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Abstract. Robust and accurate dynamic stall modeling remains one of the most difficult tasks in wind turbine load calculations

despite its long research effort in the past. In the present paper, a new second order dynamic stall model is developed with the

main aim to model the higher harmonics of the vortex shedding while retaining its robustness for various flow conditions and

airfoils. Comprehensive investigations and tests are performed at various flow conditions. The occurring physical characteris-

tics for each case are discussed and evaluated in the present studies. The improved model is also tested on four different airfoils5

with different relative thicknesses. The validation against measurement data demonstrates that the improved model is able to

reproduce the dynamic polar accurately without airfoil specific parameter calibration for each investigated flow condition and

airfoil. This can deliver further benefit to industrial applications where experimental/reference data for calibrating the model is

not always available.
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1 Introduction

An accurate prediction of wind turbine blade loads is influenced by many parameters including 3D and unsteady effects. The

first mainly occurs in the root and tip areas of the blade due to radial flow and induced velocity influences, respectively (Bangga,

2018). The latter can occur due to variation of the inflow conditions caused by yaw misalignment, wind turbulence, shear &

gusts, tower shadow and aeroelastic effects of the blade. The above mentioned phenomena may result in dynamic stall (DS).15

Experimental studies (Martin et al., 1974; Carr et al., 1977; McAlister et al., 1978) showed that the aerodynamic forces can

differ significantly in comparison to the static condition. DS is often initiated by the generation of a leading edge vortex (LEV),

which increases positive circulation effect on the airfoil suction side causing delayed stall (Bangga, 2019). This intense leading

edge vortex is convected downstream along the airfoil towards the trailing edge. At the same time, the lift force increases

significantly and the pitching moment becomes more negative compared to the static values. A significant drag increases is20

observed at large angles of attack. An example is shown in Figure 1. Afterwards, a trailing edge vortex (TEV) with opposite

rotational direction than LEV is formed, which pushes the leading edge vortex towards the wake area. This onset may result

in a significant drop of the lift coefficient (CL) and can be dangerous for the blade structure itself, although dynamic stall also

generally enhances aerodynamic damping.
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Figure 1. Typical dynamic stall behavior of S801 airfoil. Data obtained from (Ramsay et al., 1996).

To model the behavior of the airfoil under these situations, semi-empirical models can be used. The models are known to25

produce reasonable results without any notable increase in computational effort. Despite that, these models usually cannot

reproduce higher harmonics of the load fluctuations. Furthermore, the applied constants shall be adjusted according to the

flow conditions and airfoils. Leishman & Beddoes (LB) (Leishman and Beddoes, 1989) have developed a model for dynamic

stall combining the flow delay effects of attached flow with an approximate representation of the development and effect of

separation (Larsen et al., 2007). This model was developed for helicopter applications and therefore includes a fairly elabo-30

rate representation of the nonstationary attached flow depending on the Mach number and a rather complex structure of the

equations representing the time delays (Larsen et al., 2007). Hansen et al. (Hansen et al., 2004) simplified the model for wind

turbine applications by removing the consideration of compressibility effects and the leading edge separation. The latter was

argued because the relative thickness of wind turbine airfoil is typically no less than 15%. This model was called Risø model

in (Larsen et al., 2007). Examples of the other models are given by Øye (Øye, 1991), Tran & Petot (ONERA model) (Tran35

and Petot, 1980) and Tarzanin (Boeing-Vertol model) (Tarzanin, 1972). To better model the vortex shedding characteristics

at large angles of attack, second order dynamic stall models were introduced. An example of this model was given by Snel

(Snel, 1997) which makes use of the difference between the inviscid to the viscous static polar data as a main forcing term for

the dynamic polar reconstruction, in contrast to the LB model that uses the changes of the angle of attack over the time. An

improved version of the Snel model was proposed recently by Adema (Adema et al., 2019) to cover for the increased shedding40

effects in the downstroke phase. All above mentioned models employ the static polar data and dynamic flow parameters as the

input needed for the dynamic polar reconstruction. Then, the models compute the dynamic force difference required for the

reconstruction process.

Although many attempts have been dedicated for dynamic stall modeling (Gupta and Leishman, 2006; Larsen et al., 2007;

Adema et al., 2019; Elgammi and Sant, 2016; Wang and Zhao, 2015; Sheng et al., 2006; Galbraith, 2007; Sheng et al., 2008),45

engineering calculations in industry are still relying on the very basic classical dynamic stall models such as the Leishman-

Beddoes and Snel models. The reason is the simplicity to tune in the models for different airfoils and for different flow

conditions. Therefore, one major key for a model to be used in industrial applications is robustness of the model itself, i.e., the
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model is easy to apply with small number of well defined user parameters. One of the purposes of this paper is to document

widely used dynamic stall models in research and industries. These include the first order LB model and the second order50

Snel model. A very recently improved Snel model according to Adema (Adema et al., 2019) will also be evaluated. The

mathematical formulations of these models will be presented in this report. Weaknesses of existing dynamic stall modeling

shall be identified, and possible corrections to those limitations will be described. Finally, a new second order dynamic stall

modeling will be proposed that is able to model not only the second order lift and drag forces, but also the pitching moment

along with calculation examples in comparison to experimental data for different airfoils and flow conditions.55

The paper is organized as following. Section 2 describes the mathematical formulation of four dynamic stall models and

the new model developed in this work. Then, in Section 3 assessments are carried out on the performance of each model in

comparison with measurement data. The new model is further tested at various flow conditions, and to examine its robustness

on four different airfoils without further calibrating the constants. Finally, all results will be concluded in Section 4.

2 Mathematical Formulations60

In this section the mathematical formulations of each model are described in detail. The reasons are mainly to provide infor-

mation on how each model was employed and to gain deeper insights for further developing the new model. Note that each

existing model was developed by different authors, thus different symbols and formulation methods were adopted in those

publications (Beddoes, 1982; Leishman, 1988; Leishman and Beddoes, 1989; Snel, 1997; Adema et al., 2019). In this paper,

all models are described in a consistent way for clarity and for easier interpretation/implementation process.65

2.1 Leishman-Beddoes model

The original Leishman-Beddoes model is composed by three main contributions representing various flow regimes: (1) un-

steady attached flow, (2) unsteady separated flow and (3) dynamic stall. The present section will elaborate the mathematical

description and its physical interpretation of each module. Figure 2 illustrates several main parameters needed for modeling

the dynamic stall characteristics.70

2.1.1 Unsteady attached flow

In this module, the unsteady aerodynamic response of the loads is represented by the time delay effects. The indical formulas

were constructed based on the work of Beddoes (Beddoes, 1982), and have been refined by Leishman (Leishman, 1988). The

loads are assumed to originate from two main sources; one for the initial noncirculatory loading from the piston theory and

another for the circulatory loading which builds up quickly to the steady state value (Leishman and Beddoes, 1989). In the75

formulation, the relative distance traveled by the airfoil in terms of semi-chords is represented by s= 2V t/c that can be used

also to describe the nondimensional time. Note that V , t and c are freestream wind speed, time and chord length, respectively.

For a continuously changing angle of attack αn, the effective angle of attack (αen ) can be represented as:

αen = αn−Xn−Yn (1)
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Figure 2. Illustration of main aerodynamic parameters needed for modeling the dynamic stall characteristics.

where n is the current sample time. The last two terms describe the deficiency functions that are given by:80

Xn =Xn−1 exp
(
−b1β2∆s

)
+A1 ∆αn exp

(
−b1β2∆s/2

)
(2)

Yn = Yn−1 exp
(
−b2β2∆s

)
+A2 ∆αn exp

(
−b2β2∆s/2

)
(3)

where

∆αn = αn+1−αn (4)

∆s= sn− sn−1. (5)85

In these equations, b1, b2, A1 and A2 are constants. The variable β represents the compressibility effects and is formulated as

β =
√

1−M2. Because information about the previous cycle is needed in the formulations, initializations are required. The

solution needs to develop for a certain time until convergence of the resulting unsteady loads is obtained.

The circulatory normal force due to an accumulating series of step inputs in angle of attack can be obtained using

CCNn
=
dCN
dα

(αen −αINV0 ) (6)90

The variable α0INV
is the angle of attack for zero inviscid normal force. The original formulation of the model disregarded the

use of αINV0 . However, this term is important when the airfoil has a finite camber. This has been pointed out as well by Hansen

et al. (Hansen et al., 2004).

The noncirculatory (impulsive) normal force is obtained by

CINn
=

4KαTI
M

(
∆αn
∆t
−Dn

)
. (7)95

where TI is given by TI =Mc/V . The deficiency function Dn is given by

Dn =Dn−1 exp
(
−∆t

KαTI

)
+

(
∆αn−∆αn−1

∆t

)
exp
(
−∆t

2KαTI

)
, (8)

and ∆t= tn− tn−1.
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The total normal force coefficient under attached flow conditions is given by the sum of circulatory and noncirculatory

components as100

CPNn
= CCNn

+CINn
. (9)

2.1.2 Unsteady separated flow

Leishman & Beddoes (Leishman and Beddoes, 1989) stated that the onset of leading edge separation is the most important

aspect in dynamic stall modeling. The condition at when leading edge stall occurs, is controlled by a critical leading edge

pressure coefficient that is linked into the formulation by defining a lagged normal force coefficient CP1
Nn

as:105

CP1
Nn

= CPNn
−Dpn (10)

where Dpn is given by

Dpn =Dpn−1
exp
(
−∆s

Tp

)
+
(
CPNn

−CPNn−1

)
exp
(
−∆s

2Tp

)
. (11)

It has been investigated by Leishman & Beddoes (Leishman and Beddoes, 1989) that the calibration time constant Tp is largely

independent of the airfoil shape. The substitute value of the effective angle of attack incorporating the leading edge pressure110

lag response may be obtained using

αfn = αINV0 +

(
CP1
Nn

dCN/dα

)
(12)

In most of airfoil shapes, the progressive trailing edge separation causes loss of circulation and introduces nonlinear effects

on the lift, drag and pitching moment, especially on cambered airfoils. This is even more important for wind turbine airfoils

because the relative thickness is large. To derive a correlation between the normal force coefficient with the separation location115

(fn), the relation based on the flat plate from Kirchhoff/Helmholtz can be used, that reads:

CV ISCNn
=
dCN
dα

(
1 +
√
fn

2

)2

(αn−αV ISC0 ). (13)

The location of the separation point is usually obtained by a curve-fitting procedure in literature. For example, Leishman &

Beddoes (Leishman and Beddoes, 1989) proposed the following correlation

fn =


1− 0.3 exp

(
αn−α1

S1

)
; αfn ≤ α1

0.04 + 0.66 exp
(
α1−αn
S2

)
; αfn > α1

(14)120

The coefficients S1 and S2 define the static stall characteristic while α1 defines the static stall angle. The derivation was based

on the NACA 0012, HH-02 and SC-1095 airfoils that have a single break point of the static lift force coefficient. Gupta &

Leishman (Gupta and Leishman, 2006) proposed the formulation for the S809 airfoil as:

fn =


c1 + a1 exp(S1αn); αfn ≤ α1

c2 + a2 exp(S2αn); α1 < αfn < α2

c3 + a3 exp(S3αn) : αfn ≥ α2

(15)
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that has two break points (α1 and α2) of the static lift force coefficient, where c1, c2, c3, a1, a2 and a3 are constants.125

The additional effects of the unsteady boundary layer response may be represented by application of a first-order lag to the

value of fn to produce the final value for the unsteady trailing edge separation point f2n (Leishman and Beddoes, 1989). This

can be represented as

f2n = fn−Dfn (16)

where Dfn is given by130

Dfn =Dfn−1 exp
(
−∆s

Tf

)
+ (fn− fn−1) exp

(
− ∆s

2Tf

)
, (17)

and Tf is a constant. Then, the unsteady viscous normal force coefficient for each sample time can be obtained using

CfNn
=
dCN
dα

(
1 +

√
f2n

2

)2

(αen −αV ISC0 ) +CINn
(18)

The tangential component of the force can be obtained by (Leishman and Beddoes, 1989):

CfTn
=−η dCN

dα
α2
en

√
f2n (19)135

note that positive CfTn
is defined in the direction of the trailing edge while η is a constant.

According to Leishman & Beddoes (Leishman and Beddoes, 1989) and Gupta & Leishman (Gupta and Leishman, 2006), a

general expression for the pitching moment behavior cannot be obtained from Kirchhoff theory, and an alternative empirical

relation must be formulated. Gupta & Leishman (Gupta and Leishman, 2006) proposed the following formulation for the S809

airfoil140

CfM =

CM0
+
(
K0 +K1(1− f2n) +K2 sin(πfm2n)

)
; αn ≤ α2

CM0
+
(
K0 +K3 exp(K4f

m
2n)
)

; αn > α2

(20)

where CM0
defines the moment coefficient at zero normal force and K0 is the mean offset of the aerodynamic center from the

quarter chord position, K1, K2, K3, K4 and m are constants.

2.1.3 Dynamic stall

The third part of the model describes the post-stall characteristics where the vortical disturbances near the leading edge become145

stronger. The effect of vortex shedding is given by defining the vortex lift as the difference between the linearized value of the

unsteady circulatory normal force and the unsteady nonlinear normal force obtained from the Kirchhoff approximation, that

reads

CVn
= CCNn

(1−Kn) (21)

where Kn is given by150

Kn =
1

4

(
1 +

√
f2n

)2
. (22)
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The normal force is allowed to decay, but it is updated with a new increment in the normal force based on prior forcing

condition, that can be defined as

CVNn
=


CVNn−1

exp
(
−∆s

Tv

)
+
(
CVn −CVn−1

)
exp
(
−∆s

2Tv

)
; if 0< τvn < Tvl

CVNn−1
exp
(
−∆s

Tv

)
; otherwise

(23)

where Tv and Tvl are the vortex decay and center of pressure travel time constants, respectively. The nondimensional vortex155

time is given by (Pereira et al., 2011; Elgammi and Sant, 2016):

τvn =

τvn−1 + 0.45
∆t

c
V ; if CP1

Nn
>CCRITN

0; if CP1
Nn

<CCRITN and ∆αn > 0
(24)

with CCRITN being the inviscid critical static normal force, usually indicated by the break of the (viscous) moment polar at the

critical angle of attack αCRITn . This can be formulated as:

CCRITN =
dCN
dα

(αCRITn −αINV0 ). (25)160

The idealized variation of the center of pressure with the convection of the leading edge vortex can be modeled by

CPvn =Kv

(
1− cos

(
πτv
Tvl

))
(26)

The dynamic moment coefficient can be formulated as

CVMn
=−CPvnCVNn

(27)

Therefore, the total dynamic loading on the airfoil from all modules can be written as165

CDNn
= CfNn

+CVNn
(28)

CDTn
= CfTn

(29)

CDMn
= CfMn

+CVMn
(30)

and by converting these forces into lift and drag, one obtains:

CDLn
= CDNn

cos αn−CDTn
sin αn (31)170

CDDn
= CDNn

sin αn +CDTn
cos αn (32)

2.1.4 Note to present implementation

In Equations (14) and (15), a curve-fitting procedure is usually adopted in literature. In this sense, the parameters or even the

formulation need to be adjusted when the airfoil is different. Therefore, in the present implementation, the separation point is
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derived directly from the static polar data using inversion of Equation (13) as.175

fn =

2

√√√√√ CV ISCNn

dCN
dα

(αfn −αV ISC0 )

− 1.0


2

(33)

The same approach was used for example by Hansen et al. (Hansen et al., 2004). This way, the user can avoid dealing with

curve fitting adjustment (which requires changes on the constants for different airfoils and flow conditions) as long as the static

polar data is available.

In the original formulation, the pitching moment is obtained also by a curve fitting procedure in Equation (20). Again, this180

kind of approach is not straightforward as the user needs to perform curve fitting of the polar data. In the present implemen-

tation, the moment coefficient is easily obtained from the static viscous polar data by interpolating the value at the effective

angle of attack incorporating the leading edge pressure time lag αfn , that reads

CfMn
= CV ISCM (αfn). (34)

In this sense, the moment coefficient can be reconstructed easily without the need to adjust the parameters in advance, mini-185

mizing the user error.

Furthermore, to avoid discontinuity in the downstroke phase for Equation (24), an additional condition is applied in the

present implementation as:

τvn =


τvn−1

+ 0.45
∆t

c
V ; if CP1

Nn
>CCRITN

0; if CP1
Nn

<CCRITN and ∆αn ≥ 0

τvn−1 ; otherwise

(35)

190

2.2 Snel 2nd order model

The history of the Snel’s second order model (Snel, 1997) dates back to 1993 based on Truong’s observation on dynamic

lift coefficient characteristics (Truong, 1993). Truong proposed that the difference between the static and dynamic lift can be

divided into two terms: the forcing frequency response and the higher frequency dynamics of a self-excited nature. The total195

dynamic response of the airfoil is formulated as:

CDLn
= CV ISCLn

+ ∆CD1
Ln

+ ∆CD2
Ln

(36)

CDDn
= CV ISCDn

+��
��*

0
∆CD1

Dn
+��

��*
0

∆CD2
Dn

(37)

CDMn
= CV ISCMn

+��
��*

0
∆CD1

Mn
+��

��*
0

∆CD2
Mn

(38)
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with D1 and D2 being the first and second order corrections, respectively. The first correction is modeled using an ordinary200

differential equation (ODE) by applying a spring-damping like function as:

τ∆ĊD1
Ln

+Kf10n∆CD1
Ln

= F1n (39)

The frequency of the first-order corrected lift follows the frequency of the forcing term F1. This term is based on the time

derivative of the difference between the steady inviscid CINVLn
and viscous lift coefficient CV ISCLn

of an airfoil (∆CINVLn
) as:

F1n = τ ˙∆CINVLn
(40)205

∆CINVLn
= CINVLn

−CV ISCLn
=
dCL
dα

(αn−αINV0 )−CV ISCLn
(41)

with n and dCL/dα are the current sample time and inviscid lift gradient, respectively. The time constant τ in the above

equation represents the time required for the flow to travel half a chord distance as:

τ =
c

2V
(42)

The "stiffness" coefficient of the first order term Kf10n can be expressed as:210

Kf10n =



1 + 0.5∆CINVLn

8(1 + 60τα̇n)
; if α̇nC

INV
Ln

≤ 0

1 + 0.5∆CINVLn

8(1 + 80τα̇n)
; if α̇nC

INV
Ln

> 0.

(43)

As shown in (Faber, 2018), the above equation becomes numerically unstable if α̇n is large (increasing reduced frequency

above 0.1) for α̇nCINVLn
≤ 0. The reason is that the denominator goes to zero and then negative, causing numerical integration

instability. Thus, based on pure intuition the denominator value was set to a minimum of 2.0 in Ref. (Faber, 2018). In the

present implementation, a similar approach is adopted but the limit differs. Instead, the minimum denominator value is limited215

to 1x10−5, because it yields more physical results for several cases tested by the authors.

To incorporate the higher order frequency dynamics, a second order ODE is used to describe the second order correction

term. The general form may be written as:

τ2∆̈CD2
Ln

+Kf21n
˙∆CD2
Ln

+Kf20n∆CD2
Ln

= F2n (44)

similar to the first order correction, the frequency of the higher order dynamics is determined by the forcing term F2n , defined220

as:

F2n = 0.1ks(−0.15∆CINVLn
+ 0.05 ˙∆CINVLn

). (45)

It is noted that the value 0.1 as a constant was chosen according to Ref. (Adema et al., 2019). This is not a fixed value and can

be adjusted based on the evaluated cases as seen in literature (Adema et al., 2019; Snel, 1997; Holierhoek et al., 2013; Faber,

2018; Khan, 2018). Variable ks is a constant with a typical value of 0.2. The spring coefficient is given by225

Kf20n = k2s [1 + 3(∆CD2
Ln

)2][1 + 3α̇n
2] (46)
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and the damping coefficient as

Kf21n =

60τks[−0.01(∆CINVLn
− 0.5) + 2(∆CD2

Ln
)2]; if α̇n > 0

2τks; if α̇n ≤ 0.
(47)

2.3 Adema-Snel 2nd Order Model

The recently developed model of Adema (Adema et al., 2019) improves the original Snel model (Snel, 1997) in several aspects.230

Instead of using the lift coefficient (CL), the normal force coefficient (CN ) is used, similar to the LB model (Leishman and

Beddoes, 1989). The total dynamic response of the airfoil is formulated as:

CDNn
= CV ISCNn

+ ∆CD1
Nn

+ ∆CD2
Nn

(48)

CDTn
= CV ISCTn

+�
��
�*0

∆CD1
Tn

+�
��
�*0

∆CD2
Tn

(49)

CDMn
= CV ISCMn

+��
��*

0
∆CD1

Mn
+��

��*
0

∆CD2
Mn

(50)235

The model introduces some modifications of the original model in terms of: (1) projected ks, (2) the first order coefficient and

(3) the second order coefficient. The mathematical formulation of the first order term of the model is listed as:

τ∆ĊD1
Nn

+Kf10n∆CD1
Nn

= F1n (51)

F1n = τ ˙∆CINVNn
(52)

∆CINVNn
= CINVNn

−CV ISCNn
=
dCN
dα

(αn−αINV0 )−CV ISCNn
(53)240

Kf10n =



1 + 0.2∆CINVNn

8(1 + 60τα̇n)
; if α̇nC

INV
Nn

≤ 0

1 + 0.2∆CINVNn

8(1 + 80τα̇n)
; if α̇nC

INV
Nn

> 0

(54)

and for the second order correction term as

τ2∆̈CD2
Nn

+Kf21n
˙∆CD2
Nn

+Kf20n∆CD2
Nn

= F2n (55)

F2n = 0.01ks(−0.04∆CINVNn
+ 1.5τ ˙∆CINVNn

). (56)

Kf20n = 10(ks sinαn)2[1 + 3(∆CD2
Nn

)2][1 + 2802τ2α̇n
2] (57)245

Kf21n =

60τks[−0.01(∆CINVNn
− 0.5) + 2(∆CD2

Nn
)2]; if α̇n > 0

60τks[−0.01(∆CINVNn
− 0.5) + 14(∆CD2

Nn
)2]; if α̇n ≤ 0

(58)

One may notice that Equation (56) contains τ in the second term of the right hand side (RHS). This is intended to remove

the dependency of the model to the velocity as the input parameter. The other main difference with the original model is also
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observed in Equation (57) where ks is projected by sinαn. At last, the downstroke motion of the second order term of Equation

(58) is modified to enable vortex shedding effects.250

To sum up the characteristics of above discussed state-of-the-art dynamic stall models, Table 1 lists the properties of each

model and in which aspects the model can be improved further.

Table 1. Properties of the discussed dynamic stall models.

Model name First/second order Higher harmonics Model CL Model CD Model CM

Leishman-Beddoes first order - x x x

Snel second order x x - -

Adema-Snel second order x x x -

2.4 New 2nd order IAG model

The proposed IAG model is developed based on knowledge gained from four different models; Leishman-Beddoes, Snel,

Adema-Snel and ONERA (Tran and Petot, 1980; Dat and Tran, 1981; Petot, 1989) models with modifications. Similar to the255

modern models like those from Snel (and ONERA) and its derivatives, the present model is constructed by two main terms:

the first order and second order corrections. The total dynamic response of the airfoil is formulated as:

CDLn
= CD1

Ln
+ ∆CD2

Ln
(59)

CDDn
= CD1

Dn
+ ∆CD2

Dn
(60)

CDMn
= CD1

Mn
+ ∆CD2

Mn
(61)260

with D1 and D2 being the first and second order corrections, respectively. Below the description of the modifications done for

the new model will be discussed in detail.

2.4.1 First order correction

Based on the Hopf-Biffurcation model of Truong (Truong, 1993) that used the LB-Model as the starting point of the first order

correction, the present model does similarly. Despite that, the LB model is not transferred into the state-space formulation,265

but it is retained as the indical formulation. The model applies the superposition of the solution using a finite-difference

approximation to Duhamel’s integral to construct the cumulative effect to an arbitrary time history of angle of attack. The

LB-model described in Sections 2.1.1 to 2.1.3 will be used with the following modifications:

In the above LB-Model, predictions for drag is not accurate as will be shown in Section 3.1. This inaccuracy lies in the

determination of η in Equation (19) for the tangential force component because drag is more sensitive to tangential force than270

the lift force does. Also to maintain simplicity, parameter η is removed and the tangential force is obtained from the static data
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at the time-lagged angle of attack αfn by:

CfTn
= CV ISCT (αfn). (62)

If one uses this formulation directly, at some point drag still becomes lower than the static drag value by a significant amount.

By evaluating the experimental data for several airfoils and various flow conditions, this is not physical at small angles of275

attack especially in the downstroke regime, where it usually just returns to the static value. In fact, those experimental data

infer that strong drag hysteresis occurs only at high angles of attack beyond stall. Similarly, in the upstroke regime the drag

value increases only slightly (approximately only 20%). In Figure 3, one can see that drag hysteresis occurs when

ζ =
1

π

dCN
dα

(
1 +
√
fn

2

)2

. 0.76. (63)

Based on these observations, a simple drag limiting factor is adopted when ζn ≥ 0.76 as:280

CDDn
=


1.2CV ISCDn

; if CDDn
> 1.2CV ISCDn

and
(
CPNn

−CPNn−1

)
≥ 0.0

CV ISCDn
; if

(
CPNn

−CPNn−1

)
< 0.0

CDDn
; otherwise

(64)

Note that for the purpose of numerical implementation, it is always recommended in practice to adopt relaxation to avoid any

discontinuity which may present in the above formulation. The effects of these modifications are displayed in Figure 4.

(a) (b) (c) (d)

Figure 3. Relation between drag hysteresis in the stall regime with weighted separation parameter ζ for four airfoils. From left to right: S801

(13.5%), NACA4415 (15%), S809 (21%) and S814 (24%).

It will also be shown in Section 3.1, that predicting moment coefficient directly from the static polar data by means of the

time-lagged angle of attack has its drawback in the correct damping effect calculation. One may obtain better results by using285

the "fitting function" as in Equation (20) instead of using Equation (34). However, this limits the usability for different airfoils,

since the fitting has to be done again for each individual airfoil. For wind turbine simulations, this is fairly impractical because

a wind turbine blade is usually constructed by several different airfoils, not to mention the interpolated shapes in between each

airfoil position. To solve for this issue, a relatively simple approach is introduced by applying a time delay on the circulatory
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(a) (b) (c)

Figure 4. Drag reconstruction in comparison with the experimental data for S801 airfoil (Ramsay et al., 1996) applying: (a) Equation (19),

(b) Equation (62) and (c) Equations (62) + (64).

moment response as:290

CCMn
=


CCMn−1

exp
(
−∆s

TUM

)
−CPfn

(
CVn −CVn−1

)
exp
(
− ∆s

2TUM

)
; if τvn < Tvl and ∆αn ≥ 0

CCMn−1
exp
(
−∆s

TDM

)
−CPfn

(
CVn
−CVn−1

)
exp
(
− ∆s

2TDM

)
; if ∆αn < 0

CCMn−1
; otherwise

(65)

where,

CPfn =KC
f

dCN
dα

(αCRITn −αINV0 ). (66)

with KC
f , TUM and TDM being constants relatively insensitive to airfoils. Furthermore, the second condition of Equation (35)

is modified to avoid discontinuity which occurs at a large reduced frequency (eg. k = 0.2), for any LB-based models without295

re-calibration of the time constant as:

τvn =


τvn−1

+ 0.45
∆t

c
V ; if CP1

Nn
>CCRITN

τvn−1exp(−∆s); if CP1
Nn

<CCRITN and ∆αn ≥ 0

τvn−1
; otherwise

(67)

The effects of these modifications are displayed in Figure 5.

The total first order dynamic response of the airfoil is formulated as:

CD1
Nn

= CfNn
+CVNn

(68)300

CD1
Tn

= CfTn
(69)

CD1
Mn

= CfMn
+CVMn

+CCMn
(70)
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(a) (b)

Figure 5. Moment reconstruction in comparison with the experimental data for S801 airfoil (Ramsay et al., 1996) applying: (a) Equation

(34) and (b) Equation (65).

where the definition and description of each variable was given in Section 2.1 for the LB model. Thus the first order lift and

drag responses can be obtained by

CD1
Ln

= CD1
Nn

cos αn−CD1
Tn

sin αn (71)305

CD1
Dn

= CD1
Nn

sin αn +CD1
Tn

cos αn (72)

2.4.2 Second order correction

The second order correction takes the form of the non-linear ordinary differential equation according to the second order

correction of the Snel (Snel, 1997) and Adema-Snel (Adema et al., 2019) models. Generally, the basis of implementation of

the present model mostly uses the Adema-Snel (Adema et al., 2019) model where the normal force is used instead of the lift310

force as for the original Snel model (Snel, 1997) as:

∆̈CD2
Nn

+Kf21n
˙∆CD2
Nn

+Kf20n∆CD2
Nn

= F2n (73)

This way, shedding effects apply not only on the lift force but also on the drag force. Note that τ is not present in Equation (73)

in contrast to the original formulation in Equations (44) and (55). The equation is changed because the time derivatives in the

above equation is no longer with respect to time but to s= 2V t/c, similar to the ONERA model (Tran and Petot, 1980; Dat315

and Tran, 1981; Petot, 1989). This is done to nondimensionalize the equations.

In Equation (57), the ks was projected as a function of the angle of attack by sinαn. This modification causes problem when

the hysteresis effect takes place in both positive and negative angles because Equation (57) will be zero and then negative,

causing instability of the ODE. Thus, the original form of the Snel model (Snel, 1997) is retained in the present model, but the

constant is modified as.320

Kf20n = 20k2s [1 + 3(∆CD2
Nn

)2][1 + 3α̇n
2] (74)
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The idea for the downstroke damping as in Equation (58) is adopted in the present model, the following form and constants are

used:

Kf21n =


150ks[−0.01(∆CINVNn

− 0.5) + 2(∆CD2
Nn

)2]; if α̇n > 0

30ks[−0.01(∆CINVNn
− 0.5) + 14(∆CD2

Nn
)2]; if α̇n ≤ 0 and αn ≥ αCRITn

0.2ks; if α̇n ≤ 0 and αn < αCRITn

(75)

Note again that τ is not present in the above equation. The original formulation in Equation (58) replaces the damped oscillator325

when α̇n ≤ 0 for a self-excited oscillator of Van-der-Pol type with more damping. This is in contrast with the implementation

done in (Truong, 2016), where the self-excited oscillator is only replaced by the damped oscillator, when the flow is reattached

on the return cycle. Under such circumstances, the oscillatory behavior still subsists in the return cycle, albeit with smaller

amplitude. To accommodate this aspect, the last term of Equation (75) is applied when the angle is smaller than αCRITn . As for

the forcing term, the original form of the Snel model (Snel, 1997) is adopted as:330

F2n = 0.5ks(−0.15∆CINVNn
+ 0.05 ˙∆CINVNn

). (76)

To facilitate the inclusion of the higher harmonic effects for the pitching moment, the idealized center of pressure obtained in

the first order correction given in Equation (26) is passed into the second order model. Thus, the dynamic moment reaction

takes the form:

∆CD2
Mn

=−CPvn∆CD2
Nn

(77)335

Regarding the tangential force, a similar assumption is made as in Equation (48) where the influence of ∆CD2
Tn

is neglected in

the formulation. Finally, the second order term of the lift (∆CD2
Ln

) and drag (∆CD2
Dn

) can be calculated easily. The effects of

the second order term are displayed in Figure 6.
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(a) (b) (c)

Figure 6. Airfoils response reconstruction in comparison with the experimental data for S801 airfoil (Ramsay et al., 1996) applying only the

first order correction and with inclusion of the second order term. (a) Lift, (b) drag and (c) pitching moment.

2.5 Constants applied for the investigated dynamic stall models

The following constants are applied in the implemented dynamic stall models. These values are kept constant throughout the340

paper. The constants for the Leishman-Beddoes model and for the proposed IAG model are given in Table 2 and in Table 3,

respectively. For any model developed based on the Leishman-Beddoes type, the critical angle of attack plays a major role. This

can be obtained as the angle where the viscous pitching moment breaks or when the drag increases significantly. The applied

critical angles are given in Table 4. The validation is done by comparing the calculations with experimental data performed at

the Ohio State University for the S801 airfoil (13.5% relative thickness) (Ramsay et al., 1996), NACA4415 airfoil (15% relative345

thickness) (Hoffman et al., 1996), S809 airfoil (21% relative thickness) (Ramsay et al., 1995) and S814 airfoil (24% relative

thickness) (Janiszewska et al., 1996). All selected test cases are for the airfoils employed with a leading edge grit (turbulator)

to enable the "soiled" effects on a wind turbine blade at a Reynolds number of around 750K. Note that these polar data are

different with the one used for example by Sheng et al. (Sheng et al., 2010) where the natural transition cases were taken.

Therefore, the critical angles of attack are also different. The results of the studies are presented in the following sections.350

Table 2. Constants applied for the Leishman-Beddoes model.

A1 A2 b1 b2 Kα Tp Tf Tv Tvl Kv η

0.3 0.7 0.14 0.53 0.75 1.7 3.0 6.0 6.0 0.2 0.95
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Table 3. Constants applied for the IAG model.

A1 A2 b1 b2 Kα Tp Tf Tv Tvl Kv KC
f TUm TDm

0.3 0.7 0.7 0.53 0.75 1.7 3.0 6.0 6.0 0.2 0.1 1.5 1.5

Table 4. Critical angle of attack (αCRITn ) applied for the Leishman-Beddoes and IAG models.

S801 NACA4415 S809 S814

15.1◦ 10◦ 14.1◦ 10◦

3 Results and Discussion

The four state-of-the-art dynamic stall models reviewed above (Leishman-Beddoes, Snel, Adema-Snel) have been used as a

basis for examining the dynamic loads of four different pitching airfoils at various flow conditions. Experience gained from

those models is used to formulate a new 2nd order dynamic stall model, namely IAG model by evaluating the weakness and

strength of each model. The presented second order models need to solve a set of differential equations. For this purpose, the355

Euler-Heun forward integration method is used.

3.1 Comparison against experimental data

This section compares the predicted dynamic forces in comparison with the measurement data. For a fair comparison, all

models are assessed with the same time step size of ∆t= T/1440, with T being the pitching period. The evaluations are

performed on the S801 airfoil at k = 0.073. The comparison of each model is shown in Figures 7 to 9 for the Snel, Adema360

and IAG models, respectively. Note that the constants of the other four existing dynamic stall models are taken directly from

literature without further calibration for the S801 airfoil. Therefore, it is already expected that their performance will not be

optimal. The main purpose of the comparison is not to study their accuracy, but to analyze the robustness of each model for

a different airfoil without tuning the constants. On the other hand, the constants for the IAG model in Table 3 were obtained

using the S801 airfoil. To enable a fair assessment on the model robustness, the IAG model will also be used to reconstruct the365

dynamic polar data of four airfoils with different relative thickness without changing the constants in Section 3.6.

The original Snel models cannot predict the drag and moment coefficients in the original formulations. Thus, only the static

polar data is shown. The Snel model actually shows an acceptable accuracy even though the constants are taken as found in

literature. The higher harmonic effects are unfortunately not captured by this model. This is further refined by the Adema

model which was developed as an improvement for the Snel model. The model performs fairly well for the lift and drag370

predictions, though the drag value at small angles of attack is a bit off. The pitching moment prediction is also not included

in its formulations. These disadvantages are better treated in the proposed IAG model. Not only the prediction of the lift

coefficient, but also the accuracy of drag prediction is improved significantly. The modifications described in Section 2.4 result

17



in the improvement at low and high angles of attack regimes. The model is also able to reconstruct the pitching moment polar

accurately, which is important for aeroelastic calculations of wind turbine blades.375

Figure 7. Dynamic forces reconstruction using the Snel model in comparison with the measurement data (Ramsay et al., 1996) for ∆t=

T/1440. S801 airfoil, k = 0.073, α= 20◦, ∆α= 10◦.

Figure 8. Dynamic forces reconstruction using the Adema model in comparison with the measurement data (Ramsay et al., 1996) for

∆t= T/1440. S801 airfoil, k = 0.073, α= 20◦, ∆α= 10◦.

Figure 9. Dynamic forces reconstruction using the IAG model in comparison with the measurement data (Ramsay et al., 1996) for ∆t=

T/1440. S801 airfoil, k = 0.073, α= 20◦, ∆α= 10◦.
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For the following sections, the proposed IAG model will be tested under various flow conditions and for several airfoils at

various relative thicknesses in comparison with measurement data. Note that these calculations are performed without changing

the constants to assess the robustness of the model at different flow conditions.

3.2 Effects of time signal deviation

The actual pitching motion within the OSU measurement differs slightly from the intended motion. The actual time series380

of the angle of attack is included in the experimental data (Ramsay et al., 1996; Hoffman et al., 1996; Ramsay et al., 1995;

Janiszewska et al., 1996). To assess the effects of this time signal deviation on the aerodynamic response, the calculations

using this time signal data were performed applying the IAG model. The results are compared with the experimental data and

the results of the IAG model presented in Section 3.1. Note that this time signal data is fairly coarse, and can cause problems

for second order dynamic stall models because the gradient of α change can be extremely large. To cover for this issue, the385

time signal is interpolated in between each available point using a third-order cubic-spline interpolation. The time signals are

discretized by ∆t= T/1440 over a single pitching period. The first period of oscillation is used for initialization of the time

integration, thus a constant angle of attack is applied as shown in Figure 10.

Figure 10. Comparison of the timeseries of the idealized sinusoidal angle of attack to the exact signals in the experimental campaign for

S801 airfoil, k = 0.073, α= 20◦, ∆α= 10◦.

Figure 11 presents the influence of the time signal variation on the aerodynamic performance in terms of CL, CD and CM .

TS labels the exact time signals in the experimental campaign. Although the time signal difference has almost no influence of390

the global prediction characteristics, some deviation with the idealized sinusoidal motion can be noticed clearly. For example,

the increased lift build up in the upstroke regime before stall and the location of the lift stall. Some deviations on the drag and

pitching moment coefficients are observed as well. For the rest of the paper, the prediction procedure using the actual time

signal from the experimental data is used for best consistency with the experimental campaign.
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Figure 11. Dynamic forces reconstruction by the IAG model in comparison with the measurement data (Ramsay et al., 1996) for ∆t=

T/1440 using the actual angle of attack in the experimental campaign. TS labels the exact time signals in the experimental campaign. S801

airfoil, k = 0.073, α= 20◦, ∆α= 10◦.

3.3 Performance of the model for different mean angles of incidence395

In this section, the effects of the mean angle of attack are evaluated. Three different angles of attack at the same inflow condi-

tions are selected for this purpose. These are α = 8◦, 14◦ and 20◦. Note that these mean angles of attack are only approximations

since the actual time signal data from the experimental campaign is used. The selected mean angles represent the regime of

attached flow, partly separated and fully separated flow conditions. These are helpful to assess the model performance under

various flow situations.400
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Figure 12. Lift reconstruction by the IAG model in comparison with the measurement data (Ramsay et al., 1996) for ∆t= T/1440 using the

actual angle of attack in the experimental campaign at various α. From left to right: α= 8◦, α= 14◦ and α= 20◦. S801 airfoil, k = 0.073,

∆α= 10◦.

Figure 13. Drag reconstruction by the IAG model in comparison with the measurement data (Ramsay et al., 1996) for ∆t= T/1440 using the

actual angle of attack in the experimental campaign at various α. From left to right: α= 8◦, α= 14◦ and α= 20◦. S801 airfoil, k = 0.073,

∆α= 10◦

Figure 12 presents the results for the lift coefficient under these three investigated mean angles of attack. The model performs

very well for these different cases. The maximum lift is a bit overestimated in the model for the lowest α, but in general all

unsteady lift characteristics in the measurement data are reproduced in a sound agreement with the experimental data. A similar

behavior is shown for the drag prediction depicted in Figure 13. The proposed model captures the increased drag effect and its

shedding characteristics well. The simple modifications applied in Section 2.4 result in a good prediction of the drag coefficient405

as compared with the experimental data. In Figure 14, the prediction for pitching moment is shown. Here the predicted moment

coefficient is in a good agreement with the measured values.
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Figure 14. Pitching moment reconstruction by the IAG model in comparison with the measurement data (Ramsay et al., 1996) for ∆t=

T/1440 using the actual angle of attack in the experimental campaign at various α. From left to right: α= 8◦, α= 14◦ and α= 20◦. S801

airfoil, k = 0.073, ∆α= 10◦

3.4 Performance of the model for different reduced frequencies

The effects of pitching frequency on the aerodynamic response will be discussed in this section. Three different reduced

frequencies are examined, namely k = 0.036, 0.073 and 0.111. The stall regime is shown here, where the prediction is the most410

challenging. The actual time signals as of the measurement campaign are used, following the procedure described in Section

3.2.

Figure 15. Lift reconstruction by the IAG model in comparison with the measurement data (Ramsay et al., 1996) for ∆t= T/1440 using

the actual angle of attack in the experimental campaign at various k. From left to right: k = 0.036, k = 0.073 and k = 0.111. S801 airfoil,

α= 20◦, ∆α= 10◦.

Figure 15 displays the results for the dynamic lift coefficient response. The lowest reduced frequency of 0.036 is dominated

by the viscous effects. It represents the case where the "delayed" angle of attack response is the weakest. It can be seen that

the maximum attained lift coefficient increases with increasing k. The gradient of the lift polar in the upstroke and downstroke415

phase is also increasing as well. These characteristics are present in both experimental data and predictions delivered by the

IAG model. A similar behavior is also displayed in drag and pitching moment in Figures 16 and 17, respectively. It is obvious
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that stall occurs much earlier for a smaller k value. One can see that the maximum amplitude of all three force components

increases with increasing k. This can be dangerous for the structural stability, since the amplitude determines the fatigue loads.

To better investigate the effects of k, the IAG model is used to reconstruct the dynamic polar data at various k by applying420

an idealized sinusoidal motion as presented in Figure 18. Only the last DS cycle is shown for clarity of the observation. While

the maximum amplitude of all three force components at low frequency domains increases with increasing k (blue and green

markers), the amplitudes for all three forces at high frequency domains show different characteristics as shown in the Fourier

transformation in Figure 19, albeit with much smaller values. The higher harmonic amplitudes are attributed to flow separation

effects, while for low frequency domains are driven by the pitching motion (i.e., external unsteadiness or inflow).425

Figure 16. Drag reconstruction by the IAG model in comparison with the measurement data (Ramsay et al., 1996) for ∆t= T/1440 using

the actual angle of attack in the experimental campaign at various k. From left to right: k = 0.036, k = 0.073 and k = 0.111. S801 airfoil,

α= 20◦, ∆α= 10◦.

Figure 17. Pitching moment reconstruction by the IAG model in comparison with the measurement data (Ramsay et al., 1996) for ∆t=

T/1440 using the actual angle of attack in the experimental campaign at various k. From left to right: k = 0.036, k = 0.073 and k = 0.111.

S801 airfoil, α= 20◦, ∆α= 10◦.
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Figure 18. Effects of k on the aerodynamic response by the IAG model for ∆t= T/1440. S801 airfoil, α= 20◦, ∆α= 10◦. Top: polar,

bottom: timeseries.

Figure 19. Fourier transformation of the predicted forces presented in Figure 18. fs = f/f0 with f0 being the pitching frequency.

3.5 Performance of the model for different pitching amplitudes

In this section, the effects of pitching amplitude on the aerodynamic response of a pitching airfoil is investigated. The mean

angle of attack is fixed at α= 20◦. Note again that α is only an approximation because the actual time signal data from the

measurement campaign is applied. This large mean angle of attack is purposely selected because the post-stall characteristic is

of interest and is well known for its violent vibration, even for the static condition. The small amplitude in this case means that430

the whole pitch oscillation occurs within the stall regime.
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Figures 20 to 22 display the dynamic force responses due to pitching motion of the airfoil predicted by the IAG model in

comparison with the experimental data. The model accurately reconstructs the dynamic forces despite the predicted case is

challenging within the post stall regime. Interesting to note is that the small pitching amplitude case induces stronger shedding

effects for lift than the larger amplitude case. This can be explained as following. As described by Leishman in his papers435

(Beddoes, 1982; Leishman, 1988; Leishman and Beddoes, 1989), the airfoil sees a lagged force response compared to the

imposed disturbance. Therefore, in his model, a time-lagged angle of attack is introduced as the "effective" angle actually seen

by the airfoil section. When the pitching motion takes place partly within the fully separated region (in the static case) and

partly in the attached/partly separated flow region, the airfoil still sees the lower angle (where the flow is still attached) even

though the pitching motion already reaches the post-stall regime. This effect stops/reduces when the effective angle is larger440

than the critical angle defined in Table 4. As the critical angle for the S801 airfoil is defined at 15.1◦, the lower amplitude case

is fully operating within the stall regime, where the attached flow effect is not present.

Figure 20. Lift reconstruction by the IAG model in comparison with the measurement data (Ramsay et al., 1996) for ∆t= T/1440 using the

actual angle of attack in the experimental campaign at various ∆α. Left: ∆α= 5.5◦; right: ∆α= 10◦. S801 airfoil, k = 0.073, α= 20◦.

Figure 21. Drag reconstruction by the IAG model in comparison with the measurement data (Ramsay et al., 1996) for ∆t= T/1440 using

the actual angle of attack in the experimental campaign at various ∆α. Left: ∆α= 5.5◦; right: ∆α= 10◦. S801 airfoil, k = 0.073, α= 20◦.
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Figure 22. Pitching moment reconstruction by the IAG model in comparison with the measurement data (Ramsay et al., 1996) for ∆t=

T/1440 using the actual angle of attack in the experimental campaign at various ∆α. Left: ∆α= 5.5◦; right: ∆α= 10◦. S801 airfoil,

k = 0.073, α= 20◦.

3.6 Performance of the model for different airfoils

In this section, the performance and robustness of the proposed IAG model are assessed for airfoils with different relative

thickness. All model constants in Table 3 remain the same for all calculations. The difference from one airfoil calculation to445

the other lies only in the critical angle of attack value as shown in Table 4. The value was obtained simply by looking at the

static polar data where the viscous pitching moment breaks or when the drag increases significantly.

Figure 23. Lift reconstruction by the IAG model in comparison with the measurement data (Ramsay et al., 1996; Hoffman et al., 1996;

Ramsay et al., 1995; Janiszewska et al., 1996) for ∆t= T/1440 using the actual angle of attack in the experimental campaign for different

airfoils. From left to right: S801 (13.5%), NACA4415 (15%), S809 (21%) and S814 (24%). k = 0.073, α= 20◦, ∆α= 10◦.
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Figure 24. Drag reconstruction by the IAG model in comparison with the measurement data (Ramsay et al., 1996; Hoffman et al., 1996;

Ramsay et al., 1995; Janiszewska et al., 1996) for ∆t= T/1440 using the actual angle of attack in the experimental campaign for different

airfoils. From left to right: S801 (13.5%), NACA4415 (15%), S809 (21%) and S814 (24%). k = 0.073, α= 20◦, ∆α= 10◦.

Figure 25. Pitching moment reconstruction by the IAG model in comparison with the measurement data (Ramsay et al., 1996; Hoffman

et al., 1996; Ramsay et al., 1995; Janiszewska et al., 1996) for ∆t= T/1440 using the actual angle of attack in the experimental campaign

for different airfoils. From left to right: S801 (13.5%), NACA4415 (15%), S809 (21%) and S814 (24%). k = 0.073, α= 20◦, ∆α= 10◦.
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Figure 26. Center of pressure reconstruction in comparison with the measurement data by the IAG model for ∆t= T/1440 using the actual

angle of attack in the experimental campaign for different airfoils. From top to bottom: S801 (13.5%), NACA4415 (15%), S809 (21%) and

S814 (24%). k = 0.073, α= 20◦, ∆α= 10◦.
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Despite the increased airfoil thickness from 13.5% to 24%, Figures 23 to 25 demonstrate that the reconstructed dynamic

forces are in a good agreement with the experimental data, not only for the general trend but also the higher harmonic effects.

As also the case for the Leishman-Beddoes model, it is important to select the appropriate value for the critical angle of attack.450

The simple approach used in the present paper has shown its usefulness and potentially reduce the complexity of parameter

tuning for industrial applications. Elgammi et al. (Elgammi and Sant, 2016) for example defined two different critical angles

of attack, one for CN and the other for CT that were shown to improve the prediction accuracy. Although their attempt might

be beneficial, this is not followed in this work because one main aim of the studies is to reduce parameter tuning required for

one to the other cases.455

3.7 Predictions of the center of pressure

To further complement the analyses conducted in Section 3.6, the location of the actual pressure center is calculated in this

section as:

Xp =−CM
CL

(78)

which indicates the distance of the pressure point to the quarter chord position where CM is defined.460

A correct location of the pressure point is important for determining the stability on aeroelastic simulations of wind turbine

blades. The results of the calculations both for the experimental data and for the proposed IAG model are presented in Figures

26 for all four investigated airfoils both as time series and as the polar plot. It can be seen clearly that the agreement between

the experimental data and the present predictions are excellent for all investigated airfoils.

3.8 L2 norm of error analyses465

Holierhoek et al . (Holierhoek et al., 2013) introduced a way for quantifying the absolute error between the experimental data

and modeled lift coefficient. The general formulation reads:

Lφ2 =

√√√√ 1

N

N∑
i

(
φmodi −φexpi

)2
(79)

with φ being the variable of interest, i is the current sample and N is the total number of sample. In their paper, however,

only lift was considered. Here all three force components will be shown for four different airfoils. Figure 27 displays the470

quantified error for two different flow category, attached and deep stall. The timeseries of the angle of attack was obtained

from the measured data by applying a third-order cubic-spline interpolation in between each available point. One can see

that generally the attached flow case is predicted very well, while the error increases as the flow condition becomes more

complicated. Interestingly, especially for lift, it seems that the error reduces with increasing airfoil thickness. The reason for

the larger error obtained for the thinner airfoil is attributed to the complex characteristics of the leading edge stall, causing475

severe load variations especially with increasing angle of attack. Thus, it makes the prediction more challenging. Furthermore,

the quantification of the error was also performed on two other dynamic stall models, Snel and Adema-Snel. The same approach
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for the angle of attack signal was applied. One can see that the IAG model shows its improved prediction especially for the

deep stall case for all three force components.

Figure 27. Quantified L2 norm of error with respect to the measurement data for four airfoils. Top: attached flow case ( k = 0.073, α= 8◦,

∆α= 5.5◦), bottom: deep stall case ( k = 0.073, α= 20◦, ∆α= 10◦)

4 Conclusions480

Comprehensive studies on the accuracy of several state-of-the-art dynamic models to predict the aerodynamic loads of a

pitching airfoil have been conducted. From the studies, the strength and weaknesses of each model were highlighted. This

information was then transferred to develop a new second order dynamic stall model proposed in this paper. The new model

improves the prediction for the aerodynamic forces and their higher harmonic effects due to vortex shedding, developed for

robustness to improve its usability in practical wind turbine calculations. Details on the model characteristics, modifications485

and treatment for numerical implementation were summarized in the present paper. The studies were conducted by examining

the influence of the time step size, time signal deviation, mean angle of attack, reduced frequency, pitching amplitude and

variation of the airfoil thickness. Several main conclusions can be drawn from the work.
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– The general characteristics of the polar data can be predicted by all investigated dynamic stall models. Despite that,

only the Adema model and the present IAG model are able to demonstrate the higher harmonic effects among the three490

investigated models.

– The exact time signal imposed based on the measurement campaign improves the prediction accuracy of the IAG model

in comparison with the idealized sinusoidal motion.

– The dynamic forces reconstructed by the IAG model are in a sound agreement with the experimental data under various

flow conditions by variation of α, k, ∆α and for four different airfoils by changing only the values of the critical angle495

of attack.

– The amplitudes at low frequency domains increase with increasing k, and can be attributed to the effects of inflow/external

unsteadiness. The amplitudes at high frequency domains reduce with increasing k which are driven by flow separation

effects.

– When the airfoil operates at a high α within the stall regime, a small ∆α leads to increased vibrations for lift. The500

opposite is true for the pitching moment.

5 Recommendations for Future Work

The present paper evaluates the newly developed IAG model under various flow conditions for four different airfoils. The

following aspects are encouraged for future work:

– In the present studies, the assessment was mainly carried out for the S801 airfoil having a relative thickness of 13.5%.505

This airfoil is mainly characterized by leading edge separation, which is very challenging for validating the accuracy

of a dynamic stall model. However, typical modern wind turbine blades usually employ airfoils with no less than 18%

relative thickness and at much higher Reynolds number. Therefore, future investigations shall be done for thicker airfoils

at various flow conditions as well.

– The above statement is also true for the current available experimental data. Therefore, experiments on dynamic stall for510

thick airfoils at much higher Reynolds number are encouraged.

– Three-dimensional effects (Himmelskamp or tip loss effects) for a rotating blade can alter the loads significantly even

under a steady inflow condition. Further consideration and examination of the model under this condition shall be done.

– Further tests and re-calibration of the model for deep-stall conditions at extremely large angles of attack are encouraged,

which can be relevant for a turbine in stand still.515
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Variables

s nondimensional time s

V incoming wind speed m/s

t time s

c chord m

CN normal force coefficient -

CT tangential force coefficient -

CL lift force coefficient -

CD drag force coefficient -

CM pitching moment coefficient -

CPN total inviscid normal force coefficient -

CPN1 time lagged total inviscid normal force coefficient -

CIN impulsive inviscid normal force coefficient -

CCN circulatory inviscid normal force coefficient -

CfN viscous normal force coefficient -

CfT viscous tangential force coefficient -

CfM viscous pitching moment coefficient -

CCM circulatory pitching moment coefficient -

CVN vortex lift normal force coefficient -

CCRITN critical normal force coefficient -

CPf stepping parameter moment -

f frequency Hz

f0 pitching frequency Hz

fn,f1,f2 separation factor -

F1 first order forcing term -

F2 second order forcing term -

k reduced frequency (k = πf0c/V ) -

Kf stiffness coefficient -

ks a constant close to the Strouhal number value -

M Mach number -

X,Y,D deficiency functions -

c1, c2, c3,a1,a2,a3,S1,S2,S3,α1 curve-fitting constants -

A1,A2, b1, b2,Kα,Tp,Tf ,Tv,Tvl,Kv,η,K
C
f ,T

U
m ,T

D
m model constants -
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Greek letters

α angle of attack rad (unless stated otherwise)

α0 zero lift angle of attack rad (unless stated otherwise)

αe effective angle of attack rad (unless stated otherwise)

αf time lagged effective angle of attack rad (unless stated otherwise)

αCRIT critical angle of attack rad (unless stated otherwise)

β Mach number dependent parameter -

τv nondimensional vortex time -

τ time constant -

ζ drag limiting factor -

Superscripts
INV static inviscid -
V ISC static viscous -
I impulsive -

CRIT critical -
D dynamic loading -
D1 first order correction -
D2 second order correction -

Subscripts

n present sampling time -

f viscous lagged value -

v vortex lift affected value -
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