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Abstract. We develop an automated controller tuning procedure for wind turbines that uses the results of nonlinear, aeroelastic

simulations to arrive at an optimal solution. Using a zeroth-order optimization algorithm, simulations using controllers with

randomly generated parameters are used to estimate the gradient and converge to an optimal set of those parameters. We use

kriging to visualize the design space and estimate the uncertainty, providing a level of confidence in the result.

The procedure is applied to three problems in wind turbine control. First, the below-rated torque control is optimized for5

power capture. Next, the parameters of a proportional-integral blade pitch controller are optimized to minimize structural

loads with a constraint on the maximum generator speed; the procedure is tested on rotors from 40 to 400 m in diameter

and compared with the results of a grid search optimization. Finally, we present an algorithm that uses a series of parameter

optimizations to tune the lookup table for the minimum pitch setting of the above-rated pitch controller, considering peak loads

and power capture. Using experience gained from the applications, we present a generalized design procedure and guidelines10

for implementing similar automated controller tuning tasks.

1 Introduction

In this article, we present a data-driven, simulation-based optimization procedure for tuning wind turbine controllers using

measures that are directly related to component design. Controller tuning influences the power capture and structural loading

on wind turbines, which are directly related to the cost of the wind energy generated. At the same time, different turbine15

models require different control parameters. As rotor designs are iterated upon and also customized, e.g., with larger towers,

tip extensions, or for site-specific turbulence, an updated (and ideally optimized) controller is required for component design

and cost specification. Given the aeroelastic turbine model, the algorithm presented in this article automatically finds the

optimized parameters of the predefined control architecture, reducing the effort required of the control designer.

The wind turbine control tuning can be automated, but design choices for the various parameters often require expert knowl-20

edge of the controller and turbine operation. An automated procedure to determine these choices could reduce the design cycle

time of a manufacturer’s research and development process or aid researchers in other disciplines of wind engineering that

require a well-tuned controller without worrying about its finer details. Several control parameters are directly related to the

performance of the turbine and must be tuned for each design iteration or model update. The simplest method to determine

these design choices using simulation results is to exhaustively search the design space and then make an educated design25

1



choice of the parameter. However, exhaustive search may become computationally intractable for fine discretizations of the

search space; on the other hand, coarse discretizations may lead to sub-optimal design choices.

A systematic, simulation-based parameter search of the pitch control gains for generator speed control was first published

in Hand and Balas (2000). On a single turbine, turbulent simulations were used to sample and visualize the design space against

competing design measures: generator speed regulation versus blade pitch actuation. A similar data processing flow was used5

in Hansen et al. (2005) while the problem was formulated in a numerical optimization framework for structural load reduction;

the authors concluded that a good initial guess was only marginally worse than the optimized result and that the effort required

to set up the optimization procedure was not profitable for the benefit in structural loading. Shortly thereafter, an adaptive

control framework was found to be beneficial for reconciling plant-model mismatches in field testing, especially for control

parameters that affect power production (Johnson et al., 2006), where even small benefits are profitable to the operator.10

As the wind industry has matured and computational cost has decreased, wind turbine design increasingly relies on simu-

lation of power capture and structural loads for design analysis. As a result, system engineering tools for wind turbine design

have been developed and refined, leading to updated efforts in automated controller development, with the aim of deploying

tuning methods for many different turbines. One approach is to use a model-based control scheme in order to limit the control

tuning effort (Bottasso et al., 2012). Model-based pitch (Hansen et al., 2005) and torque (Johnson et al., 2006) controllers15

usually result in functioning controllers, but require rules-of-thumb to determine the closed-loop characteristics and can be

inaccurate when there are uncertainties in the model.

A scalar cost function was presented in Tibaldi et al. (2014) using measures that are directly related to wind turbine com-

ponent design, like peak and fatigue loads. The cost function included terms for each turbine part, with factors to capture its

relative cost to the turbine. Using measures directly related to the component design, like fatigue and extreme loads in turbu-20

lent simulations, is ideal because it most accurately reflects the eventual component design, but these simulations require more

detailed and computationally expensive methods to generate the measures.

Simulation-based optimization has been used to solve these problems, where solving for the value of the cost function

is expensive compared to the optimization procedure. One approach to solving these types of problems is using Response

Surface Methodology (RSM) (Fu, 2014). RSM was originally developed for experimental design (Box and Wilson, 1951), but25

has increasingly been used with simulation information; it works by fitting a cost function to the simulation results, finding

the local gradient of the fit, and optimizing the fitted cost function. The question of how to sample the parameter space

remains an open question. Samples can be generated using a grid search or random sampling. An example in the wind energy

community by Moustakis et al. (2019) samples the parameter space based on a cost function that considers both where the cost

is expected to be optimal and also where it is unknown. Our approach to sampling the parameter space is based on stochastic30

approximation or “zeroth-order optimization,” which uses the sampled cost function to estimate the local gradient and then

optimizes the function with proven convergence results (Ghadimi and Lan, 2013). Other optimization algorithms require an

analytical model; the proposed method relies on functional evaluations (e.g., simulation data) and does not require a model to

compute gradient information. In one of the original stochastic approximations methods, Kiefer and Wolfowitz (1952), each

dimension of the decision variable is perturbed and a finite difference method is used to approximate the gradient. Multi-point35
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methods were developed for higher-dimensional cases, where the decision variable can be perturbed in a “direction” containing

multiple dimensions and the directional derivative is used to estimate the gradient (Duchi et al., 2015). If multiple directions

are randomly sampled using a normal Gaussian distribution and then averaged to find the directional derivative, it is known as

Gaussian smoothing, which has been shown to improve convergence rates (Hajinezhad et al., 2017).

We use a Gaussian smoothing approach to generate samples, estimate the gradient, and identify a (possibly local) minimum5

point. Then we use the samples to visualize the design space and provide a level of confidence in the result. Previous work

in controller optimization usually only provides the cost function and goals of the optimization, whereas this work explicitly

details the method for determining the sample simulations and how their results are used to iterate on control designs.

Instead of using cost functions directly related to overall wind turbine performance, our work solves specific wind turbine

control problems that are related to the cost of energy. First, the optimization procedure is demonstrated on below-rated torque10

control to increase power capture. Next, the pitch control parameters for above-rated pitch control are optimized to reduce

fatigue or extreme loads on the tower or blades with a maximum generator speed constraint. Finally, the minimum pitch setting

of the pitch controller is optimized in a series of parameter optimizations aimed at reducing peak blade loads.

This article is organized as follows. The optimization algorithm and visualization method are presented in Section 2. Appli-

cations of the algorithm for wind turbine control tuning are presented in Section 3, followed by a generalization of the design15

procedure and guidelines for parameter selection in Section 4. Conclusions are presented in Section 5 and the generalized wind

turbine controller that is tuned in Section 3 is described in Appendix A.

1.1 Mathematical Notation

Superscript notation will be used to index the stage r of the zeroth-order optimization algorithm: e.g., zr. Additionally, FT is

the transpose of F . If the power of any value is computed, the base will appear in parentheses: e.g., (γ)r.20

2 Method: Zeroth-Order Optimization

The zeroth-order optimization algorithm uses J random samples near the current iteration to estimate a gradient. Then, a

typical first-order method ensues: using the estimated gradient, the descent direction and step size are chosen to produce the

next iterate. The process is repeated for a number of stages Nstage until convergence is observed. Using the cost function

samples, an estimation of the design space is generated to visually verify the results. In each control tuning example presented25

in this article, the following unconstrained optimization problem is solved:

min
z∈X

C(z), (1)

where z ∈ X ⊂ RM is theM -dimensional parameter or vector of control parameters, constrained to be in a set X that is convex

and compact; C : RM → R is the cost function, which we assume is differentiable, bounded from below, and its gradient

is Lipschitz (Ghadimi and Lan, 2013). However, we only have access to the cost function via samples of potentially noisy30

simulation results.
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2.1 Generating Samples

The algorithm begins with an initial guess z1. During each stage r = 1,2, . . . ,Nstage, the gradient is estimated by randomly sam-

pling the design space. During each stage, sample directions φrj ∈ RM , j = 1,2, · · · , J are parameters drawn from a random

distribution. In the most general case, a standard normal distribution is used for each dimension and the vectors are normalized

to have a unit magnitude; this results in a uniformly random distribution of directions in M -dimensions (Hajinezhad et al.,5

2017). In this article, we focus on 1- and 2-dimensional parameter optimizations and will make changes to the generation of

the sample directions φrj to ensure an even distribution for a small number of samples.

A search sample zrj in stage r is generated according to

zrj = zr +µφrj , (2)

where µ is a smoothing parameter that determines the amount of space over which the parameter space is searched. A large10

value for µ helps to estimate the value of the cost function over a larger area (Section 2.6), but smaller values of µ tend to result

in more accurate convergence.

The number of stages and samples-per-stage must also be chosen by the designer. A large number of samples-per-stage

gives the best estimate for the gradient, but requires more simulations. During the development of this work, it was found

that a smaller number of samples-per-stage and more stages resulted in better convergence using the same total number of15

simulations (e.g., in Section 3.2.2).

2.2 Gradient Estimation

At each stage r, the cost C(z) is computed via simulation at each search sample and used to estimate the gradient

Ḡ(zr) =
1

J

J∑
j=1

C(zr +µφrj)−C(zr)
µ

φrj . (3)

Note that (3) differs from a finite difference method of estimating the gradient, where the factor φrj would be in the denominator.20

Because there is uncertainty expected in the computed cost, small perturbations (µφrj ) and a non-smooth cost function C(z)
could result in noisy gradients. The gradient estimator in (3) is referred to as the random directions gradient estimator (Fu,

2014, p. 110), and maintains the convergence criterion when used in a first-order algorithm (Hajinezhad et al., 2017).

2.3 Determine Descent Direction

From the estimated gradient, the possible descent direction is computed:25

dr =−DḠ(zr), (4)

where a diagonal matrix D of positive scalars is used to relatively increase dr in the directions where the sensitivities of

the cost function to parameter changes are smallest, providing a diagonal approximation to Newton’s method and improving
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convergence rates (Bertsekas, 1999), which leads to the following stage gain:

zr+1 = Proj(1−ρ)X {zr + drα}, (5)

where α is the step size and ProjX {y} := argminx∈X ‖x− y‖22 finds the closest point within the parameter bounds X , offset

with ρ= µ so that search samples in the next stage can be generated within the parameter bounds. The algorithm described

in (2)–(5) is proven to converge to a ball centered around an optimal solution (Hajinezhad et al., 2017). Next, we describe two5

adjustments to the original algorithm that improve performance when used in the control tuning applications presented in this

article.

2.4 Adjustment 1: Decreasing Step Size and Line Search

A decreasing step size rule ensures convergence and a line search is used so that the cost function does not increase in successive

iterations. After choosing a base step size α0, the cost of test samples10

zra,k = Proj(1−ρ)X {zr + drαk} (6)

are evaluated (through simulation) along the descent direction, where the step size

αk = α0(β)k−1 (7)

decreases for a number of iterations k ≤ kmax. An upper limit kmax on the number of step size samples is chosen to cap the

number of simulations that may be performed along directions that could increase the cost function. To ensure that the cost15

function is non-increasing during each iteration, the Armijo rule for step size is used (Boyd and Vandenberghe, 2004):

C(zr)−C(zra,k)>−σαkḠT dr > 0, (8)

where, for all examples in the following section, σ = 0.05 is chosen, a conservative value that only requires a small decrease

in the cost function.

2.5 Adjustment 2: Resetting Parameter Update20

Once an adequate step size is found, the parameter z is updated using

zr+1 = Proj(1−ρ)X {zr + drαk}, (9)

which is the zra,k in (6) with the first k that satisfies (8); since this value has already been computed, the simulation for

determining C(zr+1) does not need to be performed.

If the maximum number of step size simulations (k = kmax) are performed and the step size rule in (8) is not satisfied, the25

next iteration of the parameter z is chosen as

zr+1 = argmin
z∈X

C(r), (10)
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where C(r) is the enumeration of the cost function at all stage samples zr, all search samples zrj , and all step size samples zra,k
within the parameter bounds defined by X , up until the current stage r:

C(r) = {C(zr),C(zrj ),C(zra,k)}, (11)

where C(r) ∈ Rnsamp has nsamp ≤Nstage×J × kmax elements, r = {1, . . . , r}, j = {1, . . . ,J}, and k = {1, . . . ,kmax}. As before,

with the step size sample, since the value of the cost at this point has already been computed, it is unnecessary to compute5

it again for r > 1. Since the resetting parameter update in (10) results in a sequence of C(zr) that is non-increasing, the

convergence properties of the original algorithm are maintained; the same argument applies to Adjustment 1 in Section 2.4.

The solution zsoln of the zeroth-order optimization is determined by the updated parameter of the final stage:

zsoln = zNstage+1, (12)

where the number of stages Nstage is determined before running the algorithm. A typical stopping condition involves checking10

whether the norm of the gradient is less than a given threshold or dictating a budget on the number of simulations that are to

be performed. We investigate the performance versus Nstage in Section 3.2.2.

2.6 Visualization

To provide confidence in the result of the zeroth-order optimization, we visualize the cost, and the measures associated with it,

over the parameter space. If the minimum of the zeroth-order parameter optimization matches that of the visualization, the user15

can be confident in the result. The visualization method also provides a quantitative measure of the uncertainty of the estimated

cost over the parameter space.

To estimate the cost and its variance over the parameter space, we use ordinary kriging. Kriging was originally developed

for mining applications, where sparsely sampled information over a geographical space was used to estimate the quantity over

the whole area. More recent applications of kriging include engineering design and computer experiments.20

Kriging, or Gaussian process regression, is a method of interpolation that incorporates uncertainty in the area between

samples. Using all the observed data from the zeroth-order parameter search at stage r, C(r) from (11), ensuring there are no

repeated values, the estimated cost at z is

Ĉ(z) = fT (z)β̂+ ψ̄T (z)Ψ−1(C(r)−F β̂), (13)

where the first term in (13) is the generalized least squares estimate25

β̂ = (FTΨ−1F )−1FTΨ−1C(r). (14)

Since we are using ordinary kriging, which assumes a constant mean across the parameter space, the regression basis function

f(z) = 1 and F = f(Z) = 1 ∈ Rnsamp , (15)
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where Z is the enumeration of all nsamp sample points like in (11). The correlation matrix Ψ represents the influence that nearby

samples have on each other; it has the form

Ψ =


ψ(z1,z1) ψ(z1,z2) · · · ψ(z1,znsamp)

ψ(z2,z1) ψ(z2,z2) · · · ψ(z2,znsamp)
...

...
. . .

...

ψ(znsamp ,z1) ψ(znsamp ,z2) · · · ψ(znsamp ,znsamp)

 (16)

and is made up of scalar Gaussian correlation functions

ψ(z1,z2) = exp

(
−

M∑
i=1

(|z1,i− z2,i|/νi)2
)
, (17)5

where νi is the distance at which the influence is e−1 or 37% in the ith dimension (Martin and Simpson, 2008). The second

term in (13) interpolates or “pulls” the estimate towards the observed values using the correlation vector

ψ̄T (z) =
[
ψ(z,z1) ψ(z,z2) · · · ψ(z,znsamp)

]
. (18)

The mean squared error, or variance, of the cost at z is determined by

MSE[Ĉ(z)] = σ2
proc

1−
[
f(z) ψ̄T (z)

]0 FT

F Ψ

f(z)

ψ̄(z)

 , (19)10

where

σ2
proc =

1

nsamp

(
C(r)−Fβ̂

)T
Ψ
(
C(r)−Fβ̂

)
(20)

is the process variance. As the unobserved point z moves away from the observed samples, the second term in (19) approaches

zero and the variance approaches σ2
proc.

The correlation function parameters νi are estimated using a maximum likelihood estimator to be consistent with the ob-15

served data. To perform this optimization, we use the ooDACE toolbox to fit the correlation function and kriging model (Couck-

uyt et al., 2013). Problems can arise when using kriging for simulation-based optimization because of ill-conditioned corre-

lation matrices (Booker et al., 1999). When samples cluster near the optimal solution, closely spaced samples with different

values can result in very small values of νi and ill-conditioned correlation matrices. One solution is to add a constant to the di-

agonal of Ψ (Sasena, 2002). We implement this using “stochastic kriging”, where the samples are assumed to have uncertainty20

and is equivalent adding their variance to the diagonal of Ψ (Couckuyt et al., 2013). Additionally, the lower and upper bounds

on the values of νi depend on the minimum and maximum spacing of the distance between samples, respectively (Martin and

Simpson, 2008).
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2.7 Settling Function

To measure the number of stages the optimization procedure requires to find the minimum of the cost function, we define the

settling function

s(r) =
C(zsoln)−C(zr)
C(zsoln)−C(z1)

, (21)

which is a linear transformation that represents the fraction of change in cost at each stage C(zr), compared to the overall5

change in cost function. The initial cost C(z1) is mapped to s(1) = 1 and the cost of the solution C(zsoln) is mapped to

s(Nstages + 1) = 0. Often, we perform more stages than is necessary and use this settling function to determine how many

stages are required to achieve some percentage of the change in cost function.

3 Applications in Wind Turbine Control Tuning

In this section, we present three examples of using zeroth-order parameter optimization to tune the parameters of wind turbine10

controllers. As an initial demonstration, we optimize a one-dimensional parameter to maximize power capture through torque

control in below-rated operation. Next, we present the motivating example for this work, a two-dimensional parameter opti-

mization for a standard pitch controller, with the goal of regulating generator speed so that loads are minimized, subject to a

constraint on the maximum generator speed. Finally, we demonstrate how a series of one-dimensional parameter optimizations

can be used to determine the minimum pitch setting of the pitch controller for controlling peak blade loads.15

3.1 Optimal Torque Control Gain

In below-rated (Region II) operation, the generator torque is typically controlled using τg = koptω
2
g , which controls the rotor

speed to its optimal tip speed ratio, where ωg is the generator speed. The optimal gain kopt depends on a number of aerodynamic

properties (Johnson et al., 2006):

kopt =
πρairR

5CP,max

2λ3optG3
, (22)20

where ρair is the air density, R is the rotor radius, CP,max is the maximum power coefficient, λopt is the optimal tip speed ratio,

and G is the gearbox ratio. We add a multiplicative factor to account for uncertainties in the aerodynamic properties and to

allow the gain to be increased or decreased, resulting in the control law

τg = kfactkoptω
2
g . (23)

In practice, a value other than kfact = 1 is found to be optimal for a realistic turbulent wind input.25

The goal of this optimization procedure is to find the gain kfact that results in the greatest energy capture. To maintain the

form of a minimization problem, we solve

min
z=kfact

−P̄avg(z), (24)
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Figure 1. The first iteration of the one-dimensional parameter tuning for the optimal torque control gain. Starting with the initial parameter

z1, random samples z11 and z12 are generated to estimate the gradient. The test sample z1a,1 is evaluated in the gradient direction until the

cost decreases and the next stage parameter z2 is determined. The estimated cost and uncertainty shown are determined after r = 1 stage (4

parameters and 12 total simulations) and found using (13) and (19), respectively, where σ(z) =

√
MSE[Ĉ(z)].

where the cost function C(z) =−P̄avg(z) is the negative of the weighted average mean generator power

P̄avg =
P̄ (u)T p(u)∑
u∈U p(u)

, (25)

using the average generator power of a simulation with mean wind speed u and p(u) is the Weibull wind speed distribution.

The optimization parameter z = kfact, the Weibull shape and scale parameters are 2.17 and 10.3, respectively, and we used

U = 6, 8, and 10 m s−1 to span the below-rated wind speeds.5

At each stage, J = 2 samples are simulated to compute the cost function and estimate the gradient. In this one-dimensional

problem, no dimensional scaling is required, thus D = 1. With J = 2, we set the search direction to

φrj = {−1,1} for j = 1,2, (26)

which simplifies (3) to a centered finite difference approximation of the gradient for this 1-dimensional application.

The optimal value of kfact is expected to be between 0.3 and 1.7, so these values are set as hard bounds. A search range10

of µ= 0.05 is set to adequately search the space and estimate meaningful gradients. For tuning controllers of turbines with

different power ratings, the base step size is scaled with the inverse of the initial simulation’s average power P̄ (z1). Larger

power values result in larger gradients, since the scale of the parameter is constant for all rotors (it should ideally be 1), the step
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size should be reduced to maintain the same rate of descent. Note that a positive step size is required, even though the cost is

negative, and a maximum of three step size sample simulations are performed (kmax = 3). A summary of the parameters used

in the torque control parameter optimization is shown in Table 1 and an illustration of the first iteration is shown in Fig. 1.

Table 1. Design choices for 1-D parameter search to optimize the torque gain in below-rated control.

Parameter Variable Value

Stage & Number of stages Nstage 7

sample size Samples per stage J 2

Newton’s method approximation D 1

Lower & upper bounds on search kLB & kUB 0.3 & 1.7

Sample search radius & smoothing parameter µ 0.05

Base step size α0 10/P̄ (z1)

Step Armijo decrement factor β 0.5

size Armijo threshold σ 0.05

Max. step size iterations kmax 3

The parameter optimization was performed on the NREL-5MW reference turbine with the standard lookup-table-based

torque controller in Jonkman et al. (2009). The algorithm finds close to the optimal kfact in 5 stages and realizes diminishing5

returns thereafter (Fig. 2b). The full procedure, with 7 stages, performs 31 simulations in total, which includes step size samples

and the initial guess. If only a single simulation at 8 m s−1 is used and the controller is exclusively in Region II, we find a

lower optimal kfact than is shown in Fig. 2a (Zalkind et al., 2020). By including other wind speeds and the transition region, as

shown in Figs. 2(c, d, and e), the optimal kfact is nearly 1. The use of turbulent simulations contributes noise to the signal that

determines the cost function, which is apparent by the non-smooth behavior of the cost samples with respect to the gain factor10

parameter in Fig. 2a. However, the algorithm appears to be robust to these uncertainties.

3.2 Pitch Control for Generator Speed Regulation

In this section, we optimize the parameters of an above-rated blade pitch controller for load reduction and generator speed

regulation. Each time a new rotor is designed, the pitch controller should be tuned so that the structural loads can be computed

to design the various hardware components of the wind turbine. As will be seen, the pitch controller affects the loads that drive15

turbine design. The procedure for tuning the gain-scheduled proportional-integral (PI) controller is detailed in Appendix A.

First, steady-state simulations at above-rated wind speeds are used to determine the turbine operating points and aerodynamic

parameters at various pitch angles, which parameterizes the gain scheduling. The final, and most involved, step is to tune the

natural frequency (ωreg) and damping ratio (ζreg) of the “regulator mode,” which represents the generator speed response to a

10
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Figure 2. One-dimensional parameter tuning for the optimal torque control gain of the 5MW reference turbine in Class A turbulence using

the negative mean generator power (−P̄ ) as the cost function. In below-rated control, the generator speed (ωg) is controlled using the

generator torque (τg). The estimated cost and uncertainty are found using (13) and (19), respectively, where σ(z) =

√
MSE[Ĉ(z)]. The

settling function s(r) is defined in (21) and the cost estimate is determined using all of the simulation results (27 unique parameters in 81

total simulations).

disturbance (wind) input. The following optimization procedure aims to find an optimal set of parameters (ωreg, ζreg) so that

structural loads are minimized and adequate generator regulation is maintained.

In general, changing the bandwidth of the pitch controller via ωreg alters the structural loading of various components, which

we denote generically withM in the following. In this section, we useM to denote tower fatigue or peak blade loading, though

any load could be used that results in a feasible optimization problem; the control and hardware designers must determine what5

loads are important to the overall turbine design. However, controllers with lower natural frequencies allow greater generator

speed transients, which is acceptable up to some maximum constraint. If the generator speed exceeds some threshold ωg,hard,

most turbines enter into a shutdown procedure to avoid further damage, which reduces the availability of the turbine and the

net annual energy production; this must be avoided.
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First, we reformulate the constrained optimization

min
z=(ωreg,ζreg)

M(z) (27)

subject to ωg ≤ ωg,hard, (28)

as an unconstrained problem to use the algorithm described in Section 2. The cost function is augmented so that the optimization

problem has the form in (1), namely5

C(z) =M(z) +B(z), (29)

where B(z) is a boundary function that penalizes samples that have a maximum generator speed that exceeds some “soft”

generator speed constraint ωg,soft,

B(z) =

0 if ωg,max(z)< ωg,soft

kB(ωg,max(z)−ωg,soft)
2 otherwise.

(30)

A quadratic boundary function is used so that the cost is differentiable, even when a non-feasible solution is sampled. The10

factor kB is chosen to provide a sufficient penalty on high generator speeds, but not so high that exceedingly large gradients

are determined from the gradient estimation in (3), which can be problematic for the algorithm.

kB =
cmax

(ωg,hard−ωg,soft)2
(31)

ensures that the barrier function B(z) = cmax when the maximum generator speed equals the hard generator speed constraint

ωg,hard.15

To adapt the cost function to different rotors and load measures,

cmax = 1
12M(z1), (32)

whereM(z1) is the load measure of the initial stage sample and the factor 1
12 is based on experience gained using the algorithm

with simulation results. A smaller factor does not penalize maximum generator speeds enough, leading to possibly infeasible

solutions that violate (28). Factors greater than 1
12 were found to create large gradients that lead the iterates away from the20

constraint boundary; typically, the optimal solution is found close to that boundary.

In most cases, the initial parameter set z1 is chosen to be near values that were tuned manually but offset (usually with a

higher natural frequency) to allow the algorithm to converge properly. If the parameters were not previously tuned, the values

suggested in the NREL-5MW reference manual (Jonkman et al., 2009) are chosen as the initial parameter set.

A summary of the parameters used to tune all the rotors in this study is presented in Table 2. The algorithm is tested using25

different numbers of stages Nstage and samples per stage J in Section 3.2.2. The best results were achieved using a quasi-

deterministic search direction,

φrj = [cosψj ,sinψj ]
T , (33)
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Table 2. Parameters used for the 2-D speed regulator control tuning procedure for all rotors tested. The effects of the number of stages Nstage

and samples per stage J on the algorithm’s performance are investigated in Section 3.2.2.

Parameter Variable Value

Soft constraint ωg,soft 1300 rpm

Cost model Hard constraint ωg,hard 1400 rpm

Cost at hard constraint cmax M(z1)/12

Stage & Number of stages Nstage 7, 12∗

Sample size Samples per stage J 3, 4, and 10∗

Newton’s method approximation matrix D diag([0.25,1])

Lower & upper parameter (ωreg, ζreg)LB (0.01,0.1)

Bounds on search samples (ωreg, ζreg)UB (1,3)

Base step size α0 3/M(z1)

Step Armijo decrement factor β 0.5

Size Armijo threshold σ 0.05

Max. step size iterations kmax 3

Sample search radius & smoothing parameter µ 0.05

∗In Section 3.2.2, we compare the performance of using different numbers

of stages Nstage and samples per stage J .

where

ψj = ψ0 +
2πj

3
, (34)

is used to evenly space the samples in the two dimensions (ωreg, ζreg), andψ0 is randomly generated according toψ0 ∼ U(0,2π),

resulting in the generated samples z1j in Fig. 3.

The cost function is more sensitive to changes in ωreg than it is to changes in ζreg, so D = diag([0.25,1]) was chosen to5

relatively increase the search direction in the ζreg dimension. Hard bounds on (ωreg, ζreg) are chosen to avoid unstable parameter

sets. The base step size α0 scales with the inverse of the initial load M(z1) so that the algorithm works for turbine models of

different sizes, with initial loads specified in Table 3.

The algorithm was tested on a range of rotor models with different wind classes and load measures. First, the pitch control

parameters of the NREL-5MW reference model are optimized, starting from the parameters specified by the NREL-5MW10

reference manual (Jonkman et al., 2009), and using the tower base moment (fore-aft) damage equivalent load (DEL) as the

load measure. For three different wind classes (1A, 1B, and 1C), with different turbulence levels (A–highest and C–lowest),

the parameters were optimized, and an example is shown in Fig. 4. In Fig. 5, the estimated cost (a), load (c), and maximum

generator speed (e) across the parameter space is shown, along with the estimated uncertainty in (b), (d), and (f). The lowest
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Figure 3. First iteration of the zeroth-order parameter optimization algorithm for the two-dimensional pitch control tuning. Random samples

z1j , j = 1...4, are generated near the initial guess z1 to estimate the gradient. Note that µ= 0.15 in this figure for clarity. The sample

z1a,k, k = 1 is tested along the descent direction until a sample with a decreasing cost function is found, which becomes the next guess z2

for the pitch control parameter. The cost estimate (background image) is determined after the first stage (r = 1, 6 total simulations).

Table 3. Summary of test cases and results from a single zeroth-order parameter tuning for speed regulation control using the parameters in

Table 2 with Nstage = 7 and J = 3.

Test Case
Load Measure

Start Load, M(z1) Start Param., z1 Final Load, M(zopt) Final Param., zopt

Turbine Wind Class (MNm) (ω1
reg, ζ

1
reg) (MNm) (ωopt

reg , ζ
opt
reg )

NREL-5MW

1A Tower 17.5 (0.60, 0.70) 11.8 (0.10, 2.08)

1B Base DEL 16.3 (0.60, 0.70) 10.7 (0.11, 1.52)

1C (fatigue) 15.0 (0.60, 0.70) 8.94 (0.085, 1.60)

CONR-13

2B

44.4 (0.6, 0.7) 41.7 (0.57, 1.46)

SUMR-13A 69.5 (0.45, 1.00) 63.2 (0.21, 1.11)

SUMR-13B Max. Blade 76.4 (0.60, 0.70) 65.4 (0.59, 1.59)

SUMR-13C Root 105 (0.50, 1.25) 65.1 (0.18, 1.87)

SUMR-25 (extreme) 180 (0.25 ,0.70) 151 (0.06, 0.76)

SUMR-50 451 (0.19, 0.47) 423 (0.36, 1.75)

SUMR-D Custom 0.137 (0.60 ,0.70) 0.121 (0.46, 1.46)
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Figure 4. Results of using the zeroth-order optimization for tuning the pitch control regulator mode (natural frequency ωreg and damping ratio

ζreg) of the 5MW reference turbine in Class B turbulence using the tower base fore-aft (mty) DEL as the load measure, which is indirectly

controlled via θc, the collective blade pitch control; θc is primarily responsible for regulating the generator speed ωg . The settling function

s(r) is defined in (21). The cost estimate (background image in Fig. a) is determined after r =Nstage = 7 stages (a total of 42 parameter pairs

and simulations).

turbulence level (Class 1C) has the lowest optimal natural frequency ωreg, since the reduced turbulence results in lower generator

speed transients. In each case of the NREL-5MW reference model, the optimized parameters have a lower natural frequency

and higher damping ratio than the original setting.

The optimization procedure was also performed for each rotor design in the Segmented Ultralight Morphing Rotor (SUMR)

project (Loth et al., 2016); for these rotors, the design driving load case for blade design was the maximum blade root bending5

moment. In practice, the combined edgewise and flapwise load is used for design, but since the edgewise load is deterministic,

we used the maximum flapwise load as the load measure for optimization, which is a good indicator of maximum combined

loads. The SUMR rotor radii range in size from 22 m to 240 m (Table B1), and the same optimization parameters (Table 2)

were used for each optimization procedure, albeit with different initial conditions and loads, which adapt the cost function and

step size accordingly. The optimization procedure generally settles on a lower natural frequency and higher damping ratio than10
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Figure 5. Cost (a), load (c), and generator speed (e) estimated values and standard deviations (std.; b, d, and f) using the kriging visualization

described in Section 2.6. The sample values are shown in (a), (c), and (e) and their locations are depicted in (b), (d), and (f).

the initial guesses (Table 3), which has the effect of producing the lowest control bandwidth (for reducing loads) but only to

the point so that the generator speed constraint is not exceeded.
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3.2.1 Discussion of Low Natural Frequency, High Damping Ratio Regulator Mode

For most of the rotors in this section, the baseline rotor speed proportional-integral (PI) control parameters are optimized to

have a regulator mode with a lower natural frequency and higher damping ratio than the initial guess (Table 3). To understand

why this is the case, we must consider the cost function of the optimization. In this tuning procedure, our goal is to minimize

structural loading with a constraint on the maximum generator speed. From Figs. 4(c) and (d), we see that the collective blade5

pitch angle θc has a large effect on the thrust-based structural loading; this includes tower fatigue and blade peak loads. Fig. 4

shows that, in most cases, pitch and loads mirror each other: when pitch increases, loads decrease, and vice versa. A good

example occurs between 230–250 seconds in the timeseries of Fig. 4. The direct effect of the blade pitch signal on the load

signal is the primary reason for the optimal PI gains (or regulator mode parameters) found in this section.

PI gains derived from a regulator mode with a low natural frequency result in less pitch actuation, thus less change in the10

load. Higher natural frequencies result in faster and more frequent pitch control variations, which translate to the structural

load signals and increase fatigue loading. A controller with a high natural frequency can also be problematic when the wind

speed decreases. Because the underlying controller is trying to regulate the generator speed, the pitch will decrease during a

wind lull to maintain the generator speed at its rated value, which can also lead to large peak loads, especially when an increase

in wind speed follows.15

High damping ratios are also found to be optimal when using the described cost function. A generator speed response and

pitch control response with a high damping ratio lacks any overshoot and secondary transients when the system is subjected

to a disturbance (wind). Secondary transients and overshoot in the pitch command result in load transients. The original

NREL-5MW controller (where ωreg = 0.6, ζreg = 0.7) has regulator mode poles at −0.35± j0.45, indicative of a fast response

with overshoot and transients in the pitch and generator speed signals. The optimized controller in Class 1A turbulence (with20

ωreg = 0.10, ζreg = 2.08) has two real poles at −0.40 and −0.025, which results in a fast initial pitch response and a slower

secondary response.

When comparing the PI-gains of the original versus optimized controller, we see that the proportional gains are of similar

magnitudes, but the integral gain is much less in the optimized set of gains. The original NREL-5MW gains are kP,0 =

2.3×10−2 s and kI,0 = 1.0×10−2, whereas the optimized gains (in Class 1A turbulence) are kP,0 = 1.1×10−2 s and kI,0 =25

0.023×10−2. These optimized gains reflect the cost function and control goal and environmental setting; we assume that special

and fault cases would be handled by a supervisory controller. The optimized proportional gain is still large enough to mitigate

generator speed transients, ensuring that the generator speed does not exceed the maximum threshold, while the integral gain

is reduced because it causes transients in the blade pitch and structural loads. Since our primary goal is not to regulate the

generator speed to some fixed set point, but instead constrain its maximum value, integral control is less important. If the cost30

function included a term related to regulating the generator speed to its rated set point, using e.g., mean squared error compared

to the rated generator speed, the optimal integral gains might be larger. However, we believe that a controller that constrains

extreme events and maximizes power capture better reflects the overall wind turbine design goals. Typical pitch controllers

are designed to regulate the generator speed to some fixed rotor speed with a high enough bandwidth so that the maximum
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generator speed constraint is not violated. Instead of focusing on a quantity that measures how well the generator speed is

regulated, we focus on whether or not the maximum generator speed constraint is violated. An initial investigation (Zalkind

and Pao, 2019) of the loads on the other turbine components show a reduction in blade and low-speed shaft fatigue and pitch

actuation, but a more in-depth loads investigation is left for future work.

3.2.2 Results: Comparison with Grid Searching5

To quantify the performance of the zeroth-order optimization (ZOO) for this pitch control application, we compare it, in terms

of the number of simulations and optimal cost, with a grid search optimization for tuning the pitch controller of the NREL-

5MW reference turbine in Class 1A turbulence. The same area spanned by the hard bounds of the zeroth-order method (Table 2)

is sampled by a Ngrid×Ngrid grid, with Ngrid = 6, 8, and 10. The cost, defined by (29)–(32) and sampled using the Ngrid = 10

grid search is shown in the background of Figs. 6(a)–(e). The parameter z with the minimum cost over all simulations in the10

search is the optimal parameter zopt. In practice, we would refine the search area and re-sample based on experience. However,

different models may change the re-sampled area and would add a manual step that we can avoid when using the zeroth-order

optimization procedure.

The ZOO procedure outlined in Section 2 is performed three times for each of the following cases. Each procedure uses

randomly generated samples that should result in different optimal parameters for each instance. We use four different ini-15

tial conditions, distributed so that one is in each of the four quadrants spanning the bounded parameter space. The starting

location in each quadrant was generated randomly, except for the bottom, right quadrant in Fig. 6(d), which is the suggested

parameter set, zsug = (ωreg, ζreg) = (0.6,0.7), defined in the NREL-5MW reference manual (Jonkman et al., 2009). The ZOO

was performed with Nstage = 7 stages using J = 3, 4, and10 samples-per-stage and also with Nstage = 12 using J = 3 samples-

per-stage. Theoretical results suggest that better gradient estimates (from a larger number of samples-per-stage J) result in20

convergence within a ball with a smaller radius centered around an optimal solution (Hajinezhad et al., 2017). The optimal

parameter set zopt found in each instance of the ZOO is shown in Figs. 6(a)–(d). We compare the cost of the ZOO method with

the grid search optimization in terms of the defined cost function in (29)–(32) (Fig. 6). The results are normalized to the cost

function found using the suggested parameter set zsug.

Compared to zsug, all of the methods result in a 20% to 26% reduction in the cost function, with about a 1% standard deviation25

in the results. For fewer than 80 simulations in this application, ZOO performs better than the grid search benchmark in almost

every case. The optimal cost decreases with increasing J and total number of simulations on average, but not necessarily

always. However, in terms of efficiency on a per-simulation basis, J = 3 (blue in Fig. 6) achieves similar results to those found

using J = 10 (yellow in Fig. 6). Additional stages (Nstage = 12) with J = 3 (purple in Fig. 6) decrease the cost function further;

the optimal cost of this case is the best we tested in terms of the number of simulations and cost reduction. By a small margin30

(1–2%), using the initial parameter z1 = zsug in the bottom, right quadrant in Fig. 6(d) performed better than the other z1

locations shown in Figs. 6(a)–(c). In Figs. 6(a)–(d), we see that if we use a z1 that is closer to the area where zopt is found,

there is less variation in zopt; there is also less variation the minimum cost C(zopt).
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Figure 6. Figs. (a)–(d) show the result of performing the zeroth-order optimization (ZOO) for the baseline rotor speed controller using

Nstage = 7 and 12 stages and J = 3, 4, and 10 samples-per-stage, using four different initial conditions (z1). The background image of

Figs. (a)–(e) is of the cost function, sampled using a grid search with a 10× 10 level of precision using the hard bounds in Table 2 and

normalized to the cost when z1 = zsug. Fig. (e) shows the optimal solutions of three different grid search resolutions. Fig. (f) compares the

optimal costs, normalized to the initial cost when z1 = zsug, compared with the number of simulations used to find the result.
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We should note that the comparison presented in this section applies only to this pitch control tuning application. To compare

the efficacy of the zeroth-order optimization with a grid search more generally would require comparing functions of different

complexities and dimensions, which is outside the scope of this article and we leave that for future work.

3.3 Minimum Pitch Setting for Peak Load Reduction

In this final example, a series of 1-dimensional parameter optimizations will be used to tune the minimum pitch setting of the5

above-rated pitch controller described in Appendix A and shown in Fig. A1. Increasing the minimum pitch setting can reduce

the peak blade and tower loads. However, it also slightly reduces power capture. To represent this trade-off, the cost function

C(z) = κ
M(z)

M(z0)
+ (1−κ)

P̄ (z0)

P̄ (z)
(35)

will be minimized, quantifying the relative importance κ between reducing peak loads and reducing power capture, where

z = θmin(u) is the minimum pitch setting at wind speed u, M is the maximum blade flapwise load (over all blades), and P̄ is10

the mean generator power of a turbulent simulation with mean wind speed u. A value of κ= 0.01 is used, which represents

a 10% reduction in peak load being roughly equal to a 0.1% decrease in power capture; this parameter can be tuned by the

control designer based on the goals of the design, however, the feasibility of the optimization problem should be verified. In

future work, a family of optimal minimum pitch control laws, using different values for κ, could be generated, but would

require more global wind turbine design information to determine the design choice.15

During the load analysis of a control design, a number (Nseeds) of randomly generated turbulent seeds are used to simulate

the turbine across wind speeds to identify peak loads on the various components. Often, peak loads on the blade and tower

occur in situations where there is first a lull in the wind speed, which causes the pitch angle to decrease, followed by an increase

in wind speed. If the pitch controller does not react in time, the combination of high wind speeds and low pitch angles causes a

large thrust on the rotor. However, if the minimum allowable pitch is increased, the peak loads resulting from wind speed lulls20

can be reduced. An example is shown in Fig. 7(c) and (d) at 275 seconds. While these events are fairly common in simulation,

not all produce equal peak loads; the minimum pitch setting is optimized for the worst-case simulation.

A wind speed estimate, which can be found using, e.g., one of the methods in Soltani et al. (2013), is used to determine the

minimum pitch setting of the above-rated pitch controller. A smooth lookup table is generated using a cubic spline interpolation

and a table of three minimum blade pitch settings with breakpoints at above-rated wind speeds, in addition to a breakpoint in25

below-rated wind speeds and one above the cut-out wind speed. The minimum pitch setting is non-decreasing with respect to

wind speed. An example is shown in Fig. 8. The minimum pitch at each above-rated breakpoint will be optimized using the

zeroth-order optimization procedure previously described.

The algorithm (presented in Algorithm 1) is initialized by choosing an initial lookup table for the minimum blade pitch,

θmin(ui) in Table 4. In Step 1, Nseeds random seeds are simulated to find the worst-case seed nmax with the maximum load at30

that breakpoint Mui
(z0). The optimization procedure in Step 2 is only performed if the current breakpoint has a problematic

peak load: one that is greater than loads seen at the other mean wind speeds (Line 4 of Algorithm 1). The starting loads

are initialized to Mui(z
0) =−∞ so that at least the first active break point is optimized. At the low wind speed breakpoint
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Algorithm 1 Optimize Minimum Pitch Lookup Table

1: Initialize: Start with an initial guess for the pitch lookup table: θmin(ui), e.g., in Table 4. Set starting maximum load Mui(z
0) =−∞,

for all actively optimized breakpoints i= {1, . . . ,Nbp}, where Nbp is the number of wind speed breakpoints.

2: for Each breakpoint ui ∈ U , i= {1, . . . ,Nbp} do

3: Step 1: Simulate Nseeds random turbulent seeds with a mean wind speed of ui and the initial lookup table. Find the worst-case seed

nmax with the maximum load Mui(z
0) over all seeds at breakpoint ui; the starting power P̄ui(z

0) is the mean generator power of this

simulation.

4: if Mui(z
0)<Muj (z0), j = {1, . . . ,Nbp} \ i then

5: Skip Step 2 and Step 3

6: end if

7: Step 2: Initialize and perform zeroth-order parameter optimization using the parameters in Table 4 and the cost function in (35), where

8: M(z0)←Mui(z
0)

9: P̄ (z0)← P̄ui(z
0)

10: Hard bounds on the pitch setting at the current breakpoint are set so that the minimum pitch table is non-decreasing:

θmin,LB = θmin(ui−1) and θmin,UB = θmin(ui+1).

11: The initial condition to the optimization procedure z1 is set to enable an adequate search of the parameter space, i.e.

12: z0 = θmin(ui)

13: if z0 < θmin,LB +µ then

14: z1 = θmin,LB +µ

15: else if z0 > θmin,UB−µ then

16: z1 = θmin,UB−µ

17: else

18: z1 = z0

19: end if

20: The zeroth-order optimization procedure described in Section 2 is used to find

θmin(ui) = argmin
z

C(z), (36)

where z = θmin(ui) is the optimization parameter and the cost function C(z) is defined in (35).

21: Step 3: (Optional) Re-check the random turbulent seeds n= {1, . . . ,Nseeds} using the new optimal pitch table and compute maximum

load of each Mr[n], finding the new worst-case seed nr .

22: if There is a new worst case: nr 6= nmax then

23: Return to Step 2 with z0 = θmin(ui) from (36).

24: end if

25: end for
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Figure 7. A zeroth-order optimization for the minimum pitch setting at 14 ms−1 for the NREL-5MW reference turbine. The cost C(z) in (35)

is a function of the peak tower load mty and mean of the generator power P in the simulation, where θc is the collective pitch angle. The

settling function s(r) is defined in (21) and the cost estimate is determined using all of the simulation results (15 unique pitch settings and

simulations).

u0 = 5 ms−1, the minimum pitch angle is set to the aerodynamically optimal angle θfine; and at the high wind speed breakpoint

uNbp+1 = 50 ms−1, the optimal minimum pitch angle is set to the feather pitch angle. Neither u0 nor uNbp+1 is an actively

optimized breakpoint; they are, however, used as lower and upper bounds for the first u1 and last uNbp active breakpoints.

In Step 2, the initial guess that is used by the optimization procedure (z1) is offset from the lower and upper bounds by the

sample search area µ (lines 11 – 19 of Algorithm 1). Step 3 is optionally performed to re-check the other random turbulent5

seeds using the new, optimized minimum pitch lookup table. In some cases, a different random seed will have a peak load that

exceeds that of the wind input that was originally optimized; if this is the case, Step 2 is repeated up to three times, using the

previously optimized pitch angle as a lower bound.

Algorithm 1 is used to optimize the minimum pitch table in Fig. 8 using the parameters in Table 4 and the SUMR-13A

wind turbine model. Six random turbulent seeds are initially simulated and only the 14 ms−1 and 18 ms−1 breakpoints require10

optimization (the peak loads of the 24 ms−1 simulations are all less than the 14 ms−1 and 18 ms−1 loads). Nstage = 4 stages

with J = 2 samples-per-stage are used to optimize the 14 ms−1 breakpoint; the results of the procedure are depicted in Fig. 7.
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Figure 8. Minimum pitch setting as a function of wind speed. Each active breakpoint is tuned in a series of one-dimensional parameter

optimizations. There is an additional high wind speed breakpoint at 50 ms−1.

Table 4. Parameters used to optimize the minimum pitch lookup table.

Parameter Variable Value

Cost model Load importance κ 0.01

Load simulations Number of turbulent seeds at each wind speed Nseeds 6

Stage & Number of stages Nstage 4

sample size Samples per stage J 2

Base step size α0 1500

Step Armijo decrement factor β 0.5

size Armijo threshold σ 0.05

Max. size iterations kmax 3

Newton’s method approximation D 1

Sample search radius & smoothing parameter µ 0.5

Initial Number of actively optimized breakpoints Nbp 3

lookup Total lookup-table breakpoints U {5,14,18,24,50} ms−1

table Min. pitch setting at breakpoints θmin(ui) {θfine,θfine,9,19,90} deg.
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3.4 Coupling Between Control Optimizations and Systems Engineering Considerations

Changing the minimum pitch setting of the controller can have an effect on the below-rated power production (optimized in

Section 3.1) and peak and fatigue loads (optimized in Section 3.2). Though this coupling exists, in our experience, the effect

on the optimized parameters is small.

In future work, a multi-objective optimization might be more suitable, where all the tuning procedures are simultaneously5

performed; the zeroth-order method is suitable in this case. A potential challenge would be determining what simulations

should be used to efficiently optimize all of the control parameters. Currently, each control tuning procedure requires running

different simulations. Additionally, the goal of this work was to automate design choices, rather than having to choose from a

set of possible choices that would result from a multi-objective optimization.

However, with additional resources, our goal could shift from efficient optimization of smaller problems to larger opti-10

mizations of the overall turbine system. Within a system engineering framework, more information might determine which

simulations and loads are sensitive to control parameter changes. In this article, we focused on minimizing the peak blade

loads of the SUMR rotors because those were the design driving load of those blades. Other loads could certainly be used, but

all loads are not important to the overall design: some components are over-designed, and others drive design; this information

depends on the specific design but could be determined using detailed system engineering tools.15

Our goal was to reduce the design cycle times for processes that already occur during control design. Rather than solving all

problems at once, we propose solving them in sequence, in the order they are presented: first optimizing the torque and pitch

controllers, and then tuning the minimum pitch setting for peak loads. Then with the new minimum pitch table, a designer

could optionally re-optimize the torque and pitch gains; we have done this and witness little change. Solving smaller problems

tends to be more efficient in terms of the number of simulations and more transparent in terms of how control parameters affect20

different performance measures during specific simulations. We discuss setting up similar optimization problems for future

work in Section 4.

4 Generalized Design Procedure

In this section, we present guidelines for performing similar optimization procedures. Experience gained in problem formula-

tion, the usefulness of performing a preliminary “offline” analysis, and determining the parameters of the solver is shared.25

4.1 Determine Problem and Goals

Using the zeroth-order optimization procedure described in this article for determining control parameters through simulation

requires effort in setting up the problem and developing software. In order to justify the up-front effort, the task would ideally

be one that is repeated for many different rotor models, like the examples in Section 3. A task that is repeatedly performed also

allows the designer to gain a deeper understanding for how control inputs (gains, parameters) affect simulation outputs of the30

wind turbine.
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It is important to determine how the turbine should be simulated in order to generate the measures that are used for the

optimization; they should highlight some problematic or indicative case that the control solution is trying to solve. For example,

when optimizing the torque control gain for below-rated operation in Section 3.1, a below-rated wind field should be used, and

the power should be used as the cost function. The cost function should reflect the goals of wind turbine design (e.g., increasing

power capture or decreasing loads), have a basis in the reality of wind turbine operation (e.g., using gains that provide a stable5

control input), and also have a feasible solution. The optimization procedure presented in this article is only useful if the

cost function represents the design goal, is represented well by the simulation information, and is simulated in a realistic

environment.

4.2 Perform Preliminary Analysis

It is often helpful to perform a preliminary “offline” analysis to fine tune the cost function and optimization parameters. In10

an offline analysis, a grid search of the optimization parameter is used to estimate the output space of the simulations (e.g.,

maximum generator speed and blade loads), using a linear or quadratic estimate of the cost function. To clarify, the results in

Section 3 are of “online” optimizations, where actual simulation data is used to compute the cost function and perform the

optimization procedure. While one of the goals in developing this optimization procedure is to eliminate the large number of

simulations associated with grid searching, a grid search does help fine-tune the parameters of future, similar control tuning15

procedures that use zeroth-order optimization. If multiple measures are used in the cost function (e.g., in the pitch control

tuning of Section 3.2), it is important to determine whether the cost function has a minimum within the parameter bounds.

Otherwise, the cost function must be further refined. A preliminary offline analysis can be used to more quickly determine the

optimization parameters (e.g., step size or smoothing parameter) that converge in the fewest number of simulations to some

“ground truth” determined from the estimated cost function based on the initial grid search.20

4.3 Set Simulation Parameters

As the examples of Section 3 illustrate, each optimization procedure requires slightly different parameters. While the param-

eters presented in Tables 1, 2, and 4 may not necessarily be the best ones, they have been fine-tuned through extensive offline

testing and evaluating “online” tests that use actual simulation data as the measures used in the cost function. The goal of this

section is to provide general guidelines and rules-of-thumb, where possible, for choosing the parameters of the optimization25

procedure.

4.3.1 Sample search range and Newton’s approximation

The smoothing parameter µ should be based on the optimization parameter z. The sample z+φµ should result in an adequate

change to the cost function so that “good” gradients can be used for the descent algorithm; note that the magnitude of the

direction ||φ||= 1. From the examples in Section 3, a different µ is required because the cost function of each application has30

a different magnitude and changes at different rates. Too large of a µ can result in samples that violate the hard bounds or

25



gradients that do not represent the local gradient at the stage sample. On the other hand, a µ that is too small can result in noisy

gradients, the result of possibly non-smooth simulation information for samples that are close to each other.

When optimizing over multiple parameters, the D matrix is used to approximate Newton’s method for optimization. D

increases or decreases the descent direction dr where the sensitivity of the cost function to that parameter (dimension) is

small or large, respectively. Ideally, the matrix D incorporates second-order information to scale the gradient estimate in each5

dimension. In a true Newton’s method, where second-order information is available, D = [HC(z)]−1, where HC(z) is the

Hessian of the cost function C at the parameter z. To approximate Newton’s method, we use D = diag([D1, . . . ,DM ]), where

Di ≈
(

∂2C
∂z(i)2

)−1
(37)

and z(i) is the ith element of the parameter set z. The elements Di of D can be determined from offline simulation analysis,

where (37) can be estimated by finding a quadratic regression of the cost space. Alternatively, Di can be manually tuned, i.e.,10

if the dimension i is not being adequately searched, Di should be increased.

For example, in the pitch controller tuning (Section 3.2), the cost function (shown in Fig. 3) is less sensitive to the damping

ratio z(2) = ζreg than it is to the natural frequency z(1) = ωreg, so we useD = diag([0.25,1]). If only the first-order (estimated)

information were used and the direction of the maximum gradient were exactly followed, the solution would zigzag in the ωreg

direction and take longer to converge to the optimal solution in both the ωreg and ζreg directions.15

4.3.2 Step Size

The initial step size α0 is an important parameter to test offline and also fine tune when using online simulations to compute

the gradient. It was found that for all optimization examples in this article, the product of the initial step size and the norm of

the gradient should be on the order of a magnitude of 1, namely∣∣∣∣∣∣∣∣∂C∂z
∣∣∣∣∣∣∣∣ ·α0 ≈ 0.5 to 1.5. (38)20

The parameters used in the Armijo step size rule were the same for all examples. Conservative values were used, which

essentially only ensures a non-increasing cost function without a requirement on the rate of descent of the cost function.

4.3.3 Stages and Samples-per-Stage

Enough stages should be evaluated so that the cost function converges to some value; this is typically learned through offline

analysis or by trial-and-error in online tests. For example, when analyzing the pitch control tuning results of Fig. 4, the results25

suggest that the procedure could be performed with fewer stages, whereas it seems more stages could be used in the minimum

pitch control tuning of Fig. 7. In general, it is found that fewer samples-per-stage (along with more stages) result in the fastest

convergence with respect to the total number of simulations.
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4.3.4 Parameter Bounds and Initial Guess

Hard constraints on the parameter should reflect the set of feasible parameters for the control task being optimized. However,

the bounds should not be so small as to restrict the space and possibly miss non-obvious control solutions. The initial guess

provided to the algorithm should also allow for the space to be adequately searched.

4.4 Perform Optimization and Evaluate Visualization5

After performing initial, offline analysis and running the zeroth-order optimization algorithm using online simulation data, the

whole procedure should be evaluated with the following questions:

1. Does the algorithm converge to a feasible solution?

2. Does the optimized parameter appear to be near the minimum of the visualized cost over the parameter space?

An affirmative answer to both of these questions should provide confidence in the optimized result.10

5 Conclusions

In this article, we developed a data-driven approach for optimizing controller parameters using simulation results. By using

a zeroth-order optimization algorithm, random samples are generated near an initial guess, which are used to compute the

local gradient. A standard gradient descent method ensues, where a step size rule is used to ensure convergence and attempt

to decrease in the cost function before the next guess is chosen and the process is repeated. We also use ordinary kriging to15

visualize the design space and its uncertainty to provide a level of confidence in the optimized result.

The zeroth-order algorithm was applied to three different applications in wind turbine control. To demonstrate the process

on a one-dimensional parameter optimization, the torque control gain was tuned to optimize power capture in below-rated

operation. The baseline pitch controller parameters were tuned in a two-dimensional optimization problem with the goal of

minimizing structural loads and includes a constraint on the maximum generator speed. Using an adaptable cost function and20

step size, the algorithm was able to tune the baseline rotor speed control for rotors ranging from 40 to 400 meters in diameter.

We compare the results, in terms of accuracy, convergence, and number of function evaluations (simulations) for different

optimization parameters and against the standard grid search method. In a series of one-dimensional parameter optimizations,

we also determined the settings of a lookup table for the minimum pitch limit of the pitch controller, reflecting the overall blade

design process and system-level goals.25

Since each optimization procedure depends on the specific control problem, we have provided a set of guidelines based on

the experience gained during this study for developing future, similar optimization procedures. The methods presented in this

article automate a usually manual process, reduce designer effort, and require fewer simulations compared with grid searching

methods. These methods can be used for repeated control tuning processes that are required for continually updating designs

that must be evaluated in simulation using a well-functioning controller.30
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Figure A1. Proportional-integral control with anti-windup scheme used for above-rated control. The difference between the pitch control

setpoint ωrat and the generator speed ωg is multiplied with the gain-correction factor GK(θavg), which is a function of the current collective

blade pitch θc. The proportional-integral gains at zero pitch, kP,0 and kI,0, are derived in (A15) and (A16). The pitch command θcmd is

saturated to some minimum pitch setting θmin and the output θsat is the input to the blade pitch actuator.

Appendix A: Generalized Baseline Rotor Speed Pitch Controller

The pitch controller described in Sections 3.2 and 3.3 is based on the controller presented in the NREL-5MW reference

manual (Jonkman et al., 2009); this standard control scheme is widely used as a reference for comparing control schemes and

evaluating different aspects of turbine design. As shown in Fig. A1, the controller is a gain-scheduled proportional-integral (PI)

controller with constant torque above rated. The PI control architecture allows the generator speed dynamics to be represented5

as a 2nd-order system. Since the sensitivity of aerodynamic torque to blade pitch changes with the blade pitch, the PI gains

are scheduled on the blade pitch. The pitch command is saturated to some minimum setting to control power or reduce blade

loads; thus, an anti-windup scheme is necessary.

A1 Regulator Mode and PI Gains

To derive the PI gains for a generic rotor model, a rigid model of the drivetrain is used:10

ω̇g =
G

Jtot
(τa−Gτg), (A1)

where ωg is the generator speed, Jtot is the total drivetrain inertia, including the rotor and generator components, G is the

gearbox ratio between the low-speed rotor shaft and the high-speed generator shaft, τa is the aerodynamic rotor torque caused

by the wind and controlled via blade pitch, and τg is the generator torque, which is a control input. The rotor torque is non-

linearly dependent on the blade pitch θ. The linearization with respect to a perturbation in blade pitch δθ is15

δω̇g =
G

Jtot

∂τa
∂θ

δθ, (A2)
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where the differential torque δτg = 0 because the torque is constant in above-rated operation. The sensitivity of the aerodynamic

torque to rotor speed (∂τa∂ω ) is omitted since it has a much smaller magnitude than ∂τa
∂θ . In terms of power P :

τa =
P (θ)G

ωg
⇒ ∂τa

∂θ

∣∣∣∣∣
ωg=ωrat

=
G

ωrat

∂P

∂θ
, (A3)

where ωrat is the rated generator speed, which is a constant operating point since it is the desired set-point of the controller. The

proportional-integral control is5

δθ = kP δωg + kI

∫
δωgdt, (A4)

where kP and kI are the proportional and integral control gains, respectively, and δωg represents a generator speed perturbation.

By defining a new state, φ̇= δωg , and combining equations (A2), (A3), and (A4), the generator speed dynamics are

Jtotφ̈+
1

ωrat

(
−∂P
∂θ

)
kPG

2φ̇+
1

ωrat

(
−∂P
∂θ

)
kIG

2φ= 0, (A5)

which can be represented by a second-order dynamic system in the form of10

Mregφ̈+Dregφ̇+Kregφ= 0, (A6)

where Mreg, Dreg, and Kreg are the mass, damping, and stiffness of the “regulator mode,” respectively. Alternatively, the

regulator mode can be represented by its natural frequency ωreg and damping ratio ζreg, defined by

ωreg =

√
Kreg

Mreg
and ζreg =

Dreg

2ωregMreg
. (A7)

By defining the desired properties of the generator speed dynamics, ωreg and ζreg, the proportional and integral gains are15

defined as follows:

kP =
2Jtotωratωregζreg

G2
(
−∂P∂θ

) (A8)

and

kI =
Jtotωratω

2
reg

G2
(
−∂P∂θ

) . (A9)

A1.1 Power-Pitch Sensitivity and Gain Scheduling20

Both the proportional (A8) and integral (A9) gains depend on the sensitivity of power to blade pitch

∂P

∂θ

∣∣∣
θ

= S(θ), (A10)

which we will define as S(θ) because it is a function of the blade pitch. Simulations in FAST are used to determine the

pitch operating points at various above-rated wind speeds. The operating points are used in FAST linearizations, with all
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Figure A2. Sensitivity of power to pitch used for gain scheduling the pitch controller for a selection of rotors in this article. The sensitivity

values obtained from FAST linearizations are fit linearly and used to determine the gain-scheduling parameters for the pitch controller.

the degrees-of-freedom disabled, providing the input-output sensitivity from pitch to power. The results of performing this

sensitivity analysis for several rotors is shown in Fig. A2.

Because of the near-linear relationship with blade pitch θ, the sensitivity can be parameterized by

S(θ) =

[
S(0)

θk

]
θ+S(0) = S(0)

(
1 +

θ

θk

)
, (A11)

where S(0) is the sensitivity at θ = 0 degrees and θk is the pitch angle at which the sensitivity doubles:5

S(θk) = 2S(0). (A12)

From simulation results like those in Fig. A2, the parameters in (A11) can be estimated; they are used to define the gain-

correction factor

GK(θ) =
1

1 + θ
θk

(A13)

and the final, gain-scheduled PI gains:10

kP = kP,0GK(θ) and kI = kI,0GK(θ), (A14)

where

kP,0 =
2Jtotωratωregζreg

G2 [−S(0)]
(A15)

and

kI,0 =
Jtotωratω

2
reg

G2 [−S(0)]
. (A16)15

Fig. A1 depicts the implementation in block diagram form.
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A1.2 Summary of Pitch Control Tuning Procedure

To derive the parameters from simulations and tune the regulator mode, we use the following procedure:

1. Simulate the operating points in FAST using a steady wind input across above-rated wind speeds. Choose a S(0) so that

the PI gains produce a stable result. Simulate for enough time for the values to reach steady state and record the blade

pitch at each wind speed.5

2. Linearize the turbine in FAST, disabling all of the degrees of freedom, at the wind speeds and pitch angles found from

the previous step. Use the element of the input-output matrix that corresponds to the pitch input and power output matrix

to determine the sensitivity of power to pitch at the various pitch angle operating points. Plot the values and fit the

parameters S(0) and θk as in Fig. A2.

3. Tune the regulator mode (ωreg, ζreg) using the desired design measure. Usually, larger natural frequencies (ωreg) result in10

better generator regulation, but also higher structural loads. A grid search could be used or an optimization procedure

like the one in Section 3.2.

Appendix B: Turbine model summary

The turbine models summarized in Table B1 were used to perform the control tuning optimization procedures detailed in this

article.15
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Table B1. Summary of turbine models used in this study.

Turbine Model SUMR-D NREL-5MW CONR-13 SUMR-13A

Rated Power 54.5 kW 5 MW 13.2 MW 13.2 MW

Rated Rotor Speed 21.5 rpm 12.1 rpm 7.44 rpm 9.90 rpm

Rated Wind Speed 5.05 ms−1 11.3 ms−1 11.3 ms−1 11.3 ms−1

Hub Height 34.86 m 87.0 m 142.4 m 142.4 m

Rotor Radius 22.8 m 63.0 m 102.5 m 101.2 m

Rotor Position Downwind Upwind Upwind Downwind

Blade Mass 997 kg 17.7 Mg 49.5 Mg 51.8 Mg

Number of Blades 2 3 3 2

Max Chord 1.56 m 4.65 m 5.23 m 7.22 m

Cone Angle 12.5 deg. -2.5 deg. -2.5 deg. 12.5 deg.

Turbine Model SUMR-13B SUMR-13C SUMR-25 SUMR-50

Rated Power 13.2 MW 13.2 MW 25 MW 50 MW

Rated Rotor Speed 7.99 rpm 6.87 rpm 6.13 rpm 4.19 rpm

Rated Wind Speed 10.3 ms−1 9.30 ms−1 10.5 ms−1 10.3 ms−1

Hub Height 142.4 m 168 m 210 m 280 m

Rotor Radius 125.4 m 145.9 m 171.9 m 239.7 m

Rotor Position Downwind Downwind Downwind Downwind

Blade Mass 83.2 Mg 105 Mg 127 Mg 426 Mg

Number of Blades 2 2 2 2

Max Chord 6.79 m 9.29 m 10.7 m 16.6 m

Cone Angle 12.5 deg. 12.5 deg. 12.5 deg. 12.5 deg.
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