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Abstract. We present the "most similar"-method for selecting optimal measurement positions for wind resource assessment.

Wind resource assessment is generally done by extrapolating a measured and long-term corrected wind climate at one loca-

tion to a prediction location using a micro-scale flow model. If several measurement locations are available, standard industry

practice is to make a weighted average of all the possible predictions using inverse-distance weighting. The "most similar"-

method challenges this practice. Instead of weighting several predictions, the method only selects the single measurement5

location evaluated "most similar".

We validate the new approach by comparing against measurements from 185 met masts from 40 wind farm sites and show

improvements compared to inverse-distance weighting. Compared to using the closest measurement location, the error of

power density predictions is reduced by 13% using inverse-distance weighting and 34% using the "most similar"-method.

1 Introduction10

When assessing the energy potential of a new wind farm, a crucial step is to predict the mean wind climate at each wind

turbine position. The conventional approach for predicting the wind climate is to erect a meteorological mast (met mast) at

a nearby location and extrapolate the measured wind climate to every wind turbine position using a micro-scale flow model

(MEASNET, 2016). The flow model estimates how the surrounding topography perturbs the wind and can thereby predict

the wind climate at each wind turbine position. Much research focuses on the development of improved micro-scale models;15

however, this work focus on optimal met masts positioning and on how this improves predictions irrespectively of the chosen

micro-scale model.

This introduction will first explain that met masts today are positioned to minimise the distance to wind turbine positions.

We then present a hypothesis that states that met masts should instead be placed following the "similarity principle" and finally,

the section describes how the hypothesis will be tested.20

1.1 The representativeness radius

The distance between the measurement and prediction location is traditionally used as an indicator of model uncertainty, and

measurement campaigns are often planned to minimize the extrapolation distance. MEASNET (2016) defines a "representa-

1

DariushFaghani
Highlight
focuses



Figure 1. The figure illustrates how a measured wind climate can be extrapolated to a prediction site using a flow model. Following the

"representativeness radius", the model error is reduced when the distance between met mast and prediction location is minimized; accordingly

met mast 1 (U01) is the preferred predictor. Following "the similarity principle" model errors are reduced when the wind conditions at the

met mast and the predicted location are similar; accordingly met mast 2 (U02) is preferable despite its more distant location

tiveness radius" as the distance from a met mast to the furthest location that can be extrapolated with tolerable uncertainty.

The representativeness radius depends on the complexity of the terrain, where complex terrain is characterized by having ter-25

rain slopes greater than 0.3. Figure 1 illustrates two met masts located in complex terrain. Following the recommendations of

MEASNET (2016), the measurements taken in the valley, U01, are preferable for predicting UP as the distance is small.

1.2 The similarity principle

According to Landberg et al. (2003), errors related to flow modelling are minimized when the predictor site (the met mast

location) and the predicted site (the wind turbine location) are as "similar" as possible regarding factors like regional wind cli-30

mate, roughness, orography and obstacles. Landberg et al. (2003) refers to this this as the "similarity principle". The underlying

assumption is that no matter how advanced a flow model, it always produces errors, and they scale with the forcing applied.

Figure 1 illustrates the similarity principle. The wind conditions in the valley, U01, differ substantially from the conditions at

the prediction site, UP , and a better predictor (according to the similarity principle) is, therefore, the hilltop met mast, U02,

despite its more distant location.35

1.3 The most similar predictor

Experienced wind and site engineers determine suitable locations for met masts based on the representativeness radius and

their judgment. They intuitively understand that distance is not the only parameter that should be evaluated; however, since no

algorithmic method for similarity exists, the industry standard is to minimize the extrapolation distance.
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To make a parameter that represents similarity, we define the directional-averaged speedup uncertainty, σS ,40

σ2
S =

Nθ∑
j=1

fjσ
2
Sj (1)

where fj is the wind direction frequency at the met mast, Nθ is the number of wind direction sectors and σ2
Sj is the speedup

uncertainty of the micro-scale model. As an expression for the speedup uncertainty for a particular wind direction, we use the

model by Clerc et al. (2012):

σ2
Sj =

(
λ

[
1− exp

(
−d
L1

)])2

+

∣∣∣∣Sj − 1

Sj + 1

∣∣∣∣2 (2)45

where d is the extrapolation distance, L1 = 1km and λ= 0.1 are empirically calibrated constants (Clerc et al., 2012), Sj =

UPj/U0j is the speedup where U0 and Up are the measured and predicted mean wind speeds respectively. L1 and λ have not

been re-calibrated in this work, but are kept to their original values.

σS combines into one expression, the uncertainty associated with both extrapolation distance and the wind speed difference.

Small values of σS signify that predictor and prediction conditions are "similar". The inclusion of speedup in the expression50

ensures that any difference between predictor and prediction site included in the micro-scale flow model is evaluated (rough-

ness, orography, obstacles, measurement height, etc.). The speedup uncertainty is, therefore, expected to be a more accurate

"measure-of-similarity" than distance, and we define the "most similar" predictor to be the location with the smallest σS-value.

1.4 Multi-mast strategies

For large wind farms with several met masts, a standard practice when making predictions is to either select the closest available55

predictor or to make a weighted average of multiple predictions using "inverse distance weighting". As an example, the inverse

distance weighted mean wind speed, UP , can be determined as,

UP =

∑NM
i=1WiUPi∑NM
i=1Wi

(3)

where UPi is the predicted mean wind speed, Wi = d−2
i is the predictor weight, di is the extrapolation distance, and NM is

the number of predictors on a particular site. The underlying reason for using inverse distance weighting is that the standard60

error of a weighted mean decreases with the number of independent predictions. However, for this to be valid, the predictions

are assumed independent (model errors should be random), and extrapolation distance is assumed to be the parameter that

correlates the strongest with model error.

This paper aims to show that met masts should be placed following the "similarity principle" instead of reducing extrapo-

lation distance. The hypothesis is verified by showing that the "most similar" predictor gives lower prediction errors than the65
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closest predictor and inverse distance weighting. In the following, we conduct a large number of predictions using the following

multi-mast strategies and compare the results to measurements:

Closest predictor: Wi =

1 if di = min(d)

0 otherwise
(4)

Inv. dist. weighting: Wi = d−2
i (5)

Most similar predictor: Wi =

1 if σSi = min(σS)

0 otherwise
(6)70

2 Validation Method

To validate the usefulness of the "most similar" predictor, we compare the performance of the three multi-mast strategies

against wind measurements. Sites with at least three met masts are used in the comparison. The multi-mast sites allow for

predictions with multiple predictors and provide an objective way to evaluate the strategies. The validation method consists of

three steps described in detail in the following sections:75

1. Wind Measurements: Preparation of the wind data for the flow model.

2. Flow model: Prediction of all mast locations using every other mast as a predictor.

3. Prediction statistics: Calculation of mean wind speed and power density using each multi-mast strategy.

The wind measurements and flow model setups are identical for each multi-mast strategy; only the mast weights, Wi, used for

calculating the wind statistics are different to allow for a simple and objective evaluation.80

2.1 Wind measurements

The datasets used in this work has been collected specifically to validate multi-mast strategies. It is obtained through wind

project developers worldwide and is considered to cover the full spectrum of the conditions experienced in wind projects. The

dataset consists of wind measurements from sites with three or more met masts. By having at least three masts, each mast

location can be predicted using at least two predictors, and results can be compared against the measurements taken at the85

predicted mast.

The dataset consists of wind speed and wind direction measured from the top anemometer of each met mast, already screened

and long-term corrected by wind project developers. The data is grouped into 36 10-degree wind direction sectors, and have
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Weibull distributions fitted to the wind speed histogram. Wind statistics from a total of 210 met masts were provided for the

study. The only additional screening that has been conducted is the removal of four sites (25 met masts) from the dataset. These90

sites were removed since mast-to-mast predictions of wind speed, and power density led to substantial errors (> 3σ) for four

of the met masts. We did not investigate the reason for the significant errors but removed the sites from the investigation. Table

1 shows a summary of the sites and met masts used. As seen, the screened data consist of 185 met masts distributed over 40

wind turbine sites.

Table 1. Number of met masts used for the study.

Masts per site Sites Masts Cumulative sum

25 1 25 25

7 4 28 53

6 3 18 71

5 5 25 96

4 8 32 128

3 19 57 185

The data comes from met masts located near potential wind energy installations, and the 185 mast locations represent varied95

site conditions from all over the world. Figure 2 illustrates the complexity of the sites using the RIX (left) and ∆RIX (right)

measure where RIX is defined by the percentage fraction of the terrain along the prevailing wind direction, which is over a

critical slope of 0.3 (Bowen and Mortensen, 2004). The mean RIX value is 7.0%, which can be considered moderately complex

terrain. Compared to the closest neighbouring mast, 84 masts have |∆RIX| values of less than 1% and 164 masts have |∆RIX|
below 5%. Most of the met masts are therefore placed in similar, well-exposed hills and ridges.100

Figure 3 shows the height of the masts (right) and the distance to their closest neighbour (left). The distance is up to 10km,

but on average the distance is 3.1km. As seen, the masts do not have the same height but vary from 20 meters to 120 meters,

and half of the sites have height variations within them. These sites often have combinations of short and tall masts e.g. of

40/80 meters, 60/80 meters or 60/100 meter masts. The wind statistics have not been corrected or "sheared up" to unify the

heights differences. Instead, the flow model has been used directly to estimate the wind statistics at the prediction height using105

the statistics at the predictor height. The "most similar" method have an advantage compared to the other multi-mast strategies

for sites with different mast heights as there will be a speedup between masts of different heights and the will therefore not be

valued as similar. In the current analysis, this is however of minor importance as the results, particular in Section 3.2, depend

mainly on a single site with 25 met masts that are all 80 meters tall.

The dataset (Table 1) allows for a total of 185 possible predictions with two or more predictor masts. The results section110

analyse how the different multi-mast strategies perform with this specific mix of multi-mast sites. Also, other combinations

of multi-mast sites from the same data-pool have been made, to analyse how the multi-mast strategies perform on sites with a
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Figure 2. RIX and |∆RIX| for all 185 met. masts. |∆RIX| is calculated using the closest neighbouring mast.

Figure 3. Mast height and distance to the closest neighbouring mast for all 185 met. masts.

specific number of predictor masts. As an illustration of how other multi-mast combinations can be made from the same data,

we can imagine that a single site with 3 met masts can also be viewed as 3 different sites with 2 met masts. Table 2 shows the

many combinations of predictions possible with 1, 2, 3, 4, 5 or 6 predictor masts. As seen, it is possible to make more than 33115

million different predictions with 6 predictor masts. The many combinations are primarily possible due to the site that has 25

met masts. The results for different numbers of predictor masts are not directly comparable since they are based on different

sites. The results section will, therefore, normalise the "most similar" and the "inverse distance weighting" results with the

"closest mast" to make comparisons of the multi-mast strategies possible.
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Table 2. Number of predictions possible for different numbers of predictors

Predictors 1 2 3 4 5 6

Predictions 1168 7803 51472 266185 1062786 33644928

2.2 Flow model120

The micro-scale flow model WAsP 12.3 (Troen and Petersen, 1989) has been used to make all wind climate predictions in

this study. Since every mast location needs to be predicted using every possible predictor mast, there is a total of 1168 mast-

to-mast predictions. A database and an automatic model script (PyWAsP) was made to conduct all the simulations, and every

simulation was run with the standard WAsP 12.3 parameters. No ∆RIX- or other corrections have been made to the model

results, and no tuning of model parameters to improve results was performed.125

The topography maps used for the flow model were provided to the authors and used directly without corrections or qual-

ity control. As all data has previously been analysed to be used for wind farm development, and scrutinized by third party

companies, the data are considered to have an industry standard quality. The current work is a statistical analysis of the multi-

mast strategies. All simulations are based on identical model setups and using the digitised maps, mast locations, anemometer

heights and wind measurements provided to the authors; only the method used to calculate the predicted wind statistics is130

different between the 3 multi-mast strategies.

2.3 Predicted wind statistics

Wind statistics are calculated at each prediction location to validate the performance of the multi-mast strategies. Specifically,

the predicted mean wind speed, UP (ms−1), and mean power density, EP (Wm−2), is compared to the measured values (U0

and E0). Since the measured wind data and the wind climate predictions are given in terms of the Weibull parameters A and k,135

the mean wind speed and mean power density is calculated following Troen and Petersen (1989):

Ui =

Nθ∑
j=1

fjAijΓ

(
1 +

1

kij

)
(7)

Ei =
1

2
ρ

Nθ∑
j=1

fjA
3
ijΓ

(
1 +

3

kij

)
(8)

where ρ is air density (1.225 kg m−3) and Γ is the Gamma function. Having calculated the wind speed and power density

for every possible single-mast prediction, the multi-mast strategies was applied to calculate the final predicted wind statistics:140

UP =

∑NM
i=1WiUPi∑NM
i=1Wi

(9)
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EP =

∑NM
i=1WiEPi∑NM
i=1Wi

(10)

where Wi is the mast weight that depends on the chosen strategy (Sec.1.4). It was also considered to apply a generic wind

turbine power curve to allow calculation of energy yield predictions. However, as the prediction heights and wind speeds vary

between the sites, using a single power curve for all predictions was not pursued.145

2.4 Evaluation method

To evaluate the multi-mast strategies, we compare the measured and predicted wind statistics at each mast position and calculate

the average error of all predictions. The "closest mast" results are used as a baseline. The paper does not analyse the baseline

error in any detail; instead, the paper focuses on how the multi-mast strategies improve the baseline. The data and model

setup used for the "closest mast", "inverse distance weighting" and "most similar" methods are identical, to make an objective150

comparison of the multi-mast strategies. For each multi-mast strategy, the absolute error of each mast prediction is given by

Xi =XP −X0 (11)

where XP is either the predicted mean wind speed (UP ) or power density (EP ) and X0 is the measured value (U0 or E0).

The mean error of a strategy is calculated by

µ=

∑n
i=1Xi

n
(12)155

where n is the number of mast predictions. Finally, the standard deviation of the error is given by

σ =

√∑n
i=1 (Xi−µ)

2

n− 1
(13)

The results shown in the following indicates the mean error, µ, the standard deviation of the errors, σ, and the number of

predictions used to calculate the statistics, n.

3 Results160

3.1 Original sites

The top row of figure 4 shows histograms of the absolute error of wind speed (left) and power density (right) for each of the 185

mast predictions using "closets mast" as a multi-mast strategy. Gaussian distributions are shown on the histograms (despite the

poor fit), and the mean error and standard deviation of wind speed (µ= 0.11,σ = 0.63) and power density (µ= 36.3,σ = 149)
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Figure 4. Histograms of the absolute wind speed (left) and power density (right) error when using the closest mast (top), inverse distance

weighting (middle) and most similar (bottom) strategies. The mean bias and standard deviations are given in the legend. All 185 mast

positions have been predicted to make this figure.
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Figure 5. Histograms of the absolute wind speed (left) and power density (right) error for different combinations of prediction location and

6 predictor masts using the three different multi-mast strategies. Each histogram consists of more than 33 million predictions.

are given in the legends. The observed mean wind speed and power density of the 185 masts are 7.36 ms−1 and 460.7 Wm−2165

respectively.

The results for "inverse distance weighting" and "most similar" predictor are shown in the middle and bottom row of figure

4. The left column shows that both multi-mast strategies significantly reduce both the mean wind speed error and the standard

deviation compared to "closest mast". The standard deviation of the wind speed error is seen to decrease from 0.63 ms−1 to

0.54 ms−1 for both methods. The right column of the figure shows even more substantial error reductions for power density.170

The standard deviation of power density decreases from 149 Wm−2 to 125 Wm−2 for "inverse distance weighting" and from

149 Wm−2 to 116 Wm−2 for "most similar" mast. Therefore, by selecting the most similar location, the mean power density

error is reduced by 22% compared to closest mast, and 7% compared to inverse distance weighting.

3.2 New predictor combinations

To clarify the difference between strategies that rely on the representativeness radius (closest mast and inverse distance weight-175

ing) and the similarity principle (most similar predictor), this section focuses on sites with a specific number of predictor masts.

By combining the available dataset, it is possible to generate new combinations of sites with 1, 2, 3, 4, 5 or 6 predictors (see

Table 2).

As an example of the absolute prediction errors, Figure 5 shows a histogram of the absolute error of wind speed (left) and

power density (right) for predictions that uses 6 predictors. The available dataset allow 33 million different combinations of180

a prediction location and 6 predictor masts. The histograms of the strategies have different colours, and the legends indicate

the mean error and the standard deviation of each. Compared to the "closest mast", the standard deviation of power density

decreases from 189 Wm−2 to 164 Wm−2 for "inverse distance weighting" and from 189 Wm−2 to 124 Wm−2 for "most

similar" mast.
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Figure 6. Reduction of the standard deviation of wind speed (left) and power density (right) error as function of predictor masts when using

inverse-distance weighting and most similar predictor compared to closest mast

The mean absolute error and the standard deviation for predictor-combinations with 1, 2, 3, 4, 5 and 6 predictor masts185

are given in Table A1 and Table A2 (Appendix); however, the results are not directly comparable since they are based on

different sites. To make a more valid comparison, we normalise all the results with the results of the "closest mast". Figure 6

shows the normalised average reduction in the standard deviation of wind speed error (left) and power density error (right) for

inverse distance weighting and the most similar predictor compared to the closest mast. Note that the multi-mast strategies give

identical results for predictions with only one predictor.190

Figure 6 shows that both inverse distance weighting and most similar predictor significantly reduce the average prediction

error compared to the closest mast. While inverse distance weighting reduces the error significantly with two predictors com-

pared to one, the added improvement of using three or more predictor masts is much smaller. The most similar strategy has

achieved 34% reduction of the standard deviation of power density error with 6 predictor masts, and it appears that the error

would keep decreasing with additional predictor masts. It should be noted that the most similar strategy only uses a single195

predictor mast, but having more options to choose from decreases the error. This indicates that significant improvements are

gained if the "most similar" strategy is followed for placement of met masts, especially for single met mast campaigns.

4 Conclusions

We have presented a novel method for determining the "most similar" measurement location for wind resource assessment

using an expression of the directional-averaged speedup uncertainty. Based on measurements from 185 met masts the "most200

similar" met mast is on average a better predictor than the "closest mast" and "inverse distance weighting". This proves the

hypothesis that met masts should be positioned according to the "similarity principle" instead of reducing the distance to the

wind turbines.
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The met masts used in this study have all been positioned by experienced wind and site engineers on well-exposed ridges,

and 164 of the 185 met masts have |∆RIX| values below 5%. In the traditional view, this would mean that the closest predic-205

tor and the predicted location on average should have similar wind conditions. Despite this, substantial improvements (36%

uncertainty reduction on power density predictions) was found by selecting the most similar predictor. This also indicates that

even larger error reductions are possible if resource measurement campaigns are designed from the start using the most similar

methodology, especially for single met mast campaigns. Designing an optimal measurement campaign using the most similar

methodology requires a micro-scale flow model, a wind turbine layout and an indication of the main wind directions. With210

these tools, the directional-averaged speedup uncertainty for all wind turbine positions can be calculated and minimised.

The current industry standard is to use inverse distance weighting for resource assessment; the underlying reason is that the

standard error of a weighted mean decreases with the number of independent predictions. Troen and Hansen (2015) demon-

strates that the average of two independent flow models does decrease the uncertainty; however, predictions that use the same

flow model and measurements from the same period are not independent. The reason why inverse distance weighting im-215

proves compared to "closest mast" is probably that it "repairs" a poor choice of predictor mast. Weighted results using inverse

"directional-averaged speedup uncertainty" as predictor weight has also been tried (not shown); however, results do not im-

prove compared the most similar predictor. To optimally combine the solution from several masts, it is necessary to consider

the correlation of the errors (Clerc et al., 2012), which is not trivial. The "most similar" predictor is a practical alternative.

The "most similar" method could also work well for numerical weather models, like the Weather Research and Forecasting220

(WRF) model, where results have to be downscaled and interpolated from the calculation grid to the result-point. The resolution

of WRF calculation grids (1-5km) are of comparable magnitude to that of met masts, and a micro-scale flow model could

determine the most similar WRF predictor. It is today standard practice to choose the nearest WRF grid-point or to make

distance-weighted averages using the four surrounding grid-points. However, we expect the most similar approach to also

work well for this application, especially in complex terrain.225
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Appendix A

Table A1. Wind speed error (mean and standard deviation) depending on the number of predictor masts and selected strategies.

Masts 1 2 3 4 5 6

Closest mast 0.09± 0.83 0.09± 0.87 0.09± 0.86 0.09± 0.83 0.10± 0.80 0.10± 0.78

Inv. distance 0.09± 0.83 0.10± 0.80 0.10± 0.77 0.11± 0.73 0.11± 0.71 0.11± 0.69

Most similar 0.09± 0.83 0.06± 0.72 0.06± 0.66 0.07± 0.63 0.07± 0.60 0.08± 0.59

Table A2. Power density error (mean and standard deviation) depending on the number of predictor masts and selected strategies.

Masts 1 2 3 4 5 6

Closest mast 46± 194 55± 208 55± 206 55± 199 55± 193 56± 189

Inv. distance 46± 194 56± 188 58± 181 58± 174 58± 168 57± 164

Most similar 46± 194 40± 165 38± 148 39± 138 39± 130 39± 124
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