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Abstract. Machine learning is quickly becoming a commonly used technique for wind speed and power forecasting. Many

machine learning methods utilize exogenous variables as input features, but there remains the question of which atmospheric

variables are most beneficial for forecasting, especially in handling non-linearities that lead to forecasting error. This question

is addressed via creation of a hybrid model that utilizes an autoregressive integrated moving average (ARIMA) model to make

an initial wind speed forecast followed by a random forest model that attempts to predict the ARIMA forecasting error using5

knowledge of exogenous atmospheric variables. Variables conveying information about atmospheric stability and turbulence

as well as inertial forcing are found to be useful in dealing with non-linear error prediction. Streamwise wind speed, time of

day, turbulence intensity, turbulent heat flux, vertical velocity, and wind direction are found to be particularly useful when

used in unison for hourly and three-hour timescales. The prediction accuracy of the developed ARIMA-random forest hybrid

model is compared to that of the persistence and bias-corrected ARIMA models. The ARIMA-random forest model is shown10

to improve upon the latter commonly employed modeling methods, reducing hourly forecasting error by up to 5% below that

of the bias-corrected ARIMA model and achieving an R2 value of 0.84 with true wind speed.

1 Introduction

Global wind power capacity reached almost 600 GW at the end of 2018 (GWEC, 2019), making wind energy a vital component

of international electricity markets. Unfortunately, integrating wind power into an existing electrical grid is difficult because15

of wind resource intermittency and forecasting complexity. For utility companies employing wind power, it is important to

estimate the aggregated load over a period of time to better balance grid resources, including long-term (1+ days ahead), short-

term (1-3 hours ahead) and very-short term (15 minutes ahead) forecasts (Soman et al., 2010; Wu et al., 2012). Forecasting

accuracy depends on site conditions, surrounding terrain, and local meteorology. Many wind farms are built in locations which

are known to amplify winds due to surrounding terrain (such as Lake Turkana in Kenya, Tehachapi Pass in California etc.),20

requiring bespoke forecasts for accurate predictions. Numerical weather prediction models (NWPs) fail at such complex sites

due to a lack of appropriate parameterization schemes suitable for local conditions (Akish et al., 2019; Bianco et al., 2019;

Olson et al., 2019; Stiperski et al., 2019; Bodini et al., 2020). Therefore, statistical models and computational learning systems

(such as an artificial neural network or random forest) are likely better suited to provide accurate power forecasts. Since wind
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power production is heavily reliant upon environmental conditions, improvements in wind speed forecasting would allow for

more reliable wind power forecasts.

If we simplify our wind speed prediction process down to its core (which has no true relation to atmospheric motions), we

can imagine a system of atmospheric flow without external forcing. This would result in a constant streamwise wind speed

U (i.e. U� = U��1; U is streamwise wind speed, τ a timestep; this assumes discrete timesteps for simplicity). In this case,5

a persistence or autoregressive forecast would have zero forecasting error and uncertainty. However, uncertainty increases

once we add an external force that we may represent by some variable x1. Now future wind speed may be seen to be U� =

f(U��1,x1;��1). Assuming the external force is notable in strength and coupled with the inertia associated with winds, the

previous autoregressive model will now struggle to predict U� because it does not take into account our external forcing x1;��1,

resulting in an error ε (ε� is abbreviated to ε for simplicity). We can then break down our future wind speed into two parts:10

U� = Û� +ε where Û� is our autoregressive forecast that is only dependent on U��1 (i.e. Û� = f(U��1)). The prediction error

is thus skewed to represent the effects of the external force x1;��1 upon U��1.

If we continue to add external forces (x1, x2, ... xn; n is the number of external forcing variables), our atmospheric sys-

tem becomes much more complex and non-linear due to interactions between forcing mechanisms. We can again obtain our

forecasting error as ε= f(U��1,x1;��1,x2;��1, ... xn;��1), which we can discretize as ε= µ"+ε0 (µ" is the error bias, ε0 the15

error fluctuations about µ") given that we have a statistically significant sample size and the process is stationary. Squaring this

equation and taking the average gives us the discretized equation for the mean squared error ε2 = µ2
" + ε02, with ε02 represent-

ing the error variance and overlines denoting the average over all samples (Lange, 2005). µ2
" represents the bias and may be

removed via a simple bias-correction. The true concern is the error fluctuation term (ε0) which constitutes the error variance.

Assuming the external forcing variables (x’s) are normally distributed, we can break down ε02 into two constituents (Ku et al.,20

1966):

ε02 = σ2
xj

�
∂ε

∂xj

�2

+ 2

�
σxj ;xk

∂ε

∂xj

∂ε

∂xk

�
, j 6= k (1)

where σ2
xj

is the variance of xj and σxj ;xk
is the co-variance between xj and xk (subscript τ removed for simplicity).

Unless external forcing (or its coupling with U��1) is minimal, the error is likely highly non-linear and chaotic (i.e. large ε02).

Therefore, it behooves us to discover which forcing mechanisms and atmospheric variables are the best predictors of individual25

fluctuations ε0, which we will call "exogenous error".

Many studies that use machine learning (ML) techniques for wind speed or power forecasting utilize a handful of unadulter-

ated atmospheric variables such as wind speed, pressure, and temperature as input features (Mohandes et al., 2004; Ramasamy

et al., 2015; Lazarevska, 2018; Chen et al., 2019). Recently, a handful of investigations have begun to determine which vari-

ables may be most useful for these models. Vassallo et al. (2020) showed that invoking turbulence intensity (TI) can vastly30

improve vertical wind speed extrapolation accuracy. Similarly, Li et al. (2019) showed that TI improves wind speed forecast-

ing on multiple timescales, while Optis and Perr-Sauer (2019) showed that both atmospheric stability and turbulence levels are

important indicators for wind power forecasting. Markedly, it has been shown by Cadenas et al. (2016) that multivariate sta-
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tistical models consistently outperform univariate models for wind speed forecasting. However, to the authors’ knowledge, the

question of which atmospheric variables are most useful in predicting exogenous error has not been addressed in the literature.

This investigation aims to determine if exogenous error may be, at least in part, predicted via a list of common meteorolog-

ical measurements by following a methodology similar to that performed by Cadenas and Rivera (2010). The autoregressive

integrated moving average (ARIMA) model first obtains an autoregressive forecast, and the forecasting error is extracted and5

bias-corrected. A random forest model is then utilized to discover patterns in the exogenous variables (and their relations to

the endogenous variable U ) that are predictive of exogenous error. The ARIMA-random forest hybrid model so constructed is

referred to as the ARIMA-RF model.

This study is not intended to provide a catch-all list of input features that should or should not be used for every future

study. Rather, it aims to inform future researchers and industry professionals as to what types of meteorological information10

must be used as ML inputs to predict the non-linear interactions between various atmospheric forces. Section 2 describes

the Perdigão field campaign (the data source for the work), site characteristics, and instrumentation used for data collection.

Section 3 provides an overview of the models utilized, testing process, and feature extraction/selection methodology. Section

4 provides testing results and includes a discussion of the obtained results. Finally, conclusions can be found in Section 5.

2 Site, Data, & Instrumentation15

Data for this study were taken from the Perdigão campaign, a multinational project located in central Portugal that took place

in the spring of 2017 (Fernando et al., 2019). The project site is characterized by two parallel ridges, both about 5 km in length

with a 1.5 km wide valley between them. These ridges, which are represented by the elevated contours in Fig. 1, run northwest

to southeast and rise about 250 m above the surrounding topography, making the site highly complex and increasing forecasting

difficulty. The ridges will be referred to as the northern and southern ridge.20

A variety of remote and in situ sensors were positioned in and around the valley to provide an accurate and thorough

description of the surrounding flow field. Foremost among these sensors was a grid of meteorological towers which ran both

parallel and normal to the ridges. One 100 m tower located on top of the northern ridge (white star in Fig. 1) is utilized in

this study. This tower had sonic anemometers (20 Hz native measurement resolution) at 10, 20, 30, 40, 60, 80, and 100 m

above ground level (AGL) as well as temperature sensors at 2, 10, 20, 40, 60, 80, and 100 m AGL. Information about tower25

data quality control, including corrections for boom orientation and tilt, may be found in NCAR/UCAR (2019). One of the

towers in Perdigão was instrumented with sonic anemometers on both ends of the boom, allowing for an investigation into the

effects of tower shadow. Minimal tower shadow effects were observed from the northwest (� 310�340�), with a maximum of

only 7% flow deceleration. Wake effects were much smaller than those reported in previous studies (Moses and Daubek, 1961;

Cermak and Horn, 1968; Orlando et al., 2011; McCaffrey et al., 2017; Lubitz and Michalak, 2018), which generally exceed30

30%. We have therefore left the data unaltered. The tower data in the Perdigão database has been averaged into 5-minute

increments by data managers at NCAR.
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Figure 1. Contour plot of the campaign topography in meters above mean sea level (MSL). The white star represents the 100 m tower

location on the northern ridge.

Sensors at 20 and 100 m AGL were chosen because of the high percentage (> 99% for all variables except temperature at

100 m AGL, which was available for � 95% of the periods) of clean data at these elevations. The utilized data spans three

months, running from 10 March – 16 June 2017. Data at 100 m were correlated with that at 20 m, and missing data were filled

using the variance ratio measure-correlate-predict method (Rogers et al., 2005). Any periods unavailable at both heights were

filled using linear interpolation with Gaussian noise. All periods are required for proper functionality and assessment of the5

ARIMA model, and manually filled periods are not expected to make a noticeable difference in the findings.

The quality controlled data were averaged over 10-minute, hourly, and three-hour segments at a 5-minute moving average

in order to create three robust datasets, each consisting of over 28,000 samples. These three datasets were split via stratified

10-fold cross validation (Diamantidis et al., 2000). The target streamwise wind speed, or that to be forecasted, is located at

100 m AGL. Squared buoyancy frequency (N2), Richardson numbers (flux Rif and gradient Rig), and temperature gradient10

(@T/@z) were calculated between 20 – 100 m AGL. Friction velocity (u�) was found at 20 m, just above surface roughness

height (Fernando et al., 2019). All other input variables utilized were from 100 m AGL.

3 Methodology

This investigation utilizes two modeling methods, ARIMA and random forest regression, to create a hybrid model (ARIMA-

RF) wherein the ARIMA model is first used to get a linear, univariate wind speed forecast. The ARIMA forecast is bias-15

corrected and the exogenous error ε0 is then extracted and used as the target variable for the random forest. The random forest’s

goal (and the goal of the study) is to predict ε0 (predictions denoted as ε̂0) and determine which atmospheric variables and
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forcing categories are useful for the predictive process. After the most important variables have been established, combinations

of these input features are tested in an effort to determine whether speci�c groupings of input features may provide similar (or

improved) forecasts compared to tests which incorporate all inputs. Finally, the ARIMA-RF results are compared with those of

the persistence and bias-corrected ARIMA (hereafter referred to as the BCA) models. Section 3.1 details the ARIMA model,

while Section 3.2 describes random forest regression. Sections 3.3 and 3.4 provide more detail on the feature extraction and5

selection methodology as well as the testing procedure.

3.1 ARIMA

ARIMA (Box et al., 2015) is a univariate statistical model used for time series forecasting. It is predicated on the combination

of three functions: an autoregressive function that uses lagged values as inputs, a moving average function that uses past

forecasting errors as inputs, and a differencing function used to make a time series stationary. In its simplest form, the next10

term in a time series sequence,y� , is given by

y� =
pX

i =1

� i y� � i +
qX

j =1

� j " � � j + " � (2)

wherep andq are the orders of the autoregressive and moving average functions, respectively,� i and� j thei th autoregres-

sive andj th moving average parameters, respectively,y� � i thei th lagged value," � � j thej th past prediction error, and" � the

error term at time� . The order of differencing is given by the parameterd and does not show up directly in Eqn. 2.15

The dataset was tested for long-term statistical stationarity via the Augmented Dickey Fuller Test (Dickey and Fuller, 1979)

using the statsmodels Python module (Seabold and Perktold, 2010). The test, to a statistically signi�cant degree, proved that the

wind speed data contains no embedded trends or drift (e.g. changes in the mean or variance of the wind speed due to long-term

variability). Therefore, the differencing parameterd was set to 0 (This turns the ARIMA model into an ARMA model, but we

stick with the term ARIMA for uniformity). The autoregressive and moving average parameters used,p = 2 andq = 1 , were20

determined via minimization of the Akaike information criterion (Shibata, 1976) and empirical testing. Increasing parameters

beyond this point did not lead to improved ARIMA accuracy.

3.2 Random Forest Regression

Random forest regression (Breiman, 2001) is an ensemble method that is made up of a population of decision trees. Bootstrap

aggregation (bagging) is used so that each tree can randomly sample from the dataset with replacement, while only a random25

subset of the total feature set is given to each individual tree. The trees can be pruned (truncated) to add further diversi�cation.

After construction, the population's individual predictions are averaged to give a �nal prediction of the target variable. Ideally,

this process results in a diversi�ed and decorrelated set of trees whose predictive errors cancel out, producing a more robust

�nal prediction.

An advantage of random forests is their ability to determine the importance of all input features for the predictive process.30

This is done by calculating the mean decrease impurity, or the decrease in variance that is achieved during a given split in each
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decision tree. The decrease in impurity for each input feature can be averaged over the entire forest, providing an approximation

of the feature's importance for the prediction (feature importance estimates sum to 100% to ease interpretability). To assist the

random forest in representing the dynamic nature of atmospheric processes, input variables are taken from the previous two

timesteps (i.e. input featureU comprisesU� � 1 andU� � 2).

The constructed random forest model contains 1,000 trees for tests of individual variables and 1,500 trees for tests of variable5

combinations. To ease concerns of over�tting, each internal node was required have at least 100 samples in order to split (this

truncation is a form of regularization). The random forest model was built using the scikit-learn Python library (Pedregosa

et al., 2011).

3.3 Feature Extraction and Selection

In an effort to ensure that the �ndings are applicable to real-world campaigns, we limit our sources of information to those10

which may be measured by a typical meteorological mast containing sonic anemometers alongside temperature sensors. Using

this information, we can write our future wind speedU� as a function of the following variables, which were broken down into

their mean and �uctuating values:

U� = f
�
Ui ; � i ;Wi ;Ti ; t i ;u0

i ; �
0
i ;w

0
i ;T

0
i

�
(3)

whereUi and� i are the mean streamwise wind speed and direction, respectively,Wi the mean vertical wind speed,Ti the15

mean temperature,t i the time of day,u0
i the �uctuating horizontal velocity,� 0

i the �uctuating wind direction,w0
i the �uctuating

vertical velocity, andT0
i the �uctuating temperature at each previous timestepi . Unfortunately,� 0 was not available within the

dataset utilized (which had already been 5-minute averaged) and is therefore ignored for this study. Previous analysis, however,

has shown that� 0 varies inversely withU in complex terrain (Papadopoulos et al., 1992), and we may therefore assume its

in�uence is largely captured byU.20

Although these unadulterated features give us an idea as to how the system is working at the moment, they may not explicitly

represent the relevant atmospheric forcing mechanisms. Our list of measurements allows us to break down our system into two

principal forcing components: buoyancy and inertial forcing (which indirectly includes pressure gradient forces). Each of these

forces can be further discretized into large and small scales (also called mean and �uctuating values; typically separated by at

least one order of magnitude).25

Fig. 2 shows an illustrative breakdown of the two main forcing mechanisms alongside a list of extracted descriptor variables.

The de�nitions and formulations of all non-obvious extracted variables used in this study can be found in Appendix A. From

this �gure, it is clear that the variables in Eqn. 3, when manipulated, are able to describe both the inertial and buoyant forces at

multiple scales. Large-scale inertial forcing can be described by the local mean wind speed (U) and direction (� , broken down

into North-South and East-West components in an attempt to eliminate any discontinuities) or vertical velocityW , while small-30

scale inertial forcing can be described by variables such as the �uctuating (standard deviation of) velocity� u , friction velocity

u� , and the turbulence kinetic energyTKE . Likewise, large-scale buoyancy forcing can be described by the squared buoyancy
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Figure 2. Illustrative breakdown of the scales and variables related to inertial and buoyant forcing.� 0 is not shown as it is not utilized in the

analysis.

frequencyN 2, the temperature gradient@T=@z, or by proxy values such as the time of dayt (broken down into sine and cosine

components, one of which relates to 0000–1200 local time and the other to 0600–1800 local time) or temperatureT (which, on

average, is higher during the day and lower at night; stability parameters based on Monin-Obukhov similarity theory have been

considered ill-suited for complex terrain �ows because of the breakdown of underlying assumptions (Fernando et al., 2015),

and hence were not used in this study). Small-scale buoyancy effects can be described by the turbulent heat �uxw0T0. The5

correspondence between forces and internal parameters can also be described by non-dimensional variables such as the gradient

Richardson numberRi g, �ux Richardson numberRi f , turbulence intensityT I , and normalized friction velocityu
�
=U . These

derived non-dimensional variables, or extracted features, are typically ignored by current ML models in lieu of raw features

such as those listed in Eqn. 3.

Extracted variables like those in Fig. 2 may not provide any more information than the raw variables in Eqn. 3. However,10

they may ease the burden on the model by discretizing (or directly relating) informational categories, therefore reducing

informational overlap and noise, providing more periodic patterns, and more accurately describing the underlying system.

Further, such well-conceived meteorological variables have been shown to be useful for atmospheric prediction (Kronebach,

1964; Li et al., 2019; Bodini et al., 2020). In theory, given enough data, the model should be able to decipher and interpret

these extracted features on its own. Unfortunately there often isn't enough collected data for this to happen organically. Instead,15

by providing better information we can create a simpler, cheaper, more robust model that requires less training data and

construction time. Selected features will ideally represent the underlying system as accurately as possible without providing

noisy or redundant information.
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3.4 Testing

Initial tests utilize a full feature set (i.e. all input variables are included). Feature importance estimates are then extracted from

the random forest model and various user-selected combinations of the most important input features are tested. It must be

noted that only select input feature sets were tested in this investigation due to the sheer multitude of potential feature sets.

In order to relieve any timescale bias, forecasts are made across multiple timescales. Typically, wind power utility operators5

require single-step short range power forecasts run hour-by-hour for a few days to reduce unit commitment costs. The forecast

skill of observation-based methods generally reduces with forecast lead time within an hour, and numerical models have higher

skill in forecasting larger lead times (> 3 hours; Haupt et al. (2014)). Statistical learning methods have proved to be particularly

effective from about 30 minutes to approximately three hours ahead (Mellit, 2008; Wang et al., 2012; Yang et al., 2012; Morf,

2014), and roughly this time frame is thus the focus for this study. The shortest forecast predicts wind speeds 10 minutes ahead,10

roughly within the turbulent spectral band (Van der Hoven, 1957). Forecasts are also made one and three hours ahead, which

are within the spectral gap between the turbulent and synoptic spectra and approach the six-hour period wherein NWP models

become particularly useful (Dupré et al., 2019). These are all single-step forecasts, which is to say that the averaging timescale

increases with the forecasting timescale (e.g. a 10-minute forecast predicts 10-minute averaged wind speed, whereas a three-

hour forecast predicts three-hour averaged wind speed). Each dataset is split via strati�ed k-fold cross validation (Diamantidis15

et al., 2000), a technique that splits the dataset intok sections (in this case, we setk = 10) and uses each section as a separate

test set (i.e. tests consist of 10 runs, each of which utilizes a unique test set). This technique splits data nearly chronologically,

ensuring that the model does not over�t the dataset. Forecasting metrics for each test are obtained by averaging the ensemble

of all 10 runs.

The root mean squared error (RMSE) and mean absolute error (MAE) of the BCAare found for each timescale, giving two20

metrics of the true exogenous error"0. The random forest model is then trained to predict"0, combined with the ARIMA

model, and the newly constructed ARIMA-RF is used to forecast wind speeds. The reduction in RMSE and MAE (which come

exclusively from the random forest's prediction of exogenous error"̂0) is then found for the test set. Eqn. 4 and Eqn. 5 describe

both metrics, whereinUm is the target wind speed,̂Um the predicted wind speed,m each individual sample, andM the sample

size.25

RMSE =

vu
u
t 1

M

MX

m =1

(Um � Ûm )2 (4)

MAE =
1

M

MX

m =1

�
�
�Um � Ûm

�
�
� (5)
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Figure 3. Comparison of RMSE obtained by the persistence, BCA, and ARIMA-RF with the full input feature set for all forecasting

timescales.

4 Results and Discussion

The ARIMA-RF model utilizing the full feature set obtained lower RMSE than the BCA for all timescales. Fig. 3 shows a

comparison between the RMSE obtained by the ARIMA-RF model and that obtained by the persistence and BCA models. The

BCA's RMSE amounted to 0.726, 1.132, and 1.575 m s� 1 for the 10-minute, hourly, and three-hour forecasts, respectively.

The ARIMA-RF, utilizing all input features, reduced these RMSE values (as well as the MAE values) by� 2%, 4%, and 11%,5

respectively (RMSE and MAE values given in Table 1). The random forest is clearly able to ascertain more prudent physical

patterns at larger timescales (up to three hours), as large-scale atmospheric dynamics provide a more predictable signal for the

prediction of exogenous error.

All feature importance values were extracted from the random forest and are shown in Fig. 4. The variables are broken

down into three distinct categories: inertial (large-scale dimensional variables signifying inertial forces in Fig. 2), stability10

(blue and purple regions in Fig. 2 which are akin to atmospheric stability), and turbulence variables (small scale and non-

dimensional inertial variables in Fig. 2).� is the most important variable for the prediction of"0 at all timescales, achieving up

to 20% importance at the three-hour timescale. Fig. 5a shows the partial dependence on the East-West component of� (i.e. the

random forest model's average predictions,"̂0, across the range of a given variable, in this case the East-West component of� )

alongside the variable's distribution. The model is clearly able to discern an East-West directional pattern in the training data.15

The climatology above the Perdigão ridges displays a proclivity for northeasterly and southwesterly �ows, the former of which

exhibit comparatively high velocities (Fernando et al., 2019). The BCA tends to under-predict �ow from the northeast (i.e. the

random forest's average target variable"0 is positive; Fig. B1, Appendix B). Accordingly, the random forest predicts positive"0

values, correcting for the BCA's under-prediction. Fig. 6c, which displays both the ARIMA-RF (solid lines) and BCA (dashed

lines) RMSE values by directional sector, shows that the ARIMA-RF successfully improves hourly and three-hour forecasting20

accuracy when winds are northeasterly.
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Table 1.RMSE and MAE (m s� 1) obtained by the persistence, BCA, and ARIMA-RF models when utilizing select input feature combina-

tions. The �nal two rows show the testing results when utilizing the full input feature set and the full feature set exceptT . Underlined values

show the best performance from each column.

10 Minute Hourly 3 Hour

Model RMSE MAE RMSE MAE RMSE MAE

Persistence 0.737 0.531 1.165 0.884 1.676 1.315

BCA 0.726 0.528 1.132 0.863 1.575 1.240

Input Features RMSE MAE RMSE MAE RMSE MAE

U, � , t 0.733 0.533 1.109 0.834 1.533 1.194

U, � , t , T 0.752 0.549 1.164 0.876 1.597 1.231

U, � , t , W 0.729 0.531 1.095 0.825 1.518 1.185

U, � , t , T I 0.730 0.531 1.072 0.812 1.533 1.191

U, � , t , w0T 0 0.731 0.532 1.095 0.825 1.521 1.189

U, � , t , W , T I , w0T 0 0.728 0.530 1.073 0.812 1.521 1.180

U, � , t , W , T I , w0T 0, T 0.738 0.539 1.115 0.842 1.565 1.215

Full input feature set 0.714 0.520 1.092 0.830 1.395 1.100

All features exceptT 0.712 0.518 1.071 0.813 1.379 1.083

Figure 4. Feature importance for the prediction of exogenous error when all input features are given to the random forest model. a) shows

importance for the 10-minute prediction, b) for the hourly prediction, and c) for the three-hour prediction. Blue bars denote inertial variables,

orange denote stability variables, and grey bars denote turbulence variables. Importance values for each test sum to 100%.

Even larger improvement is seen for westerly winds which pass over the southern ridge prior to reaching the measurement

location (Fig. 6c). Westerly winds are common between 1300 – 2100 local time (Fernando et al., 2019), and Fig. 6b shows
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Figure 5. Lines show dependence between the random forest prediction"̂ 0 and (a) the East-West component of� , (b) T I , (c) the noon-

midnight component oft , and (d)T . Blue shading shows variable distribution. Arrows in (a) and (c) correspond to direction (on the x-axis)

of the normalized oscillatory component.

that the ARIMA-RF is able to improve upon the BCA forecast during these hours. The BCA tends to over-predict wind speeds

around 1200 local time (i.e. negative"0 in Fig. B2, Appendix B), as wind speeds reach a relative nadir (Fernando et al., 2019).

The model's over-prediction is captured and partially corrected by the random forest, which predicts negative"0 values around

noon (t � � 1 in Fig. 5c). Wind speeds then pick up throughout the afternoon as the atmosphere becomes more convective.

Increased convection leads to highTKE andT I values, which peak in the mid-afternoon (not shown). As wind speeds rise5

and the atmosphere becomes more convective, the BCA begins to under-predict wind speeds. The under-prediction is once

again captured by the random forest and the artifacts can be seen in Fig. 5b and c. The random forest identi�es periods more

than �ve hours from noon (t � � 0:25 in Fig. 5c) and those with highT I as periods wherein the BCA will likely under-predict

wind speeds and corrects the BCA forecast accordingly by predicting positive"0 values.

A comparison of both the BCA and ARIMA-RF models' RMSE values in stable and unstable conditions (Table 2) shows10

that the BCA performs better under unstable conditions for both the hourly and three-hour forecasts, but the opposite is true for

the 10-minute timescale. Increased turbulence during the daytime clearly hampers the BCA when forecasting 10 minutes and,
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Figure 6. RMSE obtained by the ARIMA-RF (with the full feature set; solid lines with points) and BCA (dashed lines) partitioned by (a)U,

(b) hour of the day (local time), (c)� , and (d)T KE .

to a lesser extent, one hour ahead (dashed grey and yellow lines, respectively, in Fig. 6d). Notably, the random forest is only

able to make minimal forecasting improvements (� 1:5%) on the 10-minute and hourly timescales during unstable conditions,

but is able to improve the three-hour forecast by almost 15% during such conditions. Wind speeds can be highly chaotic during

convective conditions, leading to large �uctuations as high-energy eddies pass through the measurement location. Typically

the large-eddy turnover timescale for the lower atmosphere is 10-20 minutes (speci�cally during daytime), and averaging5

timescales approaching or less than this timescale exclude information on more stable and deterministic large eddies, thus

making predictions more prone to random errors. The lack of large eddy in�uence results in a wind speed signal that is replete

with random �uctuations originating in the inertial subrange, adding substantial noise to the prediction. These �uctuations

may overwhelm the ML model's pattern recognition capabilities, even up to the hourly timescale, reducing the random forest

prediction to a noisy guess. Such ML models will always make predictions based on patterns in the training data, even when10

those patterns are erroneous and do not hold for the testing dataset. This results in error predictions that are only minimally

correlated with the true exogenous error.

12



The highest RMSE values produced by the hourly and three-hour BCA occur during the evening transition period (Fig. 6b;

sunset typically between 2000 – 2100 local time). There is a drastic reduction in both wind speed and atmosphericTKE during

this period (Fernando et al., 2019) as the atmosphere transitions from a convective to a stable regime. Wind ramps (de�ned as

wind speed changes of 20% and 50% for hourly and three-hour forecasts, respectively) are particularly prevalent between 1900

– 2300 local time (not shown). Such ramp events are dif�cult for a simple statistical model such as ARIMA to predict as they5

are not only highly situational, they are also statistical outliers. The random forest is able to partially discern such transitional

events occurring between 1900 – 2300, reducing RMSE by an average of 1%, 6%, and 16% for the 10-minute, hourly, and

three-hour timescales, respectively.

Table 2.RMSE (m s� 1) obtained by the BCA and ARIMA-RF (with the full input feature set) based on stability (as de�ned byN 2) of the

forecasted time period.

Stable Unstable

Timescale BCA ARIMA-RF BCA ARIMA-RF

10 minutes 0.711 0.700 0.770 0.758

1 Hour 1.166 1.118 1.017 1.003

3 Hours 1.590 1.418 1.526 1.299

The seven most important features for the hourly and three-hour predictions, namely� , U, T I , t, T , W , andw0T0, are

identical (although scrambled; Fig. 4), and were therefore used to test discriminate feature set combinations. All tests with10

multiple input features containedU, � , andt. There are two reasons for prioritizing these three variables: they prove to be some

of the most important input features for all timescales and they can all be captured by a simple cup anemometer and wind vane

rather than a more expensive sonic anemometer. These three features, when used in conjunction, were able to achieve about

58% of the error reduction obtained by the test incorporating all features at the hourly timescale (Table 1). AlthoughT appears

to be one of the most important input features (Fig. 4), it clearly hinders the model's predictive capabilities and decreases15

prediction accuracy across all timescales. The case with an input set ofU, � , t, andT consistently performs the worst of all

cases shown in Table 1. Simply addingT to the base input feature set (U, � , andt) decreases forecasting accuracy by up to

5%, whereas removingT from the full input feature case improves prediction accuracy at all timescales.T is highly seasonal

and, because strati�ed k-fold cross validation splits the training and testing sets nearly chronologically (the distribution of the

target variable"0 is kept constant between training and testing sets), the discrepancy between meanT values can be as high20

as 10� C between the training and testing set. The disparity between the training and testing distributions clearly hampers

the random forest's predictive capabilities by providing training information that is nugatory or deleterious for prediction on

the testing set. As can be seen in Fig. 5d, the random forest appears to be somewhat dependent uponT, particularly on the

three-hour timescale, as lowT leads to positivê"0 and highT leads to negativê"0. T is a clear example of the inherent risks

associated with utilizing dimensional or seasonal inputs within an ML forecasting model, although such issues may be negated25

for a dataset spanning several years.
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The discriminate input set incorporating onlyU, � , t, W , T I , andw0T0 produces an hourly forecast that is nearly equivalent

to that incorporating all features exceptT (Table 1).W , T I , andw0T0 all improve forecast accuracy, particularly at the hourly

timescale. The 10-minute and three-hour models, however, appear to derive a majority of their forecasting skill from the entire

array of input features rather than the discriminate list tested. Notably, many of the most important input features (U, � , t,

andW ) are directly measurable and need not be extracted (althoughW cannot be captured by a cup anemometer). The most5

important variables that require extraction (i.e. values that are not direct measurements),T I andw0T0, both contain small-

scale (�uctuating) forcing components, indicating that small-scale processes may be more easily captured by ML models after

domain-speci�c interpretation. These small-scale variables provide signi�cant forecasting improvements, even at a multi-hour

timescale. The testing results from the study show that, in order to achieve an optimal forecast of exogenous error, information

about these small scales must be included as inputs for the predictive model.10

The results of the discriminate tests, which may be found in Table 1, show a stark distinction between the 10-minute and

the hourly/three-hour forecasts. None of the 10-minute tests except that with the full input feature set (and all features except

T) were able to improve upon the BCA forecast. In contrast, all hourly and three-hour tests except those utilizingU, � , t, and

T were able to improve upon the BCA forecast. The disparity in the �ndings likely re�ects the inherent challenges associated

with forecasting wind speeds within the turbulent peak of the wind speed spectrum (Van der Hoven, 1957). 10-minute forecasts15

are more prone to turbulent �uctuations induced by eddies in the inertial subrange. Hourly and three-hour forecasts, however,

incorporate information from more stable large-scale eddies, allowing for a more predictable meteorological pattern.

A majority (if not all) of the random forest's predictive capability derives from the utilization of multiple atmospheric

variables within the input feature set. Table B1 in Appendix B shows thatt is the only input feature that, when used individually,

leads to a decrease in RMSE below that of the BCA. Individual atmospheric variables effectively represent the magnitude of20

the �rst term on the right side of Eqn. 1,� 2
x j

( @"
@xj

)2. The random forest model is more powerful when utilizing multiple

atmospheric variables within the input feature set because the model can incorporate the second term on the right side of Eqn.

1
�
2[� x j ;x k

@"
@xj

@"
@xk

]
�
, an indication of how the exogenous error changes depending on the input features' co-variance. This

is especially true for the testing case incorporating all input features exceptT, which typically provides the most accurate

predictions of exogenous error. The ARIMA-RF's improvement over the BCA forecast increases with increasing timescales,25

providing more than 11% improvement at the three-hour timescale. The ARIMA-RF hourly forecast (with the full input feature

set) obtains anR2 value of 0.84 with true wind speed, akin to that of numerical models in complex terrain (Yang et al., 2013).

This study shows that the forecasting improvement, which comes from prediction of non-linear exogenous error"0, can be

directly attributed to prudent feature engineering.

5 Conclusions30

Exogenous error ("0) arises from atmospheric forcing that is ignored or misrepresented in the modeling process. It has been

shown that this error, or a portion thereof, can be predicted by an ML model given relevant atmospheric information.U, � , t,

W , T I , andw0T0 were the most important input features, whereasT provided information that was particularly deleterious.
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Domain-speci�c feature extraction was found to be particularly useful for input features relating small-scale forcing, and these

turbulence variables were found to reduce forecasting error even for multi-hour forecasts. Predictions of"0 were shown to be

particularly dependent uponT I , but feature dependence patterns tend to be relatively uniform across timescales. Atmospheric

stability and turbulence appear to play a large role in the model's ability to predict"0, as the site's speci�c climatology is shown

to produce many of the patterns captured by the random forest. Finally, it is shown that utilizing multiple atmospheric variables5

which relate various forcing mechanisms and scales is necessary in order to forecast"0.

While the exact results of this investigation are site-speci�c, the �ndings are expected to be generally applicable to numer-

ous wind projects, especially those located in complex terrain. Prudent implementation of atmospheric forcing information,

particularly that which is non-linear or derived via coupling of multiple forces, is crucial for the prediction of exogenous error

and must be addressed to obtain optimal forecasting results. This study supports the supposition that a hybrid model using ML10

techniques to correct a simpler statistical predictor (such as an ARIMA model) can be effective for wind speed forecasting.

Further improvements are still required to more accurately represent atmospheric forcing. Gridded meso or synoptic-scale

information would allow the model to predict transitional periods including weather fronts and drastic wind ramp events. Mul-

tiple scales of forcing should also be incorporated to improve the pattern recognition capabilities of ML techniques. Additional

information about microscale, mesoscale, and synoptic events would better depict atmospheric forcing and momentum, and15

the effects of seasonality must be accounted for when possible. Hopefully, this study will be a forerunner for the improved

incorporation of atmospheric physics within ML modeling.

Code and data availability.Data from the Perdigão campaign may be found at https://perdigao.fe.up.pt/. Due to the multiplicity of cases

analyzed in this study, example processing and modeling codes can be found at https://github.com/dvassall/.

Appendix A: Input Features20

Atmospheric variables were measured using sonic anemometers and temperature sensors along a single 100 m tower. When

possible, missing data from the 100 m sensors were �lled via correlation with the 20 m sensors using the variance ratio measure-

correlate-predict method (Rogers et al., 2005). There were no periods with functional 100 m sensors and nonfunctional 20

m sensors. All periods without any measurements from both sets of sensors (15 5-minute periods) were �lled using linear

regression with Gaussian white noise. Many of the input features used in the study required derivation. A description of25

necessary derivations are given below.

Friction velocity is de�ned asu� =
�
u0w02 + v0w02

� 1=4
and was measured at 20 m AGL, just above canopy height (Fer-

nando et al., 2019). Turbulence kinetic energy is de�ned asTKE = u 02 + v02 + w 02

2 and was measured at 100 m AGL. Buoyancy

frequency squared is typically de�ned as (see Kaimal and Finnigan (1994) for details of all parameters that appear below)

N 2 =
g
� 0

@�
@z

=
g

Tpv 0

@Tpv

@z
(A1)30

15



whereg is the gravitational force,� the air density,z the height AGL,Tpv the virtual potential temperature, and subscript 0

indicates reference variables in using the Boussinesq approximation. The gradient Richardson number is de�ned as

Ri g =
N 2

�
@u
@z

� 2
+

�
@v
@z

� 2 (A2)

whereu andv are the two horizontal wind speed components. The �ux Richardson number is de�ned as

Ri f =
g

Tv
w0T0

u0w0
�

@u
@z

�
+ v0w0

�
@v
@z

� ; (A3)5

whereTv is the virtual temperature whileu0w0 andv0w0 (both measured at 100 m AGL alongsidew0T0 andTv ) are the

Reynolds stresses that indicate the �ow's vertical momentum �ux.Ri f is typically used in conjunction with a stably strati�ed

atmosphere (Lozovatsky and Fernando, 2013). It is used here in the general sense as it is a measure of the ratio between buoyant

energy production and mechanical energy production (associated with inertial forces) related to Fig. 2. NegativeN 2 values,

corresponding to convective atmospheric conditions, are set to 0.Ri g andRi f are limited to a maximum of 5 and minimum10

values of 0 and� 5, respectively, to remove extremes in both variables. Turbulence intensity is the ratio of �uctuating to mean

wind speed, orT I = � u =U . Both hour of the day and wind direction were broken into two oscillating components in order to

eliminate any temporal or directional discontinuity.

Appendix B: Testing Results & Analysis

Figs. B1 and B2 show the average exogenous error"0produced by the bias-corrected ARIMA (BCA) as partitioned by direction15

and hour, respectively. Table B1 presents the RMSE and MAE obtained by the BCA (total exogenous error) and the ARIMA-RF

using individual input features.
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