
1 Response to comments of Dries Allaerts

• This paper aims to identify the optimal distribution of wind turbine set-points to mitigate flow
blockage induced by atmospheric gravity waves and hence maximize wind-farm energy
extraction. The authors simulate the response of the atmospheric flow to the wind-farm
drag using a recently developed mid-fidelity model, and they introduce a corresponding
optimization framework based on the continuous adjoint method. The results are promising
and show that a non-uniform spatial distribution of wind turbine set points can increase the
energy extraction of the farm by reducing the excitation of atmospheric gravity waves. I
believe this paper is of interest to the wind energy community as it demonstrates the use of
set-point optimization for wind farms and highlights the potential for new optimization and
control strategies to cope with windfarm scale blockage.
We would like to thank the referee for the kind words and the very constructive feedback in
improving the quality of the paper.

• 1. Line 91: In the derivation of the three-layer model, no assumptions need to be made
about the vertical component of the velocity. Rather, by averaging over the height of the
respective layers, the horizontal momentum equations become independent of the vertical
velocity.
We have corrected our statement with the following sentences at P3-L90:

“The model equations are derived starting from the incompressible three-dimensional Reynolds-
Averaged Navier-Stokes (RANS) equations for the ABL (Stull 1988). A depth-integration
over the wind-farm and upper layer height is further computed, which removes the ver-
tical velocity from the equations. Hence, the basic equation system is reduced to a set
of only three equations: the continuity equation and the momentum equations in horizon-
tal directions. Subsequently, the governing equations are linearized with respect to the
background state variables, using some additional modelling assumptions for the turbulent
stresses (see Allaerts and Meyers (2019) for more details).”

• 2. Line 130: The relation between pressure and inversion layer displacement based on the
complex stratification coefficient is not due to Gill 1982 (at least not the part concerning the
atmospheric gravity waves). I think it is more appropriate to cite Smith 2010 instead.
We agree on this. Hence, we have cited Smith 2010 instead of Gill 1982.

• 3. Eq. 17: Can you elaborate on the function of the complex stratification coefficient in the
adjoint equations? That is, what do you mean with the negation of the arguments x and t.
I assume this arrives from the partial integration and is similar to the sign reversal of the
convective term, but it is not clear to me how I should interpret the current notation.
The negation of the arguments x and t does not follow from partial integration. Rather, it
follows from the following property. Given three functions f, g, h ∈ L1(Ω), it can be shown
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that ∫
Ω

[
f(x) ∗ g(x)

]
h(x)dx =

∫
Ω

∫
Ω′

[
f(x− x′)g(x′)dx′

]
h(x)dx

=

∫
Ω

∫
Ω′
f(x− x′)g(x′)h(x)dx′dx

=

∫
Ω′

∫
Ω

f(x− x′)h(x)dxg(x′)dx′

=

∫
Ω′

∫
Ω

f(−(x′ − x))h(x)dxg(x′)dx′

=

∫
Ω

[
f(−x) ∗ h(x)

]
g(x)dx.

Note that in the second passage we have changed the order of integration (Fubini’s theo-
rem). In the current application, this property allows us to write

−H1

∫ T

0

∫∫
Ω

[
F−1(Φ̂)∗δu1

]
·∇Π1dxdt = −H1

∫ T

0

∫∫
Ω

[
F−1(Φ̂)(−x,−t)∗∇Π1

]
·δu1dxdt.

To include this in the text, we have added the following sentence at P8-L213:

“Note that the minus sign in the argument of F−1(Φ̂)(−x,−t) is not a result from classical
integration by parts, but arrives from applying Fubini’s theorem to the convolution term in
Eq. 12 and Eq. 13 (see Appendix A3 for details).”

Moreover, we have also added the following lines at P24-L581:

“Note that the minus sign in the argument of F−1(Φ̂)(−x,−t) does not come from clas-
sical integration by parts. In fact, given three functions f, g, h ∈ L1(Ω), it can be shown
that ∫

Ω

[
f(x) ∗ g(x)

]
h(x)dx =

∫
Ω

∫
Ω′

[
f(x− x′)g(x′)dx′

]
h(x)dx

=

∫
Ω′

∫
Ω

f(−(x′ − x))h(x)dxg(x′)dx′

=

∫
Ω

[
f(−x) ∗ h(x)

]
g(x)dx.

where in the second passage we have changed the order of integration (Fubini’s theorem).
This property allows us to write

−H1

∫ T

0

∫∫
Ω

[
F−1(Φ̂)∗δu1

]
·∇Π1 dxdt = −H1

∫ T

0

∫∫
Ω

[
F−1(Φ̂)(−x,−t)∗∇Π1

]
·δu1 dxdt.

”

• 4. Line 235: Can you comment on the numerical resources (time and number of processors
if parallelized) it takes to compute an optimal set-point distribution? I am asking because
a possible application could be using weather forecasts to update the set-point distribution
when gravity waves are to be expected (e.g., forecast predicts shallow boundary layers in
the next few hours).
To include these information in the text, we have added the following paragraph at the end
of section 3.1 (P10-L257):

“The solver (which is not parallelized) takes a couple of hours to solve the equations for
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a grid with resolution of 250 m (6.4 × 106 DOF per layer). Since convergence is reached
after approximately 20 function evaluations (which means that we solve state and adjoint
equations 20 times), the optimizer takes a couple of days to compute an optimal thrust set-
point distribution. However, after this work was performed, we have upgraded the forward
solver which is now 700 times faster than our previous version. Optimization of the back-
ward solver is planned for the future, and we expect that this will lead to an optimization
algorithm that will only take several minutes for the same case.”

• 5. Line 241: How did you select the relative turbine spacing?
In the study of Allaerts and Meyers (2019), the authors considered a rectangular shaped
farm with length Lx = 20 km and width Ly = 30 km containing Nt = 486 turbines. These
numbers where chosen to represent roughly the number of turbines and the area covered
by the Belgian-Dutch wind-farm cluster. In our study, we select a wind-farm with the same
dimensions. Moreover, to have a similar density of turbines in the farm, we fix the dimen-
sionless turbine spacings to sx = sy = 5.61 so that LxLy/sxsyD

2 ' 486. To include this
information, we have added the following sentence at P10-L267:

“The wind turbine relative spacings along the x- and y-direction are sx = sy = 5.61 (both
non-dimensionalized with respect to the turbine rotor diameter D), so that the density of
turbines in the farm is similar to the one of Allaerts and Meyers (2019) (i.e. leading to
β = 0.01 in Eq. 8, setting both the wake efficiency ηw and γ to 0.9 as in Allaerts and
Meyers (2018)). Note that we do not define a specific layout or a number of turbines but
we only fix the density of turbines in the farm.”

• 6. Line 301: Favourable pressure gradients are also present in the bulk of the wind farm,
whereas the velocity deficits continue to increase throughout the farm and only recover be-
hind the farm. I believe the favourable pressure gradients do not necessarily accelerate the
flow, but are instead balanced by a higher thrust force. Physically, this would correspond
to the favourable pressure gradient re-energizing the wake flows and thereby reducing the
turbine losses in the bulk of the farm. Can you comment on this?
We agree with the referee and we confirm that the sentence "In both sub- and supercrit-
ical case, favourable pressure gradients develop within the wind-farm area which tend to
accelerate the flow in the wind-farm exit region" is misleading. In fact, favourable pressure
gradients re-energize the waked flow reducing the velocity deficits in the bulk of the farm.
This also partially explains the higher velocity deficits observed for the supercritical case
over the wind-farm area if compared with the ones obtained in the subcritical case (the
favourable pressure gradient is stronger in subcritical conditions than supercritical ones).
Therefore, we have modified the sentence mentioned above to (P14-L341):

“In both sub- and supercritical case, favourable pressure gradients reduce the velocity
deficits in the bulk of the farm.”

• 7. Section 4.1: Did you consider optimizing for a uniform set-point distribution? What are
the maximum gains to be expected there, and hence how much more is there to be gained
by using a non-uniform set-point distribution? How would that uniform value compare to
the average of the non-uniform distribution, and would the uniform value depend on the
atmospheric condition as well?
We thank the referee for the very insightful questions. To answer these questions, we have
added the following section in the appendix (P28-L652):

“In the current section, we use the optimization framework derived in Section 2.2 to find an
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Figure 1: Reference thrust set-point (CR
T ), optimal non-uniform thrust set-point (CO

T ) and its
averaged value over the wind-farm area (〈CO

T 〉) and optimal uniform thrust coefficient distribution
(CO,u

T ) in (a) subcritical and (b) supercritical flow conditions. The CO
T profiles are taken through

the center of the farm (y = 0).

optimal uniform and steady thrust-coefficient distribution that minimizes the gravity-wave
induced blockage effects. To avoid confusion, we will denote with CO

T and CO,u
T the optimal

non-uniform and uniform distribution, respectively. The wind-farm layout and the atmo-
spheric state are the ones detailed in Section 3.
Figure 1(a,b) displays the optimal spatially invariant CO,u

T together with the streamwise pro-
file of CO

T through the center of the farm, and its averaged value over the wind-farm area
〈CO

T 〉 for the sub- and supercritical case, respectively. Moreover, CR
T denotes the thrust

distribution used in the reference model. Interestingly, CO,u
T corresponds to the average of

the non-uniform distribution in both cases. Since CO
T is sensitive to the atmospheric con-

ditions, we expect CO,u
T to depend as well on the atmospheric state (in fact, we observe a

different value of CO,u
T in sub- and supercritical conditions).

In the current example, the energy gain G (see Eq. 21 on article) over the reference model
configuration obtained with the non-uniform distributions CO

T are 5.3% and 7% for the sub-
and supercritical case, respectively. For the optimal uniform distributions, we obtain an
energy gain of 5% and 6.6%.”

• 8. Section 4.1: How does the power performance of the optimal set-point distribution
compare to the idealized power output when all turbines would be operating in isolated
conditions? I.e. how much of the power loss due to flow blockage is irreversible?
The usage of a box-function model makes it difficult to answer this question. In fact, this
model uniformly spreads the force over the simulation cells in the wind-farm area and does
not represent the disturbances caused by each turbine in detail. Therefore, the concept
of turbines operating in isolated conditions is not reproducible. What we can do is to con-
sider "turbines" which operate in idealized conditions, by using a uniform thrust set-point
distribution with CT = 0.88. This is what we have defined as reference case and the en-
ergy gains are referred to this state. The comparison suggested by the referee would be
realizable if analytical wake models would be used (such as, the Gaussian wake model
proposed by Niayifar and Porté-Agel (2014)). In order to not overload the discussion in the
manuscript, we decided to not further explicitly comment on this. However, the wind-farm
force model used in the optimization solver will be improved in the future, as suggested in
the conclusions, and this will allow us to answer this question in more detail.

• * Line 389: Typo in “dispersive”
* Label A12 and A13 reference the same equation split over two lines.
* Line 573: Typo in “through”
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Thank you, we have corrected these errata.
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2 Response to comments of Anonymous Referee #2

• Interesting paper and concept. Contains every detail of the simulation but requires a solid
background in fluid dynamics to understand.
We would like to thank the referee for the constructive feedback in improving the quality of
the paper.

• 1) The authors state on pg. 11 line 280: “However, all optimal.. ..are constant in time.. And
conclude that unsteady time-periodic excitation is less effective” I believe that this claim is
too strong. There is no guarantee that the optimizer will find the optimal solution. The opti-
mizer finds a solution under the specified constraints, and that is what the authors present.
This only has value if this gives rise to a better understanding of the physics. Now it is one
of many possible solutions (local minima). The authors should consider rephrasing these
claims to the assumptions made throughout the derivation.
We fully agree with the referee’s statement. Therefore, the following paragraph has been
modified at P12-L307:

“The optimization model described in Section 2.2 is time and space dependent. Hence,
the model is capable of finding a time-periodic optimal thrust-coefficient distribution over
the wind-farm area in a fixed time interval [0, T ]. However, all optimal thrust set-point dis-
tributions found for the different combinations of time horizons and time steps reported
in Table 1, are constant in time. We have verified this using a range of steady and un-
steady starting conditions for CT in the algorithm, but did not find any unsteady optimum.
We believe that this is due to two reasons. Firstly, we use steady-state inflow conditions,
therefore neglecting meso-scale temporal variations in the velocity field (these could lead to
time-dependent optimal control signals, but are not included in the current work). Secondly,
the objective function is non-convex and there is no proof about the uniqueness of global
minima. Hence, there is no guarantee that the optimal solution found by the optimizer
corresponds to a global optimum. Nevertheless, since we do not observe any unsteady
behaviour in our optimal solutions, we show only steady-state results in the remainder of
the manuscript, and conclude for the time being that unsteady time-periodic excitation is
less effective than a stationary spatially optimal distribution in this context.
We also note that our findings are in contrast with recent works of Goit and Meyers (2015),
Munters and Meyers (2018) and Frederik et al. (2020), in which the authors illustrated the
benefits of dynamic induction control over yaw and static induction control. However, the
characteristic time scale of gravity-wave effects is estimated to be approximately 1 h (Gill
1982, Allaerts and Meyers 2019) which is an order of magnitude above the typical time
scale of wake convection between turbines, and turbulent mixing in turbine wakes (this
also justifies the larger sampling time used). Hence, while unsteadiness of the thrust coef-
ficient (with a typical time scale of 50 seconds for large scale turbines) can lead to improved
wake mixing (Goit and Meyers (2015), Munters and Meyers (2018), Frederik et al (2020)),
it has no impact on phenomena that occur at larger time scales, such as wind-farm induced
gravity waves.”

• 2) The significance of the paper is also a bit unclear. In the conclusion the authors state
that an optimization model was applied for set-point optimization. Many approximations
have been made in the modelling step and there is no quantification of the potential error.
The energy gains mentioned in the abstract are incredible high. I would like to see a vali-
dation of the model or the results applied to a high(er) validity model.
We agree with the referee that we did not talk about the model validation. The constraints
of our optimization model (the state equations) correspond to the same model derived by
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Allaerts and Meyers (2019). This model has been validated in Allaerts and Meyers (2019)
(see Section 3, VAL2) against LES results. The validation showed that the three-layer
model outperforms the Smith (2010) model and agrees well with LES results for low per-
turbation values. To include this in the article, the following paragraph has been added at
the end of section 2.1 (P6-L155):

“The three-layer model configuration described above has been validated against LES
results by Allaerts and Meyers (2019) (see Section 3 VAL2) on a two dimensional (x-z)
domain (i.e., all spanwise derivatives are set to zero). The model shows a mean absolute
error (MAE) of 1.3% and 1.8% in terms of maximum displacement of the inversion layer
and maximum pressure disturbance, respectively. Moreover, the model underestimates the
velocity over the wind-farm area with a MAE of 5.6%. Note that the three-layer model is a
linearized model, hence the discrepancies with LES results increase with increasing per-
turbation values. In fact, the model agrees very well with LES data when perturbations are
small (i.e, when non-linear effects are negligible). For further details, we refer to Allaerts
and Meyers (2019).”

Before to apply the results obtained to a higher validity model (i.e, our in-house LES solver
SP-Wind), we need to improve the LES setup, which is what we will do in the near future.
However, we did not mention it in the article, therefore we have added the following sen-
tence to the last paragraph of the conclusions (P22-L531):

“In the future, we also plan to apply the results obtained in this article to a higher fidelity
model (i.e, our in-house LES solver SP-Wind). However, this requires some work on the ef-
ficiency of non-reflecting boundary conditions in our LES solver (Allaerts and Meyers 2017,
2018).”

Finally, to avoid mentioning only the highest energy gain found in the abstract , we have
modified the last sentence to (P1-L16):

“Overall, energy gains above 4% were observed for 77% of the cases with peaks up to
14% for weakly stratified atmospheres in critical flow regimes.”

• 3) Generally, assumptions should be stated clearly. For example, the wakes between the
turbines are not explicitly modelled. This is a large assumption to make, and is only briefly
mentioned in the text. What is the expected impact on the results? How does it affect the
conclusions drawn in the article? Also, the sampling time seems rather large for typical
wind farm control algorithms. How does this impact your results? Would you be able to
find a periodic optimal signal if you had a shorter sampling time? How about the fidelity of
your rotor model – would things change with an ALM model?
We agree with the referee that the sentence "the wakes between the turbines are not explic-
itly modelled" is misleading. To model the farm drag force, we use a box-function wind-farm
force model (also used in Smith (2010) and Allaerts and Meyers (2019)) which uniformly
spreads the force over the simulation cells in the wind-farm area and does not represent
the disturbances caused by each turbine in detail. The force magnitude depends on the
wind-farm layout (see parameter β), the wind speed, and the thrust-coefficient distribution
(i.e., the CT value in every grid cell within the farm). To avoid confusion, we have modified
the sentence to (P4-L111):

“We use a box-function wind-farm force model similar to Smith (2010) in our study. This al-
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lows us to avoid the complexity of wake models while gaining in computational time. In fact,
this model uniformly spreads the force over the simulation cells in the wind-farm area and
does not represent the disturbances caused by each turbine in detail. The force magnitude
depends on the wind-farm layout, the wind speed and the thrust set-point distribution (i.e.,
the CT value in every grid cell within the farm).”

To understand how this simple wind-farm model affects the conclusion drawn in the article,
it is useful to compare the three-layer model predictions using both the model previously
discussed and the Gaussian wake model, which are shown in Allaerts and Meyers (2019)
(VAL2 and VAL3, respectively). Although the magnitude of the predictions are slightly dif-
ferent, the trends are unchanged. Hence, we expect that trends may remain the same if a
more accurate force model would be used. Nevertheless, the accuracy of the results could
benefit from an improved force model (this also answer to the question regarding the ALM).
Future work needs to focus on further improving the model, as well as on validation.

Regarding the question on the sampling time, gravity waves have a different time scale
than wake convection, which justifies the larger sampling time used. We have added this
consideration in Section 4.1 (see second comment). We have also tried to use smaller
sampling time (i.e, down to a couple of seconds) but the optimizer has never found an
unsteady optimum.

• 4) The article is long, making it cumbersome to read. Perhaps certain parts can be omitted.
For example, is the model from section 2.1 a novel contribution or is it identical to the one
described in Allaerts and Meyers 2019? If the latter, consider removing it from this article.
The model described in section 2.1 is similar to the one discussed in Allaerts and Meyers
(2019), but nevertheless, we have added the time dependency to the equations, a different
equations’ form is used, and the wind-farm force model is different. Therefore, we believe
that a brief explanation of the model equations makes the article more understandable (the
model description occupies approximately a page and a half, excluding the wind-farm force
model). This is the reason why we decided to include this section in the article. However,
to reduce the length of the section (and of the article in general), we have deleted some
unnecessary sentences and explanations from the text.

• 5) Figure 1: It seems as if you have very few iterations before convergence. Can you com-
ment on this?
Figure 1 shows that the cost function decreases rapidly in the firsts two to three itera-
tions, reaching convergence after approximately 5 algorithm iterations. The use of a quasi-
Newton method in combination with the limited complexity of our optimization model (for
instance, the constraints are linearized equations) allow us to reach such a fast conver-
gence (e.g., note that a Newton method reaches convergence in one step for a classical
convex QP, i.e. convex quadratic cost function with linear constraints). Moreover, the con-
tinuous adjoint method limits the number of function evaluations, since it is not necessary
to evaluate J̃(CT + αδCT ) for all directions δCT in the control space (at the expenses of
solving an auxiliary set of equations). Based on this, we were not surprised in reaching
convergence after 6 L-BFGS iterations with only 20 function evaluations. To include these
considerations in the article, we have added the following sentence in section 3.1 (P9-
L246):

“Fig. 1 shows that the cost function decreases rapidly in the firsts two to three algorithm
iterations, reaching a plateau afterwards. The use of a quasi-Newton method in combina-
tion with the limited complexity of our optimization model (for instance, the constraints are
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linearized equations) allow us to reach such a fast convergence. Moreover, the continuous
adjoint method limits the number of function evaluations, since it is not necessary to evalu-
ate J̃(CT + αδCT ) for all directions δCT in the control space (at the expenses of solving an
auxiliary set of equations).”
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3 Response to comments of Alan Wai Hou Lio

• The paper is interesting. The authors investigated the problems of the mesoscale interac-
tion between a wind farm and atmospheric boundary-layer. A three-layer model is proposed
for modelling the wind-farm induced gravity wave. Based on the simplified model, optimi-
sation is then proposed to find the optimal thrust coefficient distributions that maximise the
wind farm power output. The concept is appealing and the topic is definitely relevant to the
wind energy community.
We would like to thank the referee for the constructive feedback in improving the quality of
the paper.

• Comments: pg1: Some claims by the authors were not clear. For example, the optimal
thrust coefficient distributions are spatially stationary rather than time-periodic. Did the
authors consider turbulent wind inflow and turbine-to-turbine interactions? Does the claim
imply that stationary spatial distributions of thrust coefficients are better than dynamically
changing the thrust set-points for maximising the wind farm power? This claim disagreed
with some of the other works (e.g. [1]). In [1], the benefit of periodic dynamic induction
control was shown, where the thrust coefficient of the upstream turbine was periodically
adjusted to improve the downstream wind flow. How is this work related to [1]?
The referee is right in saying that our claims disagree with some previous works. Although
our study deals with much larger scales than the ones usually considered in dynamic or
static induction control, we believe that it is useful to relate it with other recent findings.
Hence, the following paragraph has been modified at P12-L307:

“The optimization model described in Section 2.2 is time and space dependent. Hence,
the model is capable of finding a time-periodic optimal thrust-coefficient distribution over
the wind-farm area in a fixed time interval [0, T ]. However, all optimal thrust set-point dis-
tributions found for the different combinations of time horizons and time steps reported
in Table 1, are constant in time. We have verified this using a range of steady and un-
steady starting conditions for CT in the algorithm, but did not find any unsteady optimum.
We believe that this is due to two reasons. Firstly, we use steady-state inflow conditions,
therefore neglecting meso-scale temporal variations in the velocity field (these could lead to
time-dependent optimal control signals, but are not included in the current work). Secondly,
the objective function is non-convex and there is no proof about the uniqueness of global
minima. Hence, there is no guarantee that the optimal solution found by the optimizer
corresponds to a global optimum. Nevertheless, since we do not observe any unsteady
behaviour in our optimal solutions, we show only steady-state results in the remainder of
the manuscript, and conclude for the time being that unsteady time-periodic excitation is
less effective than a stationary spatially optimal distribution in this context.
We also note that our findings are in contrast with recent works of Goit and Meyers (2015),
Munters and Meyers (2018) and Frederik et al. (2020), in which the authors illustrated the
benefits of dynamic induction control over yaw and static induction control. However, the
characteristic time scale of gravity-wave effects is estimated to be approximately 1 h (Gill
1982, Allaerts and Meyers 2019) which is an order of magnitude above the typical time
scale of wake convection between turbines, and turbulent mixing in turbine wakes (this
also justifies the larger sampling time used). Hence, while unsteadiness of the thrust coef-
ficient (with a typical time scale of 50 seconds for large scale turbines) can lead to improved
wake mixing (Goit and Meyers (2015), Munters and Meyers (2018), Frederik et al (2020)),
it has no impact on phenomena that occur at larger time scales, such as wind-farm induced
gravity waves.”
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• pg2 l59: “asses” -> asks.
Thank you, we have corrected this erratum.

• pg4 l116: Ct is a function of Ct(x,y,t)? What is x and y in B(x,y)?
To avoid the influence of the wind-farm layout on the results presented, the wind profile
is always oriented along the x-axis. Hence, the x- and y-axis denote the streamwise and
spanwise direction, respectively. The function B(x, y) is a box function equal to one for
the (x, y) coordinates within the wind-farm area and zero elsewhere. Similarly, the thrust-
coefficient distribution CT(x, y, t) is function of the spatial coordinate x and y and of the
time t. The thrust- and power-coefficient distribution are always multiplied by the box func-
tion B(x, y) in the text, since they are defined only within the wind-farm area.The following
sentence has been added at P5-L122:

“the x- and y-axis denote the streamwise and spanwise direction, respectively.”

• pg5 l123: What is the dimension of Ct? Is Ct a vector where the number of elements in that
vector is equal to the number of turbines? How is Ct of each turbine related the aggregate
wind farm drag f?
CT = CT (x, y, t) denotes the thrust set-point distribution and can be represented mathe-
matically as CT : R2 × [0, T ] → R. In the text, the thrust-coefficient distribution is always
multiplied by the box function B(x, y) (see previous comment) so that it assumes non-zero
values only within the wind-farm area. If we denote with Nwf

x and Nwf
y the number of grid

points within the farm along the x- and y-direction, Nwf
x Nwf

y represents the number of grid
cells in the farm area. We assume a constant CT value in every cell, and each of these
values represent a control parameter of our optimization problem. Hence, the number of
control parameters is given by Nwf

x Nwf
y Nt (this is mentioned in the article at P7-L190).

In regards to the last question, note that we select the turbine spacings sx and sy to have a
density of turbines in the farm similar to the one of Allaerts and Meyers (2019) (i.e. leading
to β = 0.01 in Eq. 8, using ηw = 0.9 and γ = 0.9 similar to Allaerts and Meyers (2018)).
Hence, we fix the density of turbine in the farm but we do not specifically define a layout or
a number of turbines. In fact, the force model uniformly spreads the force over the simula-
tion cells in the wind-farm area and the number of grid cells within the farm define the DOF
of our optimization problem (as mentioned above). The turbine spacings (together with
other parameters) only define the wind-farm drag-force magnitude. In order to compute
the thrust-coefficient C̃T,k(t) of a turbine at location (xk, yk), it is possible to evaluate the
thrust coefficient distribution CT (xk, yk, t). A more accurate connection between C̃T,k(t)
and the drag force f would require the use of an analytical wind-farm model, but this is out
of the scope of the current work. To include these information in the text, we have added
the following sentence at P5-L127:

“Finally, CT (x, y, t) represents the thrust-coefficient distribution. To compute the thrust co-
efficient C̃T,k(t) of a turbine at location (xk, yk), it is possible to evaluate the thrust set-point
distribution CT (xk, yk, t). A more accurate connection between C̃T,k(t) and the drag force
f would require the use of an analytical wind-farm model, but this is out of the scope of the
current work.”

Moreover, we have also mentioned at P10-L267 that:

“The wind turbine relative spacings along the x- and y-direction are sx = sy = 5.61 (both
non-dimensionalized with respect to the turbine rotor diameter D), so that the density of
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turbines in the farm is similar to the one of Allaerts and Meyers (2019) (i.e. leading to
β = 0.01 in Eq. 8, setting both the wake efficiency ηw and γ to 0.9 as in Allaerts and
Meyers (2018)). Note that we do not define a specific layout or a number of turbines but
we only fix the density of turbines in the farm.”

• p5 l124: "the thrust-coefficient distribution Ct has to be interpreted as a perturbation.” Is Ct
the thrust coefficient or the perturbation to the thrust coefficient?
The equations are linearized with respect to the background state variables, that is around
a state for which the wind-farm is not operating. Hence, there is no distinction between the
thrust coefficient CT and its perturbation C ′T . In fact, CT = Cb

T +C ′T but we are linearizing
around a non-operating wind farm, therefore Cb

T = 0 and CT = C ′T. However, in an attempt
to reduce the length of the article (suggested by the Anonymous Referee #2), we have
decided to remove this sentence from the text (a similar explanation is already written in
Allaerts and Meyers (2019)).

• "The goal of the optimization framework is to find a time-periodic optimal thrust-coefficient
distribution”. Why did the authors assume that the optimal thrust distribution would be time-
periodic in the beginning?
We are using steady environmental conditions. Hence, if we use a control signal for a finite
time window [0, T ], since nothing changes in the atmospheric conditions, the only option
is that the signal repeats itself (at least if we want to arrive at a control that is on average
steady) in the time window [T, 2T ], and so on. To include this information in the article, we
have modified the text as follows (P6-L163):

“The goal of the optimization framework is to find a time-periodic optimal thrust-coefficient
distribution CO

T (x, y, t) that minimizes the gravity-wave induced blockage effects, maximiz-
ing the flow wind speed and consequently the wind-farm energy extraction over a selected
time period T . The background atmospheric state is presumed to be steady, which is the
reason why we use a time-periodic control (i.e. leading to a moving time average of the
optimal control that is steady, and does not lead to end-of-time effects).”

• p6: Equation (13), what is ψ and J in (13) is not a function of Ct. I suggest the authors
swap equation (13) and (14) for clarity.
ψ is the vector containing the state variables and is defined in P7-L189.
Correction (P6-L169):

“We have swapped equation (13) with equation (14) as suggested by the referee. Hopefully
this will help in clarifying the dependence of J on CT.”

• p7 l183: N(ψ(Ct), Ct) = 0. Is this only valid around the neighbourhood of the solution?
What is N?
The vector ψ contains the state variables, hence it depends upon the thrust coefficient
distribution. We denote with ψ(CT ) the solution of the state equation. N

(
ψ, CT

)
is an op-

erator which represents the state equations. If ψ(CT ) is a solution, then N
(
ψ(CT ), CT

)
=0.

This does not hold in the neighbourhood of the solution but only for ψ(CT ) which satisfies
the state equations. The sentence has been changed to (P7-L195):

“To avoid exploring the entire feasibility region, we require ψ(CT ) to be the solution of
the state equations throughout the optimization process. In other words, defining an op-
erator N

(
ψ, CT

)
that denotes the state equations, we are enforcing N

(
ψ(CT ), CT

)
= 0

during optimization iterations.”
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• p11 l268: what is PN?
The non-dimensional number PN is defined as PN = U2

B/NH‖U g‖ where N is the Brunt-
Väisälä frequency. This number is an indicator of the effects of internal waves in the tro-
posphere. For instance, low PN values correspond to strongly stratified atmosphere which
in turn implies strong excitation of internal waves. The following sentence has been added
(P12-L298):

“Further, PN expresses the impact of internal waves in the troposphere which increases
when PN decreases. The background state defined in Table 1 leads to PN = 1.92.”
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Abstract. Recently, it has been shown that flow blockage in large wind farms may lift up the top of the boundary layer,

thereby triggering atmospheric gravity waves in the inversion layer and in the free atmosphere. These waves impose significant

pressure gradients in the boundary layer causing detrimental consequences in terms of farm’s efficiency. In the current study,

we investigate the idea of controlling the wind farm in order to mitigate the efficiency drop due to wind-farm induced gravity

waves and blockage. The analysis is performed using a fast boundary layer model which divides the vertical structure of the5

atmosphere into three layers. The wind-farm drag force is applied over the whole wind-farm area in the lowest layer and is

directly proportional to the wind-farm thrust set-point distribution. We implement an optimization model in order to derive

the thrust-coefficient distribution which maximizes the wind-farm energy extraction. We use a continuous adjoint method to

efficiently compute gradients for the optimization algorithm, which is based on a quasi-Newton method. Energy gains are

evaluated with respect to a reference thrust-coefficient distribution based on the Betz–Joukowsky set point. We consider thrust10

coefficients that can change in space, as well as in time, i.e. considering time-periodic signals. However, in all our optimization

results, we find that optimal thrust-coefficient distributions are steady; any time-periodic distribution is less optimal. The

(steady) optimal thrust-coefficient distribution is inversely related to the vertical displacement of the boundary layer. Hence,

it assumes a sinusoidal behaviour in the streamwise direction in subcritical flow conditions, whereas it becomes a U-shaped

curve when the flow is supercritical. The sensitivity of the energy gain to the atmospheric state is studied using the developed15

optimization tool for almost two thousand different atmospheric states. Energy gains of
::::::
Overall,

::::::
energy

:::::
gains

:::::
above

:::
4%

:::::
were

:::::::
observed

:::
for

::::
77%

::
of

:::
the

:::::
cases

::::
with

:::::
peaks

:
up to 14% are found for weakly stratified atmospheres in critical flow regimes.

1 Introduction

Nowadays, it is well known that turbines strongly interact when clustered together in large arrays, increasing the momentum

deficit in the lowest region of the atmospheric boundary-layer (ABL). These turbine–turbine interactions, such as reduced wind20

speed and increased turbulence intensity, occur within the wind-farm area and can lead to detrimental consequences in terms of

farm’s efficiency (Barthelmie et al., 2010). However, it has been recently discovered that also non-local effects such as gravity

waves may have strong implications on the wind-farm energy extraction (Allaerts and Meyers, 2018, 2019).

Wind-farm induced gravity waves are triggered by the upward displacement of the boundary layer which is caused by

diverging fluid streamlines due to flow deceleration. As a result, an adverse pressure gradient develops in the induction region of25
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the wind farm, which slows down the wind-farm inflow velocity, reducing the farm efficiency. The goal of the current study is to

determine a wind-farm thrust-coefficient distribution that minimizes the gravity-wave induced blockage effects, maximizing the

flow wind speed, and therefore the energy extraction. Moreover, we investigate the impact of different atmospheric conditions

on the optimal thrust-coefficient distribution and corresponding energy gains.

The cumulated blockage effect induced by the wind farm in the induction region was associated with wind-farm induced30

gravity waves only in recent years. In the pioneering work of Smith (2010), a quasi-analytical model of atmospheric response

to wind-farm drag was used for modelling gravity-wave excitation due to diverging streamlines above the wind-farm area.

Results have shown that gravity-wave excitation is strongly dependent upon the height of the boundary layer and the stability

of the atmosphere aloft. Later, a fast boundary-layer model was proposed by Allaerts and Meyers (2019) who highlighted the

crucial role of the inversion layer in determining gravity-wave patterns. The authors also used this model for an annual energy35

production study of the Belgian-Dutch offshore wind-farm cluster, showing that the annual energy loss due to the effect of

self-induced gravity waves might be on the order of 4 to 6% (Allaerts et al., 2018).

Gravity waves were also observed in mesoscale and Large Eddy Simulation (LES) models. Fitch et al. (2012) and Volker

(2014) proposed two different wind-farm parametrizations for the Weather Research and Forecasting model (WRF). Wind-farm

induced gravity waves were observed in both cases, causing flow deceleration several kilometers upstream of the farm. Allaerts40

and Meyers (2017, 2018) have investigated the interaction between an “infinitely” wide wind farm and both a conventionally

neutral and stable boundary layer in typical offshore conditions in a LES framework. They found that for low ABL heights,

gravity waves induce strong pressure gradients and play an important role in the distribution of the kinetic energy within

the farm. Wu and Porté-Agel (2017) considered a large finite-size wind farm operating in a conventionally neutral boundary

layer (CNBL) with different free atmosphere stratification, and they conclude that strongly stratified atmospheres decrease45

the turbine power output up to 35% with respect to the weakly stratified cases. Blockage effects were also detected in field

measurements. Wind speed data taken before and after the placement of three wind farms showed that there was a reduction in

wind speed of about 3% in the induction region of each wind farm after that turbines were installed (Bleeg et al., 2018).

In the past years, a considerable amount of research has focused on wind-farm control strategies that allow to maximize the

farm power output. Wake redirection techniques and decreasing set points of first row turbines are different strategies example.50

Goit and Meyers (2015) considered the individual wind turbines as flow actuators; the thrust set points were dynamically

changed to obtain an optimal flow field which minimized the turbine interactions. Energy gains up to 16% were obtained

with respect to uncontrolled cases. Gebraad et al. (2016) and Quick et al. (2017) used static yaw techniques to redirect first

row turbines wake to increase the available power for downwind turbines. Munters and Meyers (2018) combined the two

strategies, showing “power gains that approximate the sum of those achieved by each control strategy separately”. The wind-55

farm layout also plays a crucial role in power extraction. Meyers and Meneveau (2012) and Stevens (2016) used optimization

tools to find the optimal turbine spacing in fully-developed and finite-sized wind farm, respectively. However, all optimization

models mentioned above neglect wind-farm–ABL interactions that take place at mesoscale, such as wind-farm induced gravity

waves. In this paper, we develop an optimization model which takes into account self-induced gravity-wave effects and we
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asses
::::::::
investigate

:
whether it is possible to mitigate the gravity-wave induced blockage effects by varying the thrust set-point60

distribution within the wind-farm area.

Despite the detailed flow information that LES models provide, their high computational cost makes their applicability to

optimization and sensitivity studies challenging. Therefore, in the current paper we use a fast boundary-layer model proposed

by Allaerts and Meyers (2019) which divides the vertical structure of the atmosphere into three layers (from here the name

three-layer model) and we reformulate it as an optimization problem. The objective function is defined as the wind-farm65

energy extracted over a time period T , while the constraints are the model equations plus a box constraint for the wind-farm

thrust set-point distribution CT (x,y, t). The model equations are derived following the theory for interacting gravity waves and

boundary layers developed by Smith et al. (2006), Smith (2007) and Smith (2010). Consequently, the optimal thrust-coefficient

distribution computed using the optimization formulation of the three-layer model takes into account the effects of self-induced

gravity waves.70

The remainder of this paper is formulated as follows. The three-layer model and its optimization formulation is introduced

in Section 2. Next, Section 3 describes the numerical setup, wind-farm layout and atmospheric state. Thereafter, Section 4

presents optimization results. The optimal thrust set-point distributions obtained in two different flow cases are discussed in

Section 4.1. The sensitivity of the energy gain to the atmospheric state is carried out in Section 4.2. Finally, conclusions and

suggestions for further research are given in Section 5 .75

2 Methodology

We now introduce the approach used for modelling wind-farm induced gravity waves and the method applied for maximizing

the wind-farm energy output. The three-layer model is described in Section 2.1 and its optimization formulation is derived in

Section 2.2.

2.1 Three-layer model80

In the work of Smith (2010), the atmospheric response to wind-farm drag is simulated by dividing the vertical structure of the

atmosphere in two layers: the ABL and the free atmosphere aloft. This approach has strong limitations. In fact, the author is

implicitly assuming that the turbine drag is mixed homogeneously between turbine level and the top of the ABL. In real wind

farms, the turbine drag slows down the flow only within few hundreds meters from the ground level, triggering the formation

of an internal boundary layer (Wu and Porté-Agel, 2013; Allaerts and Meyers, 2017). To overcome the limitations of Smith’s85

model, the three-layer model divides the ABL into two layers: the wind-farm layer in which the turbine forces are felt directly

(a layer’s height of twice the turbine hub height has been used by Allaerts and Meyers (2019) based on insights from LES in

Allaerts et al. (2018)), and a second layer up to the top of the ABL. Finally, the third layer models the free atmosphere above

the ABL following the approach of Smith (2010).

The model equations are derived starting from the incompressible three-dimensional Reynolds-Averaged Navier-Stokes90

(RANS) equations for the ABL (Stull, 1988). The vertical component of the velocity field is a lot smaller than the horizontal
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components in the ABL. Moreover, it is reasonable to assume a hydrostatic pressure distribution. These assumptions allow to

reduce
:
A

::::::::::::::
depth-integration

::::
over

:::
the

:::::::::
wind-farm

::::
and

:::::
upper

::::
layer

:::::
height

::
is
::::::
further

:::::::::
computed,

:::::
which

::::::::
removes

::
the

:::::::
vertical

:::::::
velocity

::::
from

:::
the

::::::::
equations.

::::::
Hence,

:
the basic equation system

:
is

:::::::
reduced to a set of only three equations: the continuity equation and the

momentum equations in horizontal directions. Finally
:::::::::::
Subsequently, the governing equations are averaged over the wind-farm95

and upper layer height, and further linearized with respect to the background state variables
:
,
:::::
using

:::::
some

::::::::
additional

:::::::::
modelling

::::::::::
assumptions

:::
for

:::
the

:::::::
turbulent

:::::::
stresses (see Allaerts and Meyers (2019) for more details). As a result, we are using the following

equations for the two layers in the ABL

∂u1

∂t
+U1 · ∇u1 +

1

ρ0
∇p+ fcJ ·u1− νt,1∇2u1−

D′

H1
·
(
u2−u1

)
+
C ′

H1
·u1 =

f

H1
, (1)

∂η1

∂t
+U1 · ∇η1 +H1∇ ·u1 = 0, (2)100

∂u2

∂t
+U2 · ∇u2 +

1

ρ0
∇p+ fcJ ·u2− νt,2∇2u2 +

D′

H2
·
(
u2−u1

)
= 0, (3)

∂η2

∂t
+U2 · ∇η2 +H2∇ ·u2 = 0. (4)

When the wind farm is not operating (i.e., the wind-farm drag force is zero), a horizontally invariant reference state
(
U1,H1

)
and

(
U2,H2

)
characterizes the wind-farm and upper layer, where U1 =

(
U1,V1

)
and U2 =

(
U2,V2

)
are the height-averaged

horizontal components of the background velocity and H1, H2 represent the height of the two layers. Whenever the farm105

extracts power from the flow, small velocity and height perturbations
(
u1,η1

)
and

(
u2,η2

)
are triggered. The equations derived

by Allaerts and Meyers (2019) predict the spatial evolution of these perturbations. In this article, we also consider the temporal

evolution, and thus, the relevant time derivatives are added to the equations. Furthermore, ρ0 denotes the air density, assumed

constant within the ABL, νt,1 and νt,2 are the depth-averaged turbulent viscosity, fc = 2Ωsinφ is the Coriolis frequency, with

Ω the angular velocity of the earth and φ the latitude, J = ex⊗ey−ey⊗ex is the two-dimensional rotation dyadic with ex and110

ey two-dimensional unit vectors in the x- and y-direction, respectively. Finally, the perturbation of the friction at the ground

and at the interface between both layers are described by the matrices C′ andD′.

The right-hand side of Eq. 1 is characterized by the wind-farm drag force f . To limit the computational cost, we
::
We

:
use

a box-function wind-farm force model similar to Smith (2010) . Therefore, we do not include the wake effects of each wind

turbine individually, but instead we assume that the drag force is distributed over the whole
:
in

::::
our

:::::
study.

::::
This

::::::
allows

:::
us

::
to115

::::
avoid

:::
the

::::::::::
complexity

::
of

::::
wake

:::::::
models

:::::
while

::::::
gaining

::
in

::::::::::::
computational

::::
time.

:::
In

::::
fact,

:::
this

:::::
model

:::::::::
uniformly

::::::
spreads

:::
the

:::::
force

::::
over

::
the

:::::::::
simulation

:::::
cells

::
in

:::
the wind-farm area .

:::
and

::::
does

:::
not

::::::::
represent

:::
the

::::::::::
disturbances

::::::
caused

:::
by

::::
each

::::::
turbine

::
in

::::::
detail.

:::
The

:::::
force

::::::::
magnitude

::::::::
depends

::
on

:::
the

:::::::::
wind-farm

::::::
layout,

:::
the

:::::
wind

:::::
speed

::::
and

:::
the

:::::
thrust

:::::::
set-point

::::::::::
distribution

::::
(i.e.,

:::
the

::::
CT :::::

value
::
in

:::::
every

:::
grid

::::
cell

:::::
within

:::
the

:::::
farm).

:
As for the flow equations, the wind-farm drag force model is linearized around a constant background

state. We retain the first two terms of the Taylor expansion; both scale linearly with the thrust-coefficient distribution. Hence,120
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the drag force is given by f = f (0) +f (1) with

f (0) =−βCTB(x,y)‖U1‖U1, (5)

f (1) =−βCTB(x,y)

‖U1‖
CTB(x,y)
::::::::

U11+1
2′ ·u1, (6)

:::::
where

U ′ =
1

‖U1‖
(
U1⊗U1 + I‖U1‖2

)
::::::::::::::::::::::::::::

(7)125

and with B(x,y) a box function equal to one within the wind-farm area and zero outside. The
::
x-

::::
and

:::::
y-axis

:::::::
denote

:::
the

:::::::::
streamwise

:::
and

::::::::
spanwise

::::::::
direction,

:::::::::::
respectively.

:::
The

:
wind-farm drag force magnitude in Eqs. 5 and 6 scales with

β =
πηwγ

8sxsy
, (8)

where sx and sy are the streamwise and spanwise turbine spacing relative to the rotor diameter, ηw is the wake efficiency

and γ = u2
r/‖U1‖2 is a velocity shape factor with ur the rotor-averaged wind speed (Allaerts and Meyers, 2018). Moreover,130

:::::::::::::::::::
I = ex⊗ ex + ey ⊗ ey ::::::

denotes
:::
the

::::
unit

:::::::
dyadic.

::::::
Finally,

:
CT (x,y, t) is

::::::::
represents

:
the thrust-coefficient distribution. Since we

linearize the equation around a background state for which the wind-farm is not operating,
::
To

::::::::
compute

:::
the

:::::
thrust

:::::::::
coefficient

::::::
C̃T,k(t)

::
of

::
a

::::::
turbine

::
at

::::::
location

::::::::
(xk,yk),

:
it
::
is

:::::::
possible

::
to

:::::::
evaluate

:::
the

:::::
thrust

:::::::
set-point

::::::::::
distribution

:::::::::::
CT (xk,yk, t).

::
A

:::::
more

:::::::
accurate

:::::::::
connection

:::::::
between

:::::::
C̃T,k(t)

:::
and

:
the thrust-coefficient distribution CT has to be interpreted as a perturbation. Hence, f (0) and

f (1) technically represent the first-order and second-order cross term of the Taylor expansion. Finally, I = ex⊗ ex + ey ⊗ ey135

is the unit dyadic
::::
drag

:::::
force

::
f

::::::
would

::::::
require

:::
the

:::
use

:::
of

::
an

:::::::::
analytical

:::::::::
wind-farm

::::::
model,

:::
but

::::
this

::
is

:::
out

:::
of

:::
the

:::::
scope

:::
of

:::
the

::::::
current

::::
work. Relation 6 is nonlinear since it contains a product between time and space-dependent variables (i.e, CT and u1).

We decide to retain this term because it allows us to include gravity-wave feedback on wind-farm energy extraction. In fact,

f (1) ≥ 0 so that it reduces the drag force that the farm exerts on the flow, thereby reducing effects of blockage in the model.

The total vertical displacement of the inversion layer ηt = η1 + η2 triggers gravity waves which induce pressure perturba-140

tions p. The relation between these two quantities is given by (Gill, 1982)
:::::::::::
Smith (2010)

p

ρ0
= F−1Φ(Φ̂) ∗ ηt (9)

where F−1 and ∗ denote the inverse Fourier transform and the convolution product, respectively. The pressure p is evaluated

at the capping inversion height and it is assumed to be constant through the whole ABL (using the classical boundary-layer

approximation ∂p/∂z = 0). The complex stratification coefficient Φ
:
Φ̂
:
in Fourier components is expressed as145

ΦΦ̂ = g′+
i
(
N2−Ω2

)
m

. (10)

Relation 10 is obtained from linear three-dimensional, non-rotating, non-hydrostatic gravity-wave theory (Nappo, 2002) under

the assumption of constant wind speed Ug =
(
Ug,Vg

)
and Brunt-Väisälä frequency N . The reduced gravity g′ = g∆θ/θ0
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accounts for two-dimensional trapped lee waves (further named as inversion waves) which corrugate the capping inversion

layer. The potential-temperature difference ∆θ denotes the strength of the capping inversion, and θ0 is a reference potential150

temperature. The effect of internal gravity waves is represented by the second term of relation 10, where m denotes the vertical

wavenumber which is given by

m2 =
(
k2 + l2

)(N2

Ω2
− 1

)
. (11)

According to the sign of m2 we can have propagating or evanescent waves. Moreover, Ω = ω−κ ·Ug denotes the intrinsic

wave frequency with κ= (k, l) the horizontal wavenumber vector.155

Finally, combining Eq. 9 with Eq. 2 and Eq. 4, we can write the continuity equations for the wind-farm and upper layer as

1

ρ0

∂p1

∂t
+

1

ρ0
U1 · ∇p1 +H1∇ ·

[
F−1Φ(Φ̂) ∗ u1

]
= 0, (12)

1

ρ0

∂p2

∂t
+

1

ρ0
U2 · ∇p2 +H2∇ ·

[
F−1Φ(Φ̂) ∗ u2

]
= 0 (13)

where p= p1 + p2 is intended as the sum of the pressure perturbations induced by the vertical displacements η1 and η2,

respectively. This form will be used in the remainder of the manuscript.160

:::
The

:::::::::
three-layer

::::::
model

:::::::::::
configuration

::::::::
described

:::::
above

:::
has

:::::
been

:::::::
validated

:::::::
against

::::
LES

:::::
results

:::
by

:::::::::::::::::::::::
Allaerts and Meyers (2019)

:::
(see

:::::::
Section

::
3

::::::
VAL2)

:::
on

:
a
::::
two

::::::::::
dimensional

:::::
(x-z)

:::::::
domain

::::
(i.e.,

:::
all

::::::::
spanwise

:::::::::
derivatives

:::
are

:::
set

::
to

::::::
zero).

:::
The

::::::
model

::::::
shows

:
a
:::::
mean

:::::::
absolute

:::::
error

::::::
(MAE)

:::
of

:::::
1.3%

:::
and

:::::
1.8%

::
in
::::::

terms
::
of

:::::::::
maximum

:::::::::::
displacement

::
of

::::
the

::::::::
inversion

::::
layer

::::
and

:::::::::
maximum

:::::::
pressure

::::::::::
disturbance,

:::::::::::
respectively.

::::::::
Moreover,

:::
the

::::::
model

:::::::::::::
underestimates

:::
the

:::::::
velocity

::::
over

:::
the

:::::::::
wind-farm

::::
area

::::
with

:
a
:::::

MAE
:::

of

:::::
5.6%.

::::
Note

::::
that

::
the

::::::::::
three-layer

:::::
model

::
is

:
a
:::::::::
linearized

::::::
model,

:::::
hence

:::
the

:::::::::::
discrepancies

::::
with

::::
LES

::::::
results

:::::::
increase

::::
with

:::::::::
increasing165

::::::::::
perturbation

::::::
values.

::
In

:::::
fact,

:::
the

::::::
model

:::::
agrees

:::::
very

::::
well

::::
with

::::
LES

::::
data

:::::
when

::::::::::::
perturbations

:::
are

:::::
small

::::
(i.e,

:::::
when

:::::::::
non-linear

:::::
effects

:::
are

::::::::::
negligible).

:::
For

::::::
further

::::::
details,

:::
we

::::
refer

::
to
:::::::::::::::::::::::
Allaerts and Meyers (2019).

:

2.2 Optimization model

The goal of the optimization framework is to find a time-periodic optimal thrust-coefficient distribution CO
T (x,y, t) that min-

imizes the gravity-wave induced blockage effects, maximizing the flow wind speed and consequently the wind-farm energy170

extraction over a selected time period T . The background atmospheric state itself is presumed to be steady.
:
,
::::::
which

::
is

:::
the

:::::
reason

::::
why

:::
we

:::
use

:
a
::::::::::::
time-periodic

::::::
control

:::
(i.e.

:::::::
leading

::
to

:
a
:::::::
moving

::::
time

::::::
average

::
of

:::
the

:::::::
optimal

::::::
control

:::
that

::
is
::::::
steady,

::::
and

::::
does

:::
not

:::
lead

:::
to

:::::::::
end-of-time

:::::::
effects).

:
The wind-farm layout and the atmospheric state are inputs of the optimization model and are

detailed in Section 3.

::
By

:::::
using

::::
axial

::::::::::
momentum

::::::
theory

::::::::::::::::
(Burton et al., 2001)

:
,
:::
we

:::
find

::::
that

::
the

::::::
power

:::::::::
coefficient

::::::::
Cp(x,y, t):::::::

depends
:::::
upon

:::
the

:::::
thrust175

::::::::
coefficient

:::::::::
according

::
to

:::
the

::::::::
following

:::::::::
non-linear

::::::::::
relationship

Cp =
CT
2

(
1 +

√
1−CT

)
.

::::::::::::::::::::::

(14)
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The objective function of the optimization model consists in the energy extracted by the farm in the time interval [0,T ], and

:::::
hence it is defined as

J
(
ψ,CT

)
=−β‖U1‖

T∫
0

∫∫
Ω

CpB(x,y)

(
‖U1‖2 + 3U1 ·u1

)
dxdt (15)180

where Ω =Dx×Dy is the computational domain areaand Cp(x,y, t) is the power coefficient distribution.By using axial

momentum theory (Burton et al., 2001), we find that the power coefficient depends upon the thrust coefficient according to

the following
:
.
:::
The

:
non-linear relationship

Cp =
CT
2

(
1 +

√
1−CT

)
,

so that the
::::::::::
relationship

:::::::
between

:::
Cp::::

and
:::
CT::::

and
:::
the

:::::::
product

::::::::
between

::::::
control

::::
and

::::
state

::::::::
variables

::
in

::::
Eq.

::
15

::::::
imply

::::
that

:::
the185

objective function J is non-convex.

The wind-farm optimal configuration that maximizes the energy output (note that the objective function is defined with a

minus sign) is then obtained by solving the following non-linear time-periodic PDE-constrained optimization problem

min
ψ,CT

J (ψ,CT ) (16)

s.t.190

∂u1

∂t
+U1 · ∇u1 +

1

ρ0
∇p1 +

1

ρ0
∇p2 + fcJ ·u1− νt,1∇2u1−

D′

H1
·
(
u2−u1

)
+
C ′

H1
·u1 =

f (0) +f (1)

H1
in Ω× (0,T ],

∂u2

∂t
+U2 · ∇u2 +

1

ρ0
∇p1 +

1

ρ0
∇p2 + fcJ ·u2− νt,2∇2u2 +

D′

H2
·
(
u2−u1

)
= 0 in Ω× (0,T ],

1

ρ0

∂p1

∂t
+

1

ρ0
U1 · ∇p1 +H1∇ ·

[
F−1Φ(Φ̂) ∗ u1

]
= 0 in Ω× (0,T ],

1

ρ0

∂p2

∂t
+

1

ρ0
U2 · ∇p2 +H2∇ ·

[
F−1Φ(Φ̂) ∗ u2

]
= 0 in Ω× (0,T ],

0≤ CT < 1 in Ω× (0,T ],195

CT (x,y,0) = CT (x,y,T ) in Ω.

The constraints are the state (or forward) equations presented in the previous paragraph. Since Eq. 14 is defined only for

CT ∈ [0,1), we added a box constraint to the optimization model. Moreover, the time-periodicity is imposed by assuming

CT (x,y,0) = CT (x,y,T ). The system state ψ =
[
u1,v1,u2,v2,p1,p2

]
includes the velocity and pressure perturbations in the

wind-farm and upper layer, which also define the unknowns of the three-layer model. The control parameters consist of the200

value of the thrust set point in each grid cell within the wind-farm area. Hence, the size of the control space is proportional to

Nwf
x Nwf

y Nt, where Nt represents the number of time steps within the time horizon T , while Nwf
x and Nwf

y denote the number

of grid points within the wind-farm area along the x and y-direction, respectively.

It is common practice in PDE-constrained optimization problem to not optimize the cost functional J (ψ,CT ) directly

because such a problem would span both the state and control space. To avoid exploring the entire feasibility region, we205
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require ψ(CT ) to be the solution of the state equations throughout the optimization process. In other words, if we use the

shorthand notation
::::::
defining

:::
an

:::::::
operator

:
N
(
ψ,CT

)
for the state constraints

:::
that

:::::::
denotes

:::
the

::::
state

:::::::::
equations, we are enforc-

ing that N
(
ψ(CT ),CT

)
= 0 during optimization iterations. This technique leads us to a reduced optimization problem with

feasibility region given by the control space (De Los Reyes, 2015). The reduced optimization problem is written as

min
CT

J̃ (CT ) = J
(
ψ(CT ),CT

)
(17)210

s.t.

0≤ CT < 1 in Ω× (0,T ],

CT (x,y,0) = CT (x,y,T ) in Ω

where the only remaining constraints are the ones on the control parameters.

The gradient of the reduced objective function ∇J̃ is needed for the solution of the reduced optimization problem. To this215

end, we use a
:::
the continuous adjoint method. The adjoint (or backward) equations are given by (see Appendix A2 for detailed

derivation)

− ∂ζ1

∂t
−U1 · ∇ζ1 + fcJ · ζ1− νt,1∇2ζ1 +

D′

H1
· ζ1 +

C ′

H1
· ζ1−

D′

H2
· ζ2−H1

[
F−1(ΦΦ̂)(−x,−t) ∗∇Π1

]
+

+
β

H1

CTB(x,y)

‖U1‖
βCTB(x,y)

H1
::::::::::

U11+1
2′·
:
ζ1 = 3βCpB(x,y)‖U1‖U1 in Ω× (0,T ],

− ∂ζ2

∂t
−U2 · ∇ζ2 + fcJ · ζ2− νt,2∇2ζ2 +

D′

H2
· ζ2−

D′

H1
· ζ1−H2

[
F−1(ΦΦ̂)(−x,−t) ∗∇Π2

]
= 0 in Ω× (0,T ],220

− ∂Π1

∂t
−U1 · ∇Π1−∇ · ζ1−∇ · ζ2 = 0 in Ω× (0,T ],

− ∂Π2

∂t
−U2 · ∇Π2−∇ · ζ1−∇ · ζ2 = 0 in Ω× (0,T ].

(18)

::::
Note

:::
that

:::
the

::::::
minus

:::
sign

::
in

:::
the

::::::::
argument

::
of

:::::::::::::::
F−1(Φ̂)(−x,−t)

::
is

:::
not

:
a
:::::
result

::::
from

:::::::
classical

:::::::::
integration

:::
by

:::::
parts,

:::
but

:::::
arrives

:::::
from

:::::::
applying

:::::::
Fubini’s

:::::::
theorem

::
to

:::
the

::::::::::
convolution

::::
term

::
in

:::
Eq.

::
12

::::
and

:::
Eq.

::
13

::::
(see

::::::::
Appendix

:::
A2

:::
for

:::::::
details). The adjoint variables are

grouped in the vector ψ∗ =
[
ζ1,ζ2,Π1,Π2

]
where ζ1 =

(
ζ1,χ1

)
and ζ2 =

(
ζ2,χ2

)
are the adjoint velocity perturbation fields225

in the wind-farm and upper layer, respectively, while Π1 and Π2 are the adjoint pressure perturbations. Using the solution of

the adjoint equations, the gradient of the cost function is expressed as (see Appendix A3 for details)

∇J̃ = βB(x,y)
βB(x,y)

H1
:::::::

[
1

H1
‖U1‖U1 · ζ1−H1

::
‖U1‖

dCp
dCT

(
‖U1‖2 + 3U1 ·u1

)
+

1

H1‖U1‖
u>1 ·U11+1

2′ · ζ1

]
, (19)

where dCp/dCT is computed from Eq. 14. To compute the gradient∇J̃ we need to solve the forward and backward equations.

Since the cost for solving the adjoint equation
::::::::
equations is roughly the same as for the forward equation, the computational230

cost for evaluating∇J̃ is proportional to the cost of solving twice the state equations. A verification of
::
To

::::::
verify the approach,

by comparing
::
we

:::::::
compare

:
the adjoint gradient to a standard finite-difference approximation , is presented in Appendix A4.
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Figure 1. Convergence of the cost functional over the (a) L-BFGS-B and (b) TNC iteration. The squares and triangles denote the cost

functional value and the number of function evaluations, respectively.

3 Numerical setup and case description

We define the model setup used to asses the potential of set-point optimization in mitigating self-induced gravity-wave effects

in this section. We discuss the numerical setup in Section 3.1. Next, the selected wind-farm layout is presented in Section 3.2.235

Finally, the atmospheric state is discussed in Section 3.3.

3.1 Numerical setup

Both the forward and adjoint equations are discretized using a Fourier–Galerkin spectral method in space and time. The use of

Fourier modes in time, automatically results in satisfying the periodicity conditions that we are aiming for in our optimization

set-up. All terms in the equations are linear, besides the first-order term of the wind-farm drag force (and its adjoint). These240

terms contain products between temporarily and spatially dependent variables. To avoid expensive convolution sums, these

products are computed in physical space. Full dealiasing is obtained by padding and truncation according to the 3/2 rule (Canuto

et al., 1988). The use of Fourier modes in space forces periodic boundary conditions at the edges of the computational domain.

Therefore, the domain has a sufficiently large dimension Dx×Dy = 1000× 400 km2, so that the perturbations die out before

being recycled. The grid has Nx×Ny = 4000× 1600 grid points which corresponds to a space resolution of ∆x= ∆y = 250245

:::::::
∆ = 250

:
m or 6.4×106 DOF per layer. Finally, different time horizon values are used spanning from T = 10 minutes to T = 10

hours with number of time steps ranging from Nt = 12 to Nt = 120. The discretized forward and backward equations form

two systems of dimension 6NxNyNt× 6NxNyNt, which are solved using the LGMRES algorithm (Baker et al., 2005).

For the optimization, two different algorithms are compared in Fig. 1. The L-BFGS-B (limited-memory Broyden–Fletcher-

Goldfarb–Shanno with box constraint) algorithm (Byrd et al., 1995) is an iterative quasi-Newton method. In the current appli-250

cation, the step length is evaluated with the inexact line search Wolfe condition (Wolfe, 1969). The truncated Newton method

(TNC) computes the search direction by solving iteratively the Newton equation, applying the conjugate gradient method. This

inner loop is stopped (truncated) as soon as a termination criterion is satisfied (Nocedal and Wright, 1999). In both cases, the

9



system matrix of the Newton equation consists of an approximate Hessian matrix, while the right-hand side needs gradient in-

formation to be computed, which are provided by the continuous adjoint method (see Appendix A for derivation and validation).255

Fig. 1 (a) shows
:::::
shows

::::
that

:::
the

:::
cost

:::::::
function

:::::::::
decreases

::::::
rapidly

::
in

:::
the

::::
firsts

::::
two

::
to

::::
three

::::::::
algorithm

:::::::::
iterations,

:::::::
reaching

:
a
:::::::
plateau

:::::::::
afterwards.

::::
The

:::
use

::
of

::
a
::::::::::::
quasi-Newton

:::::::
method

::
in

::::::::::
combination

:::::
with

:::
the

::::::
limited

::::::::::
complexity

::
of

::::
our

::::::::::
optimization

::::::
model

::::
(for

:::::::
instance,

:::
the

:::::::::
constraints

:::
are

:::::::::
linearized

::::::::
equations)

:::::
allow

:::
us

::
to

:::::
reach

::::
such

:
a
::::
fast

:::::::::::
convergence.

::::::::
Moreover,

:::
the

::::::::::
continuous

::::::
adjoint

::::::
method

:::::
limits

:::
the

:::::::
number

::
of

:::::::
function

::::::::::
evaluations,

:::::
since

::
it

:
is
:::
not

:::::::::
necessary

::
to

:::::::
evaluate

::::::::::::::
J̃ (CT +αδCT )

:::
for

::
all

:::::::::
directions

::::
δCT

::
in

::
the

:::::::
control

::::
space

:::
(at

:::
the

::::::::
expenses

::
of

::::::
solving

::
an

::::::::
auxiliary

:::
set

::
of

:::::::::
equations).

::
In

:::::::::
particular,

:::
Fig.

::::
1(a)

:::::::
displays that the cost func-260

tional is converged after six L-BFGS-B iterations. Apart from the first iteration, the line search method needs three ‘function

evaluations’ before updating the cost functional. Hence, we need to solve 20 times the forward and backward equations for

reaching convergence. On the other hand, Fig. 1(b) shows
:::::::
illustrates

:
that the cost functional is mainly minimized within the

first TNC iteration and convergence is reached after only four iterations. However, here, 63 function evaluations are needed.

Hence, we will use the L-BFGS-B algorithm for solving the PDE-constrained optimization problem in the remainder of the265

article. To limit computational effort, a maximum of four L-BFGS-B iterations will be performed.

:::
The

::::::
solver

::::::
(which

::
is
::::
not

::::::::::
parallelized)

:::::
takes

::
a
::::::
couple

::
of

::::::
hours

::
to

:::::
solve

:::
the

:::::::::
equations

:::
for

:
a
::::

grid
:::::

with
::::::::
resolution

:::
of

::::
250

::
m

:::::::::
(6.4× 106

::::
DOF

:::
per

::::::
layer).

:::::
Since

:::::::::::
convergence

::
is

:::::::
reached

::::
after

::::::::::::
approximately

:::
20

:::::::
function

::::::::::
evaluations

::::::
(which

::::::
means

::::
that

::
we

:::::
solve

:::::
state

:::
and

::::::
adjoint

:::::::::
equations

::
20

::::::
times),

::::
the

::::::::
optimizer

:::::
takes

:
a
::::::
couple

::
of

:::::
days

::
to

::::::::
compute

::
an

:::::::
optimal

:::::
thrust

::::::::
set-point

::::::::::
distribution.

::::::::
However,

::::
after

:::
this

:::::
work

:::
was

::::::::::
performed,

::
we

:::::
have

::::::::
upgraded

:::
the

::::::
forward

::::::
solver

:::::
which

::
is

::::
now

:::
700

:::::
times

:::::
faster

::::
than270

:::
our

:::::::
previous

:::::::
version.

:::::::::::
Optimization

:::
of

:::
the

::::::::
backward

::::::
solver

::
is

:::::::
planned

:::
for

:::
the

::::::
future,

:::
and

:::
we

::::::
expect

::::
that

:::
this

::::
will

::::
lead

::
to

:::
an

::::::::::
optimization

::::::::
algorithm

::::
that

::::
will

::::
only

:::
take

::::::
several

:::::::
minutes

:::
for

:::
the

:::::
same

::::
case.

:

3.2 Wind-farm layout

We choose a wind-farm layout that resembles
::
in

:::
size

:
the Belgian-Dutch wind-farm offshore cluster located in the North Seain

size, but simplified to a rectangular shaped wind-farm with length Lx = 20 km and width Ly = 30 km. This choice also leads275

to a width-to-depth ratio of 3/2 which is known to be the ratio for which self-induced gravity-wave effects are maximum

(Allaerts and Meyers, 2019). The wind turbine relative spacing
:::::::
spacings along the x- and y-direction are sx = sy = 5.61 (both

non-dimensionalized with respect to the turbine rotor diameter D). The turbine relative spacings are needed for computing the

coefficient β (see Eq.8). Both
:
,
::
so

::::
that

:::
the

::::::
density

::
of

:::::::
turbines

:::
in

:::
the

::::
farm

::
is

::::::
similar

::
to

:::
the

:::
one

:::
of

:::::::::::::::::::::::
Allaerts and Meyers (2019)

:::
(i.e.

:::::::
leading

::
to

:::::::
β = 0.01

:::
in

:::
Eq.

::
8,

::::::
setting

::::
both the wake efficiency ηw and γ are assumed to be constant within the wind-farm280

area and are set to
:
to
:
0.9 , similar to Allaerts and Meyers (2018).

::
as

::
in

::::::::::::::::::::::
Allaerts and Meyers (2018)

:
).
:::::
Note

:::
that

:::
we

::
do

:::
not

::::::
define

:
a
:::::::
specific

:::::
layout

::
or

::
a

::::::
number

::
of

:::::::
turbines

:::
but

:::
we

::::
only

:::
fix

:::
the

::::::
density

::
of

:::::::
turbines

::
in
:::

the
:::::
farm.

:
The turbine dimensions are based

on a DTU 10-MW IEA wind turbine (Bortolotti et al., 2019) with rotor diameter D = 198 m and turbine hub height zh = 119

m.

10



3.3 Background state variables285

The governing equations are linearized around a constant background state. To determine this state, we need vertical profiles

of potential temperature, velocity, shear stress and eddy viscosity plus the surface roughness z0 and the friction velocity u∗.

We describe the techniques used in determining these profiles in the remainder of this section. Similar to Allaerts and Meyers

(2019), we select two atmospheric states for initial testing in Section 4.1
::
of

:::
the

::::::::
optimizer, corresponding to a subcritical and

supercritical condition (see further below)
:::
sub-

:::
and

:::::::::::
supercritical

::::
flow

:::::::::
conditions.290

We choose a temperature profile that corresponds to a conventionally neutral ABL. The potential temperature in the neutral

ABL is fixed to θ0 = 288.15 K. A capping inversion strength ∆θ of 5.54 K and 3.7 K is used, which will lead to a sub- and

supercritical flow, respectively (see below). Finally, a free atmosphere lapse rate Γ = 1 K/km is chosen. The lapse rate also

defines the Brunt-Väisälä frequency N .

The velocity and stress profiles within the ABL are obtained following the approach of Nieuwstadt (1983). The non-295

dimensional surface roughness length z0 = z0/H and the non-dimensional boundary-layer height h∗ =Hfc/u∗ are the input

parameters of Nieuwstadt’s model, where fc is the Coriolis frequency and H =H1 +H2 is the ABL height. The wind-farm

layer height is assumed to be twice the turbine hub height, so H1 = 2zh. The ABL height is fixed to H = 1000 m and the fric-

tion velocity is set to u∗ = 0.6 m/s. Finally, a surface roughness of z0 = 10−1 m is adopted. Using h∗ = 0.166 and z0 = 10−4

as input values for the Nieuwstadt’s model, we derive the velocity U1, U2, the eddy viscosity νt,1, νt,2 for the wind-farm and300

upper layer and the friction coefficientsC andD (used for computing the matricesC ′ andD′, see Allaerts and Meyers (2019)).

Besides the friction coefficients C and D which are given at z = 0 and z =H1, all other physical quantities are depth-averaged

over the height H1 and H2. Finally, the wind profile is oriented such that the wind in the wind-farm layer is always directed

along the x-axis (i.e, V1 = 0 m/s).

The pressure gradient strengths induced by inversion and internal gravity waves are dependent upon the Froude number305

Fr = UB/
√
g′H and a non-dimensional group PN = U2

B/NH‖Ug‖, respectively (Smith, 2010; Allaerts and Meyers, 2019),

where the velocity scale UB is defined as

UB =

(
H1

H

1

U2
1

+
H2

H

1

U2
2

) 1
2

. (20)

The chosen background state defines a Froude number of 0.9 for ∆θ = 5.54 K, which implies subcritical flow conditions

(Fr < 1), and a Froude number of 1.1 for ∆θ = 3.7 K, which leads to supercritical flow conditions (Fr > 1). Further,
:::
PN310

::::::::
expresses

:::
the

::::::
impact

::
of

:::::::
internal

:::::
waves

::
in

:::
the

::::::::::
troposphere

::::::
which

:::::::
increases

:::::
when

::::
PN ::::::::

decreases.
::::
The

::::::::::
background

::::
state

:::::::
defined

::
in

::::
Table

::
1
::::
leads

::
to
:
PN = 1.92. The numerical setup, wind-farm layout and background state variables are summarized in Table

1.
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4 Results and discussion

We discuss the results of the optimization problem in the current section. Firstly, in Section 4.1 the optimal thrust-coefficient315

distributions and relative energy gains are illustrated for two specific flow conditions introduced in Section 3.3
::
in

::::::
Section

:::
4.1.

Thereafter, the sensitivity of the energy gain to the atmospheric state is studied in Section 4.2.

Table 1. Numerical setup, wind-farm layout and atmospheric state used in this manuscript.

Numerical setup

Domain size Dx×Dy = 1000× 400 km2

Grid size Nx×Ny = 4000× 1600

Cell size
:::
Grid

::::::::
resolution ∆x×∆y = 250× 250 m 2

:::::::
∆ = 250

::
m

Time horizon Span from T = 10 min to T = 10 h

Time step Span from Nt = 12 to Nt = 120

Discretization technique Fourier–Galerkin

Equation solver LGMRES

Optimization method L-BFGS-B

L-BFGS-B iterations Nit = 4

Wind-farm layout

Wind-farm length Lx = 20 km

Wind-farm width Ly = 30 km

Turbine hub height zh = 119 m

Turbine rotor diameter D = 198 m

Rated wind speed Ur = 11 m/s

Relative turbine spacing sx = sy = 5.61

Wake efficiency ηw = 0.9

Velocity shape factor γ = 0.9

Atmospheric state

ABL potential temperature θ0 = 288.15 K

Capping inversion strength ∆θ = 5.54 K→ Fr = 0.9

∆θ = 3.70 K→ Fr = 1.1

Free atmosphere lapse rate Γ = 1 K/km

Surface roughness z0 = 10−1 m

Coriolis frequency fc = 10−4 1/s

Friction velocity u∗ = 0.6 m/s

Boundary layer height H = 1000 m

Friction coefficients C = 3.76× 10−3

D = 1.51× 10−1
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4.1 Optimal thrust-coefficient distributions

The optimization model described in Section 2.2 is time and space dependent. Hence, the model is capable of finding a time-

periodic optimal thrust-coefficient distribution over the wind-farm area in a fixed time interval [0,T ]. However, all optimal320

thrust set-point distributions found for the different combinations of time horizons and time steps reported in Table 1
:
1, are

constant in time. We have verified this using a range of steady and unsteady starting conditions for CT in the algorithm, but did

not find any unsteady optimums. Therefore, we
::::::::
optimum.

:::
We

::::::
believe

:::
that

::::
this

:
is
::::
due

::
to

:::
two

:::::::
reasons.

::::::
Firstly,

:::
we

:::
use

::::::::::
steady-state

:::::
inflow

:::::::::
conditions,

::::::::
therefore

:::::::::
neglecting

:::::::::
meso-scale

::::::::
temporal

::::::::
variations

::
in

:::
the

:::::::
velocity

::::
field

:::::
(these

:::::
could

::::
lead

::
to

:::::::::::::
time-dependent

::::::
optimal

::::::
control

:::::::
signals,

:::
but

:::
are

:::
not

::::::::
included

::
in

:::
the

::::::
current

::::::
work).

::::::::
Secondly,

:::
the

::::::::
objective

:::::::
function

::
is

::::::::::
non-convex

:::
and

:::::
there

::
is325

::
no

:::::
proof

:::::
about

:::
the

:::::::::
uniqueness

::
of

::::::
global

:::::::
minima.

::::::
Hence,

::::
there

::
is
:::
no

::::::::
guarantee

:::
that

:::
the

:::::::
optimal

:::::::
solution

:::::
found

:::
by

:::
the

::::::::
optimizer

::::::::::
corresponds

::
to

:
a
::::::
global

::::::::
optimum.

:::::::::::
Nevertheless,

:::::
since

:::
we

::
do

:::
not

:::::::
observe

::::
any

:::::::
unsteady

:::::::::
behaviour

::
in

:::
our

:::::::
optimal

::::::::
solutions,

:::
we

show only steady-state results in the remainder of the manuscript, and conclude
::
for

:::
the

::::
time

:::::
being

:
that unsteady time-periodic

excitation is less effective than a stationary spatially optimal distribution
::
in

:::
this

:::::::
context.

:::
We

::::
also

::::
note

:::
that

::::
our

:::::::
findings

:::
are

::
in

:::::::
contrast

::::
with

::::::
recent

:::::
works

:::
of

::::::::::::::::::::
Goit and Meyers (2015),

::::::::::::::::::::::::
Munters and Meyers (2018)330

:::
and

::::::::::::::::::
Frederik et al. (2020),

:::
in

:::::
which

::::
the

::::::
authors

:::::::::
illustrated

:::
the

:::::::
benefits

:::
of

::::::::
dynamic

::::::::
induction

:::::::
control

::::
over

::::
yaw

::::
and

:::::
static

::::::::
induction

::::::
control.

:::::::::
However,

:::
the

:::::::::::
characteristic

::::
time

:::::
scale

::
of

::::::::::::
gravity-wave

:::::
effects

:::
is

::::::::
estimated

::
to

:::
be

::::::::::::
approximately

::
1

:
h
:::::
(Gill

:::::
1982,

::::::
Allaerts

::::
and

:::::::
Meyers

:::::
2019)

::::::
which

::
is

::
an

:::::
order

::
of

:::::::::
magnitude

::::::
above

:::
the

::::::
typical

::::
time

:::::
scale

::
of

:::::
wake

:::::::::
convection

::::::::
between

:::::::
turbines,

:::
and

::::::::
turbulent

::::::
mixing

:::
in

::::::
turbine

:::::
wakes

::::
(this

::::
also

:::::::
justifies

:::
the

:::::
larger

::::::::
sampling

::::
time

::::::
used).

::::::
Hence,

:::::
while

:::::::::::
unsteadiness

::
of

:::
the

:::::
thrust

:::::::::
coefficient

:::::
(with

:
a
::::::
typical

:::::
time

::::
scale

::
of

:::
50

:::::::
seconds

:::
for

:::::
large

::::
scale

::::::::
turbines)

:::
can

::::
lead

::
to
:::::::::

improved
::::
wake

:::::::
mixing335

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Goit and Meyers, 2015; Munters and Meyers, 2018; Frederik et al., 2020),

::
it

:::
has

::
no

::::::
impact

:::
on

:::::::::
phenomena

::::
that

:::::
occur

::
at

:::::
larger

::::
time

:::::
scales,

::::
such

:::
as

:::::::::
wind-farm

::::::
induced

:::::::
gravity

:::::
waves.

:

The steady-state optimal thrust-coefficient distributions obtained in sub- and supercritical conditions are analyzed in the

remainder of this section. To improve the understanding of such distributions, gravity-wave induced flow patterns obtained

with CO
T (x,y) are compared with a reference case. The setup of the reference model is the one reported in Table 1 but instead340

a uniform thrust set-point distribution over the wind-farm area is used, with CR
T (x,y) = CBetz

T = 8/9.

Fig. 2 illustrates a top view of the perturbation flow patterns obtained with Fr = 0.9 (top row) and Fr = 1.1 (bottom row)

using the reference model setup. The farm extracts energy from the flow, causing a momentum sink in the wind-farm layer.

Due to the continuity constraint, an upward flow displacement above the wind-farm area takes place which causes the boundary

layer height to increase. Fig. 2(a) shows for the subcritical case, that an inversion-layer vertical displacement of about 65 meter345

takes place at the wind-farm entrance region. A second peak of lower magnitude is located in the downwind region. On the other

hand, for the supercritical case, Fig. 2(d) displays a similar maximum value of ηt attained close to the wind-farm center. In both

cases, the inversion-layer vertical displacement decreases in the wind-farm exit region and assumes a wavy behaviour in the

wind-farm wake. The vertical displacement of air parcels triggers inversion waves on the 2D inversion layer surface and internal

waves in the free atmosphere (3D waves). These waves induce pressure gradients, as visible in Fig. 2(b,e), where a region of350

high pressure builds up in correspondence with high ηt values, leading to flow blockage. However, Fig. 2(b) shows a stronger
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Figure 2. Planform view of inversion-layer displacement (a,d), pressure perturbation (b,e) and relative velocity reduction (c,f) in the wind-

farm layer in subcritical (top row, Fr = 0.9) and supercritical (bottom row, Fr = 1.1) flow conditions. The black rectangle indicates the

wind-farm region.

adverse pressure gradient in the wind-farm induction region than the one in Fig. 2(e). In fact, inversion waves travel upstream

in subcritical conditions, which leads to more slow-down in the induction region. In both sub- and supercritical case, favourable

pressure gradients develop within the wind-farm area which tend to accelerate the flow in the wind-farm exit region
::::::
reduce

:::
the

::::::
velocity

:::::::
deficits

::
in

:::
the

::::
bulk

::
of

:::
the

:::::
farm. Finally, Fig. 2(c,f) illustrate relative velocity reductions in the wind-farm layer. The355

stronger inversion strength found in the subcritical flow case transforms the inversion layer in a quasi-rigid lid, which limits

vertical displacements. The lower streamlines divergence over the wind-farm area implies lower velocity reductions. Moreover,

the favourable pressure gradient is stronger when Fr = 0.9, allowing for higher flow wind speeds
::::
lower

:::::::
velocity

::::::
deficits

:
within

the wind-farm area. This explains the higher velocity reduction (up to 20%) seen in Fig. 2(f). Such a strong response could be

on the limit of our small amplitude assumption. The planform view of pressure and velocity perturbations in the wind-farm360

and upper layer in subcritical flow conditions are also illustrated on a wider domain in Appendix A (see Fig. A1).

The goal of our study is to find an optimal set-point distribution which reduces the velocity perturbations displayed in

Fig. 2(c,f). While maximizing the flow wind speed through the farm, we also maximize the wind-farm energy extraction. To

this end, we solve the optimization problem discussed in Section 2.2. The inputs of the optimization model are the wind-farm

layout and the atmospheric conditions, which are detailed in Table 1. Moreover, an initial thrust-coefficient distribution needs365

to be specified. We have verified that for many different initial conditions the algorithm converges always to the same optimal
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Figure 3. Planform view of (a) optimal thrust-coefficient distribution in subcritical (Fr = 0.9) and (b) supercritical flow conditions (Fr =

1.1). The length and width of the wind farm are 20 and 30 km, respectively.

solution. Therefore, a random initial thrust set-point distribution is chosen. The optimal configurations obtained for different

Froude numbers are illustrated in Fig. 3. We find that the optimal thrust-coefficient distributions are non-uniform in space and

assume different spatial distributions according to the atmospheric state. In particular, when the flow is subcritical the optimal

thrust set-point distribution assumes a sinusoidal behaviour in the streamwise direction while it becomes a U-shaped curve370

when the flow is supercritical. In both cases, CO
T is almost invariant along the spanwise direction.

We denote with J̃ R and J̃ O the energy extracted using CT = CR
T = 8/9 and CT = CO

T , respectively. Further, we define

G =
J̃ O−J̃ R

J̃ R
(21)

where G denotes the relative energy gain obtained using an optimal thrust-coefficient distribution instead of the reference one.

The energy gains attained in sub- and supercritical flow conditions are 5.3% and 7%, respectively. Clearly, energy gains are375

also strongly dependent on the atmospheric conditions. Therefore, a sensitivity study is carried out in Section 4.2.
::
To

:::::
asses

::
the

::::::
benefit

:::
of

::
an

:::::::
optimal

::::::::::
non-uniform

::::::::::
distribution

::::
over

:::
an

::::::
optimal

:::::::
uniform

::::
one,

:::
we

::::
have

:::::::
applied

:::
the

::::::::::
optimization

::::::::::
framework

::::::::
developed

::
in

::::::
section

:::
2.2

::::::::
assuming

::
a
:::::::
spatially

::::::::
invariant

:::
CT .

:::::::
Results

:::
are

::::::::
discussed

::
in

::::::::
Appendix

:::
B.

The optimal set-point distributions displayed in Fig. 3 are related to the vertical displacement of the inversion layer over the

wind-farm area. Fig. 4 shows streamwise profiles of ηt and CO
T through the center of the farm for Fr = 0.9 and Fr = 1.1. The380

maximum value of ηt is similar for both the sub- and supercritical case, although the profiles differ considerably. To reduce

gravity-wave excitation, CO
T is seen to be inversely related with ηt. Moreover

:
In

::::
fact, Fig. 4(a) shows that the streamwise

profile of ηt has a sinusoidal behaviour. Hence, the optimal set-point distribution is sinusoidal as well, explaining the pattern

displayed in Fig. 3(a). On the other hand, ηt assumes a U-shaped profile through the wind farm in supercritical conditions

(see Fig. 4(b)), a profile that is also found in CO
T (see Fig. 3(b)). Moreover, Fig. 2(a,d) show that the gradient of ηt along385

the spanwise direction is much smaller than the one along the streamwise direction, explaining the almost constant thrust set-
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Figure 4. Streamwise profiles of optimal thrust set-point distribution (CO
T ), reference (ηRt ) and optimal (ηOt ) inversion-layer displacement in

(a) subcritical (Fr = 0.9) and (b) supercritical flow conditions (Fr = 1.1). The wind-farm region is marked by vertical dashed lines, and the

profiles have been obtained through the centre of the farm (y = 0).

point distributions along the y-direction. Fig. 4 also shows that ηR
t,max > ηO

t,max :::::::::::::
ηO
t,max < ηR

t,max in both sub- and supercritical

conditions, meaning that the optimal thrust set-point distribution decreases the upward flow displacement over the wind-farm

area. The maximum inversion-layer displacement is located at the entrance region of the farm. If we compare ηR
t and ηO

t in this

region, a displacement reduction of 14.5% and 16.8% is attained with the optimal configuration for the sub- and supercritical390

case, respectively.

A lower vertical displacement of the inversion layer reduces gravity-wave excitation, therefore we also expect a lower

strength of the adverse pressure gradient at the entrance of the farm compared to the one obtained with CR
T . Fig. 5(a,c) confirm

this hypothesis, showing streamwise profiles of pressure perturbations pR and pO through the center of the farm for Fr = 0.9

and Fr = 1.1. The pressure peak is located at the entrance of the farm and a pressure peak reduction of 14.3% and 16.2% is395

attained with the optimal configuration for the sub- and supercritical case, respectively. Fig. 5(b,d) show streamwise profiles

of velocity perturbations uR
1 and uO

1 through the center of the farm for Fr = 0.9 and Fr = 1.1. The lower adverse pressure

gradient strength in
::::::
attained

:::::
with the optimal configuration allows for a lower velocity perturbation u1 in the induction region

with respect to the reference case. Moreover, the optimal configuration also reduces the streamline divergence, accounting for

higher flow wind speeds through the farm. Consequently, a velocity perturbation reduction of 13.4% and 15.5% is attained for400

the sub- and supercritical case. Since the energy varies with the velocity cube, the higher velocity gain obtained in supercritical

conditions with respect to the subcritical ones
:
,
:::::
which explains the higher energy gain attained

:::::::
obtained

:::
for

::::::::
Fr = 1.1.

The optimal thrust-coefficient distributions and energy gains discussed in this section are obtained with data listed in Table 1.

However, the atmospheric state changes in real case scenarios and we have seen that the optimal configuration strongly depends

upon the atmospheric parameters. Therefore, the sensitivity of the energy gain to the atmospheric state is performed in the next405

section.
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Figure 5. Streamwise profiles of (a,c) reference (pR) and optimal (pO) pressure perturbation and (b,d) reference (uR
1 ) and optimal (uO

1 )

velocity perturbation in subcritical (top row, Fr = 0.9) and supercritical (bottom row, Fr = 1.1) flow conditions. The wind-farm region is

marked by vertical dashed lines, and the profiles have been obtained through the centre of the farm (y = 0).

4.2 Sensitivity study

Allaerts and Meyers (2019) pointed out that gravity-wave induced power loss is significant only for certain atmospheric states.

Since our aim is to recover its power loss, we also expect the energy gain to be sensitive to the atmospheric conditions. We note

that gravity-wave patterns are also sensitive to the wind-farm layout. However, a sensitivity study over the wind-farm layout is410

beyond the scope of the article.

The nondimensionalization of the three-layer model equations with respect to the boundary layer height H and the friction

velocity u∗ highlights four non-dimensional groups that govern the atmospheric state, which are:

– The non-dimensional boundary layer height h∗ =Hfc/u∗. Values of h∗ ≈ 0.1 denote shallow boundary layers typically

found over sea, while h∗ ≈ 0.35 rather relates to a deep land-based boundary layer. We vary h∗ between 0.16 and 0.4;415

– The non-dimensional surface roughness length z0 = z0/H . This number varies on several order of magnitude according

to the sea state or land surface. We vary log10(z0) between −4.2 and −2.8 in the current study;
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– The non-dimensional Brunt-Väisälä frequency N/fc. The Brunt-Väisälä frequency is an important parameter in gravity-

wave theory which expresses the highest possible frequency for internal gravity waves (Gill, 1982). Typical values of

free atmosphere lapse rate Γ range between 1 and 10 K/km. Low and high Γ values are associated with weakly and420

strongly stratified atmospheres, respectively. We vary Γ between 0.03 and 12 K/km corresponding to 10≤N/fc ≤ 200;

– The inversion parameter g′H/Au2
∗. According to Csanady (1974), the height of the inversion layer is determined by a

balance of surface stress and buoyancy. Equilibrium conditions are reached when g′H/Au2
∗ ≈ 1, with A= 500 being an

empirical constant. We vary the inversion parameter between 0.5 and 1.5.

Allaerts and Meyers (2019) conducted a similar sensitivity study on the gravity-wave induced power loss on a wider range425

of non-dimensional numbers. However, since we are optimizing turbine thrust set points, we need to ensure that U1/Ur < 1

(Ur = 11 m/s is the rated wind speed of the DTU 10 MW IEA wind turbine), otherwise turbines would operate in above-rated

wind speed regime and it would not make any sense to optimize their power production. The choice of the four ranges for the

non-dimensional groups discussed above ensures that U1/Ur ≤ 0.9 for all atmospheric states.

Using the atmospheric state reported in Table 1, the non-dimensional numbers assume values h∗ = 0.166, z0 = 10−4 and430

N/fc = 58. The inversion parameter is equal to 1.046 and 0.691 in the sub- and supercritical case, respectively. The optimal

thrust-coefficient distributions discussed in Section 4.1 were obtained using these dimensionless group values. The sensitiv-

ity of the energy gain to atmospheric conditions is performed by varying h∗, z0 and N/fc against the inversion parameter

g′H/Au2
∗, similarly to Allaerts and Meyers (2019). The numerical setup is the one detailed in Table 1. However, we use a grid

cell size which is four times bigger (∆x×∆y = 1000× 1000 m2), meaning that we use 4× 105 cells instead of 6.4× 106,435

so that the necessary computational resources remain reasonable. To assess the validity of this choice, we performed a grid

sensitivity study in Appendix C showing that the energy gain value changes of about 1% when the number of grid cells is

increased of one order of magnitude (see Fig. C1). The high computational efficiency of the three-layer model allowed us to

perform a sensitivity study of the optimization results over 1960 different atmospheric conditions (thus effectively running an

optimization problem for every atmospheric condition
::::
state). Since the wind-farm layout impact on energy gains is beyond the440

scope of our study, we impose the wind direction to be along the x-axis in the wind-farm layer in all simulations (V1 = 0 m/s).

To better understand the energy gain sensitivity to atmospheric conditions, we examine how the non-dimensional parameters

Fr and PN impact the flow fields. The pressure gradients induced by inversion waves scale with g′, therefore high inversion

strengths correspond to strong inversion-wave feedback and low Froude number values. These two-dimensional waves are

nondispervive
::::::::::::
non-dispersive with phase speed

√
g′H (Sutherland, 2010). Therefore, Fr also represents the ratio of the bulk445

wind speed within the ABL to the velocity of the inversion waves. If Fr < 1 (subcritical flow) the two-dimensional waves can

affect the upstream flow, while they can travel only downstream if Fr > 1 (supercritical flow). The flow is said to be critical

when Fr = 1. On the other hand, internal-wave induced pressure gradients are governed by the second non-dimensional group

PN . Strong internal-wave feedback correspond to low PN values. In fact, strongly stratified atmospheres imply high N values,

meaning that they account for higher internal-wave oscillation frequencies and phase speed (Sutherland, 2010).450

Two different flow regimes can be identified:
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Figure 6. Sensitivity of (a-c) Froude number Fr = UB/
√
g′H and (d-f) PN = U2

B/NH‖Ug‖ to atmospheric conditions. (a,d) Non-

dimensional boundary layer height h∗ (with z0 = 10−4 andN/fc = 58), (b,d) logarithm of the non-dimensional surface roughness length z0

(with h∗ = 0.166 and N/fc = 58) and (c,f) ratio of Brunt-Väisälä frequency to Coriolis parameter N/fc (with h∗ = 0.166 and z0 = 10−4)

against the inversion parameter g′H/Au2
∗. The black solid lines in (a-c) corresponds to critical flow conditions (Fr = 1) while the dashed

black ones in (d-f) corresponds to flow conditions of PN = 1.5. The markers4 and ◦ represent the sub- and supercritical flow case studied

in Section 4.1, respectively. Note that Fig. (f) use a different scale than Fig. (d,e).

– Regime 1: low PN . The strongly stratified free atmosphere limits vertical displacement of air parcels, hence reduced

streamline divergence over the wind-farm area is observed. This results in low velocity reductions and ηt values. More-

over, the flow fields are Fr-independent in these atmospheric states (Smith, 2010).

– Regime 2: high PN . The inversion-layer strength determines the flow fields properties since the influence of internal455

waves is negligible. The weakly stratified atmosphere makes the ABL to behave like an idealized shallow-water system

for Fr ' 1 (choking effect (Smith, 2010)). Moreover, the perturbations magnitude are strongly dependent upon the

Froude number.

Smith (2010) and Allaerts and Meyers (2019) defined a third regime where N = 0 and g′ = 0, which would correspond to

Fr,PN →∞ or to a purely neutral atmosphere. Gravity waves are not excited in this particular flow condition and only460

drag forces and frictional effects play a role in the flow behaviour. Since we are interested in finding optimal thrust set-point

distributions which allow to recover gravity-wave induced power loss, we did not investigate this regime in the current study.
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Fig. 6(a-c) illustrate the sensitivity of Fr to changes in h∗, z0 and N/fc against the inversion parameter. In all cases, the

Froude number ranges from approximatively 0.5 to 1.4. The black line denotes critical flow conditions. Lines of constant

Froude number run parallel to this line, meaning that Fr is invariant and quasi-invariant to N/fc and h∗, respectively. On the465

other hand, changes in z0 have a strong impact on the wind profile convexity and therefore on Fr. The sensitivity of PN to

the atmospheric state is displayed in Fig. 6(d-f). PN is not dependent on the inversion parameter. Hence, lines of constant PN

values are vertical and parallel to the dashed black line, which denotes atmospheric conditions for which PN = 1.5. This line

divides the domain in regions where the internal-wave effects are important (regime 1, right side) or limited (regime 2, left

side). However, internal waves still play a crucial role in softening the flow perturbations magnitude when PN values are only470

slightly greater than 1, as in Fig. 6(d,e). On the other hand, very high PN numbers (PN > 10) are attained in weakly stratified

conditions (see Fig. 6(f)). We will use the above mentioned regimes classification as a proxy for the interpretation of the energy

gain sensitivity patterns (note that the term high and low in the regimes characterization are referred to the maximum and

minimum Fr and PN values found over the sensitivity domain).

Fig. 7(a-c) and Fig. 7(d-f) illustrate the sensitivity of the optimal inversion-layer vertical-displacement reduction Gη , and475

energy gain G to changes in h∗, z0 and N/fc, against the inversion parameter. The displacement reduction is defined as

Gη =

∣∣∣∣ηO
t,max− ηR

t,max

ηR
t,max

∣∣∣∣ (22)

where ηO
t,max and ηR

t,max denote the maximum inversion-layer displacement attained with the optimal and reference model

configuration, respectively. As we discussed in Section 4.1, the lowering of the inversion-layer vertical displacement reduces

the strength of the adverse pressure gradient, increasing the flow wind speed and consequently the wind-farm energy output.480

Fig. 7 confirms this state
::::::::
statement. In fact, regions of high vertical displacement reduction strictly correspond to regions of

high energy gain.

Allaerts and Meyers (2017, 2018, 2019) found that for low ABL heights, gravity waves induce strong pressure gradients and

play an important role in the distribution of the kinetic energy within the farm. Indeed, the large geostrophic wind angle found

in shallow boundary layers redirects the favourable pressure gradient seen over the wind-farm area of 90 degrees for h∗→ 0,485

decreasing the dispersive impact of internal gravity waves. Fig. 7(d) displays that the maximum energy gain is indeed attained

for h∗ = 0.17 (i.e., for shallow boundary layer) in supercritical flow conditions, with gains of about 7.5% in correspondence to

a displacement reduction of 17.5%. A similar pattern is seen in Fig. 7(e), where a maximum energy gain of 8.4% is attained

again in supercritical conditions for log10(z0) =−4.2, in correspondence to a displacement reduction of 19%. Both G and Gη
show higher sensitivity to changes in z0 than in h∗, decreasing rapidly for increasing value of surface roughness. Interestingly,490

energy gains are close to zero in case of high z0 values. This is due to the additional frictional drag which dissipates perturbation

energy, limiting gravity-wave excitation and consequently the potential of our optimization.

The sensitivity of G and Gη to changes in free atmosphere stability are shown in Fig. 7(c,f). The high PN sensitivity to

changes in N (from PN ≈ 11 to PN ≈ 0.5 for increasing values of N/fc) accounts for a clear distinction between regime 1

and regime 2. The former shows energy gains of about 5% while the latter attains gains of 14% in correspondence to inversion495

displacement reductions of 24%. Fig. 7(f) illustrates that the energy gain peak is obtained in critical flow conditions (Fr = 1),
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Figure 7. Sensitivity of (a-c) inversion-layer vertical-displacement reduction Gη and (d-f) energy gain G to atmospheric conditions. (a,d)

Non-dimensional boundary layer height h∗ (with z0 = 10−4 and N/fc = 58), (b,d) logarithm of the non-dimensional surface roughness

length z0 (with h∗ = 0.166 and N/fc = 58) and (c,f) ratio of Brunt-Väisälä frequency to Coriolis parameter N/fc (with h∗ = 0.166 and

z0 = 10−4) against the inversion parameter g′H/Au2
∗. The black solid line corresponds to critical flow conditions (Fr = 1) while the black

dashed line corresponds to flow conditions of PN = 1.5. The markers 4 and ◦ represent the sub- and supercritical flow case studied in

Section 4.1, respectively. Note that Figs. (c) and (f) use a different scale than Figs. (a,b) and (d,e).

differently from the previous cases. The very high PN values (hence, the limited presence of internal waves) attained in

correspondence to Fr = 1 allow for the choking effect to take place (Smith, 2010; Allaerts and Meyers, 2019). Very large flow

perturbations are triggered in these atmospheric conditions, leaving greater potential for energy recovery. The choking effect

is not present
:::::
visible

:
in Fig. 7(d,e), since there PN ≈ 2 when Fr = 1 (the flow perturbations are softened by internal waves).500

Overall, higher inversion-layer displacement reductions and energy gains are attained in critical and supercritical flow con-

ditions for high PN values (regime 2), that is for low h∗, z0 and N/fc. This is not surprising due to the strong impact that

gravity waves have on farm’s performance in such conditions (see Section 4.1 or Smith (2010) and Allaerts and Meyers (2019)).

Moreover, we observe strong gradients of G and Gη along contours of PN in regime 2, and weak gradients in regime 1. This

suggests that the flow properties are Fr-independent for low PN values, confirming the observations of Smith (2010).505
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5 Conclusions

In the current study, we investigated for the first time the potential of thrust set-point optimization in large wind farms for

mitigating gravity-wave induced blockage effects, with the aim of increasing the wind-farm energy extraction. Thus, a fast

boundary layer model proposed by Allaerts and Meyers (2019) was adopted. The three-layer model simulates the atmospheric

response to turbine drag in large wind farms by dividing the vertical structure of the atmosphere into three layers. This approach510

accurately captures the effects of regional pressure gradients induced by large wind farms at low computational expenses. We

first added the time-dependency to the model so that time-periodic gravity-wave patterns could be reproduced. Further, we

reformulated the model as an optimization framework with the objective of maximizing the wind-farm energy output at all

costs. Gradient information was derived using a
:::
the

:
continuous adjoint method. To limit the computational cost, a simple

::::::::::
box-function

:
wind-farm force model was used which assumes that the force is distributed over the whole wind-farm area.515

Hence, turbine-wake effects were not analytically resolved. The wind-farm layout was inspired by the works of Allaerts et al.

(2018) and Allaerts and Meyers (2019), roughly representing the Belgian–Dutch offshore wind-farm cluster.

The optimization model was applied to two different atmospheric states representative of subcritical (Fr = 0.9) and super-

critical (Fr = 1.1) flow conditions. The optimal configurations were then compared with a reference model setup which uses

a uniform thrust-coefficient distribution. We did not observe dynamic behaviour in the optimal thrust set-point distributions520

for different choices of time horizon and time step, meaning that it is not necessary to excite non-stationary wave patterns to

further increase the wind-farm energy output. However, we observed interesting spatial patterns. The optimal thrust set-point

distributions turned out to be inversely related with the inversion-layer vertical displacement ηt. This has led to a sinusoidal and

U-shaped CO
T distribution along the streamwise direction in sub- and supercritical conditions, respectively. An inversion-layer

displacement reduction of 14.5% and 16.8% was observed in sub- and supercritical conditions, which lowered the adverse525

pressure gradient strength in the wind-farm induction and entrance region. The reduced blockage effects allowed for higher

flow wind speeds through the farm. The optimal configurations showed energy gains of 5.3% and 7% in sub- and supercritical

conditions with respect to the reference model setup.

The atmospheric state is far from being constant in real case scenarios, therefore the energy gain sensitivity to changes in

atmospheric conditions was further studied. Thus, the developed thrust set-point optimization tool was applied for several wind530

profiles, inversion strengths and atmosphere stratifications for a total of 1960 different atmospheric states. Regions of high

inversion-layer-displacement reduction in the sensitivity domain strictly corresponded to regions of high energy gain. This has

confirmed that it is essential to reduce the streamline divergence over the wind-farm area for limiting gravity-wave induced

power loss. The strong gravity-wave feedback in high PN conditions made these atmospheric states the most suitable for

energy recovery purposes. Energy gains up to 14% were found for weakly stratified atmospheres (PN ≈ 11) in correspondence535

of critical flow conditions (Fr = 1). This is related to the large flow perturbations induced by the chocking effect (Smith, 2010).

Overall, energy gains above 4% were observed for 77% of the cases.

The results discussed in the current manuscript make wind-farm set-point optimization a promising tool for gravity-wave

induced power loss recovery. However, many challenges remain before this can be translated to real wind-farm applications.
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First of all, the wind-farm force model needs to be improved. The analytical wake model developed by Niayifar and Porté-540

Agel (2016) and used by Allaerts and Meyers (2019) could be adopted for including turbine-wake effects in the optimization

framework. Further
:::::
having

:
a
:::::
more

:::::::
accurate

:::
and

:::::::
realistic

::::::::::::
representation

::
of

:::
the

::::::
forcing

:::::
term.

:::::::::::
Furthermore, gravity-wave induced

pressure gradient effects on turbine wakes recovery could be included using the model proposed by Shamsoddin and Porté-

Agel (2018). This would allow us to optimize the turbine thrust set point of individual wind turbine placed in large wind

farms. However, the complexity of the adjoint equations and the computational time will increase considerably. Moreover, the545

three-layer model has been validate with LES results only (Allaerts and Meyers (2019)). A more extensive validation of the

model is topic for further research.
::
In

:::
the

:::::
future,

:::
we

::::
also

::::
plan

::
to
:::::

apply
::::

the
:::::
results

::::::::
obtained

::
in

:::
this

::::::
article

::
to

::
a
:::::
higher

:::::::
fidelity

:::::
model

::::
(i.e,

:::
our

:::::::
in-house

::::
LES

::::::
solver

::::::::
SP-Wind).

:::::::::
However,

:::
this

:::::::
requires

:::::
some

::::
work

:::
on

:::
the

::::::::
efficiency

::
of

::::::::::::
non-reflecting

::::::::
boundary

::::::::
conditions

:::
in

:::
our

::::
LES

::::::
solver

::::::::::::::::::::::::::::
(Allaerts and Meyers, 2017, 2018).

:
Finally, we assumed that the free atmosphere is uniformly

stratified, and steady. The relaxation of these assumptions would extend the applicability of the model, e.g, to atmospheres550

with height-dependent Brunt-Väisälä frequency, and geostrophic wind, among others.

Appendix A: Derivation and verification of the adjoint equations and the adjoint gradient

The continuous adjoint method is briefly explained in Appendix A1. Next, the three-layer model adjoint equations and cost

functional gradient are derived in Appendix A2 and A3, respectively. Finally, the comparison between a finite difference

approximation of the cost function gradient and the adjoint evaluation is performed in Appendix A4.555

A1 Continuous adjoint method

We adopt the standard L2 inner product over the time interval [0,T ] and simulation domain Ω

(
a,b
)
=

T∫
0

∫∫
Ω

a · b dxdt (A1)

where a and b are two generic vectors. Moreover, we denote with ψ =
[
u1,v1,u2,v2,p1,p2

]
the vector containing the state

variables and with CT = CT (x,y, t) the control parameter.560

The reduced cost functional is defined as

J̃
(
CT
)
=

T∫
0

∫∫
Ω

K
(
ψ(CT ),CT

)
dxdt (A2)

where

K
(
ψ(CT ),CT

)
=−β‖U1‖CpB(x,y)

(
‖U1‖2 + 3U1 ·u1

)
. (A3)

The gradient of the reduced cost functional∇J̃ is interpreted as the Riesz representation of the Gâteaux derivative operator at565

CT in any arbitrary direction δCT

J̃CT

(
δCT

)
≡ d

dα
J̃ (CT +αδCT )

∣∣∣∣
α=0

=
(
∇J̃ , δCT

)
∀ δCT ∈H (A4)
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whereH denotes the control Hilbert space.

Next, we define the state constraints of the optimization problem (i.e., the three-layer model equations) with shorthand

notation N
(
ψ,CT

)
. The reduced formulation of the optimization problem implies by definition that N

(
ψ(CT ),CT

)
= 0,570

therefore we can write the reduced cost functional as

J̃
(
CT
)
= J

(
ψ(CT ),CT

)
+

(
ψ∗,N

(
ψ(CT ),CT

))
(A5)

where ψ∗ =
[
ζ1,χ1, ζ2,χ2,Π1,Π2

]
denotes the vector containing the adjoint variables which play the role of Lagrange multi-

pliers. In fact, it is easy to notice that J̃
(
CT
)
= L

(
CT ,ψ(CT ),ψ∗

)
, where L is the Lagrangian of the optimization problem in

Eq. 16.575

Using A4 and A5, the gradient of the reduced cost functional can be expressed as

(
∇J̃ , δCT

)
=

(
∂K
∂CT

, δCT

)
+

(
ψ∗,

∂N
∂CT

δCT

)
+

(
∂K
∂ψ

, δψ

)
+

(
ψ∗,

∂N
∂ψ

δψ

)
(A6)

where δψ = dψ/dCT δCT . The adjoint of the operator ∂N/∂ψ is given by(
ψ∗,

∂N
∂ψ

δψ

)
=

([
∂N
∂ψ

]∗
ψ∗, δψ

)
+BT1 (A7)

where the right-hand side is found using integration by parts. Similarly, the adjoint of ∂N/∂CT is expressed as580 (
ψ∗,

∂N
∂CT

δCT

)
=

([
∂N
∂CT

]∗
ψ∗, δCT

)
+BT2. (A8)

The boundary terms BT1 and BT2 arise as a result of the integration by parts. Due to spatial- and time-periodicity constraints,

it is easy to show that BT1 =BT2 = 0. Hence, substituting A7 and A8 into A6, we obtain

(
∇J̃ , δCT

)
=

(
∂K
∂CT

+

[
∂N
∂CT

]∗
ψ∗, δCT

)
+

(
∂K
∂ψ

+

[
∂N
∂ψ

]∗
ψ∗, δψ

)
. (A9)

Further, we assume that the adjoint variables satisfy the following relation585 (
∂K
∂ψ

+

[
∂N
∂ψ

]∗
ψ∗, δψ

)
= 0 (A10)

which defines the adjoint equations. Therefore, the adjoint gradient is given by

∇J̃ =
∂K
∂CT

+

[
∂N
∂CT

]∗
ψ∗. (A11)
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A2 Derivation of the adjoint equations

We apply relation A7 for deriving the adjoint of the operator ∂N/∂ψ. Starting with the velocity perturbations in the wind-farm590

layer, we have(
ψ∗,

∂N
∂u1

δu1

)
=

T∫
0

∫∫
Ω

[
∂δu1

∂t
+U1 · ∇δu1 + fcJ · δu1− νt,1∇2δu1 +

D′

H1
· δu1 +

C ′

H1
· δu1+

− 1

H1

∂f (1)

∂u1

∣∣∣∣
δu1

]
· ζ1 dxdt+

T∫
0

∫∫
Ω

[
−D

′

H2
·δ
:
u1

]
· ζ2 dxdt+

T∫
0

∫∫
Ω

[
H1F−1Φ(Φ̂) ∗∇ · δu1

]
·Π1 dxdt

(A12)

and by computing an integration by parts we obtain([
∂N
∂u1

]∗
ψ∗, δu1

)
=

T∫
0

∫∫
Ω

[
−∂ζ1
∂t
−U1 · ∇ζ1 + fcJ · ζ1− νt,1∇2ζ1 +

D′

H1
· ζ1 +

C ′

H1
· ζ1+595

+
β

H1

CTB(x,y)

‖U1‖
U1U1+IU1

2 βCTB(x,y)

H1
::::::::::

U ′·
:
ζ1−

D′

H2
· ζ2−H1

[
F−1Φ(Φ̂)(

:
−x,−t) ∗∇Π1

]]
· δu1 dxdt.

(A13)

Similarly
::::
Note

:::
that

:::
the

::::::
minus

::::
sign

::
in

:::
the

::::::::
argument

::
of

:::::::::::::::
F−1(Φ̂)(−x,−t)

::::
does

:::
not

:::::
come

:::::
from

:::::::
classical

:::::::::
integration

:::
by

:::::
parts.

::
In

:::
fact,

:::::
given

:::::
three

::::::::
functions

:::::::::::::
f,g,h ∈ L1(Ω),

::
it

:::
can

::
be

::::::
shown

::::
that∫

Ω

[
f(x) ∗ g(x)

]
h(x)dx=

∫
Ω

∫
Ω′

[
f(x−x′)g(x′)dx′

]
h(x)dx

=

∫
Ω′

∫
Ω

f(−(x′−x))h(x)dxg(x′)dx′

=

∫
Ω

[
f(−x) ∗h(x)

]
g(x)dx.

:::::::::::::::::::::::::::::::::::::::::::::::::

(A14)

:::::
where

::
in

:::
the

::::::
second

:::::::
passage

::
we

:::::
have

:::::::
changed

:::
the

:::::
order

::
of

:::::::::
integration

::::::::
(Fubini’s

::::::::
theorem).

::::
This

:::::::
property

::::::
allows

::
us

::
to

:::::
write600

−H1

T∫
0

∫∫
Ω

[
F−1(Φ̂) ∗ δu1

]
·∇Π1 dxdt=−H1

T∫
0

∫∫
Ω

[
F−1(Φ̂)(−x,−t) ∗∇Π1

]
·δu1 dxdt.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(A15)

::::::::
Similarly,

:::
for

:::
the

:::::::
velocity

:::::::::::
perturbations

::
in

:::
the

:::::
upper

:::::
layer,

::
we

:::::
have

:::
that

:([
∂N
∂u2

]∗
ψ∗, δu2

)
=

T∫
0

∫∫
Ω

[
−D

′

H1
· ζ1−

∂ζ2

∂t
−U2 · ∇ζ2 + fcJ · ζ2− νt,2∇2ζ2 +

D′

H2
· ζ2+

−H2

[
F−1Φ(Φ̂)(

:
−x,−t) ∗∇Π2

]]
· δu2 dxdt. (A16)
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Following the same procedure for the pressure perturbations p1 and p2, we obtain605

([
∂N
∂p1

]∗
ψ∗, δp1

)
=

T∫
0

∫∫
Ω

[
− 1

ρ0
∇ · ζ1−

1

ρ0
∇ · ζ2−

1

ρ0

∂Π1

∂t
− 1

ρ0
U1 · ∇Π1

]
·δp1 dxdt (A17)

and([
∂N
∂p2

]∗
ψ∗, δp2

)
=

T∫
0

∫∫
Ω

[
− 1

ρ0
∇ · ζ1−

1

ρ0
∇ · ζ2−

1

ρ0

∂Π2

∂t
− 1

ρ0
U2 · ∇Π2

]
·δp2 dxdt. (A18)

Using A10, the resulting adjoint equations correspond to

− ∂ζ1

∂t
−U1 · ∇ζ1 + fcJ · ζ1− νt,1∇2ζ1 +

D′

H1
· ζ1 +

C ′

H1
· ζ1−

D′

H2
· ζ2−H1

[
F−1(ΦΦ̂)(−x,−t) ∗∇Π1

]
+610

+
β

H1

CTB(x,y)

‖U1‖
βCTB(x,y)

H1
::::::::::

U11+1
2′·
:
ζ1 =− ∂K

∂u1
in Ω× (0,T ],

− ∂ζ2

∂t
−U2 · ∇ζ2 + fcJ · ζ2− νt,2∇2ζ2 +

D′

H2
· ζ2−

D′

H1
· ζ1−H2

[
F−1(ΦΦ̂)(−x,−t) ∗∇Π2

]
=− ∂K

∂u2
in Ω× (0,T ],

− ∂Π1

∂t
−U1 · ∇Π1−∇ · ζ1−∇ · ζ2 =−ρ0

∂K
∂p1

in Ω× (0,T ],

− ∂Π2

∂t
−U2 · ∇Π2−∇ · ζ1−∇ · ζ2 =−ρ0

∂K
∂p2

in Ω× (0,T ].

(A19)

The adjoint momentum equations of the upper layer are homogeneous, since the adjoint wind-farm drag force is felt only615

indirectly in this layer (∂K/∂u2 = 0). Moreover, also ∂K/∂p1 = ∂K/∂p2 = 0. The
:::
On

:::
the

::::
other

:::::
hand,

:::
the

:
adjoint momentum

equations of the wind-farm layer are driven by the cost function. Using A3, we obtain

∂K
∂u1

=−3βCpB(x,y)‖U1‖U1. (A20)

Fig. A1 illustrates a planform view of the forward and adjoint solutions in subcritical flow conditions (Fr = 0.9). Both solutions

are derived assuming a steady-state formulation of the optimization problem. The numerical setup, wind-farm layout and620

atmospheric state are the ones listed in Table 1. Due to integration by parts, the convective term is negative in the backward

equations, causing the flow to propagate upstream (i.e., from right to left of our domain) as displayed in Fig. A1 (bottom

row). Moreover, the wind farm acts as a source term and it speeds up the adjoint solution instead of decelerating it, causing an

acceleration within the wind-farm area and in the wake region.
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Figure A1. Planform view of (a) pressure perturbation, (b) velocity perturbation in the wind-farm layer, (c) velocity perturbation in the upper

layer, (d) adjoint pressure Π = Π1 + Π2, (e) adjoint velocity field in the wind-farm layer and (f) adjoint velocity field in the upper layer in

subcritical (Fr = 0.9) flow conditions. The black rectangle indicates the wind-farm region.

A3 Derivation of the gradient625

The adjoint gradient of the cost function is derived using relation A11. To compute the adjoint of the operator ∂N/∂CT , we

need to evaluate the following inner product(
ψ∗,

∂N
∂CT

δCT

)
=

T∫
0

∫∫
Ω

[
− 1

H1

∂f (0)

∂CT

∣∣∣∣
δCT

− 1

H1

∂f (1)

∂CT

∣∣∣∣
δCT

]
· ζ1 dxdt

=

T∫
0

∫∫
Ω

[
1

H1
βB(x,y)

βB(x,y)

H1
δCT

:::::::::::

‖U1‖U1+
βB(x,y)

H1
:::::::::

δCT+
1

H1
βB(x,y)

1

‖U1‖
U11+1

2′ ·u1

]
· ζ1 dxdt

(A21)

which is easily rewritten as630 ([
∂N
∂CT

]∗
ψ∗, δCT

)
=

T∫
0

∫∫
Ω

[
1

H1
βB(x,y)

βB(x,y)

H1
:::::::

(
‖U1‖U1 · ζ1 +

1

‖U1‖
u>1 ·U11+1

2′ · ζ1
)]
· δCT dxdt. (A22)

Moreover, we derive the first term on the right-hand side of A11 using A3, which results in

∂K
∂CT

=−βB(x,y)‖U1‖
dCp
dCT

(
‖U1‖2 + 3U1 ·u1

)
. (A23)
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Finally, we obtain the gradient expression by substituting A22 and A23 in A11, which gives

∇J̃ = βB(x,y)
βB(x,y)

H1
:::::::

[
1

H1
‖U1‖U1 · ζ1−H1

::
‖U1‖

dCp
dCT

(
‖U1‖2 + 3U1 ·u1

)
+

1

H1‖U1‖
u>1 ·U11+1

2′ · ζ1

]
. (A24)635

A4 Verification of the adjoint gradient

The aim of this paragraph is to asses the quality of the gradient trough
:::::::
through comparison with a finite difference approxima-

tion. The comparison is done using a grid resolution of 500 m. All other parameters correspond to the ones listed in Table 1,

with Fr = 0.9.

We define with640

∇J̃ADJ =
(
∇J̃ , δCT

)
(A25)

the directional derivative of ∇J̃ along δCT , where ∇J̃ is the gradient computed with A24 and δCT is a perturbation of the

baseline control CT . Using finite difference, the same directional derivative can be approximated as

∇J̃FD =
J̃
(
CT +αδCT

)
−J̃

(
CT
)

α
+O(α). (A26)

The truncation error of A26 is proportional to the order of magnitude of the step length α. Therefore, α should be as small as645

possible to limit the discretization error. However, small values of α induce round-off errors due to finite-precision floating-

point arithmetic. In other words, relation A26 provides accurate gradient information only for a lower an upper bounded range

of step length values.

Next, we define

R=
∇J̃ADJ

∇J̃FD

, (A27)650

ε=

∣∣∣∣∇J̃ADJ−∇J̃FD

∇J̃FD

∣∣∣∣ (A28)

where R and ε represent the ratio and the relative error between gradient information computed with the adjoint and finite

difference method. If the continuous adjoint method provides correct gradient information, we expect R' 1 and ε to be

sufficiently small.

The following generic baseline control is chosen655

CB
T (x,y) = CBetz

T

[
1

2
+

1

5
cos
(
kxx+π

)
+

1

5
sin
(
kyy+π/5

)]
(A29)

where CBetz
T = 8/9, kx = 2π/Lx and ky = 2π/Ly . Ideally, we should validate the adjoint-based gradient against the finite-

difference one for all possible perturbations δCT . However, such validation would require to solve the governing equations

(forward and backward) 2.4×103 times since the control space has such DOF using this numerical setup. This computation is

too expensive, therefore we select a limited class of perturbations given by660

δCT (x,y) = cos
(
akxx+π

)
+ sin

(
bkyy+π/5

)
(A30)
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Figure A2. (a) Ratio and (b) relative error between adjoint and finite-difference based gradient.

for different values of a and b.

Results of the comparison are shown in Fig. A2. We can appreciate that for 10−11 ≤ α≤ 10−4 the ratio R is very close

to unity and the relative error ε is in the order of 10−4, showing the typical U-shaped curve (Nita et al., 2016). However, for

smaller step length values the relative error increases due to the decreasing arithmetic accuracy of the finite-difference based665

gradient. The relative error also increases for α > 10−4 due to discretization error
:::::
errors. We can appreciate that Fig. A2b

displays a first-order truncation error in accordance with relation A26.

Appendix B:
:::::::
Optimal

:::::::
uniform

::::::
thrust

::::::::
set-point

:::::::::::
distribution

::
In

:::
the

::::::
current

:::::::
section,

::::
we

:::
use

:::
the

:::::::::::
optimization

::::::::::
framework

::::::
derived

:::
in

:::::::
Section

:::
2.2

::
to

::::
find

:::
an

:::::::
optimal

:::::::
uniform

::::
and

::::::
steady

::::::::::::::
thrust-coefficient

:::::::::
distribution

::::
that

:::::::::
minimizes

:::
the

:::::::::::
gravity-wave

:::::::
induced

::::::::
blockage

::::::
effects.

:::
To

:::::
avoid

:::::::::
confusion,

:::
we

::::
will

::::::
denote670

::::
with

:::
CO
T :::

and
:::::
CO,u
T :::

the
:::::::
optimal

::::::::::
non-uniform

::::
and

:::::::
uniform

::::::::::
distribution,

::::::::::
respectively.

::::
The

:::::::::
wind-farm

:::::
layout

::::
and

::
the

:::::::::::
atmospheric

::::
state

:::
are

:::
the

::::
ones

:::::::
detailed

::
in

::::::
Section

::
3.

:

:::::
Figure

:::::::
B1(a,b)

:::::::
displays

:::
the

::::::
optimal

:::::::
spatially

::::::::
invariant

::::
CO,u
T :::::::

together
::::
with

:::
the

::::::::::
streamwise

:::::
profile

::
of

::::
CO
T ::::::

through
:::
the

::::::
center

::
of

::
the

:::::
farm,

::::
and

::
its

::::::::
averaged

::::
value

::::
over

:::
the

:::::::::
wind-farm

::::
area

:::::
〈CO

T 〉:::
for

:::
the

::::
sub-

:::
and

:::::::::::
supercritical

::::
case,

:::::::::::
respectively.

::::::::
Moreover,

::::
CR
T

::::::
denotes

:::
the

:::::
thrust

::::::::::
distribution

::::
used

::
in

:::
the

::::::::
reference

::::::
model.

:::::::::::
Interestingly,

:::::
CO,u
T ::::::::::

corresponds
::
to

:::
the

:::::::
average

::
of

:::
the

:::::::::::
non-uniform675

:::::::::
distribution

::
in
:::::

both
:::::
cases.

:::::
Since

::::
CO
T ::

is
::::::::
sensitive

::
to

:::
the

:::::::::::
atmospheric

:::::::::
conditions,

:::
we

::::::
expect

:::::
CO,u
T :::

to
::::::
depend

:::
as

::::
well

:::
on

:::
the

::::::::::
atmospheric

::::
state

:::
(in

::::
fact,

::
we

:::::::
observe

::
a

:::::::
different

:::::
value

::
of

:::::
CO,u
T ::

in
::::
sub-

:::
and

::::::::::
supercritical

::::::::::
conditions).

:

::
In

:::
the

::::::
current

:::::::
example,

:::
the

::::::
energy

::::
gain

::
G

:::
(see

::::
Eq.

:::
21)

::::
over

:::
the

:::::::
reference

::::::
model

:::::::::::
configuration

:::::::
obtained

::::
with

:::
the

:::::::::::
non-uniform

::::::::::
distributions

:::
CO
T:::

are
:::::

5.3%
::::
and

:::
7%

:::
for

:::
the

::::
sub-

:::
and

:::::::::::
supercritical

::::
case,

:::::::::::
respectively.

:::
For

:::
the

:::::::
optimal

:::::::
uniform

:::::::::::
distributions,

:::
we

:::::
obtain

:::
an

::::::
energy

::::
gain

::
of

::::
5%

:::
and

:::::
6.6%.

:
680
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Figure B1.
:::::::
Reference

:::::
thrust

:::::::
set-point

:::::
(CR

T ),
::::::
optimal

::::::::::
non-uniform

:::::
thrust

::::::
set-point

:::::
(CO

T )
:::
and

:::
its

:::::::
averaged

::::
value

::::
over

:::
the

::::::::
wind-farm

::::
area

::::::
(〈CO

T 〉) :::
and

::::::
optimal

::::::
uniform

:::::
thrust

::::::::
coefficient

:::::::::
distribution

:::::
(CO,u

T )
::

in
:::
(a)

::::::::
subcritical

:::
and

:::
(b)

:::::::::
supercritical

::::
flow

::::::::
conditions.

::::
The

:::
CO
T ::::::

profiles

::
are

:::::
taken

::::::
through

::
the

:::::
center

::
of

:::
the

::::
farm

::::::
(y = 0).

Appendix C: Grid sensitivity

A grid sensitivity analysis is performed to determine the dependence of the optimization results on the grid cell size. To this

end, we fix the size of the numerical domain to 1000H × 400H and we vary the grid resolution spanning from 5H to H/3, or

equivalently from 1.6× 104 to 3.6× 106 DOF per layer. The results obtained are compared with the ones derived on a finer

grid with resolution equal to H/4.685

Fig. C1a and Fig. C1b display the cost function and energy gain relative error, respectively, which are computed as

εJ̃ =

∣∣∣∣ J̃ F−J̃
J̃

∣∣∣∣, (C1)

εG =

∣∣∣∣GF−G
G

∣∣∣∣ (C2)

where J̃ F and GF are the cost function and energy gain obtained with a H/4 grid resolution while J̃ and G are the ones

obtained with coarser grids. The cost function is evaluated using the reference case setup. The energy gain is obtained using690

the optimization model described in Section 2. The model setup is reported in Table 1.

Spectral methods are known to have exponential convergence when used for discretizing smooth functions (i.e., f ∈ C∞).

However, algebraic convergence is attained for functions f ∈ Cp with p≥ 0. Fig. C1 illustrates that we obtain a first-order

convergence. This is due to the two-dimensional Heaviside function B(x,y) used for representing the wind-farm footprint,

which is discontinuous with discontinuous derivatives. Fig. C1 also confirms that the results of the optimization model are695

grid-independent. In fact, the cost function and energy gain values change of about 1% and 4% when the number of grid cells

is increased by two orders of magnitude (from 104 to 106). This justifies the use of a coarser grid in the sensitivity study

performed in section 4.2.
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Figure C1. (a) Cost function and (b) energy gain relative error between a grid with resolutionH/4 and coarser grids in sub- and supercritical

flow conditions.
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