T are able to capture

over 90% of the exogenous error caught by the tests incorporating all input features, indicating that almost all of the relevant

information in our inputs can be retrieved from these six variables. Notably, many of the most important input features (U , θ,15

t, T , and W ) are directly measurable and need not be extracted (although T and W cannot be captured by a cup anemometer).

The most important variables that require extraction (i.e. values that are not direct measurements), TI , TKE, and w′T ′, all

contain small-scale (fluctuating) forcing components, indicating that small-scale processes may be more easily captured by

ML models after domain-specific interpretation. These small-scale variables provide significant predictive power, even at a

multi-hour timescale. The testing results from the study show that, in order to achieve an optimal forecast of exogenous error,20

these small scales must be included as an input for the predictive model.

Tests combining multiple atmospheric variables are particularly useful because they incorporate the second term on the right

side of Eqn. 1, an indication of how the exogenous error changes depending on the input features’ co-variance. This is especially

true for the testing case incorporating all input features. As expected, this case provided the best predictions of exogenous error.

The correlation between the predicted and true exogenous error (Fig. 5) dramatically increases with increasing timescales, with25

the best three-hour random forest prediction capturing 80% of exogenous error variability. As Fig. 4 shows, the best ARIMA-

RF error is roughly 0.5 m s−1 for all timescales even though both the persistence and bias-corrected ARIMA models get worse

as timescales increase. This is an encouraging result, in that meteorological forecasting models need not necessarily get worse

with time (although the averaging timescales likely must increase proportionately). Exogenous error prediction gets far better

with increasing timescales, with the best random forest prediction reducing forecasting RMSE by over 50%. There appears to30

be a floor (0.5 m s−1) on the predictability of exogenous error, indicating that there may be certain atmospheric information

missing from the set of input features. This information could come from other external forces or could be a result of forcing

at scales that have not been captured by our current input feature set.
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6 Conclusions

Exogenous error arises from atmospheric forcing that is ignored or misrepresented in the modeling process. It has been shown

that this error, or a portion thereof, can be predicted by an ML model given relevant atmospheric information. θ and T were

found to be particularly beneficial as individual inputs, while the combination of U , θ, and t, features which may be derived

from a simple cup anemometer and weather vane, were able to provide a majority of the maximum error reduction seen at every5

timescale. Domain-specific feature extraction was found to be particularly useful for input features relating small-scale forcing,

and these turbulence variables were found to have significant predictive power even for multi-hour forecasts. The lowest RMSE

value was relatively constant at all prediction timescales, indicating that there is additional relevant atmospheric information

that this list of inputs does not capture. The results are promising, however, in that they illustrate that forecasting accuracy need

not decrease at large timescales. In fact, at large timescales turbulent fluctuations average out, allowing mesoscale and synoptic10

forces to provide a clearer signal for exogenous error prediction.

While the exact results of this investigation are site-specific, the findings are expected to be generally applicable to numer-

ous wind projects, especially those located in complex terrain. Prudent implementation of atmospheric forcing information,

particularly that which is non-linear or derived via coupling of multiple forces, is crucial for the prediction of exogenous error

and must be addressed to obtain optimal forecasting results. This study supports the supposition that a hybrid model using ML15

techniques to correct a simpler statistical predictor (such as an ARIMA model) can be effective for wind speed forecasting.

Further improvements are still required to more accurately represent atmospheric forcing. Gridded meso or synoptic-scale

information would allow the model to predict transitional periods including weather fronts and drastic wind ramp events. Mul-

tiple scales of forcing should also be incorporated to improve the pattern recognition capabilities of ML techniques. Additional

information about microscale, mesoscale, and synoptic events would better depict atmospheric forcing and momentum, and20

the effects of seasonality must be accounted for when possible. It is also worth exploring the model’s capabilities when the

dataset is not randomly shuffled (i.e. whether a model trained on past years’ data can accurately predict exogenous error over

an entire year). Hopefully, this study will be a forerunner for the improved incorporation of atmospheric physics within ML

modeling.

Code and data availability. Data from the Perdigão campaign may be found at https://perdigao.fe.up.pt/. Due to the multiplicity of cases25

analyzed in this study, example processing and modeling codes can be found at https://github.com/dvassall/.

Appendix A: Input Features

Atmospheric variables were measured using sonic anemometers and temperature sensors along a single 100 m tower. When

possible, missing data from the 100 m sensors were filled via correlation with the 20 m sensors using the variance ratio measure-

correlate-predict method (Rogers et al., 2005). There were no periods with functional 100 m sensors and nonfunctional 2030

m sensors. All periods without any measurements from both sets of sensors (15 5-minute periods) were filled using linear
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regression with Gaussian white noise. Many of the input features used in the study required derivation. A description of

necessary derivations are given below.

Friction velocity is defined as u∗ =
(
u′w′

2
+ v′w′

2)1/4
and was measured at 20 m AGL, just above canopy height (Fer-

nando et al., 2019). Turbulence kinetic energy is defined as TKE = u′2+v′2+w′2

2 and was measured at 100 m AGL. Buoyancy

frequency squared is typically defined as (see Kaimal and Finnigan (1994) for details of all parameters that appear below)5

N2 =
g

ρ0

∂ρ

∂z
=

g

Tpv0

∂Tpv
∂z

(A1)

where g is the gravitational force, ρ the air density, z the height AGL, Tpv the virtual potential temperature, and subscript 0

indicates reference variables in using the Boussinesq approximation. The gradient Richardson number is defined as

Rig =
N2(

∂u
∂z

)2
+
(
∂v
∂z

)2 (A2)

where u and v are the two horizontal wind speed components. The flux Richardson number is defined as10

Rif =

g
Tv
w′T ′

u′w′
(
∂u
∂z

)
+ v′w′

(
∂v
∂z

) , (A3)

where Tv is the virtual temperature while u′w′ and v′w′ (both measured at 100 m AGL alongside w′T ′ and Tv) are the

Reynolds stresses that indicate the flow’s vertical momentum flux. Rif is typically used in conjunction with a stably stratified

atmosphere (Lozovatsky and Fernando, 2013). It is used here in the general sense as it is a measure of the ratio between buoyant

energy production and mechanical energy production (associated with inertial forces) related to Fig. 2. Negative N2 values,15

corresponding to convective atmospheric conditions, are set to 0. Rig and Rif are limited to a maximum of 5 and minimum

values of 0 and −5, respectively, to remove extremes in both variables. Turbulence intensity is the ratio of fluctuating to mean

wind speed, or TI = σu/U . Both hour of the day and wind speed were broken into two oscillating components in order to

eliminate any temporal or directional discontinuity.

Appendix B: Testing Results & Analysis20

Table B1 presents the RMSE obtained by the bias-corrected ARIMA model (total exogenous error) and the ARIMA-RF using

individual features. R2 values denote the correlation between the true and predicted exogenous error. Features are separated

into inertial (top), stability (middle), and turbulence (bottom) inputs as described in Section 4. Table B2 presents the RMSE

values obtained by the persistence and bias-corrected ARIMA models alongside the RMSE and R2 (between true and predicted

exogenous error) values obtained by the ARIMA-RF while utilizing input feature combinations that are of particular interest.25

The final row in Table B2 shows the results of the ARIMA-RF when all input features are utilized.
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Table B3 shows how the ARIMA-RF model (with the full input feature set) performs based on atmospheric stability. Stable

periods are defined as those which have N2 values greater than zero, unstable as those which have N2 values of zero.

Fig. B1 shows average TKE partitioned by direction (30◦ bins) for 10-minute periods. Northeasterly flows display the

lowest TKE values, whereas westerly flows display the highest average TKE.

10 Minute Hourly 3 Hour

Model/Input RMSE R2 RMSE R2 RMSE R2

Bias-corrected ARIMA 0.523 - 0.852 - 1.251 -

U 0.526 -0.005 0.837 0.033 1.162 0.129

θ 0.527 -0.004 0.816 0.075 1.094 0.220

W 0.527 -0.007 0.842 0.022 1.179 0.093

t 0.527 -0.013 0.855 0.003 1.240 0.021

N2 0.526 -0.008 0.838 0.034 1.186 0.097
∂T/∂z 0.527 -0.012 0.831 0.040 1.162 0.129

T 0.527 -0.005 0.817 0.078 1.126 0.174

w′T ′ 0.525 -0.006 0.836 0.035 1.162 0.137

Rif 0.526 -0.008 0.849 0.012 1.202 0.082

Rig 0.524 0 0.847 0.010 1.238 0.025

σu 0.526 -0.016 0.837 0.027 1.160 0.143

u∗ 0.528 -0.017 0.849 0.014 1.188 0.081

TKE 0.526 -0.014 0.834 0.039 1.157 0.149

TI 0.527 -0.008 0.836 0.038 1.156 0.160
u∗/U 0.528 -0.008 0.845 0.023 1.174 0.109

Table B1. The top row shows RMSE (m s−1) obtained by the bias-corrected ARIMA model. Below are the resulting RMSE and R2 (between

true and predicted exogenous error) values from ARIMA-RF predictions utilizing individual inputs for all forecasting timescales. Input

features are separated into inertial (top), stability (middle), and turbulence (bottom) variables, as described in Section 4.
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10 Minute Hourly 3 Hour

Model RMSE R2 RMSE R2 RMSE R2

Persistence 0.525 - 0.873 - 1.326 -

Bias-corrected ARIMA 0.523 - 0.852 - 1.251 -

Input Features RMSE R2 RMSE R2 RMSE R2

U , θ, t 0.501 0.076 0.672 0.369 0.750 0.618

U , θ, t, T 0.496 0.096 0.628 0.453 0.657 0.711

U , θ, t, TI 0.495 0.099 0.643 0.424 0.694 0.681

U , θ, t, w′T ′ 0.497 0.087 0.651 0.404 0.704 0.665

U , θ, t, TI , w′T ′, T 0.490 0.116 0.606 0.491 0.610 0.755

All input features 0.489 0.116 0.581 0.533 0.549 0.801

Table B2. RMSE (m s−1) obtained by the persistence and bias-corrected ARIMA models as well as the RMSE obtained by the ARIMA-

RF when utilizing select input feature combinations. R2 values between true (defined as the bias-corrected ARIMA error) and predicted

exogenous error is also reported for each test case. The final row shows the final test which uses all input features.

Timescale Stable Unstable

10 minutes 0.530 0.476

1 Hour 0.504 0.606

3 Hours 0.511 0.561

Table B3. RMSE (m s−1) obtained by the ARIMA-RF model (with the full input feature set) based on stability (as defined by N2) of the

forecasted time period.
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Figure B1. Average 10-minute TKE by incoming flow direction. Wind direction is partitioned into 30◦ bins.
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