
Reviewer 1: Dr. Khiem Truong

Dear Dr. Truong, first of all we would like to thank you for your comments and suggestions. The positive
attitude towards publishing the paper and the constructive feedback are highly appreciated. All remarks
given have been considered in the manuscript. The changed texts are indicated by red color in the marked
up revised paper. The discussion paper has been revised accordingly.

2.1. Analysis of the various stall models: The authors spent a great length of time in analysis of the
existing stall models that does not present a great interest for the manuscript objective. In doing so, the
authors have made various mistakes. The Beddoes-Leishman model is not presented under the state-space
formulation. Therefore, the sensitivity study of this model against step size of integration cannot be made,
as stated in line 393.

and

2.3. Sensitivity of the results against applied time step of the solver: The authors use a rudimentary
numerical tool for solving the ordinary differential equations (ODE) with fixed time step, there exist more
robust ODE solver with automatic step variation. Therefore, the discussion related to the time step size is
irrelevant (sec-tion 3.1 and conclusion).

Thank you for this highly important comment. Indeed it is correct that the time step assessment for
the Leishman-Beddoes model cannot be done since it is not presented in the state-space
formulation. Therefore, the analysis for the Leishman-Beddoes model is now removed from the
paper. Despite that, the analyses for the other models are still relevant. We do agree that there are
more advanced integration approach using variable time step variation. In wind turbine
computations, however, a fixed time step approach is often adopted even for high fidelity CFD
approaches. Because the proposed dynamic stall model shall be coupled with a separate with
turbine load solver, e.g., blade-element momentum, vortex model or actuator line model, therefore
the studies are relevant for the community. Thank you for the comment, this motivation is now
further clarified in the revised paper as:

”...numerical uncertainty. The time step assessment for the Leishman-Beddoes model is not
included since it is not presented in the state-space formulation. Furthermore, a fixed time step
approach is often adopted in wind turbine computations even for high fidelity CFD approaches.
Because dynamic stall models shall be coupled with a separate with turbine load solver, e.g.,
blade-element momentum, vortex model or actuator line model, therefore the studies are relevant. It
can be seen clearly...”

About the ONERA model, they are not aware that it was renamed ONERA-EDLIN (“Equations
Différen-tielles Linéaires”, meaning in English Linear Differential Equations), to distinguish it for the
newer model ONERA-BH (“Bifurcation de Hopf”, renamed later by his author as ONERA Hopf
Bifurcation model). It is usual for researchers in the field of wind turbines to continue to call it with such
name; so, this mistake is not serious. The critical error of the authors is to not consider the stall delay in
the ONERA-EDLIN model. Without the account of stall delay, this model leads to predictions of the lift
coefficient with large discrepancies in correlation with experiments as shown in Figure 9 p.20

Thank you for this information. Regarding the ONERA model, we are aware that we are not using
the latest updated version of the model as pointed out by the reviewer. The main objective of the
paper is to assess the IAG model for various airfoils and flow conditions. Therefore we decided to
use the basic ONERA model equations, not the updated version, because it serves only for a short
comparison - not for evaluating the ONERA model itself. We followed the model presented by
Holierhoek et al in their paper [1]. Despite that, according to your recommendation, we updated the
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ONERA model to account for the stall delay effect. Indeed the prediction accuracy is improved.
Therefore, we have now added the information you provided and the corrections into our paper as:

”... As shown by the ONERA-EDLIN (Equations Différentielles Linéaires) model [2], the standard
formulation without considering the stall delay effect tends to underpredict the lift force above stall.
In order to account for the stall delay effect as in [3], the value of ∆CINV

Ln
is kept constant for a

specified time after stall (send − sstall = 8). A similar procedure was adopted in [4] for the stall
delay model...”

and the prediction is improved as:

Figure 1: Dynamic force reconstruction using the ONERA model in comparison with the measurement
data [5] for ∆t = T/1440. S801 airfoil, k = 0.073, α = 20◦, ∆α = 10◦. Left: without stall delay, right: with
stall delay.

2.2. Values of constants used in the IAG model:There are two types of constants used for the IAG model
that are ill chosen, the critical stall angle and the value of the Strouhal number. The critical stall angle
αCRIT of airfoils is one key parameter for the stall model. The authors choose this value based on the
position of the break of the pitching moment coefficient and the position of the important increase of the
drag coefficient. This is nota good choice, as pointed by Sheng et al. in their conclusions (Reference cited
on line 598), the best choice is the incidence angle at the maximum chord force coefficient.Led by such bad
criteria of defining αCRIT , the authors found very small values for theairfoils S801, S809 and S814 :
15.1o, 14.1o and 10o respectively, instead of the values of 17.6o , 19.2o and 13.9o found by Sheng et al.
(Reference Sheng W., GalbraithR.A.McD. and Coton F.N., “Applications of low-speed dynamic-stall model
to the NREL airfoils”, Journal of Solar Energy Engineering, 2010, vol. 132, pp. 011006-1:011006-8). The
increase of the value of αCRIT would allow a better correlation of their model predictions with experiments,
as shown in Figures 10-12, and following

Thank you for the information and comments. The critical angle we selected is actually consistent
with the one used by Sheng et al. The angles presented by Sheng et al are larger than the one used
in the present work because they are taken from polars with natural transition (see Figure 2 for
S809 airfoil below), in contrast we employed the polar data with transition trip as stated in the
beginning of Section 3 as ”All selected test cases are for the airfoils employed with a leading edge
grit (turbulator) to enable the ”soiled” effects on a wind turbine blade at a Reynolds number of
around 750K.”. To avoid confusion, we revised the sentence as:

”All selected test cases are for the airfoils employed with a leading edge grit (turbulator) to enable
the ”soiled” effects on a wind turbine blade at a Reynolds number of around 750K. Note that these
polar data are different with the one used for example by Sheng et al. [6] where the natural
transition cases were taken. Therefore, the critical angles of attack are also different.
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Figure 2: Determination of αCRIT . Note that the scale of y-axis for each force component is plotted
independently for clarity.

We also would like to inform you that we made a typo regarding the critical angle of attack for the
NACA 4415 airfoil. Now it has been corrected in the revised paper.

Value of the Strouhal number S: the authors following Adema et al. use the value of S = 0.2; they should
notice from various references that S is in the range of [0.06,0.13](see for example “Spectral analysis of
New MEXICO standstill measurements to investigate vortex shedding in deep stall” by Khan M.A.,
Ferreira C.S., Schepers G.J.and SØrensen N.N., Wind Energy, 2019, pp.1-14). When S decreases, the
predicted distance between two consecutive extremum (maximum for the lift and drag coefficients, minimum
for the pitching moment coefficient) of the aerodynamic coefficients increases. The correlation between
model predictions and experiments would be improved

Thank you for your very important recommendation. The word ”Strouhal number” in the
formulation is actually not the real Strouhal number itself because the effect is controlled by the
applied constants in the ODE. As for example, we tried changing the value to be smaller, as a result
the accuracy degrades without calibrating the other constants. By reducing the value, one can see in
Figure 3 that the higher harmonic effects disappear accordingly, which is not preferable. Therefore,
a value of 0.2 is taken for the standard airfoil analyses.
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Figure 3: Effects of specified ”Strouhal number” on predicted CL (top) and CM (bottom). From left to right:
St = 0.06, St = 0.13, St = 0.2. Red curves are prediction results, black curves are experiment. NACA4415
airfoil, k = 0.073, α = 20◦, ∆α = 10◦.

2.4. Quality of the IAG model: The authors claim the superiority of their model over the others, but their
model errors are not quantified. Since the study of Holierhoek et al. (cited in line 574), practically all the
publications on hysteresis loops in stalled conditions of airfoils provide the value sof the error L2-norm, see
for instance the publication of Adema et al. I would consider that the predictions for the lift coefficient are
reasonable. However, the predictions of the drag coefficient are overestimated and this would lead to
under-prediction of the power coefficient CQ. The predictions of the pitching moment coefficient are not
right in some cases. For instance for the airfoil S801 in Figure 17, the predictions show clockwise
hysteresis sub-loop that correspond to negative aerodynamic damping,while the experiments show
anti-clockwise sub-loop leading to positive aerodynamic damping.

and

For the comparison of the model with experiments based on the first order correction, it would be clearer if
the cases of non – stalled conditions are considered, there are no effects of second order for these cases.

Thank you for the remarks and suggestions. We have now added a section assessing the L2-norm of
errors for cases involving different airfoils. In order to limit the number of pages and since the
attached flow regime is not our main focus, a dedicated analysis for the attached flow regime will
not be directly presented in the paper. Despite that, we do agree with your suggestion. Therefore,
to accommodate this aspect, the L2-norm of errors are quantified for cases involving different
airfoils; both under attached and deep stall conditions. Indeed the errors for the deep stall cases are
larger, but still at reasonable values. In fact, most flow cases considered in our studies are for the
deep stall conditions.

2.5. The study of various airfoils: It would be interesting that the model predictions could show some
distinctive features associated with the thickness for the airfoils studied, ranging from thin (S801) to thick
airfoil (S814). Thin airfoils are characterized by leading-edge stall, whereas thick airfoils by trailing-edge
stall. The choice of the airfoil S801 by the authors of the submitted paper for extensive studies is
unfortunate, because it is a thin airfoil of thickness 13.5%,and wind turbine blades have usually thickness
larger than 15%.

We do agree that the S801 airfoil is relatively thin compared to the usual wind turbine airfoils.
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Figure 4: Quantified L2 norm of error with respect to the measurement data for four airfoils. Top: attached
flow case ( k = 0.073, α = 8◦, ∆α = 5.5◦), bottom: deep stall case ( k = 0.073, α = 20◦, ∆α = 10◦)

Despite that, thin airfoils are still practically used for wind turbines especially near the tip regimes.
In vertical axis wind turbines, where dynamic stall plays a major role, the airfoil is often relatively
thin and the present studies should be of interest. we want to evaluate the model for various stall
characteristics as the main purpose of the paper. More importantly, the practical use of the model
shall not be limited only to wind energy applications.

Line 4: the sentence “many flow parameters” is not clear.Line 538:

Thank you for the correction. It is now corrected as:

”....Comprehensive investigations and tests are performed at various flow conditions...”

“Increasing k above 0.1 leads to an increased flow stability”: this is incorrect.

Thank you for the correction. The phrase has now been removed and corrected as:

”Increasing k above 0.1 reduces the viscous effects and vortex shedding influence.”

Lines 539-540: the assertion is incorrect. For a large angle variation, the variation of the pitching moment
coefficient is more important (see Figure 24) and this could lead to more structural damage to the blades.

Thank you for the correction. The sentence has now been revised as:

”When the airfoil operates at a high α within the stall regime, a small ∆α leads to increased
vibrations for lift, but contrary for the pitching moment.

Imprecision for the section References: - Lines 555, 558, 566, 570, 577, 585, 598 and 604. Inconsistencies
for Lines 568 and 574
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Thank you for the comments. The references and inconsistencies have now been corrected:

Concluding remarks and suggestions for revision: Though the submitted paper is marred with errors, there
are two positive aspects. The first one is about the objective of examining Snel’s model for various flow
conditions and airfoils. This stall model has been around 1997 and no exhaustive evaluation has been made
at my knowledge. I feel that Dr. G. Bangga and his co-authors are capable of doing it. The second is about
the success of the prediction of the center of pressure(Section 3.8). Despite the imprecision on the
predictions of CL and CM , it appears that the ratio XP ( = - CM/CL) is well predicted, as though the
errors on CL and CM are canceling in the ratio.

Thank you for the remarks given.

For the second order model, the main correction to Snel’s model proposed by the authors (and Adema et al.)
has been to replace the damped oscillator when dα/dt < 0 for a self-excited oscillator of Van-der-Pol type
with more damping. The objective has been to capture the oscillatory behavior on the return cycle of the
aerodynamic coefficients. However, in Truong’s model (see Reference “Modeling aerodynamics for
comprehensive analysis of helicopter rotors” by K.V. Truong,42nd European Rotorcraft Forum, Lille,
France, September 5-9, 2016 and also published in Aerospace 2017,vol.4, 21), the self-excited oscillator is
only replaced by the damped oscillator, when the flow is reattached on the return cycle, i.e. with some lapse
of time after the change of sign of dα/dt. Under such circumstances, the oscillatory behavior still subsists
inthe return cycle, albeit with smaller amplitude. This point has been raised also by Dr.X. Munduate while
reviewing the article of Adema et al., but these authors have not provided any answer. If the revised model
is capable of taking into account the stall delay and the flow reattachment, the authors could solve this issue
and improve other predictions, particularly the dependence on the reduced frequency.

Many thanks for the suggestions. This last comment is extremely helpful for us to improve our
model. Using your remarks as the starting points, we updated our model accommodating several
aspects. First, we evaluated the location where the drag force starts to increase and tried to relate
the position with a weighted separation point ζ. By doing so, one can set a better drag limiter than
our previous definition. This is revised in the paper as:

”.....If one uses this formulation directly, at some point drag still becomes lower than the static drag
value by a significant amount. By evaluating the experimental data for several airfoils and various
flow conditions, this is not physical at small angles of attack especially in the downstroke regime,
where it usually just returns to the static value. In fact, those experimental data infer that strong
drag hysteresis occurs only at high angles of attack beyond stall. Similarly, in the upstroke regime
the drag value increases only slightly (approximately only 20%). In Figure 5, one can see that drag
hysteresis occurs when

ζ =
1

π

dCN

dα

(
1 +
√
fn

2

)2

. 0.76. (1)

Based on these observations, a simple drag limiting factor is adopted when ζn ≥ 0.76 as:

CD
Dn

=


1.2CV ISC

Dn
; if CD

Dn
> 1.2CV ISC

Dn
and

(
CP

Nn
− CP

Nn−1

)
≥ 0.0

CV ISC
Dn

; if
(
CP

Nn
− CP

Nn−1

)
< 0.0

CD
Dn

; otherwise

(2)

Note that for the purpose of numerical implementation, it is always recommended in practice to adopt
relaxation to avoid any discontinuity which may present in the above formulation. The effects of these
modifications are displayed in Figure 6.
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(a) (b) (c) (d)

Figure 5: Relation between drag hysteresis in the stall regime with weighted separation parameter ζ for four
airfoils. From left to right: S801 (13.5%), NACA4415 (15%), S809 (21%) and S814 (24%).

(a) (b) (c)

Figure 6: Drag reconstruction in comparison with the experimental data for S801 airfoil [5] applying: (a)
Equation (19), (b) Equation (70) and (c) Equations (70) + (72).

When the second order term is included in the formulation, one obtains a much better agreement
than the previous definition as shown in Figure 7:

Figure 7: Drag reconstruction by the IAG model in comparison with the measurement data [5, 7–9] for
∆t = T/1440 using the actual angle of attack in the experimental campaign for different airfoils. From left
to right: S801 (13.5%), NACA4415 (15%), S809 (21%) and S814 (24%). k = 0.073, α = 20◦, ∆α = 10◦.
Top: previous model, bottom: revised model.
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Second, by considering your remarks of the second order term regarding the oscillation
characteristics of the polar in the downstroke regime as the flow is reattached, we added an
additional term when the angle is smaller than the critical angle of attack. This marks the regime
where the flow starts to reattach on the airfoil surface.

”...The idea for the downstroke damping as in Equation (66) is adopted in the present model, the
following form and constants are used:

Kf21n =


150ks[−0.01(∆CINV

Nn
− 0.5) + 2(∆CD2

Nn
)2]; if α̇n > 0

30ks[−0.01(∆CINV
Nn

− 0.5) + 14(∆CD2
Nn

)2]; if α̇n ≤ 0 and αn ≥ αCRIT
n

0.2ks; if α̇n ≤ 0 and αn < αCRIT
n

(3)

Note again that τ is not present in the above equation. The original formulation in Equation (66)
replaces the damped oscillator when α̇n ≤ 0 for a self-excited oscillator of Van-der-Pol type with more
damping. This is in contrast with the implementation done in [10,11], where the self-excited oscillator
is only replaced by the damped oscillator, when the flow is reattached on the return cycle. Under such
circumstances, the oscillatory behavior still subsists in the return cycle, albeit with smaller amplitude.
To accommodate this aspect, the last term of Equation (3) is applied when the angle is smaller than
αCRIT
n . As for the forcing term, the original form of the Snel model [12] is adopted....”
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Abstract. Robust and accurate dynamic stall modeling remains one of the most difficult tasks in wind turbine load calculations

despite its long research effort in the past. In the present paper, a new second order dynamic stall model is developed with the

main aim to model the higher harmonics of the vortex shedding while retaining its robustness for various flow conditions and

airfoils. Comprehensive investigations and tests are performed at various flow conditions. The occurring physical characteris-

tics for each case are discussed and evaluated in the present studies. The improved model is also tested on four different airfoils5

with different relative thicknesses. The validation against measurement data demonstrates that the improved model is able to

reproduce the dynamic polar accurately without airfoil specific parameter calibration for each investigated flow condition and

airfoil. This can deliver further benefit to industrial applications where experimental/reference data for calibrating the model is

not always available.

10

1 Introduction

An accurate prediction of wind turbine blade loads is influenced by many parameters including 3D and unsteady effects. The

first mainly occurs in the root and tip areas of the blade due to radial flow and induced velocity influences, respectively (Bangga,

2018). The latter can occur due to variation of the inflow conditions caused by yaw misalignment, wind turbulence, shear &

gusts, tower shadow and aeroelastic effects of the blade. The above mentioned phenomena may result in dynamic stall (DS).15

Experimental studies (Martin et al., 1974; Carr et al., 1977; McAlister et al., 1978) showed that the aerodynamic forces can

differ significantly in comparison to the static condition. DS is often initiated by the generation of a leading edge vortex (LEV),

which increases positive circulation effect on the airfoil suction side causing delayed stall. This intense leading edge vortex is

convected downstream along the airfoil towards the trailing edge. At the same time, the lift force increases significantly and

the pitching moment becomes more negative compared to the static values. A significant drag increases is observed at large20

angles of attack. An example is shown in Figure 1. Afterwards, a trailing edge vortex (TEV) with opposite rotational direction

than LEV is formed, which pushes the leading edge vortex towards the wake area. This onset may result in a significant drop

of the lift coefficient (CL) and can be dangerous for the blade structure itself.
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Figure 1. Typical dynamic stall behavior of S801 airfoil. Data obtained from (Ramsay et al., 1996).

To model the behavior of the airfoil under these situations, semi-empirical models can be used. The models are known to

produce reasonable results with very small computational effort. Leishman & Beddoes (LB) (Leishman and Beddoes, 1989)25

have developed a model for dynamic stall combining the flow delay effects of attached flow with an approximate representation

of the development and effect of separation (Larsen et al., 2007). This model was developed for helicopter applications and

therefore includes a fairly elaborate representation of the nonstationary attached flow depending on the Mach number and a

rather complex structure of the equations representing the time delays (Larsen et al., 2007). Hansen et al. (Hansen et al., 2004)

simplified the model for wind turbine applications by removing the consideration of compressibility effects and the leading30

edge separation. The latter was argued because the relative thickness of wind turbine airfoil is typically no less than 15%.

This model was called Risø model in (Larsen et al., 2007). Examples of the other models are given by Øye (Øye, 1991), Tran

& Petot (ONERA model) (Tran and Petot, 1980) and Tarzanin (Boeing-Vertol model) (Tarzanin, 1972). To better model the

vortex shedding characteristics at large angles of attack, second order dynamic stall models were introduced. An example of

this model was given by Snel (Snel, 1997) which makes use of the difference between the inviscid to the viscous static polar35

data as a main forcing term for the dynamic polar reconstruction, in contrast to the LB model that uses the changes of the

angle of attack over the time. An improved version of the Snel model was proposed recently by Adema (Adema et al., 2019)

to cover for the increased shedding effects in the downstroke phase. All above mentioned models employ the static polar data

and dynamic flow parameters as the input needed for the dynamic polar reconstruction. Then, the models compute the dynamic

force difference required for the reconstruction process.40

Although many attempts have been dedicated for dynamic stall modeling (Gupta and Leishman, 2006; Larsen et al., 2007;

Adema et al., 2019; Elgammi and Sant, 2016; Wang and Zhao, 2015; Sheng et al., 2006; Galbraith, 2007; Sheng et al., 2008),

engineering calculations in industry are still relying on the very basic classical dynamic stall models such as the Leishman-

Beddoes and Snel models. The reason is the simplicity to tune in the models for different airfoils and for different flow

conditions. Therefore, one major key for a model to be used in industrial applications is robustness of the model itself. The45

main purpose of this paper is to document widely used state-of-the-art dynamic stall models in research and industries. These

include the first order LB model and the second order Snel model as well as the ONERA model. A very recently improved
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Snel model according to Adema (Adema et al., 2019) will also be evaluated. The mathematical formulations of these model

will be presented in this report. Weaknesses of existing dynamic stall modeling shall be identified, and possible corrections to

those limitations will be described. Finally, a new second order dynamic stall modeling will be proposed that is able to model50

not only the second order lift and drag forces, but also the pitching moment along with calculation examples in comparison to

experimental data for different airfoils and flow conditions.

The paper is organized as following. Section 2 describes the mathematical formulation of four state-of-the-art dynamic

stall models and the new model developed in this work. Then, in Section 3 assessments are carried out on the sensitivity of

each model to time step variation and how each model performs in comparison with measurement data. The new model is55

further tested at various flow conditions, and to examine its robustness on four different airfoils without further calibrating the

constants. Finally, all results will be concluded in Section 4.

2 Mathematical Formulations

In this section the mathematical formulations of each model are described in detail. The reasons are manly to provide infor-

mation on how each model was employed and to gain deeper insights for further developing the new model. Note that each60

existing model was developed by different authors, thus different symbols and formulation methods were adopted in those

publications (Beddoes, 1982; Leishman, 1988; Leishman and Beddoes, 1989; Tran and Petot, 1980; Dat and Tran, 1981; Petot,

1989; Snel, 1997; Adema et al., 2019). In this paper, all models are described in a consistent way for clarity and for easier

interpretation/implementation process.

2.1 Leishman-Beddoes model65

The original Leishman-Beddoes model is composed by three main contributions representing various flow regimes: (1) un-

steady attached flow, (2) unsteady separated flow and (3) dynamic stall. The present section will elaborate the mathematical

description and its physical interpretation of each module. Figure 2 illustrates several main parameters needed for modeling

the dynamic stall characteristics.

2.1.1 Unsteady attached flow70

In this module, the unsteady aerodynamic response of the loads is represented by the time delay effects. The indical formulas

were constructed based on the work of Beddoes (Beddoes, 1982), and have been refined by Leishman (Leishman, 1988). The

loads are assumed to originate from two main sources; one for the initial noncirculatory loading from the piston theory and

another for the circulatory loading which builds up quickly to the steady state value (Leishman and Beddoes, 1989). In the

formulation, the relative distance traveled by the airfoil in terms of semi-chords is represented by s= 2V t/c that can be used75

also to describe the nondimensional time. Note that V , t and c are freestream wind speed, time and chord length, respectively.

For a continuously changing angle of attack αn, the effective angle of attack (αen ) can be represented as:

αen = αn−Xn−Yn (1)
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Figure 2. Illustration of main aerodynamic parameters needed for modeling the dynamic stall characteristics.

where n is the current sample time. The last two terms describe the deficiency functions that are given by:

Xn =Xn−1 exp
(
−b1β2∆s

)
+A1 ∆αn exp

(
−b1β2∆s/2

)
(2)80

Yn = Yn−1 exp
(
−b2β2∆s

)
+A2 ∆αn exp

(
−b2β2∆s/2

)
(3)

where

∆αn = αn+1−αn (4)

∆s= sn− sn−1. (5)

In these equations, b1, b2, A1 and A2 are constants. The variable β represents the compressibility effects and is formulated as85

β =
√

1−M2. Because information about the previous cycle is needed in the formulations, initializations are required. The

solution needs to develop for a certain time until convergence of the resulting unsteady loads is obtained.

The circulatory normal force due to an accumulating series of step inputs in angle of attack can be obtained using

CCNn
=
dCN
dα

(αen −αINV0 ) (6)

The variable α0INV
is the angle of attack for zero inviscid normal force. The original formulation of the model disregarded the90

use of αINV0 . However, this term is important when the airfoil has a finite camber. This has been pointed out as well by Hansen

et al. (Hansen et al., 2004).

The noncirculatory (impulsive) normal force is obtained by

CINn
=

4KαTI
M

(
∆αn
∆t
−Dn

)
. (7)

where TI is given by TI =Mc/V . The deficiency function Dn is given by95

Dn =Dn−1 exp
(
−∆t

KαTI

)
+

(
∆αn−∆αn−1

∆t

)
exp
(
−∆t

2KαTI

)
, (8)

and ∆t= tn− tn−1.
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The total normal force coefficient under attached flow conditions is given by the sum of circulatory and noncirculatory

components as

CPNn
= CCNn

+CINn
. (9)100

2.1.2 Unsteady separated flow

Leishman & Beddoes (Leishman and Beddoes, 1989) stated that the onset of leading edge separation is the most important

aspect in dynamic stall modeling. The condition at when leading edge stall occurs, is controlled by a critical leading edge

pressure coefficient that is linked into the formulation by defining a lagged normal force coefficient CP1
Nn

as:

CP1
Nn

= CPNn
−Dpn (10)105

where Dpn is given by

Dpn =Dpn−1
exp
(
−∆s

Tp

)
+
(
CPNn

−CPNn−1

)
exp
(
−∆s

2Tp

)
. (11)

It has been investigated by Leishman & Beddoes (Leishman and Beddoes, 1989) that the calibration time constant Tp is largely

independent of the airfoil shape. The substitute value of the effective angle of attack incorporating the leading edge pressure

lag response may be obtained using110

αfn = αINV0 +

(
CP1
Nn

dCN/dα

)
(12)

In most of airfoil shapes, the progressive trailing edge separation causes loss of circulation and introduces nonlinear effects

on the lift, drag and pitching moment, especially on cambered airfoils. This is even more important for wind turbine airfoils

because the relative thickness is large. To derive a correlation between the normal force coefficient with the separation location

(fn), the relation based on the flat plate from Kirchhoff/Helmholtz can be used, that reads:115

CV ISCNn
=
dCN
dα

(
1 +
√
fn

2

)2

(αn−αV ISC0 ). (13)

The location of the separation point is usually obtained by a curve-fitting procedure in literature. For example, Leishman &

Beddoes (Leishman and Beddoes, 1989) proposed the following correlation

fn =


1− 0.3 exp

(
αn−α1

S1

)
; αfn ≤ α1

0.04 + 0.66 exp
(
α1−αn
S2

)
; αfn > α1

(14)

The coefficients S1 and S2 define the static stall characteristic while α1 defines the static stall angle. The derivation was based120

on the NACA 0012, HH-02 and SC-1095 airfoils that have a single break point of the static lift force coefficient. Gupta &

Leishman (Gupta and Leishman, 2006) proposed the formulation for the S809 airfoil as:

fn =


c1 + a1 exp(S1αn); αfn ≤ α1

c2 + a2 exp(S2αn); α1 < αfn < α2

c3 + a3 exp(S3αn) : αfn ≥ α2

(15)
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that has two break points (α1 and α2) of the static lift force coefficient, where c1, c2, c3, a1, a2 and a3 are constants.

The additional effects of the unsteady boundary layer response may be represented by application of a first-order lag to the125

value of fn to produce the final value for the unsteady trailing edge separation point f2n (Leishman and Beddoes, 1989). This

can be represented as

f2n = fn−Dfn (16)

where Dfn is given by

Dfn =Dfn−1 exp
(
−∆s

Tf

)
+ (fn− fn−1) exp

(
− ∆s

2Tf

)
, (17)130

and Tf is a constant. Then, the unsteady viscous normal force coefficient for each sample time can be obtained using

CfNn
=
dCN
dα

(
1 +

√
f2n

2

)2

(αen −αV ISC0 ) +CINn
(18)

The tangential component of the force can be obtained by (Leishman and Beddoes, 1989):

CfTn
=−η dCN

dα
α2
en

√
f2n (19)

note that positive CfTn
is defined in the direction of the trailing edge while η is a constant.135

According to Leishman & Beddoes (Leishman and Beddoes, 1989) and Gupta & Leishman (Gupta and Leishman, 2006), a

general expression for the pitching moment behavior cannot be obtained from Kirchhoff theory, and an alternative empirical

relation must be formulated. Gupta & Leishman (Gupta and Leishman, 2006) proposed the following formulation for the S809

airfoil

CfM =

CM0
+
(
K0 +K1(1− f2n) +K2 sin(πfm2n)

)
; αn ≤ α2

CM0
+
(
K0 +K3 exp(K4f

m
2n)
)

; αn > α2

(20)140

where CM0
defines the moment coefficient at zero normal force and K0 is the mean offset of the aerodynamic center from the

quarter chord position, K1, K2, K3, K4 and m are constants.

2.1.3 Dynamic stall

The third part of the model describes the post-stall characteristics where the vortical disturbances near the leading edge become

stronger. The effect of vortex shedding is given by defining the vortex lift as the difference between the linearized value of the145

unsteady circulatory normal force and the unsteady nonlinear normal force obtained from the Kirchhoff approximation, that

reads

CVn
= CCNn

(1−Kn) (21)

where Kn is given by

Kn =
1

4

(
1 +

√
f2n

)2
. (22)150
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The normal force is allowed to decay, but it is updated with a new increment in the normal force based on prior forcing

condition, that can be defined as

CVNn
=


CVNn−1

exp
(
−∆s

Tv

)
+
(
CVn −CVn−1

)
exp
(
−∆s

2Tv

)
; if 0< τvn < Tvl

CVNn−1
exp
(
−∆s

Tv

)
; otherwise

(23)

where Tv and Tvl are the vortex decay and center of pressure travel time constants, respectively. The nondimensional vortex

time is given by (dos Santos Pereira, 2010; Elgammi and Sant, 2016):155

τvn =

τvn−1 + 0.45
∆t

c
V ; if CP1

Nn
>CCRITN

0; if CP1
Nn

<CCRITN and ∆αn > 0
(24)

with CCRITN being the inviscid critical static normal force, usually indicated by the break of the (viscous) moment polar at the

critical angle of attack αCRITn . This can be formulated as:

CCRITN =
dCN
dα

(αCRITn −αINV0 ). (25)

The idealized variation of the center of pressure with the convection of the leading edge vortex can be modeled by160

CPvn =Kv

(
1− cos

(
πτv
Tvl

))
(26)

The dynamic moment coefficient can be formulated as

CVMn
=−CPvnCVNn

(27)

Therefore, the total dynamic loading on the airfoil from all modules can be written as

CDNn
= CfNn

+CVNn
(28)165

CDTn
= CfTn

(29)

CDMn
= CfMn

+CVMn
(30)

and by converting these forces into lift and drag, one obtains:

CDLn
= CDNn

cos αn−CDTn
sin αn (31)

CDDn
= CDNn

sin αn +CDTn
cos αn (32)170

2.1.4 Note to present implementation

In Equations (14) and (15), a curve-fitting procedure is usually adopted in literature. In this sense, the parameters or even the

formulation need to be adjusted when the airfoil is different. Therefore, in the present implementation, the separation point is
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derived directly from the static polar data using inversion of Equation (13) as.

fn =

2

√√√√√ CV ISCNn

dCN
dα

(αfn −αV ISC0 )

− 1.0


2

(33)175

The same approach was used for example by Hansen et al. (Hansen et al., 2004). This way, the user can avoid dealing with

curve fitting adjustment (which requires changes on the constants for different airfoils and flow conditions) as long as the static

polar data is available.

In the original formulation, the pitching moment is obtained also by a curve fitting procedure in Equation (20). Again, this

kind of approach is not straightforward as the user needs to perform curve fitting of the polar data. In the present implemen-180

tation, the moment coefficient is easily obtained from the static viscous polar data by interpolating the value at the effective

angle of attack incorporating the leading edge pressure time lag αfn , that reads

CfMn
= CV ISCM (αfn). (34)

In this sense, the moment coefficient can be reconstructed easily without the need to adjust the parameters in advance, mini-

mizing the user error.185

Furthermore, to avoid discontinuity in the downstroke phase for Equation (24), an additional condition is applied in the

present implementation as:

τvn =


τvn−1

+ 0.45
∆t

c
V ; if CP1

Nn
>CCRITN

0; if CP1
Nn

<CCRITN and ∆αn ≥ 0

τvn−1
; otherwise

(35)

190

2.2 ONERA model

The ONERA dynamic stall model was originally developed by Tran and Petot (Tran and Petot, 1980; Dat and Tran, 1981;

Petot, 1989). The model is constructed by two non-linear differential equations describing the characteristics of the dynamic lift

coefficient. The first equation defines the inviscid response of the airfoil, similar to the attached flow module of the LB model.

The second equation describes the reduced lift effect due to unsteady flow separation. Some modifications to the original model195

were suggested by Peters (Peters, 1985) and Petot (Petot, 1997). These improvements, however, are not included in the present

implementation. The ONERA model can be written as (Brouwer, 1990; Holierhoek et al., 2013; Khan, 2018):

CDLn
= CD1

Ln
+CD2

Ln
(36)

CDDn
= CV ISCDn

(37)

CDMn
= CV ISCMn

(38)200
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with CD1
L and CD2

L being the first and second corrections, respectively, defined as:

ĊD1
Ln

+λLC
D1
Ln

= λLC
INV
Ln

+ (λLsL +σL)α̇n + sLα̈n (39)

and

C̈D2
Ln

+ aLĊ
D2
Ln

+ rLC
D2
Ln

=−(rL∆CINVLn
+ eL ˙∆CINVLn

) (40)

where,205

rL =
[
r0 + r2(∆CINVLn

)2
]2

(41)

aL = a0 + a2(∆CINVLn
)2 (42)

eL = e2(∆CINVLn
)2 (43)

The time derivative of the above equations are with respect to the non-dimensional time s= 2V t/c. The constants of Equation

(39) as listed in Section 2.6 (λL, sL, σL) can be obtained from the flat plate database in the absence of unsteady airfoil data.210

In contrast, the constants of Equation (40) (r0, r2, a0, a2, e2) should be adjusted based on the curve-fitting procedure to a

measured data, making the model more empirical. As shown by the ONERA-EDLIN (Equations Différentielles Linéaires)

model (Petot, 1989), the standard formulation without considering the stall delay effect tends to underpredict the lift force

above stall. In order to account for the stall delay effect as in (Beddoes, 1976), the value of ∆CINVLn
is kept constant for a

specified time after stall (send−sstall = 8). A similar procedure was adopted in (Paillard et al., 2013) for the stall delay model.215

2.3 Snel 2nd order model

The history of the Snel’s second order model (Snel, 1997) dates back to 1993 based on Truong’s observation on dynamic

lift coefficient characteristics (Truong, 1993). Truong proposed that the difference between the static and dynamic lift can be

divided into two terms: the forcing frequency response and the higher frequency dynamics of a self-excited nature. The total

dynamic response of the airfoil is formulated as:220

CDLn
= CV ISCLn

+ ∆CD1
Ln

+ ∆CD2
Ln

(44)

CDDn
= CV ISCDn

+�
��
�*0

∆CD1
Dn

+�
��
�*0

∆CD2
Dn

(45)

CDMn
= CV ISCMn

+��
��*

0
∆CD1

Mn
+��

��*
0

∆CD2
Mn

(46)

with D1 and D2 being the first and second order corrections, respectively. The first correction is modeled using an ordinary

differential equation (ODE) by applying a spring-damping like function as:225

τ∆ĊD1
Ln

+Kf10n∆CD1
Ln

= F1n (47)
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The frequency of the first-order corrected lift follows the frequency of the forcing term F1. This term is based on the time

derivative of the difference between the steady inviscid CINVLn
and viscous lift coefficient CV ISCLn

of an airfoil (∆CINVLn
) as:

F1n = τ ˙∆CINVLn
(48)

∆CINVLn
= CINVLn

−CV ISCLn
=
dCL
dα

(αn−αINV0 )−CV ISCLn
(49)230

with n and dCL/dα are the current sample time and inviscid lift gradient, respectively. The time constant τ in the above

equation represents the time required for the flow to travel half a chord distance as:

τ =
c

2V
(50)

The "stiffness" coefficient of the first order term Kf10n can be expressed as:

Kf10n =



1 + 0.5∆CINVLn

8(1 + 60τα̇n)
; if α̇nC

INV
Ln

≤ 0

1 + 0.5∆CINVLn

8(1 + 80τα̇n)
; if α̇nC

INV
Ln

> 0.

(51)235

As shown in (Faber, 2018), the above equation becomes numerically unstable if α̇n is large (increasing reduced frequency

above 0.1) for α̇nCINVLn
≤ 0. The reason is that the denominator goes to zero and then negative, causing numerical integration

instability. Thus, based on pure intuition the denominator value was set to a minimum of 2.0 in Ref. (Faber, 2018). In the

present implementation, a similar approach is adopted but the limit differs. Instead, the minimum denominator value is limited

to 1x10−5, because it yields more physical results for several cases tested by the authors.240

To incorporate the higher order frequency dynamics, a second order ODE is used to describe the second order correction

term. The general form may be written as:

τ2∆̈CD2
Ln

+Kf21n
˙∆CD2
Ln

+Kf20n∆CD2
Ln

= F2n (52)

similar to the first order correction, the frequency of the higher order dynamics is determined by the forcing term F2n , defined

as:245

F2n = 0.1ks(−0.15∆CINVLn
+ 0.05 ˙∆CINVLn

). (53)

It is noted that the value 0.1 as a constant was chosen according to Ref. (Adema et al., 2019). This is not a fixed value and can

be adjusted based on the evaluated cases as seen in literature (Adema et al., 2019; Snel, 1997; Holierhoek et al., 2013; Faber,

2018; Khan, 2018). Variable ks represents the Strouhal number that is typically 0.2. The spring coefficient is given by

Kf20n = k2s [1 + 3(∆CD2
Ln

)2][1 + 3α̇n
2] (54)250

and the damping coefficient as

Kf21n =

60τks[−0.01(∆CINVLn
− 0.5) + 2(∆CD2

Ln
)2]; if α̇n > 0

2τks; if α̇n ≤ 0.
(55)
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2.4 Adema-Snel 2nd Order Model

The recently developed model of Adema (Adema et al., 2019) improves the original Snel model (Snel, 1997) in several aspects.

Instead of using the lift coefficient (CL), the normal force coefficient (CN ) is used, similar to the LB model (Leishman and255

Beddoes, 1989). The total dynamic response of the airfoil is formulated as:

CDNn
= CV ISCNn

+ ∆CD1
Nn

+ ∆CD2
Nn

(56)

CDTn
= CV ISCTn

+��
��*

0
∆CD1

Tn
+��

��*
0

∆CD2
Tn

(57)

CDMn
= CV ISCMn

+��
��*

0
∆CD1

Mn
+��

��*
0

∆CD2
Mn

(58)

The model introduces some modifications of the original model in terms of: (1) the projected Strouhal number, (2) the first260

order coefficient and (3) the second order coefficient. The mathematical formulation of the first order term of the model is listed

as:

τ∆ĊD1
Nn

+Kf10n∆CD1
Nn

= F1n (59)

F1n = τ ˙∆CINVNn
(60)

∆CINVNn
= CINVNn

−CV ISCNn
=
dCN
dα

(αn−αINV0 )−CV ISCNn
(61)265

Kf10n =



1 + 0.2∆CINVNn

8(1 + 60τα̇n)
; if α̇nC

INV
Nn

≤ 0

1 + 0.2∆CINVNn

8(1 + 80τα̇n)
; if α̇nC

INV
Nn

> 0

(62)

and for the second order correction term as

τ2∆̈CD2
Nn

+Kf21n
˙∆CD2
Nn

+Kf20n∆CD2
Nn

= F2n (63)

F2n = 0.01ks(−0.04∆CINVNn
+ 1.5τ ˙∆CINVNn

). (64)

Kf20n = 10(ks sinαn)2[1 + 3(∆CD2
Nn

)2][1 + 2802τ2α̇n
2] (65)270

Kf21n =

60τks[−0.01(∆CINVNn
− 0.5) + 2(∆CD2

Nn
)2]; if α̇n > 0

60τks[−0.01(∆CINVNn
− 0.5) + 14(∆CD2

Nn
)2]; if α̇n ≤ 0

(66)

One may notice that Equation (64) contains τ in the second term of the right hand side (RHS). This is intended to remove

the dependency of the model to the velocity as the input parameter. The other main difference with the original model is also

observed in Equation (65) where the Strouhal number is projected by sinαn. At last, the downstroke motion of the second

order term of Equation (66) is modified to enable vortex shedding effects.275

To sum up the characteristics of above discussed state-of-the-art dynamic stall models, Table 1 lists the properties of each

model and in which aspects the model can be improved further.
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Table 1. Properties of the discussed state-of-the-art dynamic stall models.

Model name First/second order Higher harmonics Model CL Model CD Model CM

Leishman-Beddoes first order - x x x

Onera second order - x - -

Snel second order x x - -

Adema-Snel second order x x x -

2.5 New 2nd order IAG model

The proposed IAG model is developed based on knowledge gained from four different models; Leishman-Beddoes, Snel,

Adema-Snel and ONERA models with modifications. Similar to the modern models like those from Snel (and ONERA) and280

its derivatives, the present model is constructed by two main terms: the first order and second order corrections. The total

dynamic response of the airfoil is formulated as:

CDLn
= CD1

Ln
+ ∆CD2

Ln
(67)

CDDn
= CD1

Dn
+ ∆CD2

Dn
(68)

CDMn
= CD1

Mn
+ ∆CD2

Mn
(69)285

with D1 and D2 being the first and second order corrections, respectively. Below the description of the modifications done for

the new model will be discussed in detail.

2.5.1 First order correction

Based on the Hopf-Biffurcation model of Truong (Truong, 1993) that used the LB-Model as the starting point of the first order

correction, the present model does similarly. Despite that, the LB model is not transferred into the state-space formulation,290

but it is retained as the indical formulation. The model applies the superposition of the solution using a finite-difference

approximation to Duhamel’s integral to construct the cumulative effect to an arbitrary time history of angle of attack. The

LB-model described in Sections 2.1.1 to 2.1.3 will be used with the following modifications:

In the above LB-Model, predictions for drag is not accurate as will be shown in Section 3.2. This inaccuracy lies in the

determination of η in Equation (19) for the tangential force component because drag is more sensitive to tangential force than295

the lift force does. Also to maintain simplicity, parameter η is removed and the tangential force is obtained from the static data

at the time-lagged angle of attack αfn by:

CfTn
= CV ISCT (αfn). (70)

If one uses this formulation directly, at some point drag still becomes lower than the static drag value by a significant amount.

By evaluating the experimental data for several airfoils and various flow conditions, this is not physical at small angles of300
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attack especially in the downstroke regime, where it usually just returns to the static value. In fact, those experimental data

infer that strong drag hysteresis occurs only at high angles of attack beyond stall. Similarly, in the upstroke regime the drag

value increases only slightly (approximately only 20%). In Figure 3, one can see that drag hysteresis occurs when

ζ =
1

π

dCN
dα

(
1 +
√
fn

2

)2

. 0.76. (71)

Based on these observations, a simple drag limiting factor is adopted when ζn ≥ 0.76 as:305

CDDn
=


1.2CV ISCDn

; if CDDn
> 1.2CV ISCDn

and
(
CPNn

−CPNn−1

)
≥ 0.0

CV ISCDn
; if

(
CPNn

−CPNn−1

)
< 0.0

CDDn
; otherwise

(72)

Note that for the purpose of numerical implementation, it is always recommended in practice to adopt relaxation to avoid any

discontinuity which may present in the above formulation. The effects of these modifications are displayed in Figure 4.

(a) (b) (c) (d)

Figure 3. Relation between drag hysteresis in the stall regime with weighted separation parameter ζ for four airfoils. From left to right: S801

(13.5%), NACA4415 (15%), S809 (21%) and S814 (24%).

(a) (b) (c)

Figure 4. Drag reconstruction in comparison with the experimental data for S801 airfoil (Ramsay et al., 1996) applying: (a) Equation (19),

(b) Equation (70) and (c) Equations (70) + (72).
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It will also be shown in Section 3.2, that predicting moment coefficient directly from the static polar data by means of the

time-lagged angle of attack has its drawback in the correct damping effect calculation. One may obtain better results by using310

the "fitting function" as in Equation (20) instead of using Equation (34). However, this limits the usability for different airfoils,

since the fitting has to be done again for each individual airfoil. For wind turbine simulations, this is fairly impractical because

a wind turbine blade is usually constructed by several different airfoils, not to mention the interpolated shapes in between each

airfoil position. To solve for this issue, a relatively simple approach is introduced by applying a time delay on the circulatory

moment response as:315

CCMn
=


CCMn−1

exp
(
−∆s

TUM

)
−CPfn

(
CVn
−CVn−1

)
exp
(
− ∆s

2TUM

)
; if τvn < Tvl and ∆αn ≥ 0

CCMn−1
exp
(
−∆s

TDM

)
−CPfn

(
CVn −CVn−1

)
exp
(
− ∆s

2TDM

)
; if ∆αn < 0

CCMn−1
; otherwise

(73)

where,

CPfn =KC
f

dCN
dα

(αCRITn −αINV0 ). (74)

with KC
f , TUM and TDM being constants relatively insensitive to airfoils. Furthermore, the second condition of Equation (35)

is modified to avoid discontinuity which occurs at a large reduced frequency (eg. k = 0.2), for any LB-based models without320

re-calibration of the time constant as:

τvn =


τvn−1

+ 0.45
∆t

c
V ; if CP1

Nn
>CCRITN

τvn−1
exp(−∆s); if CP1

Nn
<CCRITN and ∆αn ≥ 0

τvn−1 ; otherwise

(75)

The effects of these modifications are displayed in Figure 5.

The total first order dynamic response of the airfoil is formulated as:

CD1
Nn

= CfNn
+CVNn

(76)325

CD1
Tn

= CfTn
(77)

CD1
Mn

= CfMn
+CVMn

+CCMn
(78)

where the definition and description of each variable was given in Section 2.1 for the LB model. Thus the first order lift and

drag responses can be obtained by

CD1
Ln

= CD1
Nn

cos αn−CD1
Tn

sin αn (79)330

CD1
Dn

= CD1
Nn

sin αn +CD1
Tn

cos αn (80)
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(a) (b)

Figure 5. Moment reconstruction in comparison with the experimental data for S801 airfoil (Ramsay et al., 1996) applying: (a) Equation

(34) and (b) Equation (73).

2.5.2 Second order correction

The second order correction takes the form of the non-linear ordinary differential equation according to the second order

correction of the Snel (Snel, 1997) and Adema-Snel (Adema et al., 2019) models. Generally, the basis of implementation of

the present model mostly uses the Adema-Snel (Adema et al., 2019) model where the normal force is used instead of the lift335

force as for the original Snel model (Snel, 1997) as:

∆̈CD2
Nn

+Kf21n
˙∆CD2
Nn

+Kf20n∆CD2
Nn

= F2n (81)

This way, shedding effects apply not only on the lift force but also on the drag force. Note that τ is not present in Equation (81)

in contrast to the original formulation in Equations (52) and (63). The equation is changed because the time derivatives in the

above equation is no longer with respect to time but to s= 2V t/c, similar to the ONERA model (Tran and Petot, 1980; Dat340

and Tran, 1981; Petot, 1989). This is done to nondimensionalize the equations.

In Equation (65), the Strouhal number ks was projected as a function of the angle of attack by sinαn. This modification

causes problem when the hysteresis effect takes place in both positive and negative angles because Equation (65) will be zero

and then negative, causing instability of the ODE. Thus, the original form of the Snel model (Snel, 1997) is retained in the

present model, but the constant is modified as.345

Kf20n = 20k2s [1 + 3(∆CD2
Nn

)2][1 + 3α̇n
2] (82)
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The idea for the downstroke damping as in Equation (66) is adopted in the present model, the following form and constants are

used:

Kf21n =


150ks[−0.01(∆CINVNn

− 0.5) + 2(∆CD2
Nn

)2]; if α̇n > 0

30ks[−0.01(∆CINVNn
− 0.5) + 14(∆CD2

Nn
)2]; if α̇n ≤ 0 and αn ≥ αCRITn

0.2ks; if α̇n ≤ 0 and αn < αCRITn

(83)

Note again that τ is not present in the above equation. The original formulation in Equation (66) replaces the damped oscillator350

when α̇n ≤ 0 for a self-excited oscillator of Van-der-Pol type with more damping. This is in contrast with the implementation

done in (Truong, 2016, 2017), where the self-excited oscillator is only replaced by the damped oscillator, when the flow is

reattached on the return cycle. Under such circumstances, the oscillatory behavior still subsists in the return cycle, albeit with

smaller amplitude. To accommodate this aspect, the last term of Equation (83) is applied when the angle is smaller than αCRITn .

As for the forcing term, the original form of the Snel model (Snel, 1997) is adopted as:355

F2n = 0.5ks(−0.15∆CINVNn
+ 0.05 ˙∆CINVNn

). (84)

To facilitate the inclusion of the higher harmonic effects for the pitching moment, the idealized center of pressure obtained in

the first order correction given in Equation (26) is passed into the second order model. Thus, the dynamic moment reaction

takes the form:

∆CD2
Mn

=−CPvn∆CD2
Nn

(85)360

Regarding the tangential force, a similar assumption is made as in Equation (56) where the influence of ∆CD2
Tn

is neglected in

the formulation. Finally, the second order term of the lift (∆CD2
Ln

) and drag (∆CD2
Dn

) can be calculated easily. The effects of

the second order term are displayed in Figure 6.
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(a) (b) (c)

Figure 6. Airfoils response reconstruction in comparison with the experimental data for S801 airfoil (Ramsay et al., 1996) applying only the

first order correction and with inclusion of the second order term. (a) Lift, (b) drag and (c) pitching moment.

2.6 Constants applied for the investigated dynamic stall models

The following constants are applied in the implemented dynamic stall models. These values are kept constant throughout the365

paper. The constants for the Leishman-Beddoes model are given in Table 2, for the ONERA model in Table 3 and for the

proposed IAG model in Table 4. For any model developed based on the Leishman-Beddoes type, the critical angle of attack

plays a major role. This can be obtained as the angle where the viscous pitching moment breaks or when the drag increases

significantly. The applied critical angles are given in Table 5.

Table 2. Constants applied for the Leishman-Beddoes model.

A1 A2 b1 b2 Kα Tp Tf Tv Tvl Kv η

0.3 0.7 0.14 0.53 0.75 1.7 3.0 6.0 6.0 0.2 0.95

Table 3. Constants applied for the ONERA model.

λL sL σL r0 r2 a0 a2 e2

0.17 π 2π 0.2 0.2 0.3 0.2 -0.35
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Table 4. Constants applied for the IAG model.

A1 A2 b1 b2 Kα Tp Tf Tv Tvl Kv KC
f TUm TDm

0.3 0.7 0.7 0.53 0.75 1.7 3.0 6.0 6.0 0.2 0.1 1.5 1.5

Table 5. Critical angle of attack (αCRITn ) applied for the Leishman-Beddoes and IAG models.

S801 NACA4415 S809 S814

15.1◦ 10◦ 14.1◦ 10◦

3 Results and Discussion370

The four state-of-the-art dynamic stall models discussed above (Leishman-Beddoes, ONERA, Snel, Adema-Snel) have been

used as a basis for examining the dynamic loads of four different pitching airfoils at various flow conditions. Experience gained

from those models is used to formulate a new 2nd order dynamic stall model, namely IAG model by evaluating the weakness

and strength of each model. Except for the Leishman-Beddoes model, all presented models need to solve a set of differential

equations. For this purpose, the Euler-Heun forward integration method is used. The validation is done by comparing the375

calculations with experimental data performed at the Ohio State University for the S801 airfoil (13.5% relative thickness)

(Ramsay et al., 1996), NACA4415 airfoil (15% relative thickness) (Hoffman et al., 1996), S809 airfoil (21% relative thickness)

(Ramsay et al., 1995) and S814 airfoil (24% relative thickness) (Janiszewska et al., 1996). All selected test cases are for the

airfoils employed with a leading edge grit (turbulator) to enable the "soiled" effects on a wind turbine blade at a Reynolds

number of around 750K. Note that these polar data are different with the one used for example by Sheng et al. (Sheng et al.,380

2010) where the natural transition cases were taken. Therefore, the critical angles of attack are also different. The results of the

studies are presented in the following sections.

3.1 Sensitivity against applied time step size

In this section, the sensitivity of the investigated models to changes in the time step size is evaluated. In practice, time step is

an important aspect that determines the computational effort needed for BEM/vortex lattice method calculations in industry.385

Usually, the a step of around ∆t≈ 0.003-0.05 s (20-300 Hz) is applied in practice. Note that a period of turbine rotation

roughly corresponds to a period of pitching cycle of the airfoil section undergoing yawed or sheared inflow conditions. To

better visualize the time step size within the OSU measurement, a sample of test case of the S801 airfoil at k = 0.073 is

considered. The measurement was conducted at a tunnel speed of 23.7 m/s and a chord length of 0.457 m, which can be

transferred to a cycle period of T = πc/(V k) = 0.829 s or a frequency f of 1.2 Hz. This information directly leads to a390

conclusion that one cycle of dynamic stall is actually only resolved by a maximum of 300∆t in wind turbine simulations.
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In Figure 7, the effects of various time step size on several dynamic stall models are shown. The changes obtained by

varying the time step size stem from the integration of the differential equations, thus causing numerical uncertainty. The

time step assessment for the Leishman-Beddoes model is not included since it is not presented in the state-space formulation.

Furthermore, a fixed time step approach is often adopted in wind turbine computations even for high fidelity CFD approaches.395

Because dynamic stall models shall be coupled with a separate with turbine load solver, e.g., blade-element momentum, vortex

model or actuator line model, therefore the studies are relevant. It can be seen clearly that the ONERA and Snel models are

relatively insensitive to any changes in time step size, which make the models suitable for calculations using coarser temporal

discretization. However, those models lack of higher harmonic fluctuations and might not perform well in the near/post stall

conditions. On the other hand, the Adema model is able to reproduce the higher harmonic effects, but the response is strongly400

dependent upon the time step size. In this regard, the IAG model turns out to be less sensitive to temporal discretization

variation.

Figure 7. Sensitivity and stability of several dynamic stall models with time step size variation. T represents the oscillation period. S801

airfoil, k = 0.073, α= 20◦, ∆α= 10◦.

3.2 Comparison against experimental data

While the effects of time step size are assessed in Section 3.1, this section compares the predicted dynamic forces in comparison

with the measurement data. For a fair comparison, all models are assessed with the same time step size of ∆t= T/1440. The405

evaluations are performed on the S801 airfoil at k = 0.073, at the same condition as already presented in Section 3.1. The

comparison of each model is shown in Figures 8 to 12 for the Leishman-Beddoes, ONERA, Snel, Adema and IAG models,

respectively. Note that the constants of the other four existing dynamic stall models are taken directly from literature without

further calibration for the S801 airfoil. Therefore, it is already expected that their performance will not be optimal. The main

purpose of the comparison is not to study their accuracy, but to analyze the robustness of each model for a different airfoil410

without tuning the constants. On the other hand, the constants for the IAG model in Table 4 were obtained using the S801

airfoil. To enable a fair assessment on the model robustness, the IAG model will also be used to reconstruct the dynamic polar

data of four airfoils with different relative thickness without changing the constants in Section 3.7.

As already well documented in several literature, the general trend of aerodynamic forces can be reproduced fairly well by

the Leishman-Beddoes model in Figure 8. However, the model cannot reproduce the higher order harmonics and shows some415
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Figure 8. Dynamic forces reconstruction using the Leishman-Beddoes model in comparison with the measurement data (Ramsay et al.,

1996) for ∆t= T/1440. S801 airfoil, k = 0.073, α= 20◦, ∆α= 10◦.

Figure 9. Dynamic forces reconstruction using the ONERA model in comparison with the measurement data (Ramsay et al., 1996) for

∆t= T/1440. S801 airfoil, k = 0.073, α= 20◦, ∆α= 10◦.

discrepancies on the predicted drag and moment coefficients, as it was documented in (Bangga et al., 2020). In contrast, the

original ONERA and Snel models cannot predict the drag and moment coefficients in the original formulations. Thus, only

Figure 10. Dynamic forces reconstruction using the Snel model in comparison with the measurement data (Ramsay et al., 1996) for ∆t=

T/1440. S801 airfoil, k = 0.073, α= 20◦, ∆α= 10◦.
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the static polar data is shown. The Snel model actually shows an acceptable accuracy even though the constants are taken

as found in literature. The higher harmonic effects are unfortunately not captured by this model. This is further refined by

the Adema model which was developed as an improvement for the Snel model. The model performs fairly well for the lift420

and drag predictions, though the drag value at small angles of attack is a bit off. Again, the main drawback of the model is

its dependency upon the time step size applied as already shown in Section 3.1. The pitching moment prediction is also not

included in its formulations. These disadvantages are better treated in the proposed IAG model. Not only the prediction of the

lift coefficient, but also the accuracy of drag prediction is improved significantly. The modifications described in Section 2.5

result in the improvement at low and high angles of attack regimes. The model is also able to reconstruct the pitching moment425

polar accurately, which is important for aeroelastic calculations of wind turbine blades.

For the following sections, the proposed IAG model will be tested under various flow conditions and for several airfoils at

various relative thicknesses in comparison with measurement data. Note that these calculations are performed without changing

the constants to assess the robustness of the model at different flow conditions.

Figure 11. Dynamic forces reconstruction using the Adema model in comparison with the measurement data (Ramsay et al., 1996) for

∆t= T/1440. S801 airfoil, k = 0.073, α= 20◦, ∆α= 10◦.

Figure 12. Dynamic forces reconstruction using the IAG model in comparison with the measurement data (Ramsay et al., 1996) for ∆t=

T/1440. S801 airfoil, k = 0.073, α= 20◦, ∆α= 10◦.
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3.3 Effects of time signal deviation430

The actual pitching motion within the OSU measurement differs slightly from the intended motion. The actual time series

of the angle of attack is included in the experimental data (Ramsay et al., 1996; Hoffman et al., 1996; Ramsay et al., 1995;

Janiszewska et al., 1996). To assess the effects of this time signal deviation on the aerodynamic response, the calculations

using this time signal data were performed applying the IAG model. The results are compared with the experimental data and

the results of the IAG model presented in Section 3.2. Note that this time signal data is fairly coarse, and can cause problems435

for second order dynamic stall models because the gradient of α change can be extremely large. To cover for this issue, the

time signal is interpolated in between each available point using a third-order cubic-spline interpolation. The time signals are

discretized by ∆t= T/1440 over a single pitching period. The first period of oscillation is used for initialization of the time

integration, thus a constant angle of attack is applied as shown in Figure 13.

Figure 13. Comparison of the timeseries of the idealized sinusoidal angle of attack to the exact signals in the experimental campaign for

S801 airfoil, k = 0.073, α= 20◦, ∆α= 10◦.

Figure 14 presents the influence of the time signal variation on the aerodynamic performance in terms of CL, CD and CM .440

TS labels the exact time signals in the experimental campaign. Although the time signal difference has almost no influence of

the global prediction characteristics, some deviation with the idealized sinusoidal motion can be noticed clearly. For example,

the increased lift build up in the upstroke regime before stall and the location of the lift stall. Some deviations on the drag and

pitching moment coefficients are observed as well. For the rest of the paper, the prediction procedure using the actual time

signal from the experimental data is used for best consistency with the experimental campaign.445
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Figure 14. Dynamic forces reconstruction by the IAG model in comparison with the measurement data (Ramsay et al., 1996) for ∆t=

T/1440 using the actual angle of attack in the experimental campaign. TS labels the exact time signals in the experimental campaign. S801

airfoil, k = 0.073, α= 20◦, ∆α= 10◦.

3.4 Performance of the model for different mean angles of incidence

In this section, the effects of the mean angle of attack are evaluated. Three different angles of attack at the same inflow condi-

tions are selected for this purpose. These are α = 8◦, 14◦ and 20◦. Note that these mean angles of attack are only approximations

since the actual time signal data from the experimental campaign is used. The selected mean angles represent the regime of

attached flow, partly separated and fully separated flow conditions. These are helpful to assess the model performance under450

various flow situations.
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Figure 15. Lift reconstruction by the IAG model in comparison with the measurement data (Ramsay et al., 1996) for ∆t= T/1440 using the

actual angle of attack in the experimental campaign at various α. From left to right: α= 8◦, α= 14◦ and α= 20◦. S801 airfoil, k = 0.073,

∆α= 10◦.

Figure 16. Drag reconstruction by the IAG model in comparison with the measurement data (Ramsay et al., 1996) for ∆t= T/1440 using the

actual angle of attack in the experimental campaign at various α. From left to right: α= 8◦, α= 14◦ and α= 20◦. S801 airfoil, k = 0.073,

∆α= 10◦

Figure 15 presents the results for the lift coefficient under these three investigated mean angles of attack. The model performs

very well for these different cases. The maximum lift is a bit overestimated in the model for the lowest α, but in general all

unsteady lift characteristics in the measurement data are reproduced in a sound agreement with the experimental data. A similar

behavior is shown for the drag prediction depicted in Figure 16. The proposed model captures the increased drag effect and455

its shedding characteristics well, though the drag coefficient is overestimated at small angles of attack in the upstroke phase

(below the dynamic stall onset at α≈ 20◦). However, the simple modifications applied in Section 2.5 result in a good prediction

of the downstroke drag coefficient as compared with the experimental data. In Figure 17, the prediction for pitching moment

is shown. Here the predicted moment coefficient is in a good agreement with the measured values.
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Figure 17. Pitching moment reconstruction by the IAG model in comparison with the measurement data (Ramsay et al., 1996) for ∆t=

T/1440 using the actual angle of attack in the experimental campaign at various α. From left to right: α= 8◦, α= 14◦ and α= 20◦. S801

airfoil, k = 0.073, ∆α= 10◦

3.5 Performance of the model for different reduced frequencies460

The effects of pitching frequency on the aerodynamic response will be discussed in this section. Three different reduced

frequencies are examined, namely k = 0.036, 0.073 and 0.111. The stall regime is shown here, where the prediction is the most

challenging. The actual time signals as of the measurement campaign are used, following the procedure described in Section

3.3.

Figure 18. Lift reconstruction by the IAG model in comparison with the measurement data (Ramsay et al., 1996) for ∆t= T/1440 using

the actual angle of attack in the experimental campaign at various k. From left to right: k = 0.036, k = 0.073 and k = 0.111. S801 airfoil,

α= 20◦, ∆α= 10◦.

Figure 18 displays the results for the dynamic lift coefficient response. The lowest reduced frequency of 0.036 is dominated465

by the viscous effects. It represents the case where the "delayed" angle of attack response is the weakest. It can be seen that

the maximum attained lift coefficient increases with increasing k, which indicates the reduction of the "viscous" effects with

increasing pitching frequency. The gradient of the lift polar in the upstroke and downstroke phase is also increasing as well.
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These are followed by the reduction of the higher harmonics of the shedding frequency effects. These characteristics are present

in both experimental data and predictions delivered by the IAG model.470

Figure 19. Drag reconstruction by the IAG model in comparison with the measurement data (Ramsay et al., 1996) for ∆t= T/1440 using

the actual angle of attack in the experimental campaign at various k. From left to right: k = 0.036, k = 0.073 and k = 0.111. S801 airfoil,

α= 20◦, ∆α= 10◦.

Figure 20. Pitching moment reconstruction by the IAG model in comparison with the measurement data (Ramsay et al., 1996) for ∆t=

T/1440 using the actual angle of attack in the experimental campaign at various k. From left to right: k = 0.036, k = 0.073 and k = 0.111.

S801 airfoil, α= 20◦, ∆α= 10◦.

Figure 21. Effects of k on the aerodynamic response by the IAG model for ∆t= T/1440. S801 airfoil, α= 20◦, ∆α= 10◦.
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A similar behavior is also displayed in drag and pitching moment in Figures 19 and 20, respectively. It is obvious that stall

occurs much earlier for a smaller k value. Interestingly, it is now observed that the hysteresis is smaller for CD and CM at k =

0.111 in comparison to the results at k = 0.073, both in experimental data and predictions. This effect is not clearly observed

for CL. The reason might be related to the reduced viscous effect at this large reduced frequency. This indicates that the polar

becomes more "inviscid" when k increases above a certain value. To better investigate the limit of this hypothesis, the IAG475

model is used to reconstruct the dynamic polar data at various k by applying an idealized sinusoidal motion as presented in

Figure 21. Only the last DS cycle is shown for clarity of the observation. It can be seen clearly, that above k = 0.1 shedding

effects are much weaker. Lift, drag and their gradient increase considerably. For the moment coefficient, the difference between

the upstroke and downstroke value becomes much negligible with increasing k.

3.6 Performance of the model for different pitching amplitudes480

In this section, the effects of pitching amplitude on the aerodynamic response of a pitching airfoil is investigated. The mean

angle of attack is fixed at α= 20◦. Note again that α is only an approximation because the actual time signal data from the

measurement campaign is applied. This large mean angle of attack is purposely selected because the post-stall characteristic is

of interest and is well known for its violent vibration, even for the static condition. The small amplitude in this case means that

the whole pitch oscillation occurs within the stall regime.485

Figures 22 to 24 display the dynamic force responses due to pitching motion of the airfoil predicted by the IAG model in

comparison with the experimental data. The model accurately reconstructs the dynamic forces despite the predicted case is

challenging within the post stall regime. Interesting to note is that the small pitching amplitude case induces stronger shedding

effects for lift than the larger amplitude case. This can be explained as following. As described by Leishman in his papers

(Beddoes, 1982; Leishman, 1988; Leishman and Beddoes, 1989), the airfoil sees a lagged force response compared to the490

imposed disturbance. Therefore, in his model, a time-lagged angle of attack is introduced as the "effective" angle actually seen

by the airfoil section. When the pitching motion takes place partly within the fully separated region (in the static case) and

Figure 22. Lift reconstruction by the IAG model in comparison with the measurement data (Ramsay et al., 1996) for ∆t= T/1440 using the

actual angle of attack in the experimental campaign at various ∆α. Left: ∆α= 5.5◦; right: ∆α= 10◦. S801 airfoil, k = 0.073, α= 20◦.

27



partly in the attached/partly separated flow region, the airfoil still sees the lower angle (where the flow is still attached) even

though the pitching motion already reaches the post-stall regime. This effect stops/reduces when the effective angle is larger

than the critical angle defined in Table 5. As the critical angle for the S801 airfoil is defined at 15.1◦, the lower amplitude case495

is fully operating within the stall regime, where the attached flow effect is not present.

Figure 23. Drag reconstruction by the IAG model in comparison with the measurement data (Ramsay et al., 1996) for ∆t= T/1440 using

the actual angle of attack in the experimental campaign at various ∆α. Left: ∆α= 5.5◦; right: ∆α= 10◦. S801 airfoil, k = 0.073, α= 20◦.

Figure 24. Pitching moment reconstruction by the IAG model in comparison with the measurement data (Ramsay et al., 1996) for ∆t=

T/1440 using the actual angle of attack in the experimental campaign at various ∆α. Left: ∆α= 5.5◦; right: ∆α= 10◦. S801 airfoil,

k = 0.073, α= 20◦.

3.7 Performance of the model for different airfoils

In this section, the performance and robustness of the proposed IAG model are assessed for airfoils with different relative

thickness. All model constants in Table 4 remain the same for all calculations. The difference from one airfoil calculation to

the other lies only in the critical angle of attack value as shown in Table 5. The value was obtained simply by looking at the500

static polar data where the viscous pitching moment breaks or when the drag increases significantly.
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Figure 25. Lift reconstruction by the IAG model in comparison with the measurement data (Ramsay et al., 1996; Hoffman et al., 1996;

Ramsay et al., 1995; Janiszewska et al., 1996) for ∆t= T/1440 using the actual angle of attack in the experimental campaign for different

airfoils. From left to right: S801 (13.5%), NACA4415 (15%), S809 (21%) and S814 (24%). k = 0.073, α= 20◦, ∆α= 10◦.

Figure 26. Drag reconstruction by the IAG model in comparison with the measurement data (Ramsay et al., 1996; Hoffman et al., 1996;

Ramsay et al., 1995; Janiszewska et al., 1996) for ∆t= T/1440 using the actual angle of attack in the experimental campaign for different

airfoils. From left to right: S801 (13.5%), NACA4415 (15%), S809 (21%) and S814 (24%). k = 0.073, α= 20◦, ∆α= 10◦.

Figure 27. Pitching moment reconstruction by the IAG model in comparison with the measurement data (Ramsay et al., 1996; Hoffman

et al., 1996; Ramsay et al., 1995; Janiszewska et al., 1996) for ∆t= T/1440 using the actual angle of attack in the experimental campaign

for different airfoils. From left to right: S801 (13.5%), NACA4415 (15%), S809 (21%) and S814 (24%). k = 0.073, α= 20◦, ∆α= 10◦.
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Figure 28. Center of pressure reconstruction in comparison with the measurement data by the IAG model for ∆t= T/1440 using the actual

angle of attack in the experimental campaign for different airfoils. From top to bottom: S801 (13.5%), NACA4415 (15%), S809 (21%) and

S814 (24%). k = 0.073, α= 20◦, ∆α= 10◦.

30



Despite the increased airfoil thickness from 13.5% to 24%, Figures 25 to 27 demonstrate that the reconstructed dynamic

forces are in a good agreement with the experimental data, not only for the general trend but also the higher harmonic effects.

As also the case for the Leishman-Beddoes model, it is important to select the appropriate value for the critical angle of attack.

The simple approach used in the present paper has shown its usefulness and potentially reduce the complexity of parameter505

tuning for industrial applications. Elgammi et al. (Elgammi and Sant, 2016) for example defined two different critical angles

of attack, one for CN and the other for CT that were shown to improve the prediction accuracy. Although their attempt might

be beneficial, this is not followed in this work because one main aim of the studies is to reduce parameter tuning required for

one to the other cases.

3.8 Predictions of the center of pressure510

To further complement the analyses conducted in Section 3.7, the location of the actual pressure center is calculated in this

section as:

Xp =−CM
CL

(86)

which indicates the distance of the pressure point to the quarter chord position where CM is defined.

A correct location of the pressure point is important for determining the stability on aeroelastic simulations of wind turbine515

blades. The results of the calculations both for the experimental data and for the proposed IAG model are presented in Figures

28 for all four investigated airfoils both as time series and as the polar plot. It can be seen clearly that the agreement between

the experimental data and the present predictions are excellent for all investigated airfoils.

3.9 L2 norm of error analyses

Holierhoek et al . (Holierhoek et al., 2013) introduced a way for quantifying the absolute error between the experimental data520

and modeled lift coefficient. The general formulation reads:

Lφ2 =

√√√√ 1

N

N∑
i

(
φmodi −φexpi

)2
(87)

with φ being the variable of interest, i is the current sample and N is the total number of sample. In their paper, however, only

lift was considered. Here all three force components will be shown for four different airfoils. Figure 29 displays the quantified

error for two different flow category, attached and deep stall. One can see that generally the attached flow case is predicted very525

well, while the error increases as the flow condition becomes more complicated. Interestingly, especially for lift, it seems that

the error reduces with increasing airfoil thickness. The reason for the larger error obtained for the thinner airfoil is attributed to

the complex characteristics of the leading edge stall, causing severe load variations especially with increasing angle of attack.

Thus, it makes the prediction more challenging.
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Figure 29. Quantified L2 norm of error with respect to the measurement data for four airfoils. Top: attached flow case ( k = 0.073, α= 8◦,

∆α= 5.5◦), bottom: deep stall case ( k = 0.073, α= 20◦, ∆α= 10◦)

4 Conclusions530

Comprehensive studies on the accuracy of several state-of-the-art dynamic models to predict the aerodynamic loads of a

pitching airfoil have been conducted. From the studies, the strength and weaknesses of each model were highlighted. This

information was then transferred to develop a new second order dynamic stall model proposed in this paper. The new model

improves the prediction for the aerodynamic forces and their higher harmonic effects due to vortex shedding, developed for

robustness to improve its usability in practical wind turbine calculations. Details on the model characteristics, modifications535

and treatment for numerical implementation were summarized in the present paper. The studies were conducted by examining

the influence of the time step size, time signal deviation, mean angle of attack, reduced frequency, pitching amplitude and

variation of the airfoil thickness. Several main conclusions can be drawn from the work.

– Time step size applied in wind turbine simulations is usually very coarse, the studies reveal that this has an influence

on the consistency of the predicted loads especially for the second order dynamic stall models. The Leishman-Beddoes,540

ONERA and Snel models are relatively insensitive to time step size variation. The Adema-Snel model shows the strongest

time step dependency. In this regard, the IAG model is less sensitive to temporal discretization.
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– The general characteristics of the polar data can be predicted by all investigated dynamic stall models. Despite that, only

the Adema model and the present IAG model are able to demonstrate the higher harmonic effects.

– The exact time signal imposed based on the measurement campaign improves the prediction accuracy of the IAG model545

in comparsion with the idealized sinusoidal motion.

– The dynamic forces reconstructed by the IAG model are in a sound agreement with the experimental data under various

flow conditions by variation of α, k, ∆α and for four different airfoils without changing the constants.

– Increasing k above 0.1 reduces the viscous effects and vortex shedding influence.

– When the airfoil operates at a high αwithin the stall regime, a small ∆α leads to increased vibrations for lift, but contrary550

for the pitching moment.
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Variables

s nondimensional time

V incoming wind speed

t time

c chord

f separation factor

CN normal force coefficient

CT tangential force coefficient

CL lift force coefficient

CD drag force coefficient

CM pitching moment coefficient

CPN total inviscid normal force coefficient

CPN1 time lagged total inviscid normal force coefficient

CIN impulsive inviscid normal force coefficient

CCN circulatory inviscid normal force coefficient

CfN viscous normal force coefficient

CfT viscous tangential force coefficient

CfM viscous pitching moment coefficient

CCM circulatory pitching moment coefficient

CVN vortex lift normal force coefficient

CCRITN critical normal force coefficient

X,Y,Dn deficiency functions

M Mach number

Kf stiffness coefficient

F1 first order forcing term

F2 second order forcing term

Greek letters

α angle of attack

αe effective angle of attack

αf time lagged effective angle of attack

αCRIT critical angle of attack

β Mach number dependent parameter

τv nondimensional vortex time

τ time constant
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Superscripts
INV static inviscid
V ISC static viscous
I impulsive

CRIT critical
D dynamic loading
D1 first order correction
D2 second order correction

Subscripts

n present sampling time

f viscous lagged value

v vortex lift affected value
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