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Abstract. Robust and accurate dynamic stall modeling remains one of the most difficult tasks in wind turbine
load calculations despite its long research effort in the past. In the present paper, a new second order dynamic
stall model is developed with the main aim to model the higher harmonics of the vortex shedding while retaining
its robustness for various flow conditions and airfoils. Comprehensive investigations and tests are performed at
various flow conditions. The occurring physical characteristics for each case are discussed and evaluated in the
present studies. The improved model is also tested on four different airfoils with different relative thicknesses.
The validation against measurement data demonstrates that the improved model is able to reproduce the dynamic
polar accurately without airfoil specific parameter calibration for each investigated flow condition and airfoil.
This can deliver further benefit to industrial applications where experimental/reference data for calibrating the
model is not always available.

1 Introduction

An accurate prediction of wind turbine blade loads is influ-
enced by many parameters including 3D and unsteady ef-
fects. The first mainly occurs in the root and tip areas of the
blade due to radial flow and induced velocity influences, re-5

spectively (Bangga, 2018). The latter can occur due to vari-
ation of the inflow conditions caused by yaw misalignment,
wind turbulence, shear & gusts, tower shadow and aeroelastic
effects of the blade. The above mentioned phenomena may
result in dynamic stall (DS). Experimental studies (Martin10

et al., 1974; Carr et al., 1977; McAlister et al., 1978) showed
that the aerodynamic forces can differ significantly in com-
parison to the static condition. DS is often initiated by the
generation of a leading edge vortex (LEV), which increases
positive circulation effect on the airfoil suction side causing15

delayed stall (Bangga, 2019). This intense leading edge vor-
tex is convected downstream along the airfoil towards the
trailing edge. At the same time, the lift force increases sig-
nificantly and the pitching moment becomes more negative
compared to the static values. A significant drag increases is20

observed at large angles of attack. An example is shown in
Figure 1. Afterwards, a trailing edge vortex (TEV) with op-
posite rotational direction than LEV is formed, which pushes

the leading edge vortex towards the wake area. This onset
may result in a significant drop of the lift coefficient (CL) 25

and can be dangerous for the blade structure itself, although
dynamic stall also generally enhances aerodynamic damping.

To model the behavior of the airfoil under these situations,
semi-empirical models can be used. The models are known
to produce reasonable results without any notable increase 30

in computational effort. Despite that, these models usually
cannot reproduce higher harmonics of the load fluctuations.
Furthermore, the applied constants shall be adjusted accord-
ing to the flow conditions and airfoils. Leishman & Bed-
does (LB) (Leishman and Beddoes, 1989) have developed a 35

model for dynamic stall combining the flow delay effects of
attached flow with an approximate representation of the de-
velopment and effect of separation (Larsen et al., 2007). This
model was developed for helicopter applications and there-
fore includes a fairly elaborate representation of the nonsta- 40

tionary attached flow depending on the Mach number and
a rather complex structure of the equations representing the
time delays (Larsen et al., 2007). Hansen et al. (Hansen et al.,
2004) simplified the model for wind turbine applications by
removing the consideration of compressibility effects and 45

the leading edge separation. The latter was argued because
the relative thickness of wind turbine airfoil is typically no
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Figure 1. Typical dynamic stall behavior of S801 airfoil. Data obtained from (Ramsay et al., 1996).

less than 15%. This model was called Risø model in (Larsen
et al., 2007). Examples of the other models are given by Øye
(Øye, 1991), Tran & Petot (ONERA model) (Tran and Petot,
1980) and Tarzanin (Boeing-Vertol model) (Tarzanin, 1972).
To better model the vortex shedding characteristics at large5

angles of attack, second order dynamic stall models were in-
troduced. An example of this model was given by Snel (Snel,
1997) which makes use of the difference between the invis-
cid to the viscous static polar data as a main forcing term
for the dynamic polar reconstruction, in contrast to the LB10

model that uses the changes of the angle of attack over the
time. An improved version of the Snel model was proposed
recently by Adema (Adema et al., 2019) to cover for the in-
creased shedding effects in the downstroke phase. All above
mentioned models employ the static polar data and dynamic15

flow parameters as the input needed for the dynamic polar
reconstruction. Then, the models compute the dynamic force
difference required for the reconstruction process.

Although many attempts have been dedicated for dynamic
stall modeling (Gupta and Leishman, 2006; Larsen et al.,20

2007; Adema et al., 2019; Elgammi and Sant, 2016; Wang
and Zhao, 2015; Sheng et al., 2006; Galbraith, 2007; Sheng
et al., 2008), engineering calculations in industry are still re-
lying on the very basic classical dynamic stall models such
as the Leishman-Beddoes and Snel models. The reason is25

the simplicity to tune in the models for different airfoils and
for different flow conditions. Therefore, one major key for a
model to be used in industrial applications is robustness of
the model itself, i.e., the model is easy to apply with small
number of well defined user parameters. One of the purposes30

of this paper is to document widely used dynamic stall mod-
els in research and industries. These include the first order
LB model and the second order Snel model. A very recently
improved Snel model according to Adema (Adema et al.,
2019) will also be evaluated. The mathematical formulations35

of these models will be presented in this report. Weaknesses
of existing dynamic stall modeling shall be identified, and
possible corrections to those limitations will be described.
Finally, a new second order dynamic stall modeling will be

proposed that is able to model not only the second order lift 40

and drag forces, but also the pitching moment along with
calculation examples in comparison to experimental data for
different airfoils and flow conditions.

The paper is organized as following. Section 2 describes
the mathematical formulation of existing dynamic stall mod- 45

els and the new model developed in this work. Then, in Sec-
tion 3 assessments are carried out on the performance of the
second order dynamic stall models in comparison with mea-
surement data. The new model is further tested at various
flow conditions, and to examine its robustness on four differ- 50

ent airfoils without further calibrating the constants. Finally,
all results will be concluded in Section 4.

2 Mathematical Formulations

In this section the mathematical formulations of each model
are described in detail. The reasons are mainly to pro- 55

vide information on how each model was employed and to
gain deeper insights for further developing the new model.
Note that each existing model was developed by differ-
ent authors, thus different symbols and formulation meth-
ods were adopted in those publications (Beddoes, 1982; 60

Leishman, 1988; Leishman and Beddoes, 1989; Snel, 1997;
Adema et al., 2019). In this paper, all models are described
in a consistent way for clarity and for easier interpreta-
tion/implementation process.

2.1 Leishman-Beddoes model 65

The original Leishman-Beddoes model is composed by three
main contributions representing various flow regimes: (1) un-
steady attached flow, (2) unsteady separated flow and (3) dy-
namic stall. The present section will elaborate the mathemat-
ical description and its physical interpretation of each mod- 70

ule. Figure 2 illustrates several main parameters needed for
modeling the dynamic stall characteristics.
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Figure 2. Illustration of main aerodynamic parameters needed for modeling the dynamic stall characteristics.

2.1.1 Unsteady attached flow

In this module, the unsteady aerodynamic response of the
loads is represented by the time delay effects. The indical for-
mulas were constructed based on the work of Beddoes (Bed-
does, 1982), and have been refined by Leishman (Leishman,5

1988). The loads are assumed to originate from two main
sources; one for the initial noncirculatory loading from the
piston theory and another for the circulatory loading which
builds up quickly to the steady state value (Leishman and
Beddoes, 1989). In the formulation, the relative distance trav-10

eled by the airfoil in terms of semi-chords is represented
by s= 2V t/c that can be used also to describe the nondi-
mensional time. Note that V , t and c are freestream wind
speed, time and chord length, respectively. For a continu-
ously changing angle of attack αn, the effective angle of at-15

tack (αen ) can be represented as:

αen = αn−Xn−Yn (1)

where n is the current sample time. The last two terms de-
scribe the deficiency functions that are given by:

Xn =Xn−1 exp
(
−b1β2∆s

)
+A1 ∆αn exp

(
−b1β2∆s/2

)
(2)

20

Yn = Yn−1 exp
(
−b2β2∆s

)
+A2 ∆αn exp

(
−b2β2∆s/2

)
(3)

where

∆αn = αn+1−αn (4)
∆s= sn− sn−1. (5)

In these equations, b1, b2, A1 and A2 are constants. The vari-25

able β represents the compressibility effects and is formu-
lated as β =

√
1−M2. Because information about the pre-

vious cycle is needed in the formulations, initializations are
required. The solution needs to develop for a certain time un-
til convergence of the resulting unsteady loads is obtained.30

The circulatory normal force due to an accumulating series
of step inputs in angle of attack can be obtained using

CCNn
=
dCN
dα

(αen −αINV0 ) (6)

The variable α0INV
is the angle of attack for zero inviscid

normal force. The original formulation of the model disre- 35

garded the use of αINV0 . However, this term is important
when the airfoil has a finite camber. This has been pointed
out as well by Hansen et al. (Hansen et al., 2004).

The noncirculatory (impulsive) normal force is obtained
by 40

CINn
=

4KαTI
M

(
∆αn
∆t
−Dn

)
. (7)

where TI is given by TI =Mc/V . The deficiency function
Dn is given by

Dn =Dn−1 exp
(
−∆t

KαTI

)
+

(
∆αn−∆αn−1

∆t

)
exp
(
−∆t

2KαTI

)
,

(8)

and ∆t= tn− tn−1. 45

The total normal force coefficient under attached flow con-
ditions is given by the sum of circulatory and noncirculatory
components as

CPNn
= CCNn

+CINn
. (9)

2.1.2 Unsteady separated flow 50

Leishman & Beddoes (Leishman and Beddoes, 1989) stated
that the onset of leading edge separation is the most impor-
tant aspect in dynamic stall modeling. The condition at when
leading edge stall occurs, is controlled by a critical leading
edge pressure coefficient that is linked into the formulation 55

by defining a lagged normal force coefficient CP1
Nn

as:

CP1
Nn

= CPNn
−Dpn (10)

where Dpn is given by

Dpn =Dpn−1
exp
(
−∆s

Tp

)
+
(
CPNn

−CPNn−1

)
exp
(
−∆s

2Tp

)
.

(11)
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It has been investigated by Leishman & Beddoes (Leishman
and Beddoes, 1989) that the calibration time constant Tp is
largely independent of the airfoil shape. The substitute value
of the effective angle of attack incorporating the leading edge
pressure lag response may be obtained using5

αfn = αINV0 +

(
CP1
Nn

dCN/dα

)
(12)

In most of airfoil shapes, the progressive trailing edge sep-
aration causes loss of circulation and introduces nonlinear
effects on the lift, drag and pitching moment, especially on
cambered airfoils. This is even more important for wind tur-10

bine airfoils because the relative thickness is large. To derive
a correlation between the normal force coefficient with the
separation location (fn), the relation based on the flat plate
from Kirchhoff/Helmholtz can be used, that reads:

CV ISCNn
=
dCN
dα

(
1 +
√
fn

2

)2

(αn−αV ISC0 ). (13)15

The location of the separation point is usually obtained by
a curve-fitting procedure in literature. For example, Leish-
man & Beddoes (Leishman and Beddoes, 1989) proposed the
following correlation

fn =


1− 0.3 exp

(
αn−α1

S1

)
; αfn ≤ α1

0.04 + 0.66 exp
(
α1−αn
S2

)
; αfn > α1

(14)20

The coefficients S1 and S2 define the static stall characteris-
tic while α1 defines the static stall angle. The derivation was
based on the NACA 0012, HH-02 and SC-1095 airfoils that
have a single break point of the static lift force coefficient.
Gupta & Leishman (Gupta and Leishman, 2006) proposed25

the formulation for the S809 airfoil as:

fn =


c1 + a1 exp(S1αn); αfn ≤ α1

c2 + a2 exp(S2αn); α1 < αfn < α2

c3 + a3 exp(S3αn) : αfn ≥ α2

(15)

that has two break points (α1 and α2) of the static lift force
coefficient, where c1, c2, c3, a1, a2 and a3 are constants.

The additional effects of the unsteady boundary layer re-30

sponse may be represented by application of a first-order lag
to the value of fn to produce the final value for the unsteady
trailing edge separation point f2n (Leishman and Beddoes,
1989). This can be represented as

f2n = fn−Dfn (16)35

where Dfn is given by

Dfn =Dfn−1 exp
(
−∆s

Tf

)
+ (fn− fn−1) exp

(
− ∆s

2Tf

)
, (17)

and Tf is a constant. Then, the unsteady viscous normal force
coefficient for each sample time can be obtained using

CfNn
=
dCN
dα

(
1 +

√
f2n

2

)2

(αen −αV ISC0 ) +CINn
(18) 40

The tangential component of the force can be obtained by
(Leishman and Beddoes, 1989):

CfTn
=−η dCN

dα
α2
en

√
f2n (19)

note that positive CfTn
is defined in the direction of the trail-

ing edge while η is a constant. 45

According to Leishman & Beddoes (Leishman and Bed-
does, 1989) and Gupta & Leishman (Gupta and Leishman,
2006), a general expression for the pitching moment behavior
cannot be obtained from Kirchhoff theory, and an alternative
empirical relation must be formulated. Gupta & Leishman 50

(Gupta and Leishman, 2006) proposed the following formu-
lation for the S809 airfoil

CfM =

{
CM0 +

(
K0 +K1(1− f2n) +K2 sin(πfm2n)

)
; αn ≤ α2

CM0
+
(
K0 +K3 exp(K4f

m
2n)
)

; αn > α2

(20)

where CM0
defines the moment coefficient at zero normal

force and K0 is the mean offset of the aerodynamic center 55

from the quarter chord position, K1, K2, K3, K4 and m are
constants.

2.1.3 Dynamic stall

The third part of the model describes the post-stall character-
istics where the vortical disturbances near the leading edge 60

become stronger. The effect of vortex shedding is given by
defining the vortex lift as the difference between the lin-
earized value of the unsteady circulatory normal force and
the unsteady nonlinear normal force obtained from the Kirch-
hoff approximation, that reads 65

CVn
= CCNn

(1−Kn) (21)

where Kn is given by

Kn =
1

4

(
1 +

√
f2n

)2
. (22)

The normal force is allowed to decay, but it is updated with
a new increment in the normal force based on prior forcing 70

condition, that can be defined as

CVNn
=


CVNn−1

exp
(
−∆s

Tv

)
+
(
CVn
−CVn−1

)
exp
(
−∆s

2Tv

)
;

if 0< τvn < Tvl

CVNn−1
exp
(
−∆s

Tv

)
; otherwise

(23)
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where Tv and Tvl are the vortex decay and center of pressure
travel time constants, respectively. The nondimensional vor-
tex time is given by (Pereira et al., 2011; Elgammi and Sant,
2016):

τvn =

τvn−1
+ 0.45

∆t

c
V ; if CP1

Nn
>CCRITN

0; if CP1
Nn

<CCRITN and ∆αn > 0

(24)5

with CCRITN being the inviscid critical static normal force,
usually indicated by the break of the (viscous) moment polar
at the critical angle of attack αCRITn . This can be formulated
as:

CCRITN =
dCN
dα

(αCRITn −αINV0 ). (25)10

The idealized variation of the center of pressure with the
convection of the leading edge vortex can be modeled by

CPvn =Kv

(
1− cos

(
πτv
Tvl

))
(26)

The dynamic moment coefficient can be formulated as

CVMn
=−CPvnCVNn

(27)15

Therefore, the total dynamic loading on the airfoil from all
modules can be written as

CDNn
= CfNn

+CVNn
(28)

CDTn
= CfTn

(29)

CDMn
= CfMn

+CVMn
(30)20

and by converting these forces into lift and drag, one obtains:

CDLn
= CDNn

cos αn−CDTn
sin αn (31)

CDDn
= CDNn

sin αn +CDTn
cos αn (32)

2.1.4 Note to present implementation

In Equations (14) and (15), a curve-fitting procedure is usu-25

ally adopted in literature. In this sense, the parameters or
even the formulation need to be adjusted when the airfoil is
different. Therefore, in the present implementation, the sepa-
ration point is derived directly from the static polar data using
inversion of Equation (13) as.30

fn =

2

√√√√√ CV ISCNn

dCN
dα

(αfn −αV ISC0 )

− 1.0


2

(33)

The same approach was used for example by Hansen et al.
(Hansen et al., 2004). This way, the user can avoid dealing
with curve fitting adjustment (which requires changes on the

constants for different airfoils and flow conditions) as long 35

as the static polar data is available.
In the original formulation, the pitching moment is ob-

tained also by a curve fitting procedure in Equation (20).
Again, this kind of approach is not straightforward as the
user needs to perform curve fitting of the polar data. In the 40

present implementation, the moment coefficient is easily ob-
tained from the static viscous polar data by interpolating the
value at the effective angle of attack incorporating the lead-
ing edge pressure time lag αfn , that reads

CfMn
= CV ISCM (αfn). (34) 45

In this sense, the moment coefficient can be reconstructed
easily without the need to adjust the parameters in advance,
minimizing the user error.

Furthermore, to avoid discontinuity in the downstroke
phase for Equation (24), an additional condition is applied 50

in the present implementation as:

τvn =


τvn−1 + 0.45

∆t

c
V ; if CP1

Nn
>CCRITN

0; if CP1
Nn

<CCRITN and ∆αn ≥ 0

τvn−1
; otherwise

(35)

2.2 Snel 2nd order model 55

The history of the Snel’s second order model (Snel, 1997)
dates back to 1993 based on Truong’s observation on dy-
namic lift coefficient characteristics (Truong, 1993). Truong
proposed that the difference between the static and dynamic
lift can be divided into two terms: the forcing frequency re- 60

sponse and the higher frequency dynamics of a self-excited
nature. The total dynamic response of the airfoil is formu-
lated as:

CDLn
= CV ISCLn

+ ∆CD1
Ln

+ ∆CD2
Ln

(36)

CDDn
= CV ISCDn

+��
��*

0
∆CD1

Dn
+��

��*
0

∆CD2
Dn

(37) 65

CDMn
= CV ISCMn

+��
��*

0
∆CD1

Mn
+��

��*
0

∆CD2
Mn

(38)

with D1 and D2 being the first and second order correc-
tions, respectively. The first correction is modeled using an
ordinary differential equation (ODE) by applying a spring-
damping like function as: 70

τ∆ĊD1
Ln

+Kf10n∆CD1
Ln

= F1n (39)

The frequency of the first-order corrected lift follows the fre-
quency of the forcing term F1. This term is based on the



6 Galih Bangga et al.: An improved second order dynamic stall model for wind turbine airfoils

time derivative of the difference between the steady invis-
cid CINVLn

and viscous lift coefficient CV ISCLn
of an airfoil

(∆CINVLn
) as:

F1n = τ ˙∆CINVLn
(40)

∆CINVLn
= CINVLn

−CV ISCLn
=
dCL
dα

(αn−αINV0 )−CV ISCLn

(41)

5

with n and dCL/dα are the current sample time and inviscid
lift gradient, respectively. The time constant τ in the above
equation represents the time required for the flow to travel
half a chord distance as:

τ =
c

2V
(42)10

The "stiffness" coefficient of the first order term Kf10n can
be expressed as:

Kf10n =



1 + 0.5∆CINVLn

8(1 + 60τα̇n)
; if α̇nC

INV
Ln

≤ 0

1 + 0.5∆CINVLn

8(1 + 80τα̇n)
; if α̇nC

INV
Ln

> 0.

(43)

As shown in (Faber, 2018), the above equation becomes nu-
merically unstable if α̇n is large (increasing reduced fre-15

quency above 0.1) for α̇nCINVLn
≤ 0. The reason is that the

denominator goes to zero and then negative, causing nu-
merical integration instability. Thus, based on pure intuition
the denominator value was set to a minimum of 2.0 in Ref.
(Faber, 2018). In the present implementation, a similar ap-20

proach is adopted but the limit differs. Instead, the minimum
denominator value is limited to 1x10−5, because it yields
more physical results for several cases tested by the authors.

To incorporate the higher order frequency dynamics, a sec-
ond order ODE is used to describe the second order correc-25

tion term. The general form may be written as:

τ2∆̈CD2
Ln

+Kf21n
˙∆CD2
Ln

+Kf20n∆CD2
Ln

= F2n (44)

similar to the first order correction, the frequency of the
higher order dynamics is determined by the forcing term F2n ,
defined as:30

F2n = 0.1ks(−0.15∆CINVLn
+ 0.05 ˙∆CINVLn

). (45)

It is noted that the value 0.1 as a constant was chosen accord-
ing to Ref. (Adema et al., 2019). This is not a fixed value
and can be adjusted based on the evaluated cases as seen in
literature (Adema et al., 2019; Snel, 1997; Holierhoek et al.,35

2013; Faber, 2018; Khan, 2018). Variable ks is a constant
with a typical value of 0.2. The spring coefficient is given by

Kf20n = k2s [1 + 3(∆CD2
Ln

)2][1 + 3α̇n
2] (46)

and the damping coefficient as 40

Kf21n =

{
60τks[−0.01(∆CINVLn

− 0.5) + 2(∆CD2
Ln

)2]; if α̇n > 0

2τks; if α̇n ≤ 0.

(47)

2.3 Adema-Snel 2nd Order Model

The recently developed model of Adema (Adema et al.,
2019) improves the original Snel model (Snel, 1997) in sev-
eral aspects. Instead of using the lift coefficient (CL), the nor- 45

mal force coefficient (CN ) is used, similar to the LB model
(Leishman and Beddoes, 1989). The total dynamic response
of the airfoil is formulated as:

CDNn
= CV ISCNn

+ ∆CD1
Nn

+ ∆CD2
Nn

(48)

CDTn
= CV ISCTn

+��
��*

0
∆CD1

Tn
+��

��*
0

∆CD2
Tn

(49) 50

CDMn
= CV ISCMn

+��
��*

0
∆CD1

Mn
+��

��*
0

∆CD2
Mn

(50)

The model introduces some modifications of the original
model in terms of: (1) projected ks, (2) the first order coeffi-
cient and (3) the second order coefficient. The mathematical
formulation of the first order term of the model is listed as: 55

τ∆ĊD1
Nn

+Kf10n∆CD1
Nn

= F1n (51)

F1n = τ ˙∆CINVNn
(52)

∆CINVNn
= CINVNn

−CV ISCNn
=
dCN
dα

(αn−αINV0 )−CV ISCNn

(53)

Kf10n =



1 + 0.2∆CINVNn

8(1 + 60τα̇n)
; if α̇nC

INV
Nn

≤ 0

1 + 0.2∆CINVNn

8(1 + 80τα̇n)
; if α̇nC

INV
Nn

> 0

(54)

and for the second order correction term as 60

τ2∆̈CD2
Nn

+Kf21n
˙∆CD2
Nn

+Kf20n∆CD2
Nn

= F2n (55)

F2n = 0.01ks(−0.04∆CINVNn
+ 1.5τ ˙∆CINVNn

). (56)

Kf20n = 10(ks sinαn)2[1 + 3(∆CD2
Nn

)2][1 + 2802τ2α̇n
2]
(57)

Kf21n =


60τks[−0.01(∆CINVNn

− 0.5) + 2(∆CD2
Nn

)2];

if α̇n > 0

60τks[−0.01(∆CINVNn
− 0.5) + 14(∆CD2

Nn
)2];

if α̇n ≤ 0

(58)

One may notice that Equation (56) contains τ in the second 65

term of the right hand side (RHS). This is intended to remove
the dependency of the model to the velocity as the input pa-
rameter. The other main difference with the original model
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Table 1. Properties of the discussed dynamic stall models.

Model name First/second order Higher harmonics Model CL Model CD Model CM

Leishman-Beddoes first order - x x x
Snel second order x x - -
Adema-Snel second order x x x -

is also observed in Equation (57) where ks is projected by
sinαn. At last, the downstroke motion of the second order
term of Equation (58) is modified to enable vortex shedding
effects.

To sum up the characteristics of above discussed state-of-5

the-art dynamic stall models, Table 1 lists the properties of
each model and in which aspects the model can be improved
further.

2.4 New 2nd order IAG model

The proposed IAG model is developed based on knowledge10

gained from four different models; Leishman-Beddoes, Snel,
Adema-Snel and ONERA (Tran and Petot, 1980; Dat and
Tran, 1981; Petot, 1989) models with modifications. Similar
to the modern models like those from Snel (and ONERA)
and its derivatives, the present model is constructed by two15

main terms: the first order and second order corrections. The
total dynamic response of the airfoil is formulated as:

CDLn
= CD1

Ln
+ ∆CD2

Ln
(59)

CDDn
= CD1

Dn
+ ∆CD2

Dn
(60)

CDMn
= CD1

Mn
+ ∆CD2

Mn
(61)20

with D1 and D2 being the first and second order corrections,
respectively. Below the description of the modifications done
for the new model will be discussed in detail.

2.4.1 First order correction

Based on the Hopf-Biffurcation model of Truong (Truong,25

1993) that used the LB-Model as the starting point of the
first order correction, the present model does similarly. De-
spite that, the LB model is not transferred into the state-space
formulation, but it is retained as the indical formulation. The
model applies the superposition of the solution using a finite-30

difference approximation to Duhamel’s integral to construct
the cumulative effect to an arbitrary time history of angle of
attack. The LB-model described in Sections 2.1.1 to 2.1.3
will be used with the following modifications:

In the above LB-Model, predictions for drag is not accu-35

rate as will be shown in Section 3.1. This inaccuracy lies in
the determination of η in Equation (19) for the tangential
force component because drag is more sensitive to tangen-
tial force than the lift force does. Also to maintain simplicity,
parameter η is removed and the tangential force is obtained40

from the static data at the time-lagged angle of attack αfn by:

CfTn
= CV ISCT (αfn). (62)

If one uses this formulation directly, at some point drag still
becomes lower than the static drag value by a significant 45

amount. By evaluating the experimental data for several air-
foils and various flow conditions, this is not physical at small
angles of attack especially in the downstroke regime, where
it usually just returns to the static value. In fact, those exper-
imental data infer that strong drag hysteresis occurs only at 50

high angles of attack beyond stall. Similarly, in the upstroke
regime the drag value increases only slightly (approximately
only 20%). In Figure 3, one can see that drag hysteresis oc-
curs when ζn . ζv , with

ζn =
1

π

dCN
dα

(
1 +
√
fn

2

)2

(63) 55

and ζv is a constant with a value of 0.76. Based on these
observations, a simple drag limiting factor is adopted when
ζn ≥ 0.76 as:

CDDn
=



1.2CV ISCDn
; if CDDn

> 1.2CV ISCDn

and
(
CPNn

−CPNn−1

)
≥ 0.0

CV ISCDn
; if

(
CPNn

−CPNn−1

)
< 0.0

CDDn
; otherwise

(64)

Note that for the purpose of numerical implementation, it is 60

always recommended in practice to adopt relaxation to avoid
any discontinuity which may present in the above formula-
tion. Furthermore, the value of ζs may be chosen differently
for different airfoils depending on the vortex lift influence
on drag. Further studies on this aspect are encouraged. The 65

effects of these modifications are displayed in Figure 4.
It will also be shown in Section 3.1, that predicting mo-

ment coefficient directly from the static polar data by means
of the time-lagged angle of attack has its drawback in the
correct damping effect calculation. One may obtain better 70

results by using the "fitting function" as in Equation (20) in-
stead of using Equation (34). However, this limits the usabil-
ity for different airfoils, since the fitting has to be done again
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(a) (b)

(c) (d)

Figure 3. Relation between drag hysteresis in the stall regime with
weighted separation parameter ζ for four airfoils. From (a) to (d):
S801 (13.5%), NACA4415 (15%), S809 (21%) and S814 (24%).

for each individual airfoil. For wind turbine simulations, this
is fairly impractical because a wind turbine blade is usually
constructed by several different airfoils, not to mention the
interpolated shapes in between each airfoil position. To solve
for this issue, a relatively simple approach is introduced by5

applying a time delay on the circulatory moment response as:

CCMn
=



CCMn−1
exp
(
−∆s

TUM

)
−CPfn

(
CVn
−CVn−1

)
exp
(
− ∆s

2TUM

)
;

if τvn < Tvl and ∆αn ≥ 0

CCMn−1
exp
(
−∆s

TDM

)
−CPfn

(
CVn
−CVn−1

)
exp
(
− ∆s

2TDM

)
;

if ∆αn < 0

CCMn−1
; otherwise

(65)

where,

CPfn =KC
f

dCN
dα

(αCRITn −αINV0 ). (66)10

with KC
f , TUM and TDM being constants relatively insensi-

tive to airfoils. Furthermore, the second condition of Equa-
tion (35) is modified to avoid discontinuity which occurs at
a large reduced frequency (eg. k = 0.2), for any LB-based

(a) (b)

(c)

Figure 4. Drag reconstruction in comparison with the experimental
data for S801 airfoil (Ramsay et al., 1996) applying: (a) Equation
(19), (b) Equation (62) and (c) Equations (62) + (64).

models without re-calibration of the time constant as: 15

τvn =


τvn−1

+ 0.45
∆t

c
V ; if CP1

Nn
>CCRITN

τvn−1exp(−∆s); if CP1
Nn

<CCRITN and ∆αn ≥ 0

τvn−1 ; otherwise

(67)

The effects of these modifications are displayed in Figure 5.

(a) (b)

Figure 5. Moment reconstruction in comparison with the exper-
imental data for S801 airfoil (Ramsay et al., 1996) applying: (a)
Equation (34) and (b) Equation (65).
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The total first order dynamic response of the airfoil is for-
mulated as:

CD1
Nn

= CfNn
+CVNn

(68)

CD1
Tn

= CfTn
(69)

CD1
Mn

= CfMn
+CVMn

+CCMn
(70)5

where the definition and description of each variable was
given in Section 2.1 for the LB model. Thus the first order
lift and drag responses can be obtained by

CD1
Ln

= CD1
Nn

cos αn−CD1
Tn

sin αn (71)

CD1
Dn

= CD1
Nn

sin αn +CD1
Tn

cos αn (72)10

2.4.2 Second order correction

The second order correction takes the form of the non-linear
ordinary differential equation according to the second order
correction of the Snel (Snel, 1997) and Adema-Snel (Adema
et al., 2019) models. Generally, the basis of implementation15

of the present model mostly uses the Adema-Snel (Adema
et al., 2019) model where the normal force is used instead of
the lift force as for the original Snel model (Snel, 1997) as:

∆̈CD2
Nn

+Kf21n
˙∆CD2
Nn

+Kf20n∆CD2
Nn

= F2n (73)

This way, shedding effects apply not only on the lift force but20

also on the drag force. Note that τ is not present in Equation
(73) in contrast to the original formulation in Equations (44)
and (55). The equation is changed because the time deriva-
tives in the above equation is no longer with respect to time
but to s= 2V t/c, similar to the ONERA model (Tran and25

Petot, 1980; Dat and Tran, 1981; Petot, 1989). This is done
to nondimensionalize the equations.

In Equation (57), the ks was projected as a function of the
angle of attack by sinαn. This modification causes problem
when the hysteresis effect takes place in both positive and30

negative angles because Equation (57) will be zero and then
negative, causing instability of the ODE. Thus, the original
form of the Snel model (Snel, 1997) is retained in the present
model, but the constant is modified as.

Kf20n = 20k2s [1 + 3(∆CD2
Nn

)2][1 + 3α̇n
2] (74)35

The idea for the downstroke damping as in Equation (58) is
adopted in the present model, the following form and con-
stants are used:

Kf21n =



150ks[−0.01(∆CINVNn
− 0.5) + 2(∆CD2

Nn
)2];

if α̇n > 0

30ks[−0.01(∆CINVNn
− 0.5) + 14(∆CD2

Nn
)2];

if α̇n ≤ 0 and αn ≥ αCRITn

0.2ks; if α̇n ≤ 0 and αn < αCRITn

(75)

Note again that τ is not present in the above equation. The40

original formulation in Equation (58) replaces the damped

oscillator when α̇n ≤ 0 for a self-excited oscillator of Van-
der-Pol type with more damping. This is in contrast with
the implementation done in (Truong, 2016), where the self-
excited oscillator is only replaced by the damped oscillator, 45

when the flow is reattached on the return cycle. Under such
circumstances, the oscillatory behavior still subsists in the
return cycle, albeit with smaller amplitude. To accommodate
this aspect, the last term of Equation (75) is applied when
the angle is smaller than αCRITn . As for the forcing term, the 50

original form of the Snel model (Snel, 1997) is adopted as:

F2n = 0.5ks(−0.15∆CINVNn
+ 0.05 ˙∆CINVNn

). (76)

To facilitate the inclusion of the higher harmonic effects for
the pitching moment, the idealized center of pressure ob-
tained in the first order correction given in Equation (26) is 55

passed into the second order model. Thus, the dynamic mo-
ment reaction takes the form:

∆CD2
Mn

=−CPvn∆CD2
Nn

(77)

Regarding the tangential force, a similar assumption is made
as in Equation (48) where the influence of ∆CD2

Tn
is neglected 60

in the formulation. Finally, the second order term of the lift
(∆CD2

Ln
) and drag (∆CD2

Dn
) can be calculated easily. The ef-

fects of the second order term are displayed in Figure 6.

(a) (b)

(c)

Figure 6. Airfoils response reconstruction in comparison with the
experimental data for S801 airfoil (Ramsay et al., 1996) applying
only the first order correction and with inclusion of the second order
term. (a) Lift, (b) drag and (c) pitching moment.
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Table 2. Constants applied for the Leishman-Beddoes model.

A1 A2 b1 b2 Kα Tp Tf Tv Tvl Kv η

0.3 0.7 0.14 0.53 0.75 1.7 3.0 6.0 6.0 0.2 0.95

Table 3. Constants applied for the IAG model.

A1 A2 b1 b2 Kα Tp Tf Tv Tvl Kv KC
f TUm TDm ζs

0.3 0.7 0.7 0.53 0.75 1.7 3.0 6.0 6.0 0.2 0.1 1.5 1.5 0.76

2.5 Constants applied for the investigated dynamic stall
models

The following constants are applied in the implemented dy-
namic stall models. These values are kept constant through-
out the paper. The constants for the Leishman-Beddoes5

model and for the proposed IAG model are given in Table 2
and in Table 3, respectively. For any model developed based
on the Leishman-Beddoes type, the critical angle of attack
plays a major role. This can be obtained as the angle where
the viscous pitching moment breaks or when the drag in-10

creases significantly (or the stall angle). The applied critical
angles are given in Table 4. The validation is done by com-
paring the calculations with experimental data performed at
the Ohio State University for the S801 airfoil (13.5% relative
thickness) (Ramsay et al., 1996), NACA4415 airfoil (15%15

relative thickness) (Hoffman et al., 1996), S809 airfoil (21%
relative thickness) (Ramsay et al., 1995) and S814 airfoil
(24% relative thickness) (Janiszewska et al., 1996). All se-
lected test cases are for the airfoils employed with a leading
edge grit (turbulator) to enable the "soiled" effects on a wind20

turbine blade at a Reynolds number of around 750K. Note
that these polar data are different with the one used for ex-
ample by Sheng et al. (Sheng et al., 2010) where the natural
transition cases were taken. Therefore, the critical angles of
attack are also different. The results of the studies are pre-25

sented in the following sections.

Table 4. Critical angle of attack (αCRITn ) applied for the Leishman-
Beddoes and IAG models.

S801 NACA4415 S809 S814

15.1◦ 10◦ 14.1◦ 10◦

3 Results and Discussion

Three state-of-the-art dynamic stall models reviewed above
(Leishman-Beddoes, Snel, Adema-Snel) have been used as a
basis for examining the dynamic loads of four different pitch-30

ing airfoils at various flow conditions. Experience gained
from those models is used to formulate a new 2nd order

dynamic stall model, namely IAG model by evaluating the
weakness and strength of each model. The presented second
order models need to solve a set of differential equations. 35

For this purpose, the Euler-Heun forward integration method
is used.

3.1 Comparison against experimental data

This section compares the predicted dynamic forces in com-
parison with the measurement data. For a fair comparison, 40

all models are assessed with the same time step size of
∆t= T/1440, with T being the pitching period. The eval-
uations are performed on the S801 airfoil at k = 0.073. The
comparison of each model is shown in Figures 7 to 9 for
the Snel, Adema and IAG models, respectively. Note that 45

the constants of the other existing dynamic stall models are
taken directly from literature without further calibration for
the S801 airfoil. Therefore, it is already expected that their
performance will not be optimal. The main purpose of the
comparison is not to study their accuracy, but to analyze the 50

robustness of each model for a different airfoil without tuning
the constants. On the other hand, the constants for the IAG
model in Table 3 were obtained using the S801 airfoil. To
enable a fair assessment on the model robustness, the IAG
model will also be used to reconstruct the dynamic polar 55

data of four airfoils with different relative thickness without
changing the constants in Section 3.6.

The original Snel models cannot predict the drag and mo-
ment coefficients in the original formulations. Thus, only the
static polar data is shown. The Snel model actually shows an 60

acceptable accuracy even though the constants are taken as
found in literature. The higher harmonic effects are unfortu-
nately not captured by this model. This is further refined by
the Adema model which was developed as an improvement
for the Snel model. The model performs fairly well for the lift 65

and drag predictions, though the drag value at small angles of
attack is a bit off. The pitching moment prediction is also not
included in its formulations. These disadvantages are better
treated in the proposed IAG model. Not only the prediction
of the lift coefficient, but also the accuracy of drag predic- 70

tion is improved significantly. The modifications described
in Section 2.4 result in the improvement at low and high an-
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Figure 7. Dynamic forces reconstruction using the Snel model in
comparison with the measurement data (Ramsay et al., 1996) for
∆t= T/1440. S801 airfoil, k = 0.073, α= 20◦, ∆α= 10◦.

Figure 8. Dynamic forces reconstruction using the Adema model
in comparison with the measurement data (Ramsay et al., 1996) for
∆t= T/1440. S801 airfoil, k = 0.073, α= 20◦, ∆α= 10◦.

gles of attack regimes. The model is also able to reconstruct
the pitching moment polar accurately, which is important for
aeroelastic calculations of wind turbine blades.

For the following sections, the proposed IAG model will
be tested under various flow conditions and for several air-5

foils at various relative thicknesses in comparison with mea-
surement data. Note that these calculations are performed
without changing the constants to assess the robustness of
the model at different flow conditions.

Figure 9. Dynamic forces reconstruction using the IAG model in
comparison with the measurement data (Ramsay et al., 1996) for
∆t= T/1440. S801 airfoil, k = 0.073, α= 20◦, ∆α= 10◦.

3.2 Effects of time signal deviation 10

The actual pitching motion within the OSU measurement
differs slightly from the intended motion. The actual time
series of the angle of attack is included in the experimen-
tal data (Ramsay et al., 1996; Hoffman et al., 1996; Ram-
say et al., 1995; Janiszewska et al., 1996). To assess the ef- 15

fects of this time signal deviation on the aerodynamic re-
sponse, the calculations using this time signal data were per-
formed applying the IAG model. The results are compared
with the experimental data and the results of the IAG model
presented in Section 3.1. Note that this time signal data is 20

fairly coarse, and can cause problems for second order dy-
namic stall models because the gradient of α change can be
extremely large. To cover for this issue, the time signal is in-
terpolated in between each available point using a third-order
cubic-spline interpolation. The time signals are discretized 25

by ∆t= T/1440 over a single pitching period. The first pe-
riod of oscillation is used for initialization of the time inte-

Figure 10. Comparison of the timeseries of the idealized sinusoidal
angle of attack to the exact signals in the experimental campaign for
S801 airfoil, k = 0.073, α= 20◦, ∆α= 10◦.
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Figure 11. Dynamic forces reconstruction by the IAG model in comparison with the measurement data (Ramsay et al., 1996) for ∆t=
T/1440 using the actual angle of attack in the experimental campaign. TS labels the exact time signals in the experimental campaign. S801
airfoil, k = 0.073, α= 20◦, ∆α= 10◦.

gration, thus a constant angle of attack is applied as shown in
Figure 10.

Figure 11 presents the influence of the time signal vari-
ation on the aerodynamic performance in terms of CL, CD
and CM . TS labels the exact time signals in the experimental5

campaign. Although the time signal difference has almost no
influence of the global prediction characteristics, some de-
viation with the idealized sinusoidal motion can be noticed
clearly. For example, the increased lift build up in the up-
stroke regime before stall and the location of the lift stall.10

Some deviations on the drag and pitching moment coeffi-
cients are observed as well. For the rest of the paper, the
prediction procedure using the actual time signal from the
experimental data is used for best consistency with the ex-
perimental campaign.15

3.3 Performance of the model for different mean angles
of incidence

In this section, the effects of the mean angle of attack are
evaluated. Three different angles of attack at the same in-
flow conditions are selected for this purpose. These are α = 20

8◦, 14◦ and 20◦. Note that these mean angles of attack are
only approximations since the actual time signal data from
the experimental campaign is used. The selected mean an-
gles represent the regime of attached flow, partly separated
and fully separated flow conditions. These are helpful to as- 25

sess the model performance under various flow situations.
Figure 12 presents the results for the lift coefficient under

these three investigated mean angles of attack. The model
performs very well for these different cases. The maximum
lift is a bit overestimated in the model for the lowest α, but in 30
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(a) (b)

(c)

Figure 12. Lift reconstruction by the IAG model in comparison
with the measurement data (Ramsay et al., 1996) for ∆t= T/1440
using the actual angle of attack in the experimental campaign at
various α. From (a) to (c): α= 8◦, α= 14◦ and α= 20◦. S801
airfoil, k = 0.073, ∆α= 10◦.

(a) (b)

(c)

Figure 13. Drag reconstruction by the IAG model in comparison
with the measurement data (Ramsay et al., 1996) for ∆t= T/1440
using the actual angle of attack in the experimental campaign at
various α. From (a) to (c): α= 8◦, α= 14◦ and α= 20◦. S801
airfoil, k = 0.073, ∆α= 10◦

general all unsteady lift characteristics in the measurement
data are reproduced in a sound agreement with the experi-

(a) (b)

(c)

Figure 14. Pitching moment reconstruction by the IAG model in
comparison with the measurement data (Ramsay et al., 1996) for
∆t= T/1440 using the actual angle of attack in the experimental
campaign at various α. From (a) to (c): α= 8◦, α= 14◦ and α=
20◦. S801 airfoil, k = 0.073, ∆α= 10◦

mental data. A similar behavior is shown for the drag predic-
tion depicted in Figure 13. The proposed model captures the
increased drag effect and its shedding characteristics well. 5

The simple modifications applied in Section 2.4 result in a
good prediction of the drag coefficient as compared with the
experimental data. In Figure 14, the prediction for pitching
moment is shown. Here the predicted moment coefficient is
in a good agreement with the measured values. 10

3.4 Performance of the model for different reduced
frequencies

The effects of pitching frequency on the aerodynamic re-
sponse will be discussed in this section. Three different re-
duced frequencies are examined, namely k = 0.036, 0.073 15

and 0.111. The stall regime is shown here, where the pre-
diction is the most challenging. The actual time signals as of
the measurement campaign are used, following the procedure
described in Section 3.2.

Figure 15 displays the results for the dynamic lift coef- 20

ficient response. The lowest reduced frequency of 0.036 is
dominated by the viscous effects. It represents the case where
the "delayed" angle of attack response is the weakest. It can
be seen that the maximum attained lift coefficient increases
with increasing k. The gradient of the lift polar in the up- 25

stroke and downstroke phase is also increasing as well. These
characteristics are present in both experimental data and pre-
dictions delivered by the IAG model. A similar behavior is
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(a) (b)

(c)

Figure 15. Lift reconstruction by the IAG model in comparison
with the measurement data (Ramsay et al., 1996) for ∆t= T/1440
using the actual angle of attack in the experimental campaign at
various k. From (a) to (c): k = 0.036, k = 0.073 and k = 0.111.
S801 airfoil, α= 20◦, ∆α= 10◦.

(a) (b)

(c)

Figure 16. Drag reconstruction by the IAG model in comparison
with the measurement data (Ramsay et al., 1996) for ∆t= T/1440
using the actual angle of attack in the experimental campaign at
various k. From (a) to (c): k = 0.036, k = 0.073 and k = 0.111.
S801 airfoil, α= 20◦, ∆α= 10◦.

also displayed in drag and pitching moment in Figures 16
and 17, respectively. It is obvious that stall occurs much ear-

(a) (b)

(c)

Figure 17. Pitching moment reconstruction by the IAG model in
comparison with the measurement data (Ramsay et al., 1996) for
∆t= T/1440 using the actual angle of attack in the experimental
campaign at various k. From (a) to (c): k = 0.036, k = 0.073 and
k = 0.111. S801 airfoil, α= 20◦, ∆α= 10◦.

lier for a smaller k value. One can see that the maximum
amplitude of all three force components increases with in-
creasing k. This can be dangerous for the structural stability, 5

since the amplitude determines the fatigue loads.
To better investigate the effects of k, the IAG model is used

to reconstruct the dynamic polar data at various k by apply-
ing an idealized sinusoidal motion as presented in Figure 18.
Only the last DS cycle is shown for clarity of the observa- 10

tion. While the maximum amplitude of all three force compo-
nents at low frequency domains increases with increasing k
(blue and green markers), the amplitudes for all three forces
at high frequency domains show different characteristics as
shown in the Fourier transformation in Figure 19, albeit with 15

much smaller values. The higher harmonic amplitudes are
attributed to flow separation effects, while for low frequency
domains are driven by the pitching motion (i.e., external un-
steadiness or inflow).

3.5 Performance of the model for different pitching 20

amplitudes

In this section, the effects of pitching amplitude on the aero-
dynamic response of a pitching airfoil are investigated. The
mean angle of attack is fixed at α= 20◦. Note again that α
is only an approximation because the actual time signal data 25

from the measurement campaign is applied. This large mean
angle of attack is purposely selected because the post-stall
characteristic is of interest and is well known for its violent
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Figure 18. Effects of k on the aerodynamic response by the IAG model for ∆t= T/1440. S801 airfoil, α= 20◦, ∆α= 10◦. Top: polar,
bottom: timeseries.

Figure 19. Fourier transformation of the predicted forces presented in Figure 18. fs = f/f0 with f0 being the pitching frequency.

vibration, even for the static condition. The small amplitude
in this case means that the whole pitch oscillation occurs
within the stall regime.

Figures 20 to 22 display the dynamic force responses due
to pitching motion of the airfoil predicted by the IAG model5

in comparison with the experimental data. The model accu-
rately reconstructs the dynamic forces despite the predicted
case is challenging within the post stall regime. Interesting
to note is that the small pitching amplitude case induces
stronger shedding effects for lift than the larger amplitude10

case. This can be explained as following. As described by
Leishman in his papers (Beddoes, 1982; Leishman, 1988;
Leishman and Beddoes, 1989), the airfoil sees a lagged force
response compared to the imposed disturbance. Therefore,
in his model, a time-lagged angle of attack is introduced15

as the "effective" angle actually seen by the airfoil section.
When the pitching motion takes place partly within the fully
separated region (in the static case) and partly in the at-
tached/partly separated flow region, the airfoil still sees the
lower angle (where the flow is still attached) even though the 20

pitching motion already reaches the post-stall regime. This
effect stops/reduces when the effective angle is larger than
the critical angle defined in Table 4. As the critical angle for
the S801 airfoil is defined at 15.1◦, the lower amplitude case
is fully operating within the stall regime, where the attached 25

flow effect is not present.

3.6 Performance of the model for different airfoils

In this section, the performance and robustness of the pro-
posed IAG model are assessed for airfoils with different rel-
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(a) (b)

Figure 20. Lift reconstruction by the IAG model in comparison
with the measurement data (Ramsay et al., 1996) for ∆t= T/1440
using the actual angle of attack in the experimental campaign at var-
ious ∆α. (a) ∆α= 5.5◦; (b) ∆α= 10◦. S801 airfoil, k = 0.073,
α= 20◦.

(a) (b)

Figure 21. Drag reconstruction by the IAG model in comparison
with the measurement data (Ramsay et al., 1996) for ∆t= T/1440
using the actual angle of attack in the experimental campaign at var-
ious ∆α. (a) ∆α= 5.5◦; (b) ∆α= 10◦. S801 airfoil, k = 0.073,
α= 20◦.

(a) (b)

Figure 22. Pitching moment reconstruction by the IAG model in
comparison with the measurement data (Ramsay et al., 1996) for
∆t= T/1440 using the actual angle of attack in the experimental
campaign at various ∆α. (a) ∆α= 5.5◦; (b) ∆α= 10◦. S801 air-
foil, k = 0.073, α= 20◦.

ative thickness. All model constants in Table 3 remain the
same for all calculations. The difference from one airfoil cal-
culation to the other lies only in the critical angle of attack
value as shown in Table 4. The value was obtained simply
by looking at the static polar data where the viscous pitching5

moment breaks or when the drag increases significantly.

(a) (b)

(c) (d)

Figure 23. Lift reconstruction by the IAG model in compari-
son with the measurement data (Ramsay et al., 1996; Hoffman
et al., 1996; Ramsay et al., 1995; Janiszewska et al., 1996) for
∆t= T/1440 using the actual angle of attack in the experimen-
tal campaign for different airfoils. From (a) to (d): S801 (13.5%),
NACA4415 (15%), S809 (21%) and S814 (24%). k = 0.073, α=
20◦, ∆α= 10◦.

(a) (b)

(c) (d)

Figure 24. Drag reconstruction by the IAG model in compari-
son with the measurement data (Ramsay et al., 1996; Hoffman
et al., 1996; Ramsay et al., 1995; Janiszewska et al., 1996) for
∆t= T/1440 using the actual angle of attack in the experimen-
tal campaign for different airfoils. From (a) to (d): S801 (13.5%),
NACA4415 (15%), S809 (21%) and S814 (24%). k = 0.073, α=
20◦, ∆α= 10◦.
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(a) (b)

(c) (d)

Figure 25. Pitching moment reconstruction by the IAG model in
comparison with the measurement data (Ramsay et al., 1996; Hoff-
man et al., 1996; Ramsay et al., 1995; Janiszewska et al., 1996) for
∆t= T/1440 using the actual angle of attack in the experimen-
tal campaign for different airfoils. From (a) to (d): S801 (13.5%),
NACA4415 (15%), S809 (21%) and S814 (24%). k = 0.073, α=
20◦, ∆α= 10◦.

Despite the increased airfoil thickness from 13.5% to 24%,
Figures 23 to 25 demonstrate that the reconstructed dynamic
forces are in a good agreement with the experimental data,
not only for the general trend but also the higher harmonic
effects. As also the case for the Leishman-Beddoes model, it5

is important to select the appropriate value for the critical an-
gle of attack. The simple approach used in the present paper
has shown its usefulness and potentially reduce the complex-
ity of parameter tuning for industrial applications. Elgammi
et al. (Elgammi and Sant, 2016) for example defined two dif-10

ferent critical angles of attack, one for CN and the other for
CT that were shown to improve the prediction accuracy. Al-
though their attempt might be beneficial, this is not followed
in this work because one main aim of the studies is to reduce
parameter tuning required for one to the other cases.15

3.7 Predictions of the center of pressure

To further complement the analyses conducted in Section
3.6, the location of the actual pressure center is calculated
in this section as:

Xp =−CM
CL

(78)20

which indicates the distance of the pressure point to the quar-
ter chord position where CM is defined.

A correct location of the pressure point is important for
determining the stability on aeroelastic simulations of wind
turbine blades. The results of the calculations both for the 25

experimental data and for the proposed IAG model are pre-
sented in Figures 26 for all four investigated airfoils both as
time series and as the polar plot. It can be seen clearly that
the agreement between the experimental data and the present
predictions are excellent for all investigated airfoils. 30

3.8 L2 norm of error analyses

Holierhoek et al . (Holierhoek et al., 2013) introduced a way
for quantifying the absolute error between the experimental
data and modeled lift coefficient. The general formulation
reads: 35

Lφ2 =

√√√√ 1

N

N∑
i

(
φmodi −φexpi

)2
(79)

with φ being the variable of interest, i is the current sample
and N is the total number of sample. In their paper, however,
only lift was considered. Here all three force components
will be shown for four different airfoils. Figure 27 displays 40

the quantified error for two different flow category, attached
and deep stall. The timeseries of the angle of attack was
obtained from the measured data by applying a third-order
cubic-spline interpolation in between each available point.
One can see that generally the attached flow case is predicted 45

very well, while the error increases as the flow condition be-
comes more complicated. Interestingly, especially for lift, it
seems that the error reduces with increasing airfoil thickness.
The reason for the larger error obtained for the thinner air-
foil is attributed to the complex characteristics of the leading 50

edge stall, causing severe load variations especially with in-
creasing angle of attack. Thus, it makes the prediction more
challenging. Furthermore, the quantification of the error was
also performed on two other dynamic stall models, Snel and
Adema-Snel. The same approach for the angle of attack sig- 55

nal was applied. One can see that the IAG model shows its
improved prediction especially for the deep stall case for all
three force components.

4 Conclusions

Comprehensive studies on the accuracy of several state-of- 60

the-art dynamic models to predict the aerodynamic loads
of a pitching airfoil have been conducted. From the stud-
ies, the strength and weaknesses of each model were high-
lighted. This information was then transferred to develop a
new second order dynamic stall model proposed in this pa- 65

per. The new model improves the prediction for the aerody-
namic forces and their higher harmonic effects due to vor-
tex shedding, developed for robustness to improve its us-
ability in practical wind turbine calculations. Details on the
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Figure 26. Center of pressure reconstruction in comparison with the measurement data by the IAG model for ∆t= T/1440 using the actual
angle of attack in the experimental campaign for different airfoils. From top to bottom: S801 (13.5%), NACA4415 (15%), S809 (21%) and
S814 (24%). k = 0.073, α= 20◦, ∆α= 10◦.

model characteristics, modifications and treatment for nu-
merical implementation were summarized in the present pa-
per. The studies were conducted by examining the influence
of the time step size, time signal deviation, mean angle of at-

tack, reduced frequency, pitching amplitude and variation of 5

the airfoil thickness. Several main conclusions can be drawn
from the work.
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Figure 27. Quantified L2 norm of error with respect to the measurement data for four airfoils. Top: attached flow case ( k = 0.073, α= 8◦,
∆α= 5.5◦), bottom: deep stall case ( k = 0.073, α= 20◦, ∆α= 10◦)

– The general characteristics of the polar data can be pre-
dicted by all investigated dynamic stall models. De-
spite that, only the Adema model and the present IAG
model are able to demonstrate the higher harmonic ef-
fects among the three investigated models.5

– The exact time signal imposed based on the measure-
ment campaign improves the prediction accuracy of the
IAG model in comparison with the idealized sinusoidal
motion.

– The dynamic forces reconstructed by the IAG model are10

in a sound agreement with the experimental data under
various flow conditions by variation of α, k, ∆α and for
four different airfoils by changing only the values of the
critical angle of attack.

– The amplitudes at low frequency domains increase with15

increasing k, and can be attributed to the effects of in-
flow/external unsteadiness. The amplitudes at high fre-
quency domains reduce with increasing k which are
driven by flow separation effects.

– When the airfoil operates at a high α within the stall20

regime, a small ∆α leads to increased vibrations for lift.
The opposite is true for the pitching moment.

5 Recommendations for Future Work

The present paper evaluates the newly developed IAG model
under various flow conditions for four different airfoils. The 25

following aspects are encouraged for future work:

– In the present studies, the assessment was mainly car-
ried out for the S801 airfoil having a relative thickness
of 13.5%. This airfoil is mainly characterized by lead-
ing edge separation, which is very challenging for vali- 30

dating the accuracy of a dynamic stall model. However,
typical modern wind turbine blades usually employ air-
foils with no less than 18% relative thickness and at
much higher Reynolds number. Therefore, future inves-
tigations shall be done for thicker airfoils at various flow 35

conditions as well.

– The above statement is also true for the current available
experimental data. Therefore, experiments on dynamic
stall for thick airfoils at much higher Reynolds number
are encouraged. 40

– Three-dimensional effects (Himmelskamp or tip loss ef-
fects) for a rotating blade can alter the loads signif-
icantly even under a steady inflow condition. Further
consideration and examination of the model under this
condition shall be done. 45
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– Further tests and re-calibration of the model for deep-
stall conditions at extremely large angles of attack are
encouraged, which can be relevant for a turbine in stand
still.

Author contributions. G. Bangga developed the new model, de-5

signed the studies and conducted the analyses. T. Lutz and M.
Arnold supported the research, provided suggestions and discussion
about the manuscript.

Competing interests. The authors declare that they have no con-
flict of interest.10

Acknowledgements. The authors gratefully acknowledge the
Wobben Research and Development GmbH for providing the re-
search funding through the collaborative joint work DSWind. The
measurement data provided from the Ohio State University is highly
appreciated.15

List of symbols

Variables
s nondimensional time [s]
V incoming wind speed [m/s]
t time [s]
c chord [m]
CN normal force coefficient [-]
CT tangential force coefficient [-]
CL lift force coefficient [-]
CD drag force coefficient [-]
CM pitching moment coefficient [-]
CPN total inviscid normal force coefficient [-]
CPN1 time lagged total inviscid normal force coefficient [-]
CIN impulsive inviscid normal force coefficient [-]
CCN circulatory inviscid normal force coefficient [-]
CfN viscous normal force coefficient [-]
CfT viscous tangential force coefficient [-]
CfM viscous pitching moment coefficient [-]
CCM circulatory pitching moment coefficient [-]
CVN vortex lift normal force coefficient [-]
CCRITN critical normal force coefficient [-]
CPf stepping parameter moment [-]
f frequency [Hz]
f0 pitching frequency [Hz]
fn,f1,f2 separation factor [-]
F1,F2 first and second order forcing term [-]
k reduced frequency (k = πf0c/V ) [-]
Kf stiffness coefficient [-]
ks a constant close to the Strouhal number value [-]
M Mach number [-]
X,Y,D deficiency functions [-]
c1, c2, c3,a1,a2,a3,S1,S2,S3,α1 curve-fitting constants [-]
A1,A2, b1, b2,Kα,Tp,Tf ,Tv,Tvl,Kv,η,K

C
f ,T

U
m ,T

D
m model constants [-]

Greek letters
α angle of attack [rad (unless stated otherwise)]
α0 zero lift α [rad (unless stated otherwise)]
αe effective α [rad (unless stated otherwise)]
αf time lagged αe [rad (unless stated otherwise)]
αCRIT critical angle of attack [rad (unless stated otherwise)]
β Mach number dependent parameter [-]
τv nondimensional vortex time [-]
τ time constant [-]
ζv vortex lift drag limiting factor [-]

Superscripts
INV static inviscid [-]
V ISC static viscous [-]
I impulsive [-]
CRIT critical [-]
D dynamic loading [-]
D1 first order correction [-]
D2 second order correction [-]

Subscripts
n present sampling time [-]
f viscous lagged value [-]
v vortex lift affected value [-]
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