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We want to sincerely thank the reviewer for once again taking the time to provide an in-depth 
review of the paper. The comments have helped us make considerable improvements to the 
manuscript and we hope the updated version is acceptable for publication. 
 
Major Comments: 
 
1. Page 3 Line 28: In response to my previous comment on the topic, you now state that “No clear 
tower wake effects could be discerned.” However, I do not think you have performed a necessarily 
correct check. The fact that wind speed and TKE are similar in magnitude for opposite wind 
directions does not necessarily mean that tower wake effects are not present: why should wind 
speed and TKE be equal in the first place for opposite wind directions? The correct way to assess 
potential impacts of tower wake effects would be to compare concurrent wind speed and TKE 
values as a function of wind direction as measured by two sonic anemometers mounted on opposite 
booms on the same met tower at the same height. From my knowledge, this configuration can be 
found in one of the meteorological towers at Perdigão. I strongly advise the authors to re-assess 
this aspect.  

We were unaware that there were two sonic anemometers at the same height on a single 
tower, and we have since performed the suggested assessment. The test showed small shadow 
effects (maximum of 7% decrease in wind speed, shown below) in a directional sector spanning 
about 30º (~310-340º from northerly), a much smaller shading effect than we have seen quoted in 
much of the literature, which are generally more than 30% (e.g. Moses & Daubek, 1961; Cermak 
& Horn, 1968; Orlando et al., 2011; McCaffrey  et al., 2017, Lubitz et al., 2018). After examining 
this effect, we have added a statement in the manuscript stating that small tower shading effects 
were present for this sector (beginning P3 L26). However, we would still prefer to keep the 
unaltered data in the study for two reasons.  

First, the ARIMA model is particularly useful for continuous datasets and has a built-in 
assumption that the dataset is continuous. As mentioned in Section 2, we have filled in missing 
data periods because we wanted to ensure that the model would have a continuous dataset. The 
310-340º directional sector constitutes approximately 5% of the dataset and removing this data 
would lead to considerable data partitioning, thereby negating much of the efficacy of the ARIMA 
model. Further, all periods which utilize the removed data as inputs would themselves be negated. 
The dataset is already relatively small for a machine learning application, and we would therefore 
prefer to avoid removing these periods, especially due to the finding that the shading effect is on 
the order of 7%. 

We would also prefer not to replace the data via a correction such as the measure-correlate-
predict (MCP) method utilized to fill the missing periods (Section 2). While we were required to 
use the method to fill missing periods, it can produce errors (~17% mean absolute error) that are 
greater than that seen from the tower shadow effect. We do not expect that this would be a problem 



for the filled periods, as they constitute only a very small portion of the dataset (less than 1%). 
However, filling 7-8% of the dataset via MCP could lead to misleading results. 

We would therefore prefer to keep the dataset as-is, as any adjustment would likely lead to 
further complications and potentially deleterious results. As stated previously, we have added a 
statement in the manuscript that slight tower shading was observed, but we have left the data 
unaltered as it was far less prominent than that quoted in the literature. We would like to thank the 
reviewer for referring to the information that led to this finding. 
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Figure: Ratio of 5-minute average wind speed at tse04 between two sonics in opposite boom 

directions at ~80 m AGL from April – June 2017. The sonic of interest (SE) observed tower 
wake effects of approximately 7% from the NW (~310-340º), and hence a decrease in 
velocity is observed. The spike seen in the SE direction is the wake observed by the NW 
sonic and is irrelevant for the current case. 



 
2. Page 4: Given the randomized splitting between training and testing datasets, together with the 
absence of cross-validation, I am still concerned about potential overfitting, also considering the 
large autocorrelation your data have (due to the sum of that introduced by the overlapping averages 
and that naturally present in the data). While you state that random forests do not overfit the data 
at all, this is a debatable statement: I am sure you can find plenty of papers that can support both 
opinions. To make this reviewer happy, I would love to see whether the performance of the 
proposed model varies if the splitting between training and testing set is not performed randomly, 
but rather with a hybrid approach. For example, what happens if you keep all observations from 
one week for testing? Or from one full day from each week? Such tests would definitively give an 
answer to potential autocorrelation impacts on your results. 

We appreciate this comment. In reviewing the cross-validation, we indeed discovered that 
the model was overfitting the data. We have made appropriate changes to the manuscript to reflect 
the new findings. Much of the results and discussion (which are now a single section to ease the 
explanation process) have been changed to reflect the changes in findings. The new findings reflect 
the results obtained over 10 testing sets partitioned via stratified k-fold cross validation. Similar to 
the reviewer’s suggestion, this cross-validation technique splits the data nearly chronologically 
while ensuring the target variable distribution is consistent among the training and testing sets. We 
would like to thank the reviewer for his/her suggestion of performing cross validation, as it has led 
to many positive updates to the manuscript. 
 
Minor Comments: 
 
Figure 1: this map still looks somewhat incomplete to me: at the very least, please add some 
reference to understand the horizontal distances. 
We have added both a reference for horizontal distances as well as a north arrow to make it easier 
for readers to orient themselves. 
 
Page 4 L. 3: what do you mean by ‘augmented’ data here? 
Our intention was to mention that the data has been quality controlled, and we have changed 
“augmented” to “quality controlled” to better reflect this (P4 L7). 
 
Page 4 L. 3: “data were averaged into 10-minute, hourly, and three-hour segments at a 5-minute 
moving average in order to create a robust dataset” is still not clear to me. Do you mean that you 
are creating three datasets, both with one data point every 5-minute, but in dataset A all data are 
10-minute average, in dataset B hourly averages, and in dataset C 3-hourly averages? 
Yes, the reviewer is correct. We have changed the language of the sentence to “data were averaged 
over 10-minute, hourly, and three-hour segments at a 5-minute moving average in order to create 
three robust datasets, each consisting of over 28,000 samples” in order to relieve any potential 
confusion (P4 L7). 
 
Figure 5: these scatterplots could be improved. Can you please change the color in the scatterplot 
based on density (e.g. https://matplotlib.org/api/_as_gem/matplotlib.pyplot.hist2d.html)? 
We have removed this figure as it is no longer a useful indicator of model performance. We have 
replaced the R2 metric with mean absolute error (MAE) as we believe it is a more telling metric. 
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Abstract. Machine learning is quickly becoming a commonly used technique for wind speed and power forecasting. Many

machine learning methods utilize exogenous variables as input features, but there remains the question of which atmospheric

variables are most beneficial for forecasting, especially in handling non-linearities that lead to forecasting error. This question

is addressed via creation of a hybrid model that utilizes an autoregressive integrated moving average (ARIMA) model to make

an initial wind speed forecast followed by a random forest model that attempts to predict the ARIMA forecasting error using5

knowledge of exogenous atmospheric variables. Variables conveying information about atmospheric stability and turbulence

as well as inertial forcing are found to be useful in dealing with non-linear error prediction. Streamwise wind speed, time of

day, turbulence intensity, turbulent heat flux, vertical velocity, and wind direction are found to be particularly useful when

used in unison for hourly and three-hour timescales. The prediction accuracy of the developed ARIMA-random forest hybrid

model is compared to that of the persistence and bias-corrected ARIMA models. The ARIMA-random forest model is shown10

to improve upon the latter commonly employed modeling methods, reducing hourly forecasting error by up to 5% below that

of the bias-corrected ARIMA model and achieving an R2 value of 0.84 with true wind speed.

1 Introduction

Global wind power capacity reached almost 600 GW at the end of 2018 (GWEC, 2019), making wind energy a vital component

of international electricity markets. Unfortunately, integrating wind power into an existing electrical grid is difficult because15

of wind resource intermittency and forecasting complexity. For utility companies employing wind power, it is important to

estimate the aggregated load over a period of time to better balance grid resources, including long-term (1+ days ahead), short-

term (1-3 hours ahead) and very-short term (15 minutes ahead) forecasts (Soman et al., 2010; Wu et al., 2012). Forecasting

accuracy depends on site conditions, surrounding terrain, and local meteorology. Many wind farms are built in locations which

are known to amplify winds due to surrounding terrain (such as Lake Turkana in Kenya, Tehachapi Pass in California etc.),20

requiring bespoke forecasts for accurate predictions. Numerical weather prediction models (NWPs) fail at such complex sites

due to a lack of appropriate parameterization schemes suitable for local conditions (Akish et al., 2019; Bianco et al., 2019;

Olson et al., 2019; Stiperski et al., 2019; Bodini et al., 2020). Therefore, statistical models and computational learning systems

(such as an artificial neural network or random forest) are likely better suited to provide accurate power forecasts. Since wind
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power production is heavily reliant upon environmental conditions, improvements in wind speed forecasting would allow for

more reliable wind power forecasts.

If we simplify our wind speed prediction process down to its core (which has no true relation to atmospheric motions), we

can imagine a system of atmospheric flow without external forcing. This would result in a constant streamwise wind speed

U (i.e. Uτ = Uτ−1; U is streamwise wind speed, τ a timestep; this assumes discrete timesteps for simplicity). In this case,5

a persistence or autoregressive forecast would have zero forecasting error and uncertainty. However, uncertainty increases

once we add an external force that we may represent by some variable x1. Now future wind speed may be seen to be Uτ =

f(Uτ−1,x1,τ−1). Assuming the external force is notable in strength and coupled with the inertia associated with winds, the

previous autoregressive model will now struggle to predict Uτ because it does not take into account our external forcing x1,τ−1,

resulting in an error ε (ετ is abbreviated to ε for simplicity). We can then break down our future wind speed into two parts:10

Uτ = Ûτ +ε where Ûτ is our autoregressive forecast that is only dependent on Uτ−1 (i.e. Ûτ = f(Uτ−1)). The prediction error

is thus skewed to represent the effects of the external force x1,τ−1 upon Uτ−1.

If we continue to add external forces (x1, x2, ... xn; n is the number of external forcing variables), our atmospheric sys-

tem becomes much more complex and non-linear due to interactions between forcing mechanisms. We can again obtain our

forecasting error as ε= f(Uτ−1,x1,τ−1,x2,τ−1, ... xn,τ−1), which we can discretize as ε= µε+ε′ (µε is the error bias, ε′ the15

error fluctuations about µε) given that we have a statistically significant sample size and the process is stationary. Squaring this

equation and taking the average gives us the discretized equation for the mean squared error ε2 = µ2
ε + ε′2, with ε′2 represent-

ing the error variance and overlines denoting the average over all samples (Lange, 2005). µ2
ε represents the bias and may be

removed via a simple bias-correction. The true concern is the error fluctuation term (ε′) which constitutes the error variance.

Assuming the external forcing variables (x’s) are normally distributed, we can break down ε′2 into two constituents (Ku et al.,20

1966):

ε′2 = σ2
xj

(
∂ε

∂xj

)2

+ 2

[
σxj ,xk

∂ε

∂xj

∂ε

∂xk

]
, j 6= k (1)

where σ2
xj

is the variance of xj and σxj ,xk
is the co-variance between xj and xk (subscript τ removed for simplicity).

Unless external forcing (or its coupling with Uτ−1) is minimal, the error is likely highly non-linear and chaotic (i.e. large ε′2).

Therefore, it behooves us to discover which forcing mechanisms and atmospheric variables are the best predictors of individual25

fluctuations ε′, which we will call "exogenous error".

Many studies that use machine learning (ML) techniques for wind speed or power forecasting utilize a handful of unadulter-

ated atmospheric variables such as wind speed, pressure, and temperature as input features (Mohandes et al., 2004; Ramasamy

et al., 2015; Lazarevska, 2018; Chen et al., 2019). Recently, a handful of investigations have begun to determine which vari-

ables may be most useful for these models. Vassallo et al. (2020) showed that invoking turbulence intensity (TI) can vastly30

improve vertical wind speed extrapolation accuracy. Similarly, Li et al. (2019) showed that TI improves wind speed forecast-

ing on multiple timescales, while Optis and Perr-Sauer (2019) showed that both atmospheric stability and turbulence levels are

important indicators for wind power forecasting. Markedly, it has been shown by Cadenas et al. (2016) that multivariate sta-
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tistical models consistently outperform univariate models for wind speed forecasting. However, to the authors’ knowledge, the

question of which atmospheric variables are most useful in predicting exogenous error has not been addressed in the literature.

This investigation aims to determine if exogenous error may be, at least in part, predicted via a list of common meteorolog-

ical measurements by following a methodology similar to that performed by Cadenas and Rivera (2010). The autoregressive

integrated moving average (ARIMA) model first obtains an autoregressive forecast, and the forecasting error is extracted and5

bias-corrected. A random forest model is then utilized to discover patterns in the exogenous variables (and their relations to

the endogenous variable U ) that are predictive of exogenous error. The ARIMA-random forest hybrid model so constructed is

referred to as the ARIMA-RF model.

This study is not intended to provide a catch-all list of input features that should or should not be used for every future

study. Rather, it aims to inform future researchers and industry professionals as to what types of meteorological information10

must be used as ML inputs to predict the non-linear interactions between various atmospheric forces. Section 2 describes

the Perdigão field campaign (the data source for the work), site characteristics, and instrumentation used for data collection.

Section 3 provides an overview of the models utilized, testing process, and feature extraction/selection methodology. Section

4 provides testing results and includes a discussion of the obtained results. Finally, conclusions can be found in Section 5.

2 Site, Data, & Instrumentation15

Data for this study were taken from the Perdigão campaign, a multinational project located in central Portugal that took place

in the spring of 2017 (Fernando et al., 2019). The project site is characterized by two parallel ridges, both about 5 km in length

with a 1.5 km wide valley between them. These ridges, which are represented by the elevated contours in Fig. 1, run northwest

to southeast and rise about 250 m above the surrounding topography, making the site highly complex and increasing forecasting

difficulty. The ridges will be referred to as the northern and southern ridge.20

A variety of remote and in situ sensors were positioned in and around the valley to provide an accurate and thorough

description of the surrounding flow field. Foremost among these sensors was a grid of meteorological towers which ran both

parallel and normal to the ridges. One 100 m tower located on top of the northern ridge (white star in Fig. 1) is utilized in

this study. This tower had sonic anemometers (20 Hz native measurement resolution) at 10, 20, 30, 40, 60, 80, and 100 m

above ground level (AGL) as well as temperature sensors at 2, 10, 20, 40, 60, 80, and 100 m AGL. Information about tower25

data quality control, including corrections for boom orientation and tilt, may be found in NCAR/UCAR (2019). One of the

towers in Perdigão was instrumented with sonic anemometers on both ends of the boom, allowing for an investigation into the

effects of tower shadow. Minimal tower shadow effects were observed from the northwest (∼ 310−340◦), with a maximum of

only 7% flow deceleration. Wake effects were much smaller than those reported in previous studies (Moses and Daubek, 1961;

Cermak and Horn, 1968; Orlando et al., 2011; McCaffrey et al., 2017; Lubitz and Michalak, 2018), which generally exceed30

30%. We have therefore left the data unaltered. The tower data in the Perdigão database has been averaged into 5-minute

increments by data managers at NCAR.
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Figure 1. Contour plot of the campaign topography in meters above mean sea level (MSL). The white star represents the 100 m tower

location on the northern ridge.

Sensors at 20 and 100 m AGL were chosen because of the high percentage (> 99% for all variables except temperature at

100 m AGL, which was available for ∼ 95% of the periods) of clean data at these elevations. The utilized data spans three

months, running from 10 March – 16 June 2017. Data at 100 m were correlated with that at 20 m, and missing data were filled

using the variance ratio measure-correlate-predict method (Rogers et al., 2005). Any periods unavailable at both heights were

filled using linear interpolation with Gaussian noise. All periods are required for proper functionality and assessment of the5

ARIMA model, and manually filled periods are not expected to make a noticeable difference in the findings.

The quality controlled data were averaged over 10-minute, hourly, and three-hour segments at a 5-minute moving average

in order to create three robust datasets, each consisting of over 28,000 samples. These three datasets were split via stratified

10-fold cross validation (Diamantidis et al., 2000). The target streamwise wind speed, or that to be forecasted, is located at

100 m AGL. Squared buoyancy frequency (N2), Richardson numbers (flux Rif and gradient Rig), and temperature gradient10

(∂T/∂z) were calculated between 20 – 100 m AGL. Friction velocity (u∗) was found at 20 m, just above surface roughness

height (Fernando et al., 2019). All other input variables utilized were from 100 m AGL.

3 Methodology

This investigation utilizes two modeling methods, ARIMA and random forest regression, to create a hybrid model (ARIMA-

RF) wherein the ARIMA model is first used to get a linear, univariate wind speed forecast. The ARIMA forecast is bias-15

corrected and the exogenous error ε′ is then extracted and used as the target variable for the random forest. The random forest’s

goal (and the goal of the study) is to predict ε′ (predictions denoted as ε̂′) and determine which atmospheric variables and
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forcing categories are useful for the predictive process. After the most important variables have been established, combinations

of these input features are tested in an effort to determine whether specific groupings of input features may provide similar (or

improved) forecasts compared to tests which incorporate all inputs. Finally, the ARIMA-RF results are compared with those of

the persistence and bias-corrected ARIMA (hereafter referred to as the BCA) models. Section 3.1 details the ARIMA model,

while Section 3.2 describes random forest regression. Sections 3.3 and 3.4 provide more detail on the feature extraction and5

selection methodology as well as the testing procedure.

3.1 ARIMA

ARIMA (Box et al., 2015) is a univariate statistical model used for time series forecasting. It is predicated on the combination

of three functions: an autoregressive function that uses lagged values as inputs, a moving average function that uses past

forecasting errors as inputs, and a differencing function used to make a time series stationary. In its simplest form, the next10

term in a time series sequence, yτ , is given by

yτ =

p∑
i=1

φiyτ−i +

q∑
j=1

Θjετ−j + ετ (2)

where p and q are the orders of the autoregressive and moving average functions, respectively, φi and Θj the ith autoregres-

sive and jth moving average parameters, respectively, yτ−i the ith lagged value, ετ−j the jth past prediction error, and ετ the

error term at time τ . The order of differencing is given by the parameter d and does not show up directly in Eqn. 2.15

The dataset was tested for long-term statistical stationarity via the Augmented Dickey Fuller Test (Dickey and Fuller, 1979)

using the statsmodels Python module (Seabold and Perktold, 2010). The test, to a statistically significant degree, proved that the

wind speed data contains no embedded trends or drift (e.g. changes in the mean or variance of the wind speed due to long-term

variability). Therefore, the differencing parameter d was set to 0 (This turns the ARIMA model into an ARMA model, but we

stick with the term ARIMA for uniformity). The autoregressive and moving average parameters used, p= 2 and q = 1, were20

determined via minimization of the Akaike information criterion (Shibata, 1976) and empirical testing. Increasing parameters

beyond this point did not lead to improved ARIMA accuracy.

3.2 Random Forest Regression

Random forest regression (Breiman, 2001) is an ensemble method that is made up of a population of decision trees. Bootstrap

aggregation (bagging) is used so that each tree can randomly sample from the dataset with replacement, while only a random25

subset of the total feature set is given to each individual tree. The trees can be pruned (truncated) to add further diversification.

After construction, the population’s individual predictions are averaged to give a final prediction of the target variable. Ideally,

this process results in a diversified and decorrelated set of trees whose predictive errors cancel out, producing a more robust

final prediction.

An advantage of random forests is their ability to determine the importance of all input features for the predictive process.30

This is done by calculating the mean decrease impurity, or the decrease in variance that is achieved during a given split in each
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decision tree. The decrease in impurity for each input feature can be averaged over the entire forest, providing an approximation

of the feature’s importance for the prediction (feature importance estimates sum to 100% to ease interpretability). To assist the

random forest in representing the dynamic nature of atmospheric processes, input variables are taken from the previous two

timesteps (i.e. input feature U comprises Uτ−1 and Uτ−2).

The constructed random forest model contains 1,000 trees for tests of individual variables and 1,500 trees for tests of variable5

combinations. To ease concerns of overfitting, each internal node was required have at least 100 samples in order to split (this

truncation is a form of regularization). The random forest model was built using the scikit-learn Python library (Pedregosa

et al., 2011).

3.3 Feature Extraction and Selection

In an effort to ensure that the findings are applicable to real-world campaigns, we limit our sources of information to those10

which may be measured by a typical meteorological mast containing sonic anemometers alongside temperature sensors. Using

this information, we can write our future wind speed Uτ as a function of the following variables, which were broken down into

their mean and fluctuating values:

Uτ = f
(
Ui,θi,Wi,Ti, ti,u

′
i,θ
′
i,w
′
i,T
′
i

)
(3)

where Ui and θi are the mean streamwise wind speed and direction, respectively, Wi the mean vertical wind speed, Ti the15

mean temperature, ti the time of day, u′i the fluctuating horizontal velocity, θ′i the fluctuating wind direction, w′i the fluctuating

vertical velocity, and T ′i the fluctuating temperature at each previous timestep i. Unfortunately, θ′ was not available within the

dataset utilized (which had already been 5-minute averaged) and is therefore ignored for this study. Previous analysis, however,

has shown that θ′ varies inversely with U in complex terrain (Papadopoulos et al., 1992), and we may therefore assume its

influence is largely captured by U .20

Although these unadulterated features give us an idea as to how the system is working at the moment, they may not explicitly

represent the relevant atmospheric forcing mechanisms. Our list of measurements allows us to break down our system into two

principal forcing components: buoyancy and inertial forcing (which indirectly includes pressure gradient forces). Each of these

forces can be further discretized into large and small scales (also called mean and fluctuating values; typically separated by at

least one order of magnitude).25

Fig. 2 shows an illustrative breakdown of the two main forcing mechanisms alongside a list of extracted descriptor variables.

The definitions and formulations of all non-obvious extracted variables used in this study can be found in Appendix A. From

this figure, it is clear that the variables in Eqn. 3, when manipulated, are able to describe both the inertial and buoyant forces at

multiple scales. Large-scale inertial forcing can be described by the local mean wind speed (U ) and direction (θ, broken down

into North-South and East-West components in an attempt to eliminate any discontinuities) or vertical velocityW , while small-30

scale inertial forcing can be described by variables such as the fluctuating (standard deviation of) velocity σu, friction velocity

u∗, and the turbulence kinetic energy TKE. Likewise, large-scale buoyancy forcing can be described by the squared buoyancy
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Figure 2. Illustrative breakdown of the scales and variables related to inertial and buoyant forcing. θ′ is not shown as it is not utilized in the

analysis.

frequency N2, the temperature gradient ∂T /∂z , or by proxy values such as the time of day t (broken down into sine and cosine

components, one of which relates to 0000–1200 local time and the other to 0600–1800 local time) or temperature T (which, on

average, is higher during the day and lower at night; stability parameters based on Monin-Obukhov similarity theory have been

considered ill-suited for complex terrain flows because of the breakdown of underlying assumptions (Fernando et al., 2015),

and hence were not used in this study). Small-scale buoyancy effects can be described by the turbulent heat flux w′T ′. The5

correspondence between forces and internal parameters can also be described by non-dimensional variables such as the gradient

Richardson number Rig , flux Richardson number Rif , turbulence intensity TI , and normalized friction velocity u∗/U . These

derived non-dimensional variables, or extracted features, are typically ignored by current ML models in lieu of raw features

such as those listed in Eqn. 3.

Extracted variables like those in Fig. 2 may not provide any more information than the raw variables in Eqn. 3. However,10

they may ease the burden on the model by discretizing (or directly relating) informational categories, therefore reducing

informational overlap and noise, providing more periodic patterns, and more accurately describing the underlying system.

Further, such well-conceived meteorological variables have been shown to be useful for atmospheric prediction (Kronebach,

1964; Li et al., 2019; Bodini et al., 2020). In theory, given enough data, the model should be able to decipher and interpret

these extracted features on its own. Unfortunately there often isn’t enough collected data for this to happen organically. Instead,15

by providing better information we can create a simpler, cheaper, more robust model that requires less training data and

construction time. Selected features will ideally represent the underlying system as accurately as possible without providing

noisy or redundant information.
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3.4 Testing

Initial tests utilize a full feature set (i.e. all input variables are included). Feature importance estimates are then extracted from

the random forest model and various user-selected combinations of the most important input features are tested. It must be

noted that only select input feature sets were tested in this investigation due to the sheer multitude of potential feature sets.

In order to relieve any timescale bias, forecasts are made across multiple timescales. Typically, wind power utility operators5

require single-step short range power forecasts run hour-by-hour for a few days to reduce unit commitment costs. The forecast

skill of observation-based methods generally reduces with forecast lead time within an hour, and numerical models have higher

skill in forecasting larger lead times (> 3 hours; Haupt et al. (2014)). Statistical learning methods have proved to be particularly

effective from about 30 minutes to approximately three hours ahead (Mellit, 2008; Wang et al., 2012; Yang et al., 2012; Morf,

2014), and roughly this time frame is thus the focus for this study. The shortest forecast predicts wind speeds 10 minutes ahead,10

roughly within the turbulent spectral band (Van der Hoven, 1957). Forecasts are also made one and three hours ahead, which

are within the spectral gap between the turbulent and synoptic spectra and approach the six-hour period wherein NWP models

become particularly useful (Dupré et al., 2019). These are all single-step forecasts, which is to say that the averaging timescale

increases with the forecasting timescale (e.g. a 10-minute forecast predicts 10-minute averaged wind speed, whereas a three-

hour forecast predicts three-hour averaged wind speed). Each dataset is split via stratified k-fold cross validation (Diamantidis15

et al., 2000), a technique that splits the dataset into k sections (in this case, we set k = 10) and uses each section as a separate

test set (i.e. tests consist of 10 runs, each of which utilizes a unique test set). This technique splits data nearly chronologically,

ensuring that the model does not overfit the dataset. Forecasting metrics for each test are obtained by averaging the ensemble

of all 10 runs.

The root mean squared error (RMSE) and mean absolute error (MAE) of the BCA are found for each timescale, giving20

two metrics of the true exogenous error ε′. The random forest model is then trained to predict ε′, combined with the ARIMA

model, and the newly constructed ARIMA-RF is used to forecast wind speeds. The reduction in RMSE and MAE (which come

exclusively from the random forest’s prediction of exogenous error ε̂′) is then found for the test set. Eqn. 4 and Eqn. 5 describe

both metrics, wherein Um is the target wind speed, Ûm the predicted wind speed,m each individual sample, andM the sample

size.25

RMSE =

√√√√ 1

M

M∑
m=1

(Um− Ûm)2 (4)

MAE =
1

M

M∑
m=1

∣∣∣Um− Ûm∣∣∣ (5)

8



0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

10 Minute Hourly 3 Hour

R
M

SE
 [m

 s-1
]

Persistence
BCA
ARIMA-RF

Figure 3. Comparison of RMSE obtained by the persistence, BCA, and ARIMA-RF with the full input feature set for all forecasting

timescales.

4 Results and Discussion

The ARIMA-RF model utilizing the full feature set obtained lower RMSE than the BCA for all timescales. Fig. 3 shows a

comparison between the RMSE obtained by the ARIMA-RF model and that obtained by the persistence and BCA models. The

BCA’s RMSE amounted to 0.726, 1.132, and 1.575 m s−1 for the 10-minute, hourly, and three-hour forecasts, respectively.

The ARIMA-RF, utilizing all input features, reduced these RMSE values (as well as the MAE values) by ∼2%, 4%, and 11%,5

respectively (RMSE and MAE values given in Table 1). The random forest is clearly able to ascertain more prudent physical

patterns at larger timescales (up to three hours), as large-scale atmospheric dynamics provide a more predictable signal for the

prediction of exogenous error.

All feature importance values were extracted from the random forest and are shown in Fig. 4. The variables are broken

down into three distinct categories: inertial (large-scale dimensional variables signifying inertial forces in Fig. 2), stability10

(blue and purple regions in Fig. 2 which are akin to atmospheric stability), and turbulence variables (small scale and non-

dimensional inertial variables in Fig. 2). θ is the most important variable for the prediction of ε′ at all timescales, achieving up

to 20% importance at the three-hour timescale. Fig. 5a shows the partial dependence on the East-West component of θ (i.e. the

random forest model’s average predictions, ε̂′, across the range of a given variable, in this case the East-West component of θ)

alongside the variable’s distribution. The model is clearly able to discern an East-West directional pattern in the training data.15

The climatology above the Perdigão ridges displays a proclivity for northeasterly and southwesterly flows, the former of which

exhibit comparatively high velocities (Fernando et al., 2019). The BCA tends to under-predict flow from the northeast (i.e. the

random forest’s average target variable ε′ is positive; Fig. B1, Appendix B). Accordingly, the random forest predicts positive ε′

values, correcting for the BCA’s under-prediction. Fig. 6c, which displays both the ARIMA-RF (solid lines) and BCA (dashed

lines) RMSE values by directional sector, shows that the ARIMA-RF successfully improves hourly and three-hour forecasting20

accuracy when winds are northeasterly.
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Table 1. RMSE and MAE (m s−1) obtained by the persistence, BCA, and ARIMA-RF models when utilizing select input feature combina-

tions. The final two rows show the testing results when utilizing the full input feature set and the full feature set except T . Underlined values

show the best performance from each column.

10 Minute Hourly 3 Hour

Model RMSE MAE RMSE MAE RMSE MAE

Persistence 0.737 0.531 1.165 0.884 1.676 1.315

BCA 0.726 0.528 1.132 0.863 1.575 1.240

Input Features RMSE MAE RMSE MAE RMSE MAE

U , θ, t 0.733 0.533 1.109 0.834 1.533 1.194

U , θ, t, T 0.752 0.549 1.164 0.876 1.597 1.231

U , θ, t, W 0.729 0.531 1.095 0.825 1.518 1.185

U , θ, t, TI 0.730 0.531 1.072 0.812 1.533 1.191

U , θ, t, w′T ′ 0.731 0.532 1.095 0.825 1.521 1.189

U , θ, t, W , TI , w′T ′ 0.728 0.530 1.073 0.812 1.521 1.180

U , θ, t, W , TI , w′T ′, T 0.738 0.539 1.115 0.842 1.565 1.215

Full input feature set 0.714 0.520 1.092 0.830 1.395 1.100

All features except T 0.712 0.518 1.071 0.813 1.379 1.083
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Figure 4. Feature importance for the prediction of exogenous error when all input features are given to the random forest model. a) shows

importance for the 10-minute prediction, b) for the hourly prediction, and c) for the three-hour prediction. Blue bars denote inertial variables,

orange denote stability variables, and grey bars denote turbulence variables. Importance values for each test sum to 100%.

Even larger improvement is seen for westerly winds which pass over the southern ridge prior to reaching the measurement

location (Fig. 6c). Westerly winds are common between 1300 – 2100 local time (Fernando et al., 2019), and Fig. 6b shows
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c) d)

Figure 5. Lines show dependence between the random forest prediction ε̂′ and (a) the East-West component of θ, (b) TI , (c) the noon-

midnight component of t, and (d) T . Blue shading shows variable distribution. Arrows in (a) and (c) correspond to direction (on the x-axis)

of the normalized oscillatory component.

that the ARIMA-RF is able to improve upon the BCA forecast during these hours. The BCA tends to over-predict wind speeds

around 1200 local time (i.e. negative ε′ in Fig. B2, Appendix B), as wind speeds reach a relative nadir (Fernando et al., 2019).

The model’s over-prediction is captured and partially corrected by the random forest, which predicts negative ε′ values around

noon (t≈−1 in Fig. 5c). Wind speeds then pick up throughout the afternoon as the atmosphere becomes more convective.

Increased convection leads to high TKE and TI values, which peak in the mid-afternoon (not shown). As wind speeds rise5

and the atmosphere becomes more convective, the BCA begins to under-predict wind speeds. The under-prediction is once

again captured by the random forest and the artifacts can be seen in Fig. 5b and c. The random forest identifies periods more

than five hours from noon (t≥−0.25 in Fig. 5c) and those with high TI as periods wherein the BCA will likely under-predict

wind speeds and corrects the BCA forecast accordingly by predicting positive ε′ values.

A comparison of both the BCA and ARIMA-RF models’ RMSE values in stable and unstable conditions (Table 2) shows10

that the BCA performs better under unstable conditions for both the hourly and three-hour forecasts, but the opposite is true for

the 10-minute timescale. Increased turbulence during the daytime clearly hampers the BCA when forecasting 10 minutes and,

11




