
RC1 comments, 

• The section on experimental details lacks some of the details that one would like to see in a 

high-quality paper (i.e. details on setup on the probes, justification of sampling frequency and 

time, a/d conversion details, the measurement stations, and many other). I have pointed this 

out before, however, my recommendations were largely ignored/misunderstood. I suggested 

these details were needed to allow other research groups to replicate the experiments. I would 

still like to see some of these things added to the paper for this purpose. 

Ans: As now has been added, the precise turbulence characteristics are not the primary goal of this 
study so the sampling frequency was roughly chosen based on previous studies performed in the facility. 
[Refan, M. and Hangan, H.: Near surface experimental exploration of tornado vortices, J. Wind Eng. Ind. Aerodyn., 175, doi:10.1016/j.jweia.2018.01.042, 
2018] [Romanic, D., LoTufo, J. and Hangan, H.: Transient behavior in impinging jets in crossflow with application to downburst flows, J. Wind Eng. Ind. 
Aerodyn., 184, doi:10.1016/j.jweia.2018.11.020, 2019.] 
 The sampling duration was chosen long enough to make sure the flow recovers, and we will not see any 
effect of the extreme event in the recirculated flow, (one complete recirculation takes about 12 seconds 
based on Windeee size and the average wind velocity), these have been added in line 202 in marked up 
version. The a/d conversion and cobra probe connections are straight forward, and all came in one 
package that was bought from the Turbulent Flow Instrumentation company. Detail about the cobra 
probes connection with a new subfigure (figure6d) has been added to the manuscript. (Line 205 to 2016 
in marked up version). Hopefully you find these new details satisfactory. 
 
 

RC2 Comments, 

Overall, the quality of this manuscript has significantly improved after two major revisions. 

Nevertheless, there are some improvements that should be made (see also comments in the attached 

PDF (comments are visible using the adobe acrobat reader or okular). 

 

- the document should be checked again for grammatical errors and typos - some things are marked in 

the attached PDF 

Ans: The comments in the pdf file has been addressed. lines 41, 51, 60, 72, 77, 80, 84, 96, 172, 267, 298, 

313, 332, 387, 425, 430 in marked up version. 

 

- ll.28 probably, you could rephrase that paragraph since currently, the question arises why you are 

using the IEC gust when it is far away from a real gust 

Ans: That sentence is preparing the audience for the reason to the new version of the standard. “It has 

also motivated the most recent edition of the IEC standard” then the following sentence” However, the 

third edition of the IEC standards was used in the work presented here as an initial step towards gust 

experimentation and represents an incremental development of a gust loading experimental capability”. 

 

- ll.208 since your TSR is very low, you are already in the order of magnitude of 4 rotor revolutions 

during the 5s gust and the question arises to me why it is necessary to introduce the gust propagation 

time. It would help to motivate why this is more appropriate. Also, the sentence "For a scaled wind 



turbine in the wind tunnel 4 rotor revolutions happen on the order of a second at the nominal operating 

condition." is not true for your setup, so you should rephrase it. 

Ans: that sentence mentions nominal operating condition in wind tunnels, 4 revolutions of rotor happen 

in a second. Then we relate that to the propagation time of the tip vortex so we can adjust the relevant 

time duration for gust based on other parameters like TSR and wind velocity. In our experiment the 

turbine will not work in its nominal condition. 

 

- ll. 289 please clarify whether you switched the fan power gradually, "switching fans to 30% for 1.6 s" 

reads like there was no gradual increase. 

Ans: we input sudden changes in the software. Different set of wordings were used. Line 307 in marked 

up version. 

  

- for your whole argumentation, it would be favorable to plot/add the simplified gust in fig. 12 d-g since 

you are aiming to match the simplified gust and not the IEC gust with your control - the results will 

match much better. 

 

Ans: in all the EOG figures, simplified gust has been replaced. Corresponding changes in the text has 

been performed. 

 

For future publications, please make sure your manuscript has a good quality, structure and use of 

language when handing it in for the first time. 

Also, when publishing more on the capability of the WindEEE Dome about the extreme wind conditions, 

I would recommend 

- verifying the reproducibility of events 

- using a phase average (+filter if necessary) to have a smooth gust information 

- showing the unprocessed data so that the fluctuations that are currently averaged out are also 

presented to the reader 

- commenting on all velocity components: you do have the information and if you can show that there 

are no/small v and w components, this is also an important information. 

- splitting the figures. It is really hard to look at a figure that extends over several pages. It is much easier 

to have a figure for the shear, one for the EOG with fan power and one for the EOG with blockage where 

you can directly take the information from the caption. 

Ans: we highly appreciate your constructive comments. These will be considered in our future works. 

Regarding splitting the figures in Figure 11 and 12, the caption for all of them is similar and it just 

mentioning the blue line is from experiment and the orange line is from the standard.  Splitting them 

would have made a lot of redundancy. But we will try to come up with a better way of presentation in 

future. 
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Abstract. In this study, the possibility of simulating some transient and deterministic extreme operational 

conditions for horizontal axis wind turbines based on the IEC 61400-1 standard using 60 individually 

controlled fans in the Wind Engineering, Energy and Environment (WindEEE) Dome at Western 

University was investigated. Experiments were carried out for the Extreme Operational Gust (EOG), 

positive and negative Extreme Vertical Shear (EVS), and Extreme Horizontal Shear (EHS) cases, tailored 

for a scaled 2.2 m horizontal axis wind turbine. For this purpose, firstly a numerical model for the test 

chamber was developed and used to obtain the fans’ configurations for simulating each extreme condition 

with appropriate scaling prior to the physical experiments. The results show the capability of using 

numerical modeling to predict the fans’ setup based on which physical simulations can generate IEC 

extreme conditions in the range of interest. 

1. Introduction 

Wind energy is one of the primary sources of renewable energy for mitigation of the increasing global 

energy demand. However, one of the basic factors for this market to thrive is a continued 

declinereduction of the levelized cost of electricity (LCOE), which is enhanced by ensuring the life time of 

the wind energy systems is reliably long (Ueckerdt et al., 2013). Having a long life cycle for these energy 

systems dramatically increases the probability of them encountering various extreme weather and wind 

conditions. Therefore, the design of wind energy systems must consider extreme environmental 

conditions with statistically accurate return periods. The International Electrotechnical Commission (IEC) 

has some deterministic design codes for commercial Horizontal Axis Wind Turbines (HAWT) in operating 

conditions, specifically in the third edition of the IEC 61400 part one (IEC, 2005). These extreme models 

are relatively simple and are not able to capture the true coherent turbulent wind characteristics (Cheng 

and Bierbooms, 2001; Hansen and Larsen, 2007; Wächter et al., 2012). This is especially true in complex 

terrain where the gust time evolution profiles are highly asymmetric and non-Gaussian (Hu et al., 2018). 

It has also motivated the most recent edition of the IEC standard (IEC, 2019) to utilize statistical methods 

for characterizing extreme gust event performance and extrapolation of load cases. This has been 

enabled by computational resources to analyse wind energy systems in dynamic wind environments to 

expand their external condition models. However, the third edition of the IEC standards was used in the 

work presented here as an initial step towards gust experimentation and represents an incremental 

development of a gust loading experimental capability. Progressing to a stochastic experimental 

approach, is left for future work and will be very challenging. 



One of the extreme cases in the standard is the extreme operational gust (EOG). A gust is defined as a 

sudden increase in velocity over its mean value, which is a transient feature of a turbulent wind field 

(Burton et al., 2011).These turbulent features in the Atmospheric Boundary Layer (ABL) depend on 

topography, surface roughness, up-stream obstacles, thermal stability (Suomi et al., 2013) and 

mesoscale climactic systems such as thunderstorms and downbursts (Chowdhury et al., 2018). In theory, 

for different applications, there are various simplified models of gust based on a peak factor and the 

whole rising and falling time in the wind speed. The peak factor is the ratio of the peak velocity 

(maximum or minimum) and the average wind speed. Wind gusts can happen over various length and 

time scales in nature. The most damaging gusts for any type of structures are the ones that have the 

same length scale as the structure that can envelope the whole structure (Hu et al., 2018). Smaller gusts, 

relative to wind turbine size can induce dynamic stall and the gust slicing effect (i.e. recurring high loads 

as the blade slices through the spatial/temporal gust region several times). The wind gusts also can 

cause intermittencies in the power output of wind turbine generators. For a small electricity network, 

these fluctuations in power generation can cause serious problems (e.g. unstable grid voltage and 

frequency) for managing power transmission and distribution (Anvari et al., 2016; Estanqueiro, 2007). 

The worst case in both terms of the grid stability and the loading on the turbine is when  the gust peak 

speed is higher than the wind turbine cut-out speed (i.e. a specific speed that turbine comes to 

complete parked position for safety reasons, usually about 25 m/s), which, if prolonged enough, can 

cause the control system to abruptly stop the wind turbine (Hansen, 2015). From an aerodynamic point 

of view, gusts can result in undesired acceleration of the rotor and drivetrain. The most reasonable 

solution is usually an adjustable generator load or blade pitch angles after detection of the gust for 

modern wind turbines (Pace et al., 2015; Lackner and Van Kuik, 2010). Developing LIDAR technology can 

make a substantial contribution in controlling the wind turbine by measuring the wind field upstream, 

thereby giving enough time for the control system to react properly (Bossanyi et al., 2014; Schlipf et al., 

2013). 

In addition to uniform gusts, the standard specifies deterministic Extreme Vertical and Horizontal Shears 

(EVS, EHS). These Extreme Wind Shears (EWS) can induce asymmetric loads on the rotor which are in 

turn transferred into the whole structure. The vertical shears can induce tilting or out-of-plane moments 

on the rotor and nacelle (Micallef and Sant, 2018). In a positive vertical shear, the blade moving at 

higher heightsheight could experience stall while the one moving at lower height will experience a 

reduction in overall angle of attack relative to design condition (and vice versa for negative vertical 

shear) (Sezer-Uzol and Uzol, 2013). If the shear is extreme enough, the blades may experience a 

phenomenon known as dynamic stall (Hansen, 2015; Gharali and Johnson, 2015). All these phenomena 

together will result in high fluctuations in power generation, as well as highly dynamic fatigue loads on 

the structure (Jeong et al., 2014; Shen et al., 2011). The effects of horizontal shear are similar to vertical 

shear in terms of power performance and blade fatigue loads. However, EHS also induces yaw moments. 

These transient shears can happen for similar reasons as uniform gusts, but mostly happen within wind 

farms, where the downstream wind turbines are partially  exposed to the wakes of other operating 

turbines (González-Longatt et al., 2012; Thomsen and Sørensen, 1999). 

The IEC  defines a classification for commercial wind turbines based on a reference wind speed and 

turbulence intensity, in a way that covers most on-shore applications (IEC, 2005). The Turbulence 

Intensity (TI) is defined as the ratio of the standard deviation of wind speed fluctuations to the average 

wind speed both calculated in 10 min intervals. TI levels of 16%, 14% and 12% correspondingcorrespond 



to the A, B and C reference turbulence classes (𝐼𝑟𝑒𝑓). For velocity references (𝑈𝑟𝑒𝑓), 3 classes have been 

defined (I, II, III) with 50, 42.5, 37.5 m/s as reference wind speeds, with one further class for special 

conditions (e.g. offshore and tropical storms) which should be specified by the designer. These reference 

velocities are used to calculate parameters related to the turbine external conditions. For example, the 

standard mean value of the wind speed over a 10 min interval based on the turbine class is 0.2 𝑈𝑟𝑒𝑓. An 

extreme wind speed model as a function of height (𝑍)), with respect to the hub height (𝑍ℎ𝑢𝑏) with 

recurrence periodperiods of 50 years (𝑈𝑒50) and 1 year (𝑈𝑒1), is defined as follows: 

𝑈𝑒50(𝑧) = 1.4𝑈𝑟𝑒𝑓 (
𝑍

𝑍ℎ𝑢𝑏

) ,0.11 
(1) 

𝑈𝑒1(𝑧) = 0.8𝑈𝑒50(𝑧), 

This definition is used for calculating the gust magnitude of the EOG. 

The design stream-wise turbulence standard deviation (𝜎𝑢)  is defined by a normal turbulence model: 

𝜎𝑢 = 𝐼𝑟𝑒𝑓(0.75𝑈ℎ𝑢𝑏 + 𝑏);    𝑏 = 5.6 
𝑚

𝑠
, 

(2) 

 

The 𝑈ℎ𝑢𝑏 is the average wind velocity at the at hub-height and 𝑏 is a constant. Accordingly, the hub 

height gust magnitude (𝑈𝑔𝑢𝑠𝑡) is given as: 

𝑈𝑔𝑢𝑠𝑡 = 𝑚𝑖𝑛 {1.35(𝑈𝑒1 − 𝑈ℎ𝑢𝑏); 3.3(
𝜎𝑢

1+0.1(
𝐷

Λ𝑢
)
)}, 

(3) 

Considering t as the instantaneous time and 𝑡 = 0 as the beginning of the gust, the uniform EOG as 

function of time is defined as: 

𝑈(𝑡) = {
𝑈ℎ𝑢𝑏
̅̅ ̅̅ ̅̅ − 0.37𝑈𝑔𝑢𝑠𝑡 𝑠𝑖𝑛

3𝜋𝑡

𝑇
(1 − 𝑐𝑜𝑠

2𝜋𝑡

𝑇
) ; 𝑤ℎ𝑒𝑛    0 ≤ 𝑡 ≤ 𝑇,

𝑈ℎ𝑢𝑏
̅̅ ̅̅ ̅̅ ;     𝑤ℎ𝑒𝑛 𝑡 > 𝑇 𝑜𝑟 𝑡 < 0,

 
(4) 

The T is the duration of the gust, specified as 10.5 seconds. The 𝐷 is the diameter of the rotor, and Λ𝑢 is 

the longitudinal turbulence scale parameter which is a function of the hub height: 

 

Λ𝑢 = {
0.7𝑍ℎ𝑢𝑏          𝑓𝑜𝑟 𝑍ℎ𝑢𝑏 ≤ 60 𝑚,

42𝑚          𝑓𝑜𝑟 𝑍ℎ𝑢𝑏 > 60 𝑚,
 

(5) 

 

The EVS and EHS have similar equations that can be added to or subtracted from the main uniform or 

ABL inflow. The EVS as function of height and time can be calculated using the equation (6). 

 

𝑈𝐸𝑉𝑆(𝑍, 𝑡) = {
(

𝑍 − 𝑍ℎ𝑢𝑏

𝐷
) (2.5 + 0.2 𝛽𝜎𝑢 (

𝐷

Λ𝑢

)
0.25

) (1 − cos (
2𝜋𝑡

𝑇
)) ; 𝑤ℎ𝑒𝑛   0 ≤ 𝑡 ≤ 𝑇,

0    ;  𝑤ℎ𝑒𝑛 𝑡 > 𝑇 𝑜𝑟 𝑡 < 0,

 (6) 

 

 



The  𝛽 is a constant with value of 6.4 and the T is 12 s in the EWS. The peak factor of the EOG decreases 

with increasing size of the turbine or decreasing hub height, and vice versa for the EWS based on these 

equations. 

Along with more common steady state experiments (Snel et al., 2007; Sørensen et al., 2002), developing  

transitory flow field experiments have attracted the interests of researchers during the past few 

decades (Lancelot et al., 2017; Ricci et al., 2017) to evaluate the various computational techniques or to 

directly investigate complex phenomena in different applications. To the authors’ knowledge, inIn the 

wind energy field, some efforts have been made to produce gusts; for example, using active grids 

(Petrović et al., 2019; Wester et al., 2018) and a chopper mechanism (Neunaber and Braud, 

2020).(Neunaber and Braud, 2020). Developing these unsteady flow fields basically comes down to the 

experiment targets and the available wind tunnel facilities. In this study, the generation of the EOG and 

the EWSs unsteady flow fields with relevant scaling (customised for a 2.2 m scaled HAWT) using 60 

individually controlled jet fans in the WindEEE dome are considered. This work presents a new 

numerical model of the WindEEE dome test chamber which can be used to predict fan settings for any 

custom steady or unsteady 2D flow fields before the physical experiment, and the capability of this 

facility to physically generate the gusts and shears similar to IEC standard during experiments. The focus 

of this paper is just on the time evolution of the simulated extreme conditions’ flow fields which is a 

prologue for future experiments including an actual HAWT model.  

The paper is organized in three sections beside the introduction and it is as follows. Section 2 details the 

development of the numerical model for the WindEEE test chamber which was used to obtain the fan 

setups to use in physical simulation of the gusts. This section also provides a length and time scaling of 

the gust which based on that the target gusts for experimental campaign are introduced. Section 3 

presents the results from velocity measurements at the test section in two parts, firstly the steady 

shears to assess the accuracy of the developed numerical model to simulate the shear layers and 

secondly the final transient simulated gusts and their comparison with IEC standard. Section 4 provides 

some conclusions.  

2. Methodology 

2.1. WindEEE Dome 

The physical experiments were conducted in the WindEEE Dome at Western University, Canada. This is a 

versatile facility that can be run at  different modes for creating various  non-stationary wind systems 

(Hangan et al., 2017). It has an inner test chamber with a 25 m diameter hexagonal footprint and 3.8 m 

height. It has a total 106 fans, including 60 fans installed on one wall and 40 fans over the other five 

peripheral walls. There are also 6 larger fans in a plenum above the test chamber which are mostly used 

for generating 3D flows like tornados and downbursts. The test chamber is in turn surrounded by an 

outer shell. The dome inner shell/test chamber along with outline of the outer shell with the flow path 

in the closed-circuit 2D flow mode (e.g. ABL, shear flows and etc) are presented in Figure 1a. In 2D flow 

mode, the louvers at the top and peripheral sides of the test chamber are closed and the flow is 

energized only by the 60 fans, then it reaches to the test section (center of the test chamber) and then 

exits the test chamber through the mesh of the wall at the opposite end, then recirculating over the top 

while passing through the heat exchangers, and finally back to the 60 fans’ inlet. Each fan is 0.8 m in 



diameter with 30 kW nominal maximum power. In order to reach higher velocities and better flow 

uniformity characteristics at the center of the test chamber, a two-dimensional contraction can be setup 

to streamline the flow as shown in Figure 1b. 

 

 

 

(a) (b) 

  
Figure 1. A brief geometry of the WindEEE dome, (a) the test chamber with outline of the outer shell along with 

the flow path in closed-circuit 2D flow mode, (b) the test chamber with contraction walls  

The power set-points of the 60 fans can be adjusted by the software as fast as 2Hz. However, this does 

not imply the fans themselves can throttle from 0% to 100% power at 2 Hz (due to rotational inertia of 

the fans’ rotors and electrical current filtering it takes ~3 s for the fans to adjust).  

Another feature are the fans with adjustable inlet guide vanes which can regulate the amount of flow 

rate through the fans. These vanes can be adjusted uniformly from 0% open (close) to 100% open 

(Figure 2). They can also be adjusted dynamically by setting an actuation frequency, duty cycle and an 

initial position. The actuation frequency specifies the time between two cycles, while the duty cycle 

specifies the duration of an individual cycle specified as a percentage of the time between two 

successive cycles. All these features allow the generation customizable dynamic flows. 

 

  
(a) (b) 

Figure 2. The adjustable vanes at the inlets of the 60 fans wall, (a) 100% open vanes, (b) 70% open vanes 



2.2. Numerical Flow Analysis Setup and Tuning/Validation 

In order to have a better understanding of the flow field in the test chamber, a numerical model for the 

test chamber was created using the commercial Star-CCM+ CFD software, which helped to predict the 

fan power setups for different scenarios prior running the experiments. 

For this purpose, four simplified symmetrical domains of the test chamber were generated to save 

considerable CPU time as listed at Table 1. As this table outlines, the domains V and V-c were used for 

simulating EOG, EVS and ABL flows; domains H and H-c were used for simulating EHS. 

 
Table 1: The symmetrical domains of the test chamber used for simulating different cases  

Picture of the Domain Application Domain ID 

 

Simulating ABLs and EVS & 

EOG and tuning the boundary 

conditions parameters 

V 

 

Simulating ABLs and EVS & 

EOG with contraction walls and 

tuning the boundary conditions 

parameters 

V-c 

 

Simulating EHS H 

 

Simulating EHS with contraction 

walls 
H-c 

 

In order to discretize the domains, three mesh setups (M1, M2 and M3) were considered for the 

polyhedral automated mesh function, built-in Star-CCM+ software. The general details for the generated 

grids are presented in Table 2. For all the cases, 5 prism layers with a total thickness of 0.05 m and with 

stretching of 30 % at the solid walls with minimum of 4 elements in the gaps were used; the surface 

curvature and surface growth rate were left at their default values (6 degree and 20% respectively) with 

no specified mesh density in the domains. In addition, in domains with contraction walls a custom 

control refinement on the surfaces of the contraction walls was used to create elements half of the 

general base size. The fans were modelled as squares with individual velocity inlet boundary conditions. 



The outflow grid on the opposite wall was treated as uniform pressure outlet. All other surfaces were 

treated as no-slip walls. Due to broad range of the Reynolds number across the domain, controlling the 

wall y+ was challenging. Therefore, for modelling the Reynolds stresses in the RANS equations, two-layer 

K-epsilon (k-ε) turbulence model was chosen.  

The next step was to calibrate the boundary condition parameters based on the previous experiment 

data that were available for scaled ESDU ABL profiles both with and without contraction walls (Hangan 

et al., 2016). The simulated fan powers were then adjusted to reach the desired average velocity profiles 

at the test section to match the existing experimental data. The M1 setup at domain V and V-c were 

used for preliminary tuning of the input values at the inlets and the outlet boundary condition 

parameters in order to get the best match with the available data at the test section. The best results 

corresponded to an inlet turbulence intensity of 8% with length scale of 0.2 m and the outlet boundary 

set as a pressure outlet with uniform zero-gauge pressure, 1% turbulence intensity and 0.05m length 

scale. Working at full power, the fans can generate 13 and 31 m/s of uniform wind velocity at the test 

section without and with contracting walls respectively. At the end the simulation results showed that 

the full fan powers corresponded to a 16.5 m/s inlet boundary velocity. The fan power set-points were 

then simplified as a linear interpolation between 0 and 16.5 m/s for the velocity inlets.  

 

Table 2: Detail of grid sizes for each domain 

Grid name tag M1 M2 M3 

Number of Cells for Domain V 

(Million) 
1.41 2.53 5.52 

Number of Cells for Domain V-c 

(Million) 
2.37 3.72 6.75 

Number of Cells for Domain H 

(Million) 
N/A 1.93 N/A 

Number of Cells for Domain H-c 

(Million) 
N/A 3.00 N/A 

Base size (m) 0.1 0.08 0.06 

 

The mesh independency check was defined by the incrementally refined grids M1 to M3 using the 

velocity profiles at the test section for the ABL profiles which have different fan power set points for 

each row (Figure 3). For low speed setup (without contraction) they were at 50, 70, 70 and 50% from 

bottom row to top (Figure 3a); in the setup with contractions, the fans are at 50, 65, 75 and 75% (Figure 

3b). The velocity profiles from the CFD results were defined by a vertical probe line passing through the 

center of the test chamber with 40 elementspoints over the entire height of the chamber. 

 



  
(a) (b) 

Figure 3. The mean ABL velocity profiles at the test section for different mesh setups comparing with the 

experimental data (Hangan et al., 2016), (a) low speed (without contraction) and (b) high speed (with contraction) mean 

velocity vertical profiles 

Figure 4a &b show the relative errors between velocities at each height; the largest disconformities 

between different mesh setups occur close to the wall which for this research is not the most important 

region. The more critical region for the present experiments is at the middle heights where the wind 

turbine rotor will be located. That being said, even the M1 setup has an acceptable range of error 

(~1%) at mid-height. However, the M2 mesh setup was chosen as the best compromise of computation 

speed and accuracy.  

  
(a) (b) 

  
Figure 4. The relative errors for (a) low speed velocities and (b) high speed velocities, the solid lines are the mean 

value for the errors over the whole height 

The discrepancy between the CFD simulation (M2) and the experimental data also increases close to the 

wall. This error is rooted in uncertainty of the implemented turbulence model and relative course mesh 

size close to the wall in the numerical model. Nevertheless, they are in an acceptable range of 



engineering applications (under 10% of relative error). A picture of discretized domain V-c with the M2 

grid is shown in Figure 5. 

 
Figure 5. The M2 grid for the V-c domain 

As described, this numerical model has been developed based on a set of steady ABL experimental data. 

The first application of it was to generate a calibration table that related the steady fan power set-points 

to the mean velocity magnitudes and profiles at the test section. This table was used to predict the fans’ 

powers in generating the EOG. For simulating the EWSs, only the peak stages of these extreme events 

were considered for modelling, again in steady condition in order to obtain the fan setups at the peak of 

the corresponding wind shear event (see 3.1). These numerical simulations neglect the closed loop flow 

recirculation dynamics in the dome. Nevertheless, it produces a reasonable prediction of the fan setups 

for a specific flow field in a reasonable amount of time.  

2.3. Experimental setup for velocity measurements 

The velocity measurements were obtained with seven cobra probes. These robust probes (TFI Ltd., 

2011) are capable of measuring the incoming airflow velocity within a cone shape of 45° with up to 10 

kHz sampling frequency. Each probe has 4 pressure tabs at the head (0.5mm each) and is able to 

measure three velocity components with measuring range from 2 to 45 m/s with ±0.5 m/s accuracy (TFI 

Ltd., 2011).and ±1° pitch and yaw accuracy up to approximately 30 % turbulence intensity. In this study, 

the average stream wise wind velocity was 5 m/s; therefore, all of the presented wind measurements 

have ~ 10% accuracy in average. 

Two different setups for velocity measurements were used; vertical and horizontal arrangements (Figure 

6). The seven cables from all the cobra probes were connected to an interface box. The output cable 

from this box then was connected to a laptop via an analog to digital converter card. The sampling 

duration was 60 s with sampling frequency of 2000 Hz for each measurement run. In each extreme 

event multiple actuation times for modulating either the fan powers or the IGVs were considered; this 

study presents the best results compared to the target extreme events from an individual test run. 



a & b). The sampling duration was 60 s with sampling frequency of 2000 Hz for each measurement run. 

The sampling duration was considered long enough compared to the 5 s extreme events to check for 

any unexpected perturbation in the flow field due to running the experiments in closed loop mode as 

the flow recirculates, by considering the flow recalculation path (~25 + 4 + 25 + 4 = 58 𝑚) and the 

average wind speed (~5 𝑚/𝑠) which give recirculation time of 12 second. The precise turbulence 

characteristics is not the major objective of the current study so the sampling frequency was chosen 

based on previous studies in this facility (Refan and Hangan, 2018; Romanic et al., 2019). In each 

extreme event multiple actuation times for modulating either the fan powers or the IGVs were 

considered; this study presents the best results compared to the target extreme events from an 

individual test run. More detail about cobra probes connection is presented in Figure 6d (just one of the 

probes is presented in this figure). The blue and yellow arrows are used for annotation of connections 

and equipment respectively. For correct measurements these probes need a static reference pressure. 

Therefore, all of them were connected to the static pressure side of a pitot tube via a manifold. The 

pitot tube was installed close to the cobra probe E in the middle of the array. Each cobra probe interface 

box has four cobra probe and eight analog input channels (the analog channels were not used). 

Therefore, two interface boxes were used which were connected with a specific synchronizing cable. 

Then each of these boxes were connected to the same A/D card via USB cables. The A/D card then was 

connected to a laptop that had the required TFI software installed. 

 

  

(a) 
(b) 

 



 
(c) 

 

(d) 

 
Figure 6. The arrangement of cobra probes based on the dimension of a 2.2m diameter HAWT for (a) vertical 

and (b) horizontal measurements at the center of the test section, (c) Setting up the 7 cobra probes in a horizontal 

arrangement at the test section, (d) Cobra probe connection details 

The locations of the probes were chosen based on the dimension of the available wind turbine in the 

facility. This turbine has a 2.2 m diameter with adjustable hub height, chosen as 1.9 m (Refan and 

Hangan, 2012). This entire paper is dedicated just to the development of the flow field. Investigation the 

effect of these unsteady wind conditions on the turbine is left for future work. 

2.4. Gust length and time scaling 

The time durations of the extreme events (T), as mentioned earlier, are 10.5 s for EOG and 12 s for EWS 

(IEC, 2005). Subsequently, the gust durations correspond to 3 to 4 complete rotor revolutions periods 

for full-scale turbines (which usually have angular speed of 15-18 RPM in 10 m/s average wind speed). 



ForUsually, for a scaled wind turbine in the wind tunnel 4 rotor revolutions happen on the order of a 

second at the nominal operating condition. This gust time scale would be impossible to simulate at 

WindEEE facility given the physical limitations of the hardware. Therefore, we assumeby assuming that 

the time scale of the gust is equal to propagation time of 4 loops of a blade tip vortex downstream in the 

wake. We can then, the relevant gust time becomes function of turbine operating parameters and wind 

speed which then can be adjusted. We can calculate the propagation length and time of these vortex 

loops based on the definition of the Tip Speed Ratio (TSR:
𝑏𝑙𝑎𝑑𝑒 𝑡𝑖𝑝 𝑠𝑝𝑒𝑒𝑑

𝑓𝑟𝑒𝑒 𝑠𝑡𝑟𝑒𝑎𝑚 𝑠𝑝𝑒𝑒𝑑
); assuming a uniform wake 

we have:  

Ω =
𝜆𝑈ℎ𝑢𝑏

𝑅
[𝑟𝑎𝑑/𝑠],  

Ω′ =
𝜆𝑈ℎ𝑢𝑏

𝑅
×

1

2𝜋
[𝑟𝑒𝑣/𝑠], 

(7) 

 

𝑈ℎ𝑢𝑏 ×
1

Ω′
=

2𝜋𝑅

𝜆
[

𝑚

𝑟𝑒𝑣
],  

 

where Ω is the angular velocity in radiant per second and Ω′is in revolution per second, 𝜆 is TSR and 

𝑅 is the radius of the rotor; with some rearrangement the last part in equation (7) can be rewritten as follow: 
 

𝐿′

𝐷
=

𝑇′𝑈ℎ𝑢𝑏

𝐷
=

𝜋

𝜆
 , 

 

 

(8) 

 

the 𝐿′and 𝑇′ are the length and time duration for propagation of one vortex loop in the wake. Based on 

the equation (8) and our assumption, an appropriate gust time and length can be calculated from: 

𝑳𝒔

𝐷
=

𝑻𝒔𝑈ℎ𝑢𝑏

𝐷
= 4

𝜋

𝜆
 . 

 

(9) 

 

Accordingly, the scaled time duration (𝑇𝑠)  is function of TSR, free stream velocity and the diameter of 

the rotor. The scaled length (𝐿𝑠) is function of TSR and diameter of the rotor (Figure 7).  

If the scaled turbine works at the same TSR and free stream velocity as the full-scale commercial HAWT, 

the time and length scale would be equal to their geometrical scale (i.e. the ratio of diameters).  



 
Figure 7. Visual representation of the length and the time scale relevant to the extreme conditions with 

assuming a symmetric wake 

The flow behaviour in the near wake region is directly correlated to the overall performance of a HAWT. 

Matching the time duration of the extreme condition to the propagation of 4 vortex loops in the wake 

should be a reasonable comparison to the full scale in terms of variation of power and loads on the wind 

turbine.  

For a commercial B-III class HAWT with 92 m diameter rotor and 80 m hub height, at 10 m/s average 

velocity, the prescribed EOG and EVS are presented in Figure 8a & b. The time windows in these figures 

start and end with the extreme events.  

The physical experiments showed that the fastest possible gust events with the required peak factor 

were around 5 seconds due to the hardware limitation. Therefore, to match the extreme event period 

to the suggested scaling assumptions, the 2.2 m scaled wind turbine should work in 5 m/s free stream 

velocity with operating TSR of 1.1, then it would take 5 seconds for the four complete loops of the tip 

vortexes generated by a specific blade to propagate in the wake. Accordingly, in all of the simulations 

and experiments the hub height velocity was kept at 5 m/s. Assuming a similar B-III class for the scaled 

HAWT with the hub height of 2 m, the scaled extreme condition profiles are shown in Figure 8c & d; in 

the scaled EOG velocity should uniformly rise from 5 to ~7.8 and then back to 5 m/s in 5 seconds with 

~1 m/s drops before and after the main peak relative to the average free stream velocity (Figure 8c). 

However, in the experiments the gusts have been simplified by not including the velocity drops (the red 

dashed-line in Figure 8c). This simplification stretches the actual rising and falling time from ~ 2.5 to 5 s. 

Yet, this is the compromise that was made due to the hardware limitations. Hence, in this study, the 

target EOG has the same falling and rising time period as the scaled EWSs. The pre-post dips in the 

standard EOG reflect field data wherein gusts are preceded by lulls; however for the purpose of 

investigating peak loading during gust events, for a machine nominally operating at the mean wind 

speed and assumed not responding much during the lull period, it is the velocity excursion above 

average wind speed that is important to capture. Future apparatus design and fan control may enable 

execution of pre-post lulls in prospective experiments.   

In the scaled EVS the uniform velocity field transitions to a highly sheared flow (~7 m/s velocity shear 

over 2.2 m distance) and then back to a uniform field, again in 5 seconds (Figure 8d).  
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(c) 

 

(d) 

Figure 8: The extreme operational conditions for a full scale HAWT class B-III with 92 m diameter and hub height 

of 80m at 10 m/s uniform wind speed compared with the scaled conditions for a B-III turbine with 2.2 m diameter and 2 

m hub height at 5 m/s average wind speed (a) full scale extreme operational gust, (b) full scale extreme vertical shear,  

(c) scaled extreme operating gust, the solid blue line is for IEC and the simplified gust that actually was targeted is in 

red dashed-line, (d) scaled extreme vertical shear 

In these settings, the length and time scale ratios are 5.2 and 2.4 respectively. The Reynolds number 

based on the relative velocity and chord size at the 70% blade span for full scale turbine at the nominal 

wind speed and TSR (10 m/s and 8 respectively) is ~7.5 × 106 and for the scaled turbine at our lab 

condition is ~32.5 × 103 which gives the ratio of ~230.  



3. Results and discussion 

3.1. Steady wind shear 

In this section, the simulation cases are all steady and just carried out for the peak stages which is the 

instantaneous point in time where that maximum shear occurs, as a preliminary investigation to 

unsteady experiment runs that are examined in the next sub-section. Using the tuned numerical model, 

the V-c and H-c domains were used to simulate the desired vertical and horizontal sheared flows by 

modulating the input velocity for the different rows and columns of the fans. The target was to match 

the velocity profile as similar as possible to the IEC standard for the scaled HAWT, corresponding to ~7 

m/s shear while keeping the velocity at the rotor centerline 5 m/s. Figure 9 shows the fan setups using 

CFD for creating the desired shears which could be achieved by using only the 5 fan columns at the 

middle. For creating negative vertical shear, the setup presented in Figure 9a was inverted. 

  
(a) (b) 

Figure 9. Fan setups for peak stages of extreme (a) vertical and (b) horizontal shears, prescribed for the scaled 

HAWT identical to full scale condition, the power set-points for each row and columns are included (just the 5 columns 

at the middle are working) 

 

Using the fan setups shown in Figure 9 the physical experiments were carried out and velocity 

measurements made using the cobra probes. Figure 10a, b & c show the average velocity at each probe 

including the range of velocity fluctuations (standard deviation) compared with average velocity profile 

from the CFD (dashed-line) and the prescribed shear by IEC standard (yellow solid-line) for the EVS, EHS 

and negative EVS respectively. The high velocity fluctuations relative to the mean velocity in 

experiments are due to the strong vortexes that form in these highly sheared flows which increase the 

momentum mixing at different heights. The amount of shear that was prescribed (~7 m/s velocity 

difference) is being successfully created in the tunnel for the positive vertical shear case (Figure 10a). 

However, for the horizontal and negative vertical cases (Figure 10b & c) there are larger shears than 

desired, resulting in a ~10 m/s velocity difference. From Figure 10a & c it is clear that the lower fans 

work more efficiently than the upper fans (i.e. with the same value of the power set-points, the lower 

fans generate higher velocities). The largest disconformity exists in the horizontal shear case (Figure 

10b).  

The relative discrepancy between the mean velocity fields of these three experimental steady shears 

and the IEC are presented in Figure 10d. Accordingly, the average amount of disconformities over all of 

the probes are 41, 27 and 9 % for the horizontal, the negative vertical and the vertical steady shears 

respectively. Basically, this comparison revealed the capability of the developed numerical model to 



predict the fan setups for simulating the EWS. As was explained in section 2.2, the numerical model is 

tuned just based on previously tested ABL flows while assuming similar efficiencies for all the fans, 

neglecting the flow recirculation in the outer shell and simplifying WindEEE test chamber geometry. The 

fan power values in all the test cases (steady and unsteady) are directly taken from the steady numerical 

model prediction results. In future, further field adjustments are required to generate a flow field as 

similar as possible to the IEC prescription. 

 

  
(a) (b) 

  
(c) (d) 

Figure 10. CFD predictions vs experiment data for steady (a) vertical shear, (b) horizontal shear and (c) negative 

vertical shear, (d) the relative disconformity between the three steady shear experiments and IEC standard 

 

3.2.  Unsteady experiments 

For the shear cases just the five columns of the fans in the middle were working (only 20 out of 60 fans 

were operated). The uniform flow field before and after the shear events, generated by setting these 20 

fans atto 39% power. The best results in terms of the event duration, were captured when the extreme 

condition setups were set for 1.6 s in the actuator software (i.e. the fan powers uniformly stayed at 39% 

and then switched to the setup in Figure 9 for just 1.6 seconds then back to the 39% uniform). The 

uniform gusts were generated in two ways. The first was again by changing the power set-points of all 



the 60 fans together. According to the results from the CFD simulations (Domain V-c), in order to 

achieve the prescribed EOG, the fan power set-points should uniformly goswitch from 17% to 30% and 

back to the 17% power. in the software. For the uniform gust, the best result again was obtained with 

switchingsetting fans to 30% for 1.6 s which resulted in ~5 𝑠 uniform gust with desired peak factor. The 

second way of generating a uniform gust was using the IGVs while keeping fan power set-points 

constant at 30%. In this run, the actuation frequency of the IGVs was set at 0.05 Hz with a duty cycle of 

8%, initial position of 10% open with cycling to 100% open (see section 2.1 for IGV setting definitions). In 

addition, in each uniform gust case, to obtain a better understanding of the uniformity of the flow field, 

two measurement runs were conducted using both vertical and horizontal layouts of the cobra probes 

(layouts in Figure 6). For processing the data all of the velocity time histories were filtered using a 

moving average with an averaging window of 0.2 s based on the criteria described at (Chowdhury et al., 

2018).  

 3D pictures of the filtered turbulent wind fields for the EVS, EHS, negative EVS, EOG cases generated 

with changing fan powers (vertical & horizontal measurements), and the EOG generated using the IGVs 

(vertical & horizontal measurements) are presented in Figure 11a, b, c, d & e, f & g respectively. The 

average amountmagnitude of variation in readingfluctuations around the mean velocity values due to 

the filtration is, are ±0.16 m/s for the EWS cases;,  ±0.11 m/s for the EOG using the fan powers and 

±0.41 m/s for the EOG using the IGVs. In Figure 11a & c when the 20 fans at middle are operating, it is 

again evident that the fans at the top row do not work as efficient as the other fans; they could have less 

stable air supply than the lower rows which should be due to the tight direction change of the 

recirculating flow from the top. Figure 11d & f show velocity fields when all 60 the fans are operating 

with the contraction walls to help unifying the flow field. Figure 11b, e & g show that all of the flow 

fields are horizontally uniform. The data from the EOG generation with IGVs (which work in a cyclic 

manner) in Figure 11f & g shows the background velocity fluctuations are high relative to the EOG 

generation by manipulating the fans’ powers in Figure 11d & e.  
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(e) EOG generated with changing fan 
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(f) EOG generated with IGVs, vertical 

measurements 

(g) EOG generated with IGVs, horizontal 

measurements 

 
Figure 11. 3D pictures of the complete time history of the phased averaged (with 0.2 s averaging window) turbulent 

velocity field 



In order to have a better comparison of these unsteady cases with the IEC, the velocity time history 

extracted from the cobra probes B to H (with the layout showed in Figure 6) in blue solid-lines along 

with the standard specifications in orange solid-lines are plotted in Figure 12 at the left columns (cases 

are in the same order as Figure 11). The right columns contain the relative instantaneous discrepancy of 

the velocity relative to the IEC prescribed velocity, normalized by the average velocity (~5 𝑚/𝑠). 

Based on data for the shear cases, at the peak stages the amount of desired shear is successfully being 

generated. However, due to the difference in velocities, there is a time lag between the peaks’ locations 

at the top to bottom heights of the EVS cases, and left to right in the EHS cases (Figure 12a, b and c).  

As previously discussed, when just the 20 fans in the middle are working the lower efficiency of the top 

row of the fans is more noticeable at probe H  in Figure 12a & c; the velocity time history at this height 

and condition has more fluctuations comparecompared to the other probes. Probe H in Figure 12d & f 

shows in better detail that using all the 60 fans and the contraction walls helps homogenizing the flow 

field close to the ceiling (i.e. similar velocity magnitudes and fluctuations in all the time histories across 

the probes ). Yet, in the gust peak when the flow is highly dynamic, the insufficiency of the air supply for 

the top row is noticeable as the probe H in  Figure 12d demonstrates (the sudden velocity drop while 

the velocity in other probes are consistently increasing). Similar velocity instabilities have been observed 

at the same height in other experiment runs when rapid fan power changes were applied. Figure 12d & 

e in detail present the flow field of the EOG generated by changing the whole 60 fans’ powers. InAs the 

discrepancy time histories, there suggests, the generated EOGs with this method are double hump 

shape consistent with the target simplified gust. However, the profiles mostly due to the two sequential 

velocity drops before and after the main velocity hike in the standard. Even thoughare slightly 

asymmetric; the peak factor is being capturedleft sides of the gust profile is not symmetric as profiles 

have positive curvature and the standard suggests; the second humps in the discrepancy time histories 

consistently have higher magnitudesright sides have linear behaviours. This could be due to the fact that 

the fans do not decelerate as fast as they can accelerate (the gust falling time is not as fast as its rising 

time). Active fan braking might be explored in future work to accelerate the falling gusts, instead of 

relying on inertia/friction. 

 



 
(a) EVS 

 
(b) EHS 



 
(c) negative EVS 



 

(d) EOG generated with changing fan powers, vertical measurements 



 

(e) EOG generated with changing fan powers, horizontal measurements 



 

(f) EOG generated with IGVs, vertical measurements 



 

(g) EOG generated with IGVs, horizontal measurements  

 
Figure 12. Filtred velocity time history at each probe (with the layout presented in Figure 6) as blue solid-line 

compared with prescribed extreme event velocity as the orange solid-line (left columns), time history of relative 

instantaneous velocity discrepancy normalized by average velocity (right columns)  



The most consistent EOG was generated by using IGVs in terms of uniformity, symmetry and peak factor 

at the test section (Figure 12f & g). The only noticeable inconsistency of this simulated EOG withis due to 

effect of the IEC are the smallcontraction walls which resulted in slightly higher velocity dropspeaks in 

probe H and B in Figure 12g that created a moderately symmetric double hump profile in the relative 

discrepancy time history. If we consideredare in 1.1 m offset from center. The generated gust also has 

positive curvature on the both rising and falling sides. Even though, the simplified gust profile as the 

baseline (see Figure 8c), the generated gusts with this method would have more similar characteristics 

to the theory. target gust has a negative curvature. 

4. Conclusion 

A hybrid experimental/numerical study has been carried out to investigate the possibility of creating 

extreme conditions for a scaled HAWT based on the IEC 61400-1 standard, in particular the EOG and 

EWSs, using a unique 60 fan setup in the WindEEE dome at Western University. These conditions were 

tailored for a 2.2 m diameter test HAWT with the aim to further relate this work to full-scale wind 

turbines. Therefore, a length and time scaling approach based on tip vortex propagation in the wake was 

introduced. The resulting time scale is a function of the free stream velocity, tip speed ratio and 

diameter of the rotor.  

A simplified numerical model was first developed and tuned based on a set of steady ABL flow data; the 

model used a simplified geometry of the WindEEE testing chamber and did not simulate the flow 

recirculation in the outer shell. The model also treated the fans simply as velocity inlet boundary 

conditions with the same efficiencies. Yet, it gave a good understanding of the relation between fan 

power set-points and the flow field at relevant part of the test chamber, which then was used to predict 

the fan setups for the physical simulation of the extreme events. For future target scenarios the 

numerical model can be useful to obtain the primary setup, however field adjustments are 

recommended. 

Steady experiment runs corresponding to the peak of the shear cases showed that the fans act non-

linearly having different individual efficiencies, especially the top and bottom rows due to the sharp 

recirculation angle at the suction side of the 60 fan wall. This has not been taken into account in the 

simplified CFD model and consequently resulted in discrepancies between experiments and the 

standard shear. By quantifying these discrepancies, corrections can be applied to improve the 

replication of these events. The unsteady shear flow experiments showed that even though the desired 

peak factor was generated the high and low velocity peaks reach the test section with a time lag. This 

can be corrected in the future by providing a phase difference in actuations between the top and 

bottom rows of fans.  

In generation of the EOG by dynamic change of the fan powers, the flow field was more consistent than 

the EWS compared to their own baselines; the combination of 60 operating fans and the contraction 

walls helped unifying the flow field. Yet, in fast power transitions due to the sharp recirculation angle 

the flow field showed some unpredictability and inconsistency close to the ceiling of the test chamber. 

Generating uniform gusts using the IGVs produced the best results in terms of time scale and peak 

factor, as well as flow field uniformity and reproducibility. Considering the simplified gust profile without 

the velocity drops, the generated gust imitates the simplified theoretical profile.  



Overall, this study demonstrated promising results using a hybrid numerical/experimental approach for 

the simulation of extreme wind conditions. These extreme gust conditions can be used with minor 

modifications in future physical tests to investigate their effects on different aspects of wind turbines’ 

performances. Furthermore, a detail investigation into the reproducibility of these extreme events, 

specifically the cases generated by dynamic change of the fan powers, is recommended.  
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