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Abstract. The financing of a wind farm directly relates to the preconstruction energy yield assessments which estimate the 

annual energy production for the farm. The accuracy and the precision of the preconstruction energy estimates can dictate the 

profitability of the wind project. Historically, the wind industry tended to overpredict the annual energy production of wind 

farms. Experts have been dedicated to eliminating such prediction errors in the past decade, and recently the reported average 

energy prediction bias is reducing. Herein, we present a literature review of the energy yield assessment errors across the global 10 

wind energy industry. We identify a long-term trend of reduction in the overprediction bias, whereas the uncertainty associated 

with the prediction error is prominent. We also summarize the recent advancements of the wind resource assessment process 

that justify the bias reduction, including improvements in modeling and measurement techniques. Additionally, because the 

energy losses and uncertainties substantially influence the prediction error, we document and examine the estimated and 

observed loss and uncertainty values from the literature, according to the proposed framework in the International 15 

Electrotechnical Commission 61400-15 wind resource assessment standard. From our findings, we highlight opportunities for 

the industry to move forward, such as the validation and reduction of prediction uncertainty, and the prevention of energy 

losses caused by wake effect and environmental events. Overall, this study provides a summary on how the wind energy 

industry has been quantifying and reducing prediction errors, energy losses, and production uncertainties. Finally, for this work 

to be as reproducible as possible, we include all of the data used in the analysis in appendices to the article.  20 

1 Introduction 

Determining the range of annual energy production (AEP), or the energy yield assessment (EYA), has been a key 

part of the wind resource assessment (WRA) process. The predicted median AEP is also known as the P50, i.e. the AEP 

expected to be exceeded 50% of the time. P50 are often defined with timescales such as 1 year, 10 years, and 20 years. In this 

study, unless stated otherwise, we primarily discuss the 20-year P50, which is the typical expected lifespan of utility-scale 25 

wind turbines. For years, leaders in the field have been discussing the difference between predicted P50 and actual AEP, where 

the industry often overestimates the energy production of a wind farm (Hale, 2017; Hendrickson, 2009, 2019; Johnson et al., 

2008). A recent study conducted by the researchers at the National Renewable Energy Laboratory (NREL) found an average 
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of 3.5% to 4.5% P50 overprediction bias based on a subset of wind farms in the United States and accounting for curtailment 

(Lunacek et al., 2018).  30 

Such P50 overestimation causes powerful financial implications. Healer (2018) stated that if a wind project produces 

a certain percentage lower than the P50 on a 2-year rolling basis, the energy buyer, also known as the offtaker, may have the 

option to terminate the contract. For a 20-year contract, if a wind farm has a 1% chance of such underproduction over a 2-year 

period, the probability of such event taking place within the 18 2-year rolling periods is 16.5%, as 100% - (100% - 1%)18 = 

16.5% (Healer, 2018), assuming each 2-year rolling period is independent. Therefore, projects with substantial energy-35 

production uncertainty experience the financial risk from modern energy contracting.  

Random errors that deviate observations or model predictions from the truth lead to uncertainty (Clifton et al., 2016), 

and uncertainty can be expressed in probability (Wilks, 2011). In WRA, the P-values surrounding P50 such as P90 and P95 

characterize the uncertainty of the predicted AEP distribution. Such energy-estimate uncertainty depends on the cumulative 

certainty of the entire WRA process, from wind speed measurements to wind flow modeling (Clifton et al., 2016). Given a 40 

Gaussian distribution, the standard deviation around the mean represents the uncertainty of that distribution. Traditionally, the 

wind energy industry uses standard deviation, or s, to represent uncertainty.  

The WRA process governs the accuracy and precision of the P50, and a key component in WRA constitutes the 

estimation of energy-production losses and uncertainties. Wind energy experts have been using different nomenclature in 

WRA, and inconsistent definitions and methodologies exist. To consolidate and ameliorate the assessment process, the 45 

International Electrotechnical Commission (IEC) 61400-15 working group has proposed a framework to classify various types 

of energy-production losses and uncertainties (Filippelli et al., 2018, adapted in Appendix A). We illustrate the categorical and 

subcategorical losses and uncertainties in Figs. 1 and 2. Note that the proposed framework is not an exclusive or exhaustive 

list of losses and uncertainties because some institution-specific practices may not fit into the proposed standard. Moreover, 

the proposed framework presented herein does not represent the final IEC standards, which are pending to be published.  50 
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Figure 1: Mind map of energy production loss, according to the IEC 61400-15 proposed framework. The blue and black rounded 
rectangles represent the categorial and subcategorical losses, respectively. Details of each loss category and subcategory are 
discussed in Table A1.  

 55 
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Figure 2: Mind map of energy production uncertainty, according to the IEC 61400-15 proposed framework. The purple and black 
rounded rectangles represent the categorial and subcategorical uncertainties, respectively. Details of each uncertainty category and 
subcategory are discussed in Table A2.  60 

The wind energy industry has been experiencing financial impacts caused by the challenges and difficulties in 

predicting energy-production losses and uncertainties over the lifetime of a modern wind project, which can continue to operate 

beyond 20 years:  

• an AEP prediction error of 1 GWh, e.g. because of the P50 prediction bias, translates to about 50,000 to 

70,000 Euros lost (Papadopoulos, 2019);  65 

• reducing energy uncertainty by 1% can result in $0.5 to $2 millions of economic benefits, depending on the 

situation and the financial model (Brower et al., 2015; Halberg, 2017);  

• a change of 1% in wind speed uncertainty can lead to a 3% to 5% change in net present value of a wind farm 

(Kline, 2019).  

Experts in the industry have presented many studies on P50 prediction error, energy loss, and uncertainty for years, 70 

and the purpose of this literature review is to assemble previous findings and deliver a meaningful narrative. This article is 

unique and impactful because it is the first comprehensive survey and analysis of the key parameters in the WRA process 

across the industry. The three main research questions of this study include:  

- Is the industry-wide P50 prediction bias changing over time, and what are the reasons for the changes?  

- What are the ranges of different categories of energy-production losses and uncertainties?  75 

- Given our understanding on losses and uncertainties, what are the opportunities for improvements in the industry?  

From past research, in addition to the energy-production uncertainties, we review how the industry has been quantifying 

various wind speed uncertainties, particularly from wind measurements, extrapolation methods, and modeling. We also 

compile and present the wind speed results herein.  

We present this article with the following sections: Sect. 2 documents the data and the methodology of data filtering; 80 

Sect. 3 focuses on P50 prediction bias, including its trend and various reasons of bias improvement; Sect. 4 and Sect. 5, 

respectively, illustrate the energy-production loss and uncertainty, according to the IEC proposed framework; Sect. 6 describes 

the numerical ranges of various wind speed uncertainties; Sect. 7 discusses the implications and future outlook based on our 

findings; Sect. 8 provides conclusions; Appendix A outlines the energy loss and uncertainty frameworks proposed by the IEC 

61400-15 working group; Appendix B compiles the data used in this analysis.  85 

2 Data and methodology 

We conduct our literature review over a broad spectrum of global sources. The literature includes the presentations 

at academic, industry, and professional conferences, particularly the Wind Resource and Project Energy Assessment 

workshops hosted by the American Wind Energy Association (AWEA) and the WindEurope as they are the key annual 

gatherings for wind resource experts. Additionally, we examine data from industry technical reports and white papers; publicly 90 
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available user manuals of wind energy numerical models; technical reports from government agencies, national laboratories, 

and research and academic institutions; and peer-reviewed journal articles. Many of the literature sources originate in North 

America and Europe. Meanwhile, many of the regional corporations we cited in this article have become global businesses 

after mergers and acquisitions; hence, their presentations and publications can also represent international practices.  

 In most cases, we label the data source with the published year of the study, unless the author highlights a change of 95 

method at a specific time. For example, if an organization publishes a study in 2012 and reports their improvements on P50 

prediction bias by comparing their “current” method with their “previous set of methodology before 2012”, the two P50 biases 

are recorded as 2012 and 2011, respectively. Moreover, for the same study that documents multiple P50 prediction errors in 

the same year, we select the one closest to zero, because those numbers reflect the state of the art of P50 validation of that year 

(Fig. 3). Accordingly, we use the paired P50 errors to indicate the effects from method adjustments (Fig. 4). To track the bias 100 

impact of technique changes from different organizations, we combine the closely related, ongoing series of studies from a 

single organization, usually by the same authors from the same institutions (each line in Fig. 4).  

We also derive the trend of P50 prediction errors using polynomial regression and investigate the reasons behind such 

trend. We use the second-degree polynomial regression (i.e. quadratic regression) to analyze the trend of the P50 prediction 

errors over time, and polynomials of higher degrees only marginally improve the fitting. We choose the polynomial regression 105 

over the simple linear regression because the P50 prediction errors are reducing towards zero with a diminishing rate, and we 

use quadratic polynomial over higher order polynomials to avoid overfitting. Additionally, in the regressions presented in this 

article (Figs. 3, 8, and C1), we present an estimated 95% confidence interval, generated via bootstrapping with replacement 

using the same sample size of the data, which is performed through the regplot function in the seaborn Python library (Waskom 

et al., 2020). The confidence interval describes the bounds of the regression coefficients with 95% confidence. Furthermore, 110 

we present the 95% prediction interval in Fig. 3, which depicts the range of the predicted values, i.e. the P50 prediction bias, 

with 95% confidence, given the existing data and regression model. The prediction interval is calculated using standard 

deviation, assuming an underlying Gaussian distribution. In short, the confidence interval illustrates the uncertainty of the 

regression function, whereas the prediction interval represents the uncertainty of the estimated values of the predictand (Wilks, 

2011). In addition, we evaluate the regression analysis with the coefficient of determination (R2), which represents the 115 

proportion of the variance of the predictand explained by the regression.  

For loss and uncertainty, we have limited data samples for certain categories because these data are only sparsely 

available. When a source does not provide an average value, we perform a simple arithmetic mean when both the upper and 

lower bounds are listed. For instance, when the average wake loss is between 5% and 15%, we project the average of 10% in 

Fig. 6, and we present all the original values in Appendix B. If only the upper bound is found, then we project the data point 120 

as a maximum: the crosses in Fig. 6 are used as an example. We also use linear regression to explore trends in loss and 

uncertainty estimates.  

We categorize the data to the best of our knowledge to synthesize a holistic analysis. On one hand, if the type of loss 

and uncertainty from a source uses marginally different terminology from the IEC proposed framework, we first attempt to 
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classify it within the IEC framework, we gather other values in the same category or subcategory from the same data source, 125 

and we select the minimum and the maximum. As an illustration, if the total electrical losses from the substation and the 

transmission line are, respectively, 1% and 2%, we then label the total electrical loss with the range of 1% to 2%. On the other 

hand, when the type of loss and uncertainty illustrated in the literature largely differ from the IEC framework, we label them 

separately (Figs. 7 and 11). Because a few studies contrast wake loss and nonwake loss, where nonwake loss represents every 

other type of energy loss, we also include nonwake loss in this study (Figs. 6 and 10). When a type of uncertainty is recorded 130 

as simply “extrapolation,” we label it as both horizontal and vertical extrapolation uncertainties. We also divide the reported 

losses and uncertainties into two groups, the “estimated” and the “observed”, where the former are based on simulations and 

modeling studies, and the latter are quantified via field measurements.  

Unless specifically stated otherwise in Appendix B, we present a loss value as the percentage of production loss per 

year, and we document an uncertainty number as the single standard deviation in energy percentage in the long term, usually 135 

for 10 years or 20 years. The wind speed uncertainty is stated as a percentage of wind speed in m s-1, and the uncertainty of an 

energy loss is expressed as percent of a loss percentage.  

This article evaluates a compilation of averages, where each data point represents an independent number. The 

metadata for each study in the literature vary, in which the resultant P50 prediction errors, losses, and uncertainties come from 

diverse collections of wind farms with different commercial operation dates in various geographical regions and terrains. 140 

Therefore, readers should not compare a specific data point with another. In this study, we aim to discuss the WRA process 

from a broad perspective. Other caveats of this analysis include the potentially inaccurate classification of the data into the 

proposed IEC framework; the prime focus on P50 rather than P90, which also has a strong financial implication; and the 

tendency in the literature to selectively report extreme losses and uncertainties caused by extraordinary events, such as 

availability loss and icing loss, which potentially mispresents the reality. Our data sources are also only limited to publicly 145 

available data or those accessible at NREL. We perform a rigorous literature review from over 150 independent sources, and 

the results presented in this article adequately display the current state of the wind energy industry.  

3 P50 prediction bias 

3.1 Bias trend 

We identify an improving trend of the mean P50 prediction bias, where the overprediction of energy production is 150 

gradually decreasing over time (Fig. 3), and the narrow 95% confidence interval of the regression fit justifies the long-term 

trend. Such an improving trend is not strictly statistically significant (Fig. 3a), even after removing the studies based on small 

wind farm sample sizes (Fig. 3b). However, the R2 of 0.578 in Fig. 3b implies that over half of the variance in bias can be 

described by the regression, and less than half of the variance is caused by the inherent uncertainty between validation studies 

that does not change over time. The average bias magnitude also does not correlate with the size of the study, either in wind 155 

farm sample size or wind farm year length (not shown). Note that in some early studies, the reported biases measured in wind 
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farm differ from those using wind farm year from the same source; we select the error closest to zero for each independent 

reference because the bias units are the same (Sect. 2).  

 
Figure 3: The trend of P50 prediction bias: (a) scatterplot of 63 independent P50 prediction error values, where R2 is the coefficient 160 
of determination and n is the sample size. Negative bias means the predicted AEP is higher than the measured AEP, and vice versa 
for positive bias. The black solid line represents the quadratic regression, the dark grey cone displays the 95% confidence interval 
of the regression line, the light grey cone depicts the 95% prediction interval, the horizontal black dashed line marks the zero P50 
prediction error. (b) as in (a), but only for 56 studies that use more than 10 wind farms in the analyses. The vertical violet bars 
represent the estimated uncertainty bounds (presented as one standard deviation from the mean) of the mean P50 prediction errors 165 
in 15 of the 56 samples. Table B1 summarizes the bias data illustrated herein. For clarity, the regression uses the year 2002 as the 
baseline, hence the resultant regression constant, i.e. the derived intercept, is comprehensible.  

The uncertainty of the average P50 prediction error quantified by the studies remains large, in which the mean 

standard deviation is 6.6% of the 15 data sources’ reported estimated P50 uncertainty (violet bars in Fig. 3b). The industry 

started to disclose the standard deviations of their P50 validation studies in 2009 and it is becoming more common. With only 170 

15 data points, we cannot identify a temporal trend of the uncertainty in P50 prediction bias. Even though the industry-wide 

mean P50 prediction bias is converging towards zero, the industry appears to overestimate or underpredict the AEP for many 

individual wind projects.  

3.2 Reasons for bias changes 

To correct for the historical P50 prediction errors, some organizations publicize the research and the adjustments they 175 

have been conducting for their WRA processes. We summarize the major modifications of the WRA procedure in Table 1. 

Most studies demonstrate mean P50 bias improvement over time (Fig. 4), and the magnitude of such bias reduction varies. In 

two studies, the authors examine the impact of accounting for windiness, which is the quantification of long-term wind speed 

variability, in their WRA methodologies. They acknowledge the difficulty in quantifying interannual wind speed variability 

accurately, and their P50 prediction errors worsen after embedded this uncertainty in their WRA process (vertical dash lines 180 

in Fig. 4).  
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Figure 4: Illustration of P50 bias changes over time after method modifications in 17 studies. The dot and the cross, respectively, 
represent the starting point and the finish point of the P50 prediction error because of method adjustments. The solid line indicates 
the P50 bias reduces after the method change, and the dotted line displays the opposite. The different colors are solely used to 185 
differentiate the lines and represent no meaning. The paired data are presented in Table B2.  

 
Table 1: Categories of method adjustments to improve the wind resource assessment process and the respective data sources.  

Method change Source 

Account for additional factors in wind resource 

assessment and operation e.g.,  

• windiness or long-term correction of wind 

data,  

• suboptimal operation,  

• external wake effect, and  

• degradation of long-term meteorological 

masts.  

AWS Truepower, 2009; Johnson, 2012 

Consider meteorological effects on power production 

e.g.,   

• wind shear,  

• turbulence,  

• air inflow angle, and  

• atmospheric stability.  

AWS Truepower, 2009; Brower et al., 

2012; Elkinton, 2013; Johnson, 2012; 

Ostridge, 2017 
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Improve modeling techniques e.g.,  

• turbine performance,  

• wind flow,  

• wake,  

• flow over complex terrain,  

• effects of changes in surface roughness, and  

• wind farm roughness.  

Elkinton, 2013; Johnson, 2012; 

Ostridge, 2017; Papadopoulos, 2019 

Improve in measurement and reduce in measurement 

bias e.g., adjust for dry friction whip of anemometers 

AWS Truepower, 2009; Johnson, 2012; 

Ostridge, 2017; Papadopoulos, 2019 

Correct for previous methodology shortcomings e.g.,  

• loss assumptions, and  

• shear extrapolation  

Ostridge, 2017; Papadopoulos, 2019 

 

4 Energy-production loss 190 

The prediction and observation of production losses are tightly related to the P50 prediction accuracy; hence, we 

contrast the estimated and measured losses in various categories and benchmark their magnitude (Figs. 5, 6 and 7). The total 

energy loss is calculated from the difference between the gross energy estimate and the product of gross energy prediction and 

various categorical production efficiencies, where each efficiency is one minus a categorical energy loss (Brower, 2012). Of 

the total categorical losses, we record the largest number of data points from availability loss, and wake loss display the largest 195 

variability among studies (Fig. 5). For availability loss, the total observed loss varies more than the total estimated loss and 

displays a larger range (Fig. 6a). The turbine availability loss appears to be larger than the balance of plant and grid availability 

losses; however, more data points are needed to validate those estimates (Fig. 6a). Except for one outlier, the turbine 

performance losses, in both predictions and observations, are about or under 5% (Fig. 6b). Large ranges of environment losses 

exist, particularly for icing and degradation losses, which can drastically decrease AEP (Fig. 6c). Note that some of the icing 200 

losses indicated in the literature represent the fractional energy-generation loss from production stoppages over atypically long 

periods in winter time, rather than a typical energy loss percentage for a calendar year. Electrical loss has been assured as a 

routine energy reduction with high certainty and relatively low magnitude (Fig. 6d). Of all the categories, wind turbine wake 

results in a substantial portion of energy loss, and its estimations demonstrate large variations (Fig. 6e). The magnitude of 

estimated wake loss is larger than that of the predicted nonwake loss, which consists of other categorical losses (Fig. 6e). The 205 

observed total curtailment loss exhibits lower variability, yet with larger magnitude than its estimation (Fig. 6f). From the eight 

studies that report total loss, the predictions range from 9.5% to 22.5% (Fig. 6g). We do not encounter any operational strategies 

loss under curtailment loss in the literature, and thus the subcategories in Fig. 6 do not cover every subcategory in Table A1.  
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Figure 5: Ranges of total energy-production losses in different categories, according to the proposed framework of the IEC 61400-210 
15 standard. Each blue and orange dot, respectively, represent the mean estimated loss and mean observed loss documented in each 
independent reference. The losses are expressed as percentage of AEP. The column of numbers on the right denotes the sample size 
in each category, where the estimated ones in blue and the observed ones in orange. For clarity, the grey horizontal lines separate 
data from each category. Table B3 catalogs the categorical losses plotted herein. 

 215 
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Figure 6: Ranges of energy-production losses in different categories and subcategories, according to the proposed framework of the 
IEC 61400-15 standard, except for nonwake in (e), which is an extra subcategory summarizing other nonwake categories. Each blue 220 
and orange dot, respectively, represent the mean estimated loss and mean observed loss documented in each independent study. The 
blue and orange crosses, respectively, indicate the maximum of estimated loss and the maximum of observed loss reported, where 
the minima are not reported, and thus the averages cannot be calculated. The losses are expressed as percentage of AEP. The column 
of numbers on the right denotes the estimated and observed sample sizes in blue and orange, respectively, in each subcategory, and 
such sample size represents all the instances in that subcategory that recorded either the mean or the maximum loss values. For 225 
clarity, the grey horizontal lines separate data from each subcategory. Table B3 catalogs the categorical and subcategorical losses 
plotted herein.  

Losses that inhibit wind farm operations can cause considerable monetary impact. For example, blade degradation 

can result in a 6.8% of AEP loss for a single turbine in the IEC Class II wind regime, where the maximum annual average 

wind speed is 8.5 m s-1; this translates to $43,000 per year (Wilcox et al., 2017). Generally, the typical turbine failure rate is 230 

about 6%, where 1% reduction in turbine failure rate can lead to around $2 billion of global savings in operation and 

maintenance (Faubel, 2019). In practice, the savings may exclude the cost of preventative measures for turbine failure, such 

as hydraulic oil changes and turbine inspections.  
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We categorize two types of energy-production losses additional to the proposed IEC framework, namely first few 

years of operation and blockage effect (Fig. 7). For the former loss, a newly constructed wind farm typically does not produce 235 

to its full capacity for the first few months, or even for the first 2 years. The loss from the first few years of operation captures 

this time-specific and availability-related production loss. Regarding the later loss, the blockage effect describes the wind 

speed slowdown upwind of a wind farm (Bleeg et al., 2018). Wind farm blockage is not a new topic (mentioned in Johnson et 

al., 2008) and has been heavily discussed in recent years (Bleeg et al., 2018; Lee, 2019; Papadopoulos, 2019; Robinson, 2019; 

Spalding, 2019). Compared to some of the losses in Fig. 6, the loss magnitude of first few years of operation and blockage is 240 

relatively small, where it contributes to less than 5% of AEP reduction per year (Fig. 7).  

 
Figure 7: As in Fig. 6, but for the loss categories outside of the proposed IEC framework, as listed in Table B4.  

For trend analysis, we linearly regress every subcategorical energy loss (Fig. 6 and Table B3) on time, and we only 

find two loss subcategories demonstrate notable and statistically confident trends (Fig. 8). The measured curtailment loss and 245 

the observed generic power curve adjustment loss steadily decrease over time, and the reductions have reasonable R2 (Fig. 8). 

No other reported losses with a reasonable number of data samples display remarkable trends (Fig. C1).  

 
Figure 8: Trend in observed energy-production loss: (a) total curtailment loss and (b) generic power curve adjustment loss. The 
annotations correspond to those in Fig. 3, where the orange solid line represents simple linear regression, the light orange cone 250 
illustrates the 95% confidence interval, R2 is the coefficient of determination, and n is sample size.  
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Past research further documents the uncertainties of AEP losses. Except for an outlier of measuring 80% uncertainty 

in wake loss, the magnitude of the uncertainty of wake loss is analogous to that of nonwake loss (Fig. 9). The industry also 

tends to reveal the uncertainty of wake loss than nonwake loss according to the larger number of data sources (Fig. 9). One 

data source reported that intermonthly variability can alter AEP losses for more than 10% (Fig. 9). Note that the results in Fig. 255 

9 represent the uncertainty of the respective production loss percentages in Fig. 6 and Table B3, rather than the AEP 

uncertainty.  

 
Figure 9: Uncertainty of energy-production losses, where the magnitude corresponds to the AEP loss percentages listed in Fig. 6 and  
Table B3. Each dark blue dot, turquoise dot, and turquoise cross represents the estimated uncertainty, the observed uncertainty, 260 
and the maximum observed uncertainty of losses, respectively. The uncertainties is expressed as percentage of uncertainty in terms 
of the energy-production loss percentage. The column of numbers on the right denotes the estimated and observed sample sizes in 
dark blue and turquoise, respectively, in each row, and such sample size represents all the instances in that row that reported either 
the mean or the maximum values. For clarity, the grey horizontal lines separate data from each uncertainty. Table B5 records the 
uncertainties displayed herein.  265 

5 Energy-production uncertainty 

The individual energy-production uncertainties directly influence the uncertainty of P50 prediction. Total uncertainty 

is the root-sum-square of the categorical uncertainties; the assumption of correlation between categories can reduce the overall 

uncertainty, and this assumption is typically consultant- and method-specific (Brower, 2012). Except for a few outliers, the 

magnitude of the individual energy-production uncertainties across categories and subcategories is about or below 10% (Fig. 270 

10). The energy uncertainties from wind measurements range below 5%, after omitting two extreme data points (Fig. 10a). 

The estimated long-term period uncertainty varies the most in historical wind resource (Fig. 10b), which indicates the 

representativeness of historical reference data (Table A2). Horizontal extrapolation generally yields higher energy-production 

uncertainty than vertical extrapolation (Fig. 10c and d). For plant performance, each subcategorical uncertainty corresponds 

to the respective AEP loss (Fig. 6 and Table A1). The range of the predicted energy uncertainty caused by wake effect is about 275 

6% (Fig. 10e). The estimated uncertainty of turbine performance loss and total project evaluation period match with those 

observed (Fig. 10e and f). Overall, the average estimated total uncertainty varies by about 10%, whereas the observed total 

uncertainty appears to record a narrower bound, after excluding an outlier (Fig. 10g).  

 In the literature, we cannot identify all the uncertainty types listed in the proposed IEC framework; hence, the 

following AEP uncertainty subcategories in Table A2 are omitted in Fig. 10: wind direction measurement in measurement; 280 
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on-site data synthesis in historical wind resource; model inputs and model appropriateness in horizontal extrapolation; model 

components and model stress in vertical extrapolation; and environmental loss in plant performance.  

 

 
Figure 10: Ranges of energy-production uncertainties in different categories and subcategories, according to the proposed 285 
framework of the IEC 61400-15 standard. The annotations correspond to those in Fig. 6, where each purple dot, green dot, and 
purple cross represent the mean estimated uncertainty, the mean observed uncertainty, and the maximum of estimated uncertainty 
from each independent reference, respectively. The uncertainties is expressed as percentage in AEP. The column of numbers on the 
right denotes the estimated and observed sample sizes in purple and green, respectively, in each subcategory, and such sample size 
represents all the instances in that subcategory that reported either the mean or the maximum uncertainty values. For clarity, the 290 
grey horizontal lines separate data from each subcategory. Table B6 numerates the production uncertainties.  

Similar to energy losses, other types of AEP uncertainties not in the proposed IEC framework emerge. The magnitude 

of the uncertainties in Fig. 11 is comparable to the uncertainties in Fig. 10. The power curve measurement uncertainty in Fig. 

11, specifically mentioned in the data sources, could be interpreted as the uncertainty from the turbine performance loss.  
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 295 

 
Figure 11: As in Fig. 10, but for the uncertainty categories outside of the proposed IEC framework, as listed in Table B7.  

The energy-production uncertainty from air density and vertical extrapolation depends on the geography of the site. 

For instance, the elevation differences between sea level and the site altitude, as well as the elevation differences between the 

mast height and turbine hub height affect the AEP uncertainty (Nielsen et al., 2010). For simple terrain, the vertical 300 

extrapolation uncertainty can be estimated to increase linearly with elevation (Nielsen et al., 2010). A common industry 

practice is to assign 1% of energy uncertainty for each 10 m of vertical extrapolation, which could overestimate the uncertainty, 

except for forested locations (Langreder, 2017).  

6 Wind speed uncertainty 

Energy production of a wind turbine is a function of wind speed to its third power. Considering wind speed, either 305 

measured, derived, or simulated, is a critical input to an energy estimation model, the uncertainty of wind speed plays an 

important role in the WRA process. We present various groups of wind speed uncertainties in the literature herein (Fig. 12). 

The bulk of the wind speed uncertainties are roughly 10% or less of the wind speed. Many studies report estimated uncertainty 

from wind speed measurement, however its magnitude and discrepancy among the sources are not as large as those from wind 

speed modeling or interannual variability (Fig. 12). Notice that some of the wind speed categories coincide with the IEC 310 

proposed framework of energy uncertainty, and others do not. The absence of standardized classification of wind speed 

uncertainties increases the ambiguity in the findings from the literature and poses challenges to the interpretation of the results 

in Fig. 12. We also lack sufficient samples of measured wind speed uncertainties to validate the estimates.  
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Figure 12: Ranges of wind speed uncertainties in different categories. The annotations correspond to those in Fig. 10, where each 315 
dark purple dot, dark green dot, and dark purple cross represent the mean estimated wind speed uncertainty, the mean observed 
wind speed uncertainty, and the maximum of estimated wind speed uncertainty from each independent study respectively. The 
uncertainties is expressed as percentage of wind speed. The column of numbers on the right denotes the estimated and observed 
sample sizes in dark purple and dark green, respectively, in each category, and such sample size represents all the instances in that 
category that reported either the mean or the maximum uncertainty values. For clarity, the grey horizontal lines separate data from 320 
each category. Table B8 documents the wind speed uncertainties displayed.  

Wind speed uncertainty greatly impacts AEP uncertainty, and the method of translating wind speed uncertainty into 

AEP uncertainty also differ between organizations. For example, 1% increase of wind speed uncertainty can lead to either 

1.6% (AWS Truepower, 2014) or 1.8% increase in energy production uncertainty (Holtslag, 2013; Johnson et al., 2008; White, 

2008b). Local wind regimes can also affect this ratio. For low wind locations, AEP uncertainty can be three times the wind 325 

speed uncertainty, while such ratio drops to 1.5 at high wind sites (Nielsen et al., 2010). Reduction in wind speed measurement 

uncertainty of 0.28% could reduce project-production uncertainty by about 0.15% (Medley and Smith, 2019). Using a 

computational fluid dynamics model to simulate airflow around meteorological masts can reduce wind speed measurement 

uncertainty from 2.68% to 2.23%, which translates to 1.2 million British pounds of equity savings for a 1-GW offshore wind 

farm in the United Kingdom (Crease, 2019).  330 
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7 Opportunities for improvements 

Although the industry is reducing the mean P50 overprediction bias, the remarkable uncertainties inherent in the 

WRA process overshadows such achievement. Different organizations have been improving their techniques over time to 

eliminate the P50 bias (Table 1), and as a whole we celebrate the technological advancements; nevertheless, challenges still 

exist for validation and reduction of the AEP losses and uncertainties. Even though the average P50 prediction bias is reducing 335 

and approaches zero, the associated mean P50 uncertainty remains at over 6%, even for the studies reported after 2016 (Fig. 

3b). For a validation study that involves a collection of wind farms, such uncertainty bound implies that sizable P50 predication 

errors for particular wind projects can emerge. In other words, statistically, the AEP prediction is becoming more accurate yet 

is imprecise. Moreover, from an industry-wide perspective that aggregates different analyses, the variability on the mean P50 

bias estimates is notable, which obscures the overall bias-reducing trend (R2 below 0.5 in Fig. 3). Specifically, the magnitude 340 

of the 95% prediction interval at over 10% average P50 estimation error (Fig. 3b) suggests a considerable range of possible 

mean biases in future validation studies. Additionally, the uncertainties are still substantial in specific AEP losses (Fig. 9), 

AEP itself (Figs. 10 and 11), and wind speed (Fig. 12). Therefore, the quantification, validation, and reduction of uncertainties 

requires the attention of the industry collectively.  

To reduce the overall AEP uncertainty, the industry should continue to assess the energy impacts of plant performance 345 

losses, especially those from wake effect and environmental events. On one hand, wake effect, as part of a grand challenge in 

wind energy meteorology (Veers et al., 2019), has been estimated as one of the largest energy losses (Fig. 6e). The AEP loss 

caused by wake effect also varies, estimated between 15% and 40% (Fig. 9), and the unpredictability of wakes contributes to 

the AEP uncertainty on plant performance (Fig. 10e) and the wind speed uncertainty (Fig. 12). Although the industry has been 

simulating and measuring energy loss caused by wake effect, its site-specific impact on AEP for the whole wind farm as well 350 

as its time-varying production impact on downwind turbines remains largely uncertain. From a macro point of view, compared 

to internal wake effect, external wake effect from neighboring wind farms is a bigger known unknown because of the lack of 

data and research. On the other hand, environmental losses display broad range of values, particularly from icing events and 

turbine degradation (Fig. 6c). In general, the icing problem halts energy production in the short run, and blade degradation 

undermines turbine performance in the long run. Diagnosing and mitigating such substantial environmental losses would 355 

reduce both loss and uncertainty on AEP. Overall, the prediction and prevention of environmental events are critical, and the 

production downtime during high electricity demand can lead to consequential financial losses.  

Additionally, the industry recognizes the role of remote-sensing instruments in reducing the uncertainty of energy 

production and wind speed from extrapolation, such as profiling lidars, scanning lidars, and airborne drones (Faghani et al., 

2008; Holtslag, 2013; Peyre, 2019; Rogers, 2010). The latter can also be used to inspect turbine blades (Shihavuddin et al., 360 

2019) to reduce unexpected blade degradation loss over time. Industry-wide collaborations such as the International Energy 

Agency Wind Task 32 and the Consortium For Advancement of Remote Sensing, have been promoting remote-sensing 

implementation in WRA.  



18 
 

 Leaders in the field have been introducing contemporary perspectives and innovative techniques to improve the WRA 

process, including time-varying and correlating losses and uncertainties. Instead of treating energy loss and uncertainty as a 365 

static property, innovators have studied time-varying AEP losses and uncertainties (Brower et al., 2012), especially when wind 

plants produce less energy with greater uncertainty in later operational years (Istchenko, 2015). Furthermore, different types 

of energy-production losses or uncertainties interact and correlate with each other, and dependent data sources can emerge in 

the WRA process. The resultant compound effect from two correlating sources of uncertainty can change the total uncertainty 

derived using a linear (Brower, 2011) or root-sum-square approach (Istchenko, 2015). For example, an icing event can block 370 

site access and decrease turbine availability, and even lead to longer-term maintenance problems (Istchenko, 2015).  

More observations and publicly available data are necessary to validate the estimates listed in this article. In this 

article, the ratios between the measured and predicted values are 1 to 1.9, 2.3, and 7.3, for energy loss, energy uncertainty, and 

wind speed uncertainty, respectively. The small number of references on measured uncertainties indicate that we need more 

evidence to further evaluate our uncertainty estimates. Besides, challenges exist in interpreting and harmonizing results from 375 

disparate reporting of energy-production losses and uncertainties. Documentation aligned with ubiquitous reference 

frameworks will greatly strengthen the accuracy and repeatability of future literature reviews. Therefore, data and method 

transparency and standardization will continually improve insight into the WRA process, increase the AEP estimation 

accuracy, and drive future innovation.  

8 Conclusions 380 

In this study, we compile and present the ranges and the trends of predicted P50 (i.e. median annual energy 

production) errors, as well as the estimated and observed energy losses, energy uncertainties, and wind speed uncertainties 

embedded in the wind resource assessment process. We conduct this literature review using over 150 credible sources from 

conference presentations to peer-reviewed journal articles.  

Although the mean P50 bias demonstrates a decreasing trend over time because of continuous methodology 385 

adjustments, the notable uncertainty of the mean prediction error reveals the imprecise prediction of annual energy production. 

The dominant effect of prediction uncertainty over the bias magnitude calls for further improvements on the prediction 

methodologies. To reduce the mean bias, industry experts have made method adjustments in recent years that minimize the 

energy-production prediction bias, such as the applications of remote sensing devices and the modeling advancements of 

meteorological phenomena.  390 

We present the wind energy production losses and uncertainties in this literature review according to the proposed 

framework by the International Electrotechnical Commission (IEC) 61400-15 working group. Wake effect and environmental 

events undermine wind plant performance and constitute the largest loss in energy production, and validating the wake and 

environmental loss predictions requires more field measurements and detailed research. Moreover, the variability of observed 

total availability loss is larger than its estimates. Meanwhile, the decreasing trends of measured curtailment loss and observed 395 
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generic power curve adjustment loss indicate the continuing industry effort to optimize wind energy production. Additionally, 

different categorical energy uncertainties and wind speed uncertainties demonstrate similar magnitude, with a majority of the 

data below 10%. More observations are the solution to better understand and further lower these uncertainties.  

In our findings, we highlight the potential future progress, including the importance of accurately predicting and 

validating energy-production uncertainty, the impact of wake effect, and innovative approaches in the wind resource 400 

assessment process. This work also includes a summary of the data collected and used in this analysis. As the industry evolves 

with improved data sharing, method transparency, and rigorous research, we will increasingly be able to maximize energy 

production and reduce its uncertainty for all project stakeholders.  

Data availability 

 Appendix B includes all the data used to generate the plots in this article.  405 
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Appendix A 

Table A1: Consensus energy-production loss framework for wind resource assessment proposed by the International 
Electrotechnical Commission (IEC) 61400-15 working group (Filippelli et al., 2018). Note that this table does not represent the final 410 
standards.  

Loss category Loss subcategory Notes 

Wake effect 

Internal wake effects Wake effects internal to the wind plant  

External wake effects Wake effects generated externally to the wind plant 

Future wake effects 

Wake effects that will impact future energy projections based on 

either confirmed or predicted new project development or 

decommissioning 

Availability 

Turbine availability 

Including warranted availability, noncontractual availability, 

restart after grid outage, site access, downtime (or speed) to energy 

ratio, first-year or plant start-up availability 

Balance-of-plant 

availability 

Availability of substation and collection system, other nonturbine 

availability, warranted availability, site access, first-year or plant 

start-up availability 

Grid availability 

Grid being outside the grid connection agreement operational 

parameters, actual grid downtime, delays in restart after grid 

outages 

Electrical 

Electrical efficiency 
Electrical losses between low- or medium-voltage side of the 

transformer of wind turbine and the energy measurement point 

Facility parasitic 

consumption 

Turbine extreme weather packages, other turbine and/or plant 

parasitic electrical losses (while operating or not operating) 

Turbine performance 

Suboptimal performance 
Performance deviations from the optimal wind plant performance 

caused by software, instrumentation, and control setting issue 

Generic power curve 

adjustment 

Expected deviation between advertised power curve and actual 

power performance in standard conditions (“inner range”) 

Site-specific power curve 

adjustment 

Accommodating for inclined flow, turbulence intensity, density, 

shear, and other site or project-specific adjustments (“outer range”) 

High wind hysteresis 
Energy lost in hysteresis loop between high wind speed cut-out and 

recut-in 

Environmental Icing Performance degradation and shutdown caused by icing 
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Degradation 
Blade fouling, efficiency losses, and other environmentally driven 

performance degradation 

Environmental loss 
High- or low-temperature shutdown or derate, lightning, hail, and 

other environmental shutdowns 

Exposure Tree growth or logging, other building development 

Curtailments (or 

Operational strategies) 

Load curtailment Speed and/or direction curtailments to mitigate loads 

Grid curtailment 
Power-purchase-agreement or off-taker curtailments, grid 

limitations 

Environmental/permit 

curtailment 

Birds, bats, marine mammals, flicker, noise (when not captured in 

the power curve) 

Operational strategies 
Any periodic uprating, downrating, optimization, or shutdown not 

captured in the power curve or availability carveouts 
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Table A2: Consensus energy-production uncertainty framework for wind resource assessment proposed by the IEC 61400-15 
working group (Filippelli et al., 2018). Note that this table does not represent the final standards. 415 

Uncertainty 

category 

Uncertainty 

subcategory 
Notes 

Historical wind 

resource 

Long-term period 

What is the statistical representativeness of the chosen historical and/or site 

data period? In other words, the interannual variability (coefficient of 

variation) of the historical reference data period in years 

Reference data 

How accurate or reliable is the chosen reference data source? In other 

words, historical data consistency (e.g., are there possible underlying trends 

in the data?) 

Long-term adjustment 

What is the uncertainty associated with the prediction process? Statistical 

or empirical uncertainty in establishing a correlation or carrying out a 

prediction, which may be conditioned upon the correlation method and span 

or the quantity of concurrent data period 

Wind speed and direction 

distribution 

Mean wind speed aside, how representative is the measured or predicted 

distribution and wind rose or energy rose shape of the long term?  

On-site data synthesis 

Uncertainty associated with gap-filling missing data periods. Usually done 

using directional correlations or the measure-correlate-predict process. and, 

hence, long-term and reference data categories may apply.  

Project 

evaluation 

period 

variability 

Modeled operational 

period 

The statistical uncertainty associated with how closely the wind resource 

over the modeled operational period (i.e., 1 year or 10 year) may match the 

long-term site average 

Climate change 
When an impact of climate change can be assessed, then this may be 

considered as an uncertainty.  

Plant performance 

The statistical uncertainty associated with how closely the plant 

performance over the modeled operational period (i.e., 1 year or 10 year) 

may match the long-term site average. 

Measurement 
Wind speed 

measurement 

Including effects for wind speed sensor characteristics (cup or sonic), wind 

speed sensor mounting or deployment (cup or sonic), wind speed sensor 

data handling and processing characteristics (e.g., tower shadow, icing, and 

degradation), system motion, consistency and exposure, data acquisition, 

and data handling. Additionally, the reduction in uncertainty caused by 

sensor combination is considered.  
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Data integrity and 

documentation 
Documentation, verification, and traceability of the data 

Wind direction 

measurement 

Sensor type or quality, operational characteristics, mounting effects, 

alignment, acquisition, long-term representativeness 

Further atmospheric 

parameters 

Air temperature, pressure, relative humidity, and other atmospheric 

parameters 

Vertical 

extrapolation 

Model inputs 
Terrain surface characterization, wind data measurement heights, wind 

statistics or shear, measurement uncertainty 

Model components Representativeness per height or terrain, profile fit 

Model stress 
Large extrapolation distance, complex terrain (measurement height relative 

to terrain complexity)  

Horizontal 

extrapolation 

Model inputs 
Fidelity and appropriateness, given sensitivity of model to terrain data, 

roughness, forestry information, atmospheric conditions 

Model stress 

Representativeness of initiation points relative to turbine locations in terms 

of complicating factors (e.g., forestry, stability, steep slopes, distance, 

elevation, veer); the intensity of and sensitivity to complicating factors 

Model appropriateness 

Physical scientific plausibility of model to capture complicating factors; 

validation of implementation of model: published validation of specific 

implementation and relevance to complicating factors present on-site; on-

site model verification: site to site (untuned, blind); consider the quality of 

any shear verification 

Plant 

performance 

Wake effect 

Refer to Table A1 

Availability 

Electrical 

Turbine performance 

Environmental 

Curtailments or 

operational strategies 
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Appendix B 

For the P50 prediction error, Fig. 3 and Fig. 4 use the data from Table B1 and Table B2, respectively. For the various 

categories and subcategories of losses, Figs. 5, 6, 8 and C1 portray the values in Table B3. Fig. 7 illustrates the losses outside 420 

of the IEC proposed framework listed in Table B4. Fig. 9 summarizes the uncertainty of production loss percentages in Table 

B5. Figs. 10 and 11 represent the AEP uncertainty data included in Table B6 and Table B7, respectively. Fig. 12 displays the 

wind speed uncertainty data in Table B8.  
Table B1: List of P50 biases in the literature, which is necessary to generate Fig. 3. The “Wind Farm” column denotes the number 
of wind farms reported in the reference, and the “Wind Farm Year” column indicates the total number of operation years among 425 
the wind farms in that study. The “Bias (%)” column represents the average P50 bias, where a negative number indicates an 
overestimation of actual energy production. All the values in the “Uncertainty (%)” column illustrate one standard deviation from 
the mean.  

Year 
Wind 

Farm 

Wind 

Farm 

Year 

Bias 

(%) 

Uncertainty 

(%) 
Notes Source 

2002 12  -16   Mönnich et al., 2016 

2003 10  -11   Mönnich et al., 2016 

2004 19  -12   Mönnich et al., 2016 

2005 37  -8   Mönnich et al., 2016 

2006   -13   Johnson et al., 2008 

2006 21  -10   Mönnich et al., 2016 

2007 23  -5   Mönnich et al., 2016 

2008 59 243 -11   
Johnson et al., 2008; Jones, 

2008 

2008 41 113 -4   Johnson et al., 2008 

2008 56 112 -10   White, 2009 

2008 36 62 -2.1   Johnson, 2012 

2008   -10  Industry average White, 2009 

2008 17  -10   Mönnich et al., 2016 

2009  255 -1   Horn, 2009 

2009   -9   Hendrickson, 2009 

2009  43 -3   Hendrickson, 2009 

2009 1  0.5 6.4 Comparison of 4 analysts Derrick, 2009 
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2009 11 45 -2.2 7.3  White, 2009 

2009 18  -3   Mönnich et al., 2016 

2010   -1 8.1 From 1,806 wind turbines Nielsen et al., 2010 

2010 11  -10   Mönnich et al., 2016 

2011 1   2.4 Comparison of 15 analysts Hendrickson, 2011 

2011 89  -6  Industry average: 2000–2011 Drunsic, 2012 

2011   -2   Drunsic, 2012 

2011 18  -7   Mönnich et al., 2016 

2011   -6.7 0.8  Lunacek et al., 2018 

2012   -5  Industry average: 2005–2011 Drunsic, 2012 

2012   -1   Drunsic, 2012 

2012   -1   Brower et al., 2012 

2012 125 382 0   Johnson, 2012 

2012   -2.4   Bernadett et al., 2012 

2012 11  -7   Mönnich et al., 2016 

2012 6  -4.9   Pullinger et al., 2019 

2013 14  -1   Mönnich et al., 2016 

2014 24 106 -1 8.8  Brower, 2014 

2014 31 101 -1.4   Istchenko, 2014 

2014   -0.6   Geer, 2014 

2014 9  -15   Redouane, 2014 

2014 4  -2   Mönnich et al., 2016 

2015   -1.9   Istchenko, 2015 

2015 10  0 4  Sieg, 2015 

2015 1  -4 3 Comparison of 20 analysts Mortensen et al., 2015 

2015 1  1   Mönnich et al., 2016 

2015 25 91 -8   Cox, 2015 

2015 30 127 -2.2   
Stoelinga and Hendrickson, 

2015 

2015 18 58 -1.6   Hendrickson, 2019 

2015 23  -4.7 7.7  Hatlee, 2015 

2016 30 127 0.1 8.8  Baughman, 2016 
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2017  140 -2  Projects from 2011–2016  Elkinton, 2017; Hale, 2017 

2017 61  -1.6 7.6 
Most projects from 2008–

2012 
Brower, 2017; Hale, 2017 

2017   -2.5   Hale, 2017 

2017 30 127 0.7 8.8  Perry, 2017 

2018 56 294 -5.5 1.3  Lunacek et al., 2018 

2018 50  0   Hendrickson, 2019 

2018   -1.5 7.6  Hendrickson, 2019 

2018 6  -1.4   Pullinger et al., 2019 

2019 31 212 -1.2 4.7  Crescenti et al., 2019 

2019 30 144 0 11.37  Hendrickson, 2019 

2019 30 111 -0.1 4.5  Hendrickson, 2019 

2019   0 7.3  Hendrickson, 2019 

2019 87 570 -3.1   Papadopoulos, 2019 

2019 25 146 -5   Papadopoulos, 2019 

2019 11 59 -0.4   Papadopoulos, 2019 

2019 11 24 -3.9   Papadopoulos, 2019 

 
 430 
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Table B2: List of P50 bias groups for Fig. 4, expanding from Table B1. Different groups (the “Group” column) are represented by 
different line colors in Fig. 4.  

Group Year 
Wind 

Farm 

Wind 

Farm 

Year 

Bias 

(%) 

Uncertainty 

(%) 
Notes Source 

1 2006   -13   
Johnson et al., 2008; Jones, 

2008 

1 2008 59 243 -11   
Johnson et al., 2008; Jones, 

2008 

2 2008 41 113 -10   Johnson et al., 2008 

2 2008 41 113 -4  
Adjust for windiness and 

availability 
Johnson et al., 2008 

2 2009  43 -3   Hendrickson, 2009 

3 2008   -10  Industry average White, 2009 

3 2011  476 -9  Industry average Drunsic, 2012 

3 2011 89  -6  
Industry average: 2000–

2011 
Drunsic, 2012 

3 2012   -5  
Industry average: 2005–

2011 
Drunsic, 2012 

4 2009   -10   Hendrickson, 2009 

4 2009   -9  Exclude Texas projects Hendrickson, 2009 

5 2009 11 45 -2.2 7.3  White, 2009 

5 2009 11 45 -3.5 7 Accounting for windiness White, 2009 

6 2010   -8  Projects from 2000–2010  Ostridge, 2017 

6 2017 50  -3  Projects from 2011–2016  Elkinton, 2017; Hale, 2017 

6 2017  140 -2  
Adjusted for curtailment 

and windiness, and so on. 
Elkinton, 2017; Hale, 2017 

6 2018 50  0   Hendrickson, 2019 

7 2010  294 -9.9  Projects before 2011 Lunacek et al., 2018 

7 2010 56  -9.2  Projects before 2011 Lunacek et al., 2018 

7 2010   -6.7 0.8 
Projects before 2011, long-

term correction, R2-filtered 
Lunacek et al., 2018 

8 2011   -2  Projects from 2000–2011 Drunsic, 2012 
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8 2012   -1  Projects from 2005–2011 Drunsic, 2012 

9 2012 125 382 -9   Johnson, 2012 

9 2012 125 382 0   Johnson, 2012 

10 2012 24 106 -3.6 1.4  Bernadett et al., 2012 

10 2012   -2.4   Bernadett et al., 2012 

11 2014 31 101 -2.8  1 year Istchenko, 2014 

11 2014 31 101 -1.4  10 year Istchenko, 2014 

12 2014 24 106 -1.1 7.5  Brower, 2014 

12 2014 24 106 -1 8.8 Correct for windiness  Brower, 2014 

13 2015 25 91 -8   Cox, 2015 

13 2015 25 91 -9  Correct for windiness  Cox, 2015 

14 2015 30 127 -2.2  
Adjust for windiness and 

availability 

Stoelinga and Hendrickson, 

2015 

14 2016 30 127 0.1 8.8  Baughman, 2016 

15 2015 18 58 -1.6 4.4  Hendrickson, 2019 

15 2019 30 111 -0.1 4.5  Hendrickson, 2019 

16 2018  65 -6.6  Projects after 2011  Lunacek et al., 2018 

16 2018 23  -6.4  Projects after 2011  Lunacek et al., 2018 

16 2018   -5.5 1.28 
Long-term correction, R2-

filtered 
Lunacek et al., 2018 

17 2018   -1.5 7.6  Hendrickson, 2019 

17 2019   0 7.3  Hendrickson, 2019 

 
 435 
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Table B3: List of energy losses, corresponding to Figs. 6 and 8. The “e” and “o” in the “Est/Obs” column represent estimated and 
observed values, respectively. The energy loss categories and subcategories align with those in Table A1. The “Avg (%),” “Min (%),” 
and “Max (%) indicate the average, minimum, and maximum energy loss percentages, respectively. The same column-name 440 
abbreviations apply to the following tables in Appendix B.  

Year Est/Obs Category Subcategory 
Avg 

(%) 

Min 

(%) 

Max 

(%) 
Notes Source 

2010 e Availability 
Balance of 

plant  
 1 2  Clive, 2010 

2013 e Availability 
Balance of 

plant  
  1 

Typical Northwest 

European onshore 
Mortensen, 2013 

2014 e Availability 
Balance of 

plant  
0.2 0.2 0.4 

Typical North 

America onshore, 

collection and 

substation 

AWS Truepower, 

2014 

2016 e Availability 
Balance of 

plant  
0.5   Substation Clifton et al., 2016 

2017 e Availability 
Balance of 

plant  
 0.3 0.5 

Onshore: 0.5; 

Offshore: 0.3 

Papadopoulos, 

2019 

2011 o Availability 
Balance of 

plant  
0.2    Johnson, 2011 

2010 e Availability Grid  2 1 3 WindPro 2.7 Nielsen et al., 2010 

2013 e Availability Grid    1 
Typical Northwest 

European onshore 
Mortensen, 2013 

2014 e Availability Grid  0.3 0.3 0.6 

Typical North 

America onshore, 

utility grid 

AWS Truepower, 

2014 

2016 e Availability Grid    1 Transmission Clifton et al., 2016 

2019 e Availability 
Grid 

availability 
 1 3.3  Hill et al., 2019 

2008 o Availability Grid   0.7 2.5  
Spengemann and 

Borget, 2008 

2008 e Availability 
Total 

availability 
3   

Outside North 

America 
Graves et al., 2008 
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2008 e Availability 
Total 

availability 
 3 5 

Include first-year 

operation, also 

stated in Table B4 

Johnson et al., 

2008; White, 2008a 

2009 e Availability 
Total 

availability 
3 2 3  Randall, 2009 

2009 e Availability 
Total 

availability 
 3 5 

United States.: 

southern states: 3; 

northern states: 5 

Horn, 2009 

2011 e Availability 
Total 

availability 
5   

Analyst 

comparison 
Hendrickson, 2011 

2012 e Availability 
Total 

availability 
3    Drunsic, 2012 

2012 e Availability 
Total 

availability 
6 2 10  Brower, 2012 

2013 e Availability 
Total 

availability 
3.2   

Onshore, analyst 

comparison 

Mortensen and 

Ejsing Jørgensen, 

2013 

2014 e Availability 
Total 

availability 
6.2   

Typical North 

America onshore 

AWS Truepower, 

2014 

2016 e Availability 
Total 

availability 
 2 5 

For plants built in 

2010 to 2015 
Clifton et al., 2016 

2016 e Availability 
Total 

availability 
4.2    

Beaucage et al., 

2016 

2016 e Availability 
Total 

availability 
 2 4  

Bernadett et al., 

2016 

2018 e Availability 
Total 

availability 
2   Onshore Stehly et al., 2018 

2007 o Availability 
Total 

availability 
7.4    Johnson, 2011 

2008 o Availability 
Total 

availability 
4.5   North America Graves et al., 2008 

2008 o Availability 
Total 

availability 
5    

Johnson et al., 

2008; White, 2008a 
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2008 o Availability 
Total 

availability 
7    

Johnson et al., 

2008; Jones, 2008 

2008 o Availability 
Total 

availability 
6.7    Johnson, 2011 

2008 o Availability 
Total 

availability 
6    

Lackner et al., 

2008 

2009 o Availability 
Total 

availability 
 5 6  Hendrickson, 2009 

2009 o Availability 
Total 

availability 
6.5    Randall, 2009 

2009 o Availability 
Total 

availability 
8.2   

Most available in 

summer and fall, 

least in winter 

Cushman, 2009 

2009 o Availability 
Total 

availability 
6.9    Johnson, 2011 

2010 o Availability 
Total 

availability 
3.5    Johnson, 2011 

2010 o Availability 
Total 

availability 
1.1 1 11 WindPro 2.7 Nielsen et al., 2010 

2011 o Availability 
Total 

availability 
11    Conroy et al., 2011 

2011 o Availability 
Total 

availability 
2.6    Johnson, 2011 

2012 o Availability 
Total 

availability 
6    Drunsic, 2012 

2012 o Availability 
Total 

availability 
6.4   

Higher availability 

loss for higher 

wind speeds 

Winslow, 2012 

2015 o Availability 
Total 

availability 
5   

Operational issues 

(e.g., cables, 

connection, 

turbine) 

Cox, 2015 
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2016 o Availability 
Total 

availability 
4.5    

Beaucage et al., 

2016 

2016 o Availability 
Total 

availability 
3.2    

Bernadett et al., 

2016 

2019 o Availability 
Total 

availability 
4    

Pedersen and 

Langreder, 2019 

2010 e Availability Turbine   2 5  Clive, 2010 

2010 e Availability Turbine  2 5 WindPro 2.7 Nielsen et al., 2010 

2013 e Availability Turbine  3   
Typical Northwest 

European onshore 
Mortensen, 2013 

2014 e Availability Turbine  5.9 3 10.1 

Typical North 

America onshore, 

combined from 

contractual turbine, 

noncontractual 

turbine, correlation, 

restart, site access 

AWS Truepower, 

2014 

2011 o Availability Turbine 2.3    Johnson, 2011 

2019 o Availability Turbine  1.67   
Combine scheduled 

and unscheduled 

maintenance 

Pedersen and 

Langreder, 2019 

2014 e Curtailment Grid   0 3.5 

Typical North 

America onshore, 

including power 

purchase 

agreement 

AWS Truepower, 

2014 

2016 e Curtailment Grid    1  Clifton et al., 2016 

2019 e Curtailment Grid  3.8   
Ireland estimate, 

based on 

operational data 

Papadopoulos, 

2019 

2016 o Curtailment Grid   0.5 1 Interconnection cap 
Ostridge and 

Rodney, 2016 



33 
 

2014 e Curtailment Load   0 3.5 

Typical North 

America onshore, 

directional 

AWS Truepower, 

2014 

2019 o Curtailment Load  1.02   Load shutdown 
Pedersen and 

Langreder, 2019 

2014 e Curtailment Permit   0 3.5 
Typical North 

America onshore 

AWS Truepower, 

2014 

2016 e Curtailment Permit    1  Clifton et al., 2016 

2018 e Curtailment Permit   0.05 0.2 Shadow flicker Mibus, 2018 

2016 o Curtailment Permit   0.4 2.4 Bat 
Ostridge and 

Rodney, 2016 

2019 o Curtailment Permit   0.67 0.71 
Bat and shadow 

flicker 

Pedersen and 

Langreder, 2019 

2011 e Curtailment 
Total 

curtailment 
0   

Analyst 

comparison 
Hendrickson, 2011 

2012 e Curtailment 
Total 

curtailment 
0 0 5  Brower, 2012 

2014 e Curtailment 
Total 

curtailment 
0   

Typical North 

America onshore 

AWS Truepower, 

2014 

2016 e Curtailment 
Total 

curtailment 
 1 4  Clifton et al., 2016 

2011 o Curtailment 
Total 

curtailment 
4    Johnson, 2011 

2012 o Curtailment 
Total 

curtailment 
2.97    Wiser et al., 2019 

2013 o Curtailment 
Total 

curtailment 
2.86    Wiser et al., 2019 

2014 o Curtailment 
Total 

curtailment 
 1 4 

Varies 

geographically 
Bird et al., 2014 

2014 o Curtailment 
Total 

curtailment 
2.31    Wiser et al., 2019 

2015 o Curtailment 
Total 

curtailment 
2.15    Wiser et al., 2019 
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2016 o Curtailment 
Total 

curtailment 
2.1    Wiser et al., 2019 

2017 o Curtailment 
Total 

curtailment 
2.54    Wiser et al., 2019 

2018 o Curtailment 
Total 

curtailment 
2.18    Wiser et al., 2019 

2014 e Electrical 
Electrical 

efficiency 
2 1 3 

Typical North 

America onshore 

AWS Truepower, 

2014 

2016 e Electrical 
Electrical 

efficiency 
 1 2 Collector system Clifton et al., 2016 

2014 e Electrical 

Facility 

parasitic 

consumption 

0.1 0 0.1 

Typical North 

America onshore, 

weather package 

AWS Truepower, 

2014 

2010 e Electrical 
Total 

electrical 
 2 3  Clive, 2010 

2011 e Electrical 
Total 

electrical 
3   

Analyst 

comparison 
Hendrickson, 2011 

2012 e Electrical 
Total 

electrical 
2.1 2 3  Brower, 2012 

2013 e Electrical 
Total 

electrical 
1.2   

Typical Northwest 

European onshore 
Mortensen, 2013 

2013 e Electrical 
Total 

electrical 
 1 2 

Typical Northwest 

European onshore 
Mortensen, 2013 

2014 e Electrical 
Total 

electrical 
 0.7 2  

Colmenar-Santos et 

al., 2014 

2014 e Electrical 
Total 

electrical 
2.1   

Typical North 

America onshore 

AWS Truepower, 

2014 

2016 e Electrical 
Total 

electrical 
 2 3.5  Clifton et al., 2016 

2008 o Electrical 
Total 

electrical 
3    

Spengemann and 

Borget, 2008 

2006 e Environmental Degradation   13  
Spruce and Turner, 

2006 
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2009 e Environmental Degradation 0.2 0.1 0.4 10 year Randall, 2009 

2009 e Environmental Degradation 1.2 0.5 1.9 20 year Randall, 2009 

2010 e Environmental Degradation 5  10  
Standish et al., 

2010 

2011 e Environmental Degradation 0.3    
Bernadett et al., 

2012 

2012 e Environmental Degradation 0.6    
Bernadett et al., 

2012 

2014 e Environmental Degradation  5 25 Wind tunnel study Sareen et al., 2014 

2014 e Environmental Degradation 1 0.6 1.3 
Typical North 

America onshore 

AWS Truepower, 

2014 

2014 e Environmental Degradation  5 20 Extreme cases Redouane, 2014 

2015 e Environmental Degradation   5  Langel et al., 2015 

2016 e Environmental Degradation  1 2 
Industry standard; 

soiling and erosion 
Clifton et al., 2016 

2016 e Environmental Degradation   5  
Maniaci et al., 

2016 

2017 e Environmental Degradation  0.4 2.3  
Ehrmann et al., 

2017 

2017 e Environmental Degradation   8  
Schramm et al., 

2017 

2017 e Environmental Degradation  4.9 6.8  Wilcox et al., 2017 

2019 e Environmental Degradation 3.6   Normal operation 
Hasager et al., 

2019 

2019 e Environmental Degradation 2.6   
Erosion safe mode 

operation 

Hasager et al., 

2019 

2014 o Environmental Degradation  1.4 1.8 United Kingdom 
Staffell and Green, 

2014 

2016 o Environmental Degradation  1.5 2 Before blade repair Murphy, 2016 

2017 o Environmental Degradation 0.3   Sweden 
(Olauson et al., 

2017)over  

2018 o Environmental Degradation 0.44    Wiser et al., 2019 
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2019 o Environmental Degradation 0.6   Germany 
Germer and 

Kleidon, 2019 

2019 o Environmental Degradation   9.5 Lead edge erosion 
Latoufis et al., 

2019 

2020 o Environmental Degradation  0.17 1.23 United States 
Hamilton et al., 

2020 

2014 e Environmental Environmental 0.6 0 3.9 

Typical North 

America onshore, 

combining 

temperature 

shutdown and 

lightning 

AWS Truepower, 

2014 

2016 e Environmental Environmental   1 
Temperature 

shutdown 
Clifton et al., 2016 

2019 o Environmental Environmental 0.35   
Temperature 

shutdown 

Pedersen and 

Langreder, 2019 

2016 e Environmental Exposure  0 3 Exposure over time Clifton et al., 2016 

2014 e Environmental Icing 1 0 4.5 
Typical North 

America onshore 

AWS Truepower, 

2014 

2016 e Environmental Icing  1 5  Clifton et al., 2016 

2016 e Environmental Icing 5.6    
Beaucage et al., 

2016 

2019 e Environmental Icing 30    Abascal et al., 2019 

2008 o Environmental Icing 26   
Average of two 

wind farms for 4 

years 

Gillenwater et al., 

2008 

2010 o Environmental Icing 24   
Four winters, 10% 

of the year 
Rindeskär, 2010 

2015 o Environmental Icing 10   
Seven wind farms, 

111 turbines, 272 

MW in Sweden  

Byrkjedal et al., 

2015 

2016 o Environmental Icing  5 15 
Three consultants 

underestimate 1.5 
Trudel, 2016 
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to 4 times lower 

than this 

2016 o Environmental Icing 4.9    
Beaucage et al., 

2016 

2019 o Environmental Icing 0.87    
Pedersen and 

Langreder, 2019 

2019 o Environmental Icing  33 35  Abascal et al., 2019 

2011 e Environmental 
Total 

environmental 
2   

Analyst 

comparison 
Hendrickson, 2011 

2012 e Environmental 
Total 

environmental 
2.6 1 6  Brower, 2012 

2013 e Environmental 
Total 

environmental 
 1 2 

Typical, used in 

Wind Atlas 

Analysis and 

Application 

Program (WAsP), 

include blade 

degradation, icing, 

temp shutdown.  

Mortensen, 2013 

2013 e Environmental 
Total 

environmental 
 1 2 

Typical Northwest 

European onshore, 

include blade 

degradation and 

icing. 

Mortensen, 2013 

2014 e Environmental 
Total 

environmental 
2.7   

Typical North 

America onshore 

AWS Truepower, 

2014 

2016 e Environmental 
Total 

environmental 
 1 7  Clifton et al., 2016 

2011 o Environmental 
Total 

environmental 
0.4    Johnson, 2011 

2010 e Total Total  6 13  Clive, 2010 

2011 e Total Total 18   
Analyst 

comparison 
Hendrickson, 2011 
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2012 e Total Total 18.5 7.8 37  Brower, 2012 

2012 e Total Total 14.8   
Analyst 

comparison 

Mortensen et al., 

2012 

2013 e Total Total 22.5   
Offshore, analyst 

comparison 

Mortensen and 

Ejsing Jørgensen, 

2013 

2013 e Total Total 17.4   
Onshore, analyst 

comparison 

Mortensen and 

Ejsing Jørgensen, 

2013 

2014 e Total Total 19.7 8.5 32.2 
Typical North 

America onshore 

AWS Truepower, 

2014 

2018 e Total Total 15   Onshore Stehly et al., 2018 

2008 o Total Total  2 5  
Johnson et al., 

2008 

2008 e 
Turbine 

performance 

Generic power 

curve 

adjustment 

1    
Johnson et al., 

2008 

2009 e 
Turbine 

performance 

Generic power 

curve 

adjustment 

0.3   
Turbulence-

intensity-dependent 

power curves 

AWS Truepower, 

2009 

2012 e 
Turbine 

performance 

Generic power 

curve 

adjustment 

2.4 1 4  Brower et al., 2012 

2014 e 
Turbine 

performance 

Generic power 

curve 

adjustment 

2.4 0 2.4 
Typical North 

America onshore 

AWS Truepower, 

2014 

2016 e 
Turbine 

performance 

Generic power 

curve 

adjustment 

2.4    
Bernadett et al., 

2016 

2019 e 
Turbine 

performance 

Generic power 

curve 

adjustment 

1    Lee, 2019 
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2008 o 
Turbine 

performance 

Generic power 

curve 

adjustment 

2 4   
Johnson et al., 

2008; Jones, 2008 

2012 o 
Turbine 

performance 

Generic power 

curve 

adjustment 

2.2  3.2  
Drees and Weiss, 

2012 

2012 o 
Turbine 

performance 

Generic power 

curve 

adjustment 

2.5    Johnson, 2012 

2013 o 
Turbine 

performance 

Generic power 

curve 

adjustment 

1.8   
Without yaw error 

correction 
Osler, 2013 

2014 o 
Turbine 

performance 

Generic power 

curve 

adjustment 

2    
Staffell and Green, 

2014 

2014 o 
Turbine 

performance 

Generic power 

curve 

adjustment 

1.6 1 3  Ostridge, 2014 

2015 o 
Turbine 

performance 

Generic power 

curve 

adjustment 

2 0 4  Geer, 2015 

2015 o 
Turbine 

performance 

Generic power 

curve 

adjustment 

1.5    Ostridge, 2015 

2015 o 
Turbine 

performance 

Generic power 

curve 

adjustment 

1.1    Kassebaum, 2015 

2018 o 
Turbine 

performance 

Generic power 

curve 

adjustment 

0.2    Pram, 2018 

2010 e 
Turbine 

performance 

High wind 

hysteresis 
0.3   WindPro 2.7 Nielsen et al., 2010 
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2014 e 
Turbine 

performance 

High wind 

hysteresis 
0.6 0 3 

Typical North 

America onshore 

AWS Truepower, 

2014 

2009 e 
Turbine 

performance 

Site-specific 

power curve 

adjustment 

0.6   

Adjust for tower 

turbulence intensity 

to correct NRG 

Systems Max 40 

anemometer 

overspeeding.  

AWS Truepower, 

2009 

2014 e 
Turbine 

performance 

Site-specific 

power curve 

adjustment 

0 0 1 

Typical North 

America onshore, 

including inclined 

flow 

AWS Truepower, 

2014 

2016 e 
Turbine 

performance 

Site-specific 

power curve 

adjustment 

0.5    
Papadopoulos, 

2019 

2014 o 
Turbine 

performance 

Site-specific 

power curve 

adjustment 

2 5   
Staffell and Green, 

2014 

2008 e 
Turbine 

performance 

Suboptimal 

performance 
1    

Johnson et al., 

2008; White, 2008a 

2009 e 
Turbine 

performance 

Suboptimal 

performance 
 1 2  White, 2009 

2009 e 
Turbine 

performance 

Suboptimal 

performance 
1    

AWS Truepower, 

2009 

2013 e 
Turbine 

performance 

Suboptimal 

performance 
0.5    

Papadopoulos, 

2019 

2014 e 
Turbine 

performance 

Suboptimal 

performance 
1 0 1 

Typical North 

America onshore 

AWS Truepower, 

2014 

2019 e 
Turbine 

performance 

Suboptimal 

performance 
 1.1 2.2 

10 degrees of yaw 

error 
Liew et al., 2019 

2019 e 
Turbine 

performance 

Suboptimal 

performance 
3   Yaw misalignment 

Slinger et al., 

2019b 
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2012 o 
Turbine 

performance 

Suboptimal 

performance 
 0 3.6  Johnson, 2012 

2019 o 
Turbine 

performance 

Suboptimal 

performance 
0.41    

Pedersen and 

Langreder, 2019 

2019 o 
Turbine 

performance 

Suboptimal 

performance 
0.21   Yaw 

Pedersen and 

Langreder, 2019 

2010 e 
Turbine 

performance 

Total turbine 

performance 
 1 3  Clive, 2010 

2010 e 
Turbine 

performance 

Total turbine 

performance 
10  19  Clive, 2010 

2011 e 
Turbine 

performance 

Total turbine 

performance 
2   

Analyst 

comparison 
Hendrickson, 2011 

2012 e 
Turbine 

performance 

Total turbine 

performance 
2.5 0 5  Brower, 2012 

2013 e 
Turbine 

performance 

Total turbine 

performance 
 1 2 

Typical Northwest 

European onshore 
Mortensen, 2013 

2014 e 
Turbine 

performance 

Total turbine 

performance 
4   

Typical North 

America onshore 

AWS Truepower, 

2014 

2016 e 
Turbine 

performance 

Total turbine 

performance 
 1 3  Clifton et al., 2016 

2019 o 
Turbine 

performance 

Total turbine 

performance 
 2 6.5 

Rotor aerodynamic 

imbalance, yaw 

static misalignment 

Rezzoug, 2019 

2013 e Wake effect 
External wake 

effects 
2.3   

Offshore, analyst 

comparison, 

including 

neighboring wind 

farm wake 

Mortensen and 

Ejsing Jørgensen, 

2013 

2014 e Wake effect 
External wake 

effects 
0   

Typical North 

America onshore 

AWS Truepower, 

2014 

2014 e Wake effect 
Internal wake 

effects 
6.4 0 2 

Typical North 

America onshore 

AWS Truepower, 

2014 
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2018 e Wake effect 
Internal wake 

effects 
2 0 4 Turbine interaction Bleeg, 2018 

2011 e Wake effect Nonwake  3 4  Comstock, 2011 

2011 e Wake effect Nonwake 11 6 15 
Analyst 

comparison 
Hendrickson, 2011 

2012 e Wake effect Nonwake 9.2 5 20 
Analyst 

comparison 

Mortensen et al., 

2012 

2013 e Wake effect Nonwake 9.6 7.5 13 
Offshore, analyst 

comparison 

Mortensen and 

Ejsing Jørgensen, 

2013 

2013 e Wake effect Nonwake 8 4.4 20 
Onshore, analyst 

comparison 

Mortensen and 

Ejsing Jørgensen, 

2013 

2013 e Wake effect Nonwake  5 10 
Typical Northwest 

European onshore 
Mortensen, 2013 

2015 e Wake effect Nonwake  8 9.2  
Mortensen et al., 

2015b 

2008 e Wake effect 
Total wake 

effect 
 10 20  

Barthelmie et al., 

2008 

2009 e Wake effect 
Total wake 

effect 
20   

After 20 rows of 

turbines 
White, 2009 

2009 e Wake effect 
Total wake 

effect 
40   

After 70 rows of 

offshore turbines 
Tindal, 2009 

2009 e Wake effect 
Total wake 

effect 
 15 20 

After 15 rows of 

onshore turbines 
Tindal, 2009 

2009 e Wake effect 
Total wake 

effect 
10    Nielsen et al., 2010 

2010 e Wake effect 
Total wake 

effect 
18    Wolfe, 2010 

2010 e Wake effect 
Total wake 

effect 
 5 15 WindPro 2.7 Nielsen et al., 2010 
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2010 e Wake effect 
Total wake 

effect 
11.5   

Account for deep-

array loss and 

turbulence intensity 

Nielsen et al., 2010 

2011 e Wake effect 
Total wake 

effect 
 1 3  Comstock, 201 

2011 e Wake effect 
Total wake 

effect 
8 6 10 

Analyst 

comparison 
Hendrickson, 2011 

2012 e Wake effect 
Total wake 

effect 
6.7 3 15  Brower, 2012 

2012 e Wake effect 
Total wake 

effect 
6.1 4.5 8.1 

Analyst 

comparison 

Mortensen et al., 

2012 

2013 e Wake effect 
Total wake 

effect 
14 6.9 37 

Offshore, analyst 

comparison 

Mortensen and 

Ejsing Jørgensen, 

2013 

2013 e Wake effect 
Total wake 

effect 
10 3.9 17 

Onshore, analyst 

comparison 

Mortensen and 

Ejsing Jørgensen, 

2013 

2014 e Wake effect 
Total wake 

effect 
6.4 1.1 18.1 

Typical North 

America onshore 

AWS Truepower, 

2014 

2015 e Wake effect 
Total wake 

effect 
 6.1 14.3  

Mortensen et al., 

2015b 

2016 e Wake effect 
Total wake 

effect 
 0 10  Clifton et al., 2016 

2018 e Wake effect 
Total wake 

effect 
 4.5 7.7  Walls, 2018 

2019 e Wake effect 
Total wake 

effect 
  15  

Slinger et al., 

2019a 

2019 e Wake effect 
Total wake 

effect 
 3 14  Stoelinga, 2019 

2010 o Wake effect 
Total wake 

effect 
13   By the fifth row Wolfe, 2010 
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2014 o Wake effect 
Total wake 

effect 
 5 15 

Onshore, small (20 

turbine) wind 

farms 

Staffell and Green, 

2014 

2016 o Wake effect 
Total wake 

effect 
 8.4 15.3 

Up to fourth row 

downwind 
Kline, 2016 

2019 o Wake effect 
Total wake 

effect 
 4 16  Stoelinga, 2019 
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Table B4: List of other categorical losses outside the IEC proposed framework (Table A1), which are used to generate Fig. 7.  445 

Year Est/Obs Category Subcategory 
Avg 

(%) 

Min 

(%) 

Max 

(%) 
Notes Source 

2008 e Availability 

First few 

years of 

operation 

 3 5 

Include first-year 

operation; also stated 

in Table B3 

Johnson et al., 2008; 

White, 2008b 

2014 e Availability 

First few 

years of 

operation 

4 2 6 

Typical North 

America onshore, 

first year 

AWS Truepower, 

2014 

2010 o Availability 

First few 

years of 

operation 

 4 5 
First year of 

operation 
Johnson, 2011 

2011 o Availability 

First few 

years of 

operation 

 2 3 
First year of 

operation 
Johnson, 2011 

2019 o Availability 

First few 

years of 

operation 

2.2   
First 2 years of 

operation 
Pullinger et al., 2019 

2018 e 
Turbine 

performance 
Blockage 1    Bleeg, 2018 

2019 e 
Turbine 

performance 
Blockage  0.3 1.5  Spalding, 2019 

2019 e 
Turbine 

performance 
Blockage 1.75    Robinson, 2019 

2019 e 
Turbine 

performance 
Blockage 1.9 0 6  Lee, 2019 

2019 e 
Turbine 

performance 
Blockage 2 1 5  Papadopoulos, 2019 

 
Table B5: List of uncertainties of energy losses, as projected in Fig. 9. Note that a value herein represents the percent of energy 
percentage loss.  

Year Est/Obs Category 
Avg 

(%) 

Min 

(%) 

Max 

(%) 
Notes Source 
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2014 o 
Interannual 

variability of loss 
3.3    Istchenko, 2014 

2014 o 
Intermonthly 

variability of loss 
 10 14  Istchenko, 2014 

2012 e Nonwake loss 32   Analyst comparison Mortensen et al., 2012 

2013 e Nonwake loss 7.8   
Offshore, analyst 

comparison 

Mortensen and Ejsing 

Jørgensen, 2013 

2013 e Nonwake loss 34   
Onshore, analyst 

comparison 

Mortensen and Ejsing 

Jørgensen, 2013 

2012 e Wake loss 13   Analyst comparison Mortensen et al., 2012 

2013 e Wake loss  10 20 
Caused by different models 

and terrains 

Brower and Robinson, 

2013 

2013 e Wake loss  20 30 In WindFarmer Elkinton, 2013 

2013 e Wake loss 25    McCaa, 2013 

2013 e Wake loss  15 20  Kline, 2013 

2013 e Wake loss 30    Halberg and Breakey, 2013 

2013 e Wake loss 37   
Offshore, analyst 

comparison 

Mortensen and Ejsing 

Jørgensen, 2013 

2013 e Wake loss 18   
Onshore, analyst 

comparison 

Mortensen and Ejsing 

Jørgensen, 2013 

2014 e Wake loss 20    AWS Truepower, 2014 

2015 e Wake loss  13 22  Mortensen et al., 2015a 

2016 e Wake loss  13 35  Clifton et al., 2016 

2019 e Wake loss 18    Stoelinga, 2019 

2009 o Wake loss   80 
By second row of an 

offshore wind farm 
Dahlberg, 2009 

 

Table B6: List of energy uncertainties, according to the categories and subcategories in Table A2. These values correspond to Fig. 450 
10.  

Year Est/Obs Category Subcategory 
Avg 

(%) 

Min 

(%) 

Max 

(%) 
Notes Source 
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2004 e 

Historical 

wind 

resource 

Long-term 

adjustment 
5   

WindPro 2.4; 

methods and measure-

correlate-predict 

EMD International 

A/S, 2004 

2008 e 

Historical 

wind 

resource 

Long-term 

adjustment 
 5 10 

Measure-correlate-

predict process 
Anderson, 2008 

2010 e 

Historical 

wind 

resource 

Long-term 

adjustment 
3  10 

WindPro 2.7; long-

term correction 
Nielsen et al., 2010 

2013 e 

Historical 

wind 

resource 

Long-term 

adjustment 
4 0 11 

Onshore, analyst 

comparison 

Mortensen and Ejsing 

Jørgensen, 2013 

1991 e 

Historical 

wind 

resource 

Long-term 

period 
10    Simon, 1991 

2004 e 

Historical 

wind 

resource 

Long-term 

period 
5   

WindPro 2.4; wind 

statistics 

EMD International 

A/S, 2004 

2008 e 

Historical 

wind 

resource 

Long-term 

period 
5   

Climate variation: 

1997-2007 

Johnson et al., 2008; 

White, 2008 

2010 e 

Historical 

wind 

resource 

Long-term 

period 
5   

WindPro 2.7; long-

term wind variability 
Nielsen et al., 2010 

2012 e 

Historical 

wind 

resource 

Long-term 

period 
5.9   

Long-term wind 

speed 
Tchou, 2012 

2013 e 

Historical 

wind 

resource 

Long-term 

period 
3.5 0 12 

Onshore, analyst 

comparison 

Mortensen and Ejsing 

Jørgensen, 2013 

2014 e 

Historical 

wind 

resource 

Long-term 

period 
 2 11 

Long-term wind 

speed and its 

interannual variability 

Geer, 2014 
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2014 e 

Historical 

wind 

resource 

Long-term 

period 
3.2 2.1 4.8  

AWS Truepower, 

2014 

2015 e 

Historical 

wind 

resource 

Long-term 

period 
 5.5 9.5  Breakey, 2019 

2019 e 

Historical 

wind 

resource 

Long-term 

period 
  28.4 One-year uncertainty Dutrieux, 2019 

2010 o 

Historical 

wind 

resource 

Long-term 

period 
2    Rogers, 2010 

2012 o 

Historical 

wind 

resource 

Long-term 

period 
8.2   

Long-term wind 

speed 
Tchou, 2012 

2012 o 

Historical 

wind 

resource 

Long-term 

period 
4.3   

Long-term wind 

speed 
Tchou, 2012 

2013 e 

Historical 

wind 

resource 

Reference 

data 
16    Holtslag, 2013 

2009 e 

Historical 

wind 

resource 

Total 

historical 

wind resource 

3.98   
Twenty-year 

uncertainty, 10 

projects 

Breakey, 2019 

2011 e 

Historical 

wind 

resource 

Total 

historical 

wind resource 

4.2 2.5 7  Comstock, 2011 

2011 e 

Historical 

wind 

resource 

Total 

historical 

wind resource 

5    Hendrickson, 2011 

2016 e 

Historical 

wind 

resource 

Total 

historical 

wind resource 

 1 6  Clifton et al., 2016 
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2017 e 

Historical 

wind 

resource 

Total 

historical 

wind resource 

 2 5 
Ten-year uncertainties 

from three examples 
Halberg, 2017 

2019 e 

Historical 

wind 

resource 

Total 

historical 

wind resource 

2.68   
Twenty-year 

uncertainty, 10 

projects 

Breakey, 2019 

2012 o 

Historical 

wind 

resource 

Total 

historical 

wind resource 

 3 5  Comstock, 2012 

2014 o 

Historical 

wind 

resource 

Total 

historical 

wind resource 

3.2 1.7 5.3  Brower, 2014 

2014 o 

Historical 

wind 

resource 

Total 

historical 

wind resource 

2 2 5  Istchenko, 2014 

2014 e 

Historical 

wind 

resource 

Wind speed 

and direction 

distribution 

 1.5 2.5 

Interannual variability 

of frequency 

distribution 

Geer, 2014 

2014 e 

Historical 

wind 

resource 

Wind speed 

and direction 

distribution 

1 0.6 1.5 
Wind speed 

distribution 

AWS Truepower, 

2014 

2004 e 
Horizontal 

extrapolation 
Model stress 5   

WindPro 2.4; terrain 

description 

EMD International 

A/S, 2004 

2014 e 
Horizontal 

extrapolation 
Model stress  3 6 Complex terrain Redouane, 2014 

2016 e 
Horizontal 

extrapolation 
Model stress  1 10 

For simple and 

complex terrain 
Clifton et al., 2016 

2010 o 
Horizontal 

extrapolation 
Model stress 2.7   

75 North American 

projects; caused by 

topography 

Rogers, 2010 

2009 e 
Horizontal 

extrapolation 

Total 

horizontal 

extrapolation 

 1 3 Nonideal flow Hendrickson, 2009 



50 
 

2009 e 
Horizontal 

extrapolation 

Total 

horizontal 

extrapolation 

5.24   
Twenty-year 

uncertainty, 10 

projects 

Breakey, 2019 

2011 e 
Horizontal 

extrapolation 

Total 

horizontal 

extrapolation 

4.1 1.5 7  Comstock, 2011 

2011 e 
Horizontal 

extrapolation 

Total 

horizontal 

extrapolation 

4.3   Flow model Hendrickson, 2011 

2013 e 
Horizontal 

extrapolation 

Total 

horizontal 

extrapolation 

3.5 0 9 
Onshore, analyst 

comparison 

Mortensen and Ejsing 

Jørgensen, 2013 

2014 e 
Horizontal 

extrapolation 

Total 

horizontal 

extrapolation 

 2 4  Geer, 2014 

2014 e 
Horizontal 

extrapolation 

Total 

horizontal 

extrapolation 

4 2.4 8 Flow model 
AWS Truepower, 

2014 

2014 e 
Horizontal 

extrapolation 

Total 

horizontal 

extrapolation 

 0 14.8  Redouane, 2014 

2015 e 
Horizontal 

extrapolation 

Total 

horizontal 

extrapolation 

 0 8.7  Mortensen et al., 2015 

2016 e 
Horizontal 

extrapolation 

Total 

horizontal 

extrapolation 

 1 10  Clifton et al., 2016 

2017 e 
Horizontal 

extrapolation 

Total 

horizontal 

extrapolation 

 2.6 4.7 
Ten-year uncertainties 

from three examples 
Halberg, 2017 

2018 e 
Horizontal 

extrapolation 

Total 

horizontal 

extrapolation 

 2.3 6.5 Flow model Walls, 2018 
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2019 e 
Horizontal 

extrapolation 

Total 

horizontal 

extrapolation 

3.54   
Twenty-year 

uncertainty, 10 

projects 

Breakey, 2019 

2010 o 
Horizontal 

extrapolation 

Total 

horizontal 

extrapolation 

 2.3 3.3 
Analyst comparison; 

"Extrapolation" 
Walter, 2010 

2010 o 
Horizontal 

extrapolation 

Total 

horizontal 

extrapolation 

2   
Analyst comparison; 

"Extrapolation" 
McAloon, 2010 

2014 o 
Horizontal 

extrapolation 

Total 

horizontal 

extrapolation 

4.3 1.7 8.5 Flow model Brower, 2014 

2014 o 
Horizontal 

extrapolation 

Total 

horizontal 

extrapolation 

4 1 8  Istchenko, 2014 

2014 e Measurement 

Data integrity 

and 

documentation 

0.5 0.2 1  
AWS Truepower, 

2014 

2016 e Measurement 

Data integrity 

and 

documentation 

  0.5  Clifton et al., 2016 

2010 o Measurement 

Data integrity 

and 

documentation 

1.4   
Data recovery and 

validation 
Rogers, 2010 

2013 e Measurement 

Further 

atmospheric 

parameters 

0.5 0 5 

Onshore, analyst 

comparison; Air 

density 

Mortensen and Ejsing 

Jørgensen, 2013 

2009 e Measurement 
Total 

measurement 
3.45   

Twenty-year 

uncertainty, 10 

projects 

Breakey, 2019 

2011 e Measurement 
Total 

measurement 
3.8 2.5 6  Comstock, 2011 
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2011 e Measurement 
Total 

measurement 
4.9    Hendrickson, 2011 

2014 e Measurement 
Total 

measurement 
 1.5 2.5  Geer, 2014 

2014 e Measurement 
Total 

measurement 
2.4 1.6 4.8  

AWS Truepower, 

2014 

2016 e Measurement 
Total 

measurement 
 1 5 

For plants built from 

2010 to 2015 with 

anemometer-based 

campaign, before 

extrapolations 

Clifton et al., 2016 

2017 e Measurement 
Total 

measurement 
 2.3 4.5 

Ten-year uncertainties 

from three examples 
Halberg, 2017 

2019 e Measurement 
Total 

measurement 
2.36   

Twenty-year 

uncertainty, 10 

projects 

Breakey, 2019 

2002 o Measurement 
Total 

measurement 
 8 12  

Friis Pedersen et al., 

2002 

2010 o Measurement 
Total 

measurement 
1.9   

Analyst comparison; 

caused by tower 

shadow filter and data 

recovery 

Balfrey, 2010 

2012 o Measurement 
Total 

measurement 
 2 3  Comstock, 2012 

2014 o Measurement 
Total 

measurement 
4.2 1.7 7.5  Brower, 2014 

2014 o Measurement 
Total 

measurement 
2 2 4  Istchenko, 2014 

2012 e Measurement 
Wind speed 

measurement 
3.4   Anemometer Tchou, 2012 

2013 e Measurement 
Wind speed 

measurement 
9    Holtslag, 2013 
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2013 e Measurement 
Wind speed 

measurement 
4 1.5 10 

Onshore, analyst 

comparison 

Mortensen and Ejsing 

Jørgensen, 2013 

2015 e Measurement 
Wind speed 

measurement 
 3 4 

Anemometer and 

calibration 
Geer, 2015 

2016 e Measurement 
Wind speed 

measurement 
 1 2  Clifton et al., 2016 

2010 o Measurement 
Wind speed 

measurement 
1.5 1 1.5 

Tower effects on 

anemometer 
Rogers, 2010 

2012 e 
Plant 

performance 
Availability 0.3   Substation metering Tchou, 2012 

2014 e 
Plant 

performance 
Availability  2 4 

Interannual variability 

of availability 
Geer, 2014 

2009 o 
Plant 

performance 
Availability 6.2    Cushman, 2009 

2011 o 
Plant 

performance 
Availability 1    Johnson, 2011 

2012 o 
Plant 

performance 
Availability 1.7    Tchou, 2012 

2016 e 
Plant 

performance 

Curtailments 

or Operational 

strategies 

 1 4  Clifton et al., 2016 

2013 e 
Plant 

performance 
Electrical 0.5 0 4 

Onshore, analyst 

comparison; metering 

Mortensen and Ejsing 

Jørgensen, 2013 

2013 e 
Plant 

performance 
Electrical  0 2 Metering Mortensen, 2013 

2016 e 
Plant 

performance 
Electrical  1 2  Clifton et al., 2016 

2012 e 
Plant 

performance 
Nonwake 2.9   Analyst comparison Mortensen et al., 2012 

2013 e 
Plant 

performance 
Nonwake 0.7   

Offshore, analyst 

comparison 

Mortensen and Ejsing 

Jørgensen, 2013 

2013 e 
Plant 

performance 
Nonwake 2.7   

Onshore, analyst 

comparison 

Mortensen and Ejsing 

Jørgensen, 2013 
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2013 e 
Plant 

performance 
Nonwake 1 0 10 

Onshore, analyst 

comparison 

Mortensen and Ejsing 

Jørgensen, 2013 

2014 o 
Plant 

performance 
Nonwake 3.7 3.2 4.5  Brower, 2014 

2009 e 
Plant 

performance 

Total plant 

performance 
3.56   

Twenty-year 

uncertainty, 10 

projects 

Breakey, 2019 

2011 e 
Plant 

performance 

Total plant 

performance 
3.2 1 5  Comstock, 2011 

2011 e 
Plant 

performance 

Total plant 

performance 
3.8    Hendrickson, 2011 

2013 e 
Plant 

performance 

Total plant 

performance 
3    Holtslag, 2013 

2014 e 
Plant 

performance 

Total plant 

performance 
 2 5  Geer, 2014 

2014 e 
Plant 

performance 

Total plant 

performance 
3.5 3.2 4.8  

AWS Truepower, 

2014 

2016 e 
Plant 

performance 

Total plant 

performance 
 0 15  Clifton et al., 2016 

2017 e 
Plant 

performance 

Total plant 

performance 
 3 4.4 

Ten-year uncertainties 

from three examples 
Halberg, 2017 

2019 e 
Plant 

performance 

Total plant 

performance 
4.53   

Twenty-year 

uncertainty, 10 

projects; include 

interannual variability 

of turbine 

performance 

Breakey, 2019 

2010 o 
Plant 

performance 

Total plant 

performance 
2    Rogers, 2010 

2012 o 
Plant 

performance 

Total plant 

performance 
 2 3  Comstock, 2012 

2014 o 
Plant 

performance 

Total plant 

performance 
4 3 5  Istchenko, 2014 
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2004 e 
Plant 

performance 

Turbine 

performance 
5   

WindPro 2.4; power 

curve 

EMD International 

A/S, 2004 

2012 e 
Plant 

performance 

Turbine 

performance 
1.5    Tchou, 2012 

2013 e 
Plant 

performance 

Turbine 

performance 
4 0 10 

Onshore, analyst 

comparison; power 

curve 

Mortensen and Ejsing 

Jørgensen, 2013 

2013 e 
Plant 

performance 

Turbine 

performance 
 5 10 Power curve Mortensen, 2013 

2014 e 
Plant 

performance 

Turbine 

performance 
 4 10.4 Power curve Redouane, 2014 

2016 e 
Plant 

performance 

Turbine 

performance 
 0 4  Clifton et al., 2016 

2019 e 
Plant 

performance 

Turbine 

performance 
 8.6 18.8 

Power curve from 10-

kW turbine 
Kim and Shin, 2019 

2002 o 
Plant 

performance 

Turbine 

performance 
 2 3 Power curve 

Friis Pedersen et al., 

2002 

2012 o 
Plant 

performance 

Turbine 

performance 
0.8   Power curve Brower et al., 2012 

2012 o 
Plant 

performance 

Turbine 

performance 
1    Tchou, 2012 

2012 o 
Plant 

performance 

Turbine 

performance 
6.1   Power curve 

Drees and Weiss, 

2012 

2012 o 
Plant 

performance 

Turbine 

performance 
15   

From air density of 

power curve 
Winslow, 2012 

2012 o 
Plant 

performance 

Turbine 

performance 
 4 8 Power curve Jaynes, 2012 

2013 o 
Plant 

performance 

Turbine 

performance 
 0.5 6.5 Power curve Kassebaum, 2013 

2014 o 
Plant 

performance 

Turbine 

performance 
6   Power curve Ostridge, 2014 

2015 o 
Plant 

performance 

Turbine 

performance 
6   Power curve Ostridge, 2015 
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2015 o 
Plant 

performance 

Turbine 

performance 
2.1   Power curve Kassebaum, 2015 

2017 o 
Plant 

performance 

Turbine 

performance 
 3.1 4 Power curve Filippelli et al., 2017 

2018 o 
Plant 

performance 

Turbine 

performance 
2.5   Power curve Pram, 2018 

2012 e 
Plant 

performance 
Wake effect 7    Tchou, 2012 

2012 e 
Plant 

performance 
Wake effect 0.8   Analyst comparison Mortensen et al., 2012 

2013 e 
Plant 

performance 
Wake effect 5.3   

Offshore, analyst 

comparison 

Mortensen and Ejsing 

Jørgensen, 2013 

2013 e 
Plant 

performance 
Wake effect 1.8 0 13 

Onshore, analyst 

comparison 

Mortensen and Ejsing 

Jørgensen, 2013 

2013 e 
Plant 

performance 
Wake effect  0 5  Mortensen, 2013 

2014 e 
Plant 

performance 
Wake effect  0 10  Redouane, 2014 

2014 o 
Plant 

performance 
Wake effect 1.7 0.7 3.1  Brower, 2014 

2019 e 

Project 

evaluation 

period 

variability 

Climate 

change 
4    Wilkinson et al., 2019 

2014 o 

Project 

evaluation 

period 

variability 

Climate 

change 
2.1 1.4 2.8 Future climate Brower, 2014 

2008 e 

Project 

evaluation 

period 

variability 

Modeled 

operational 

period 

1   
Short-term 

climatology 

Johnson et al., 2008; 

White, 2008 
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2014 e 

Project 

evaluation 

period 

variability 

Modeled 

operational 

period 

1.9    
AWS Truepower, 

2014 

2019 e 

Project 

evaluation 

period 

variability 

Modeled 

operational 

period 

  8 Ten-year uncertainty Dutrieux, 2019 

2019 e 

Project 

evaluation 

period 

variability 

Modeled 

operational 

period 

  4.8 
Twenty-year 

uncertainty 
Dutrieux, 2019 

2019 e 

Project 

evaluation 

period 

variability 

Modeled 

operational 

period 

  1.6 
Thirty-year 

uncertainty 
Dutrieux, 2019 

2010 o 

Project 

evaluation 

period 

variability 

Modeled 

operational 

period 

1   
Changes in long-term 

wind speed 
Rogers, 2010 

2015 e 

Project 

evaluation 

period 

variability 

Plant 

performance 
 7 12 

With 1 to 10 met 

masts 
Brower et al., 2015 

2009 e 

Project 

evaluation 

period 

variability 

Total project 

evaluation 

period 

variability 

2.26   
Twenty-year future 

variability 
Breakey, 2019 

2011 e 

Project 

evaluation 

period 

variability 

Total project 

evaluation 

period 

variability 

 6 10.5  Comstock, 2011 
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2011 e 

Project 

evaluation 

period 

variability 

Total project 

evaluation 

period 

variability 

7    Hendrickson, 2011 

2012 e 

Project 

evaluation 

period 

variability 

Total project 

evaluation 

period 

variability 

 3.1 9.7 
Range of 1-year and 

10-year uncertainties 
Tchou, 2012 

2016 e 

Project 

evaluation 

period 

variability 

Total project 

evaluation 

period 

variability 

 1 10  Clifton et al., 2016 

2017 e 

Project 

evaluation 

period 

variability 

Total project 

evaluation 

period 

variability 

 2.8 3.5 
Ten-year uncertainties 

from three examples 
Halberg, 2017 

2019 e 

Project 

evaluation 

period 

variability 

Total project 

evaluation 

period 

variability 

0.94   
Twenty-year future 

variability 
Breakey, 2019 

2010 o 

Project 

evaluation 

period 

variability 

Total project 

evaluation 

period 

variability 

1    Rogers, 2010 

2012 o 

Project 

evaluation 

period 

variability 

Total project 

evaluation 

period 

variability 

 2 3  Comstock, 2012 

2012 o 

Project 

evaluation 

period 

variability 

Total project 

evaluation 

period 

variability 

 3.1 9.7 
Range of 1-year and 

10-year uncertainties 
Tchou, 2012 
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2014 o 

Project 

evaluation 

period 

variability 

Total project 

evaluation 

period 

variability 

6 4 9 
One-year 

uncertainties 
Istchenko, 2014 

2014 o 

Project 

evaluation 

period 

variability 

Total project 

evaluation 

period 

variability 

2 2 3 Ten-year uncertainties Istchenko, 2014 

2000 e Total Total  3 6 
For flat and complex 

terrains 
Albers et al., 2000 

2004 e Total Total 10   WindPro 2.4 
EMD International 

A/S, 2004 

2007 e Total Total 9.6   
Twenty-year 

uncertainty, 10 

projects 

Breakey, 2019 

2008 e Total Total  9.9 12.7 
Range of 1-year and 

lifetime uncertainties 

AWS Truepower, 

2009 

2009 e Total Total  7.9 10.5 
Range of 1-year and 

lifetime uncertainties 

AWS Truepower, 

2009 

2010 e Total Total 8  10 WindPro 2.7 Nielsen et al., 2010 

2011 e Total Total 13 10 18  Hendrickson, 2011 

2011 e Total Total 7.2    Bernadett et al., 2012 

2012 e Total Total  7 11  Comstock, 2012 

2012 e Total Total  10.4 13.9 
Range of 1-year and 

10-year uncertainties 
Tchou, 2012 

2012 e Total Total 7.7    Bernadett et al., 2012 

2012 e Total Total 11 6 21 Analyst comparison Mortensen et al., 2012 

2013 e Total Total 17    Holtslag, 2013 

2013 e Total Total 10.8    Holtslag, 2013 

2013 e Total Total 10 6.2 21 
Offshore, analyst 

comparison 

Mortensen and Ejsing 

Jørgensen, 2013 

2013 e Total Total 8 3.6 12 
Onshore, analyst 

comparison 

Mortensen and Ejsing 

Jørgensen, 2013 
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2013 e Total Total  10 15  Mortensen, 2013 

2014 e Total Total  7.9 10.8 
Range of 1-year and 

10-year uncertainties 
Istchenko, 2014 

2014 e Total Total 7.5 5.2 13.5  
AWS Truepower, 

2014 

2014 e Total Total  11.1 16.7 
Nine wind farms, 1-

year uncertainties 
Redouane, 2014 

2014 e Total Total  8.4 14.5 
Nine wind farms, 10-

year uncertainties 
Redouane, 2014 

2015 e Total Total  10 15  Apple, 2015 

2015 e Total Total 7.2    Istchenko, 2015 

2015 e Total Total  5 9 "Minimum" Mortensen et al., 2015 

2015 e Total Total  8 11  
Mortensen et al., 

2015a 

2015 e Total Total 10.6   One-year uncertainty 
Stoelinga and 

Hendrickson, 2015 

2017 e Total Total  6.2 10.7 
Ten-year uncertainties 

from three examples 
Halberg, 2017 

2017 e Total Total  7.9 9.1 
One-year 

uncertainties 
Perry, 2017 

2017 e Total Total  4.1 6.2 
Twenty-year 

uncertainties 
Perry, 2017 

2017 e Total Total 11   
Post-2011 projects, 1-

year standard 

deviation 

Ostridge, 2017 

2019 e Total Total 6.8   
Twenty-year 

uncertainty, 10 

projects 

Breakey, 2019 

2009 o Total Total 9.7  9.7  Derrick, 2009 

2009 o Total Total 33   
One offshore wind 

farm 
Dahlberg, 2009 

2012 o Total Total  5 8  Comstock, 2012 
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2012 o Total Total  9.1 12.9 
Range of 1-year and 

10-year uncertainties 
Tchou, 2012 

2012 o Total Total  6.2 11.1 
Range of 1-year and 

10-year uncertainties 
Tchou, 2012 

2014 o Total Total 8.4 6.3 11.5  Brower, 2014 

2014 o Total Total  5.4 9.4 
Range of 1-year and 

10-year uncertainties 
Istchenko, 2014 

2014 o Total Total  4 8 Nine wind farms Redouane, 2014 

2015 o Total Total  6 12  Apple, 2015 

2015 o Total Total 6.2    Istchenko, 2015 

2015 o Total Total  3.1 7  
Mortensen et al., 

2015a 

2017 o Total Total 8   
Post-2011 projects, 1-

year standard 

deviation 

Ostridge, 2017 

2014 e 
Vertical 

extrapolation 
Model inputs 2.6 0 6.4 Wind shear 

AWS Truepower, 

2014 

2010 o 
Vertical 

extrapolation 
Model inputs 1.9   Wind shear Rogers, 2010 

2009 e 
Vertical 

extrapolation 

Total vertical 

extrapolation 
3.49   

Twenty-year 

uncertainty, 10 

projects 

Breakey, 2019 

2011 e 
Vertical 

extrapolation 

Total vertical 

extrapolation 
3.2 1.5 5  Comstock, 2011 

2011 e 
Vertical 

extrapolation 

Total vertical 

extrapolation 
3.1    Hendrickson, 2011 

2013 e 
Vertical 

extrapolation 

Total vertical 

extrapolation 
1 0 13 

Onshore, analyst 

comparison 

Mortensen and Ejsing 

Jørgensen, 2013 

2014 e 
Vertical 

extrapolation 

Total vertical 

extrapolation 
 1 2  Geer, 2014 

2014 e 
Vertical 

extrapolation 

Total vertical 

extrapolation 
 0 5  Redouane, 2014 
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2016 e 
Vertical 

extrapolation 

Total vertical 

extrapolation 
 0 6  Clifton et al., 2016 

2017 e 
Vertical 

extrapolation 

Total vertical 

extrapolation 
 2.1 3.9 

Ten-year uncertainties 

from three examples 
Halberg, 2017 

2019 e 
Vertical 

extrapolation 

Total vertical 

extrapolation 
5    Žagar, 2019 

2019 e 
Vertical 

extrapolation 

Total vertical 

extrapolation 
2.21   

Twenty-year 

uncertainty, 10 

projects 

Breakey, 2019 

2010 o 
Vertical 

extrapolation 

Total vertical 

extrapolation 
 2.3 3.3 

Analyst comparison; 

"Extrapolation" 
Walter, 2010 

2010 o 
Vertical 

extrapolation 

Total vertical 

extrapolation 
2   

Analyst comparison; 

"Extrapolation" 
McAloon, 2010 

2014 o 
Vertical 

extrapolation 

Total vertical 

extrapolation 
3 0 5  Istchenko, 2014 
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Table B7: List of other energy uncertainties outside of the IEC proposed framework (Table A2), and the values herein are necessary 455 
to generate Fig. 11.  

Year Est/Obs Category 
Avg 

(%) 

Min 

(%) 

Max 

(%) 
Notes Source 

2013 e External wake 1.6   Offshore, analyst comparison 
Mortensen and Ejsing 

Jørgensen, 2013 

2013 e Methodology 5   Energy calculation Holtslag, 2013 

2018 e Methodology  1 3 Analyst uncertainty Craig et al., 2018 

2014 e 
Power-curve 

measurement 
 4 10  Redouane, 2014 

2002 o 
Power-curve 

measurement 
 6 8  

Friis Pedersen et al., 

2002 

2013 o 
Power-curve 

measurement 
3.5   Power curve test Kassebaum, 2013 

2015 o 
Power-curve 

measurement 
4.5    Kassebaum, 2015 

 
 
  



64 
 

Table B8: List of wind speed uncertainties, which are used for Fig. 12. Differ from other tables in Appendix B, this table record 460 
values in percentage of wind speed.  

Year Est/Obs Category 
Avg 

(%) 

Min 

(%) 

Max 

(%) 
Notes Source 

2018 e Blockage  1.9 3.4  Bleeg et al., 2018 

2011 e Distortion  0 2 

Nonideal flow; include 

tower, boom, other 

equipment 

Hatlee, 2011 

2014 e Distortion  1.1 3.6 
Include distortion of terrain 

and mounting.  

 

Redouane, 2014 

2010 e Future variability  1 3 
Future climate; WindPro 

2.7 
Nielsen et al., 2010 

2011 e Future variability  4 6  Comstock, 2011 

2012 e Future variability  1.4 2.2 Future wind resource Brower, 2012 

2011 e 
Horizontal 

extrapolation 
 1 4  Comstock, 2011 

2013 e 
Horizontal 

extrapolation 
5   Reference data Holtslag, 2013 

2013 e 
Horizontal 

extrapolation 
1   Lidar Holtslag, 2013 

2013 e 
Horizontal 

extrapolation 
 0 5  Mortensen, 2013 

2015 e 
Horizontal 

extrapolation 
 0 2.2 Long-term extrapolation Mortensen et al., 2015 

2010 o 
Horizontal 

extrapolation 
1.9   Analyst comparison Walter, 2010 

1991 e 
Interannual 

variability 
6.1    Simon, 1991 

2006 e 
Interannual 

variability 
 8 12 Northern Europe Pryor et al., 2006 

2008 e 
Interannual 

variability 
 2 7 Windiness Johnson et al., 2008 
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2009 e 
Interannual 

variability 
6   

Recommend in 

WindFarmer 

Garrad Hassan and Partners 

Ltd, 2009 

2010 e 
Interannual 

variability 
3.5    Hendrickson, 2010 

2010 e 
Interannual 

variability 
6   

One-year uncertainty; 

WindPro 2.7 
Nielsen et al., 2010 

2010 e 
Interannual 

variability 
1.3   

Twenty-year uncertainty; 

WindPro 2.7 
Nielsen et al., 2010 

2011 e 
Interannual 

variability 
 4 6 United States Rogers, 2011 

2013 e 
Interannual 

variability 
 2 6 Variability Mortensen, 2013 

2014 e 
Interannual 

variability 
 2 4  Brower, 2014 

2014 e 
Interannual 

variability 
 3.5 6  Geer, 2014 

2017 e 
Interannual 

variability 
5    Perry, 2017 

2018 e 
Interannual 

variability 
2.1   

37 years in contiguous 

United States 
Lee et al., 2018 

2019 e 
Interannual 

variability 
 1.4 5.4  

Gkarakis and Orfanaki, 

2019 

2014 o 
Interannual 

variability 
 5.7 8.8  Istchenko, 2014 

2018 e 
Intermonthly 

variability 
10.2   

37 years in contiguous 

United States 
Lee et al., 2018 

2014 o 
Intermonthly 

variability 
 19 24  Istchenko, 2014 

2010 e 
Long-term wind 

speed 
3 2 4  Clive, 2010 

2011 e 
Long-term wind 

speed 
 3.7 4.8 

Combine nearby weather 

station, airport, modeled 

data 

Rogers, 2011 
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2011 e 
Long-term wind 

speed 
 1.5 4  Comstock, 2011 

2012 e 
Long-term wind 

speed 
 1 2  Brown, 2012 

2012 e 
Long-term wind 

speed 
 1.6 4  Brower, 2012 

2013 e 
Long-term wind 

speed 
2   

Reference data; long-term 

representation 
Holtslag, 2013 

2014 e 
Long-term wind 

speed 
 0 11 

Uncertainty is smaller with 

longer years 
Hamel, 2014 

2014 e 
Long-term wind 

speed 
15    Hendrickson, 2014 

2014 e 
Long-term wind 

speed 
 1.1 6.1 

From data analysis and 

measure-correlate-predict 
Redouane, 2014 

2006 o 
Long-term wind 

speed 
3.5  20 1000 hours of data Rogers et al., 2006 

2006 o 
Long-term wind 

speed 
 3 6 

9000 hours of data at 

offshore wind farms 
Rogers, 2011 

2006 o 
Long-term wind 

speed 
 2 8 

9000 hours of data at 

offshore wind farms 
Rogers, 2011 

2010 e 
Measure-correlate-

predict 
 1 3 WindPro 2.7 Nielsen et al., 2010 

2012 e 
Measure-correlate-

predict 
2.5 1 3 

Long-term wind speed and 

correction 
Mortensen et al., 2012 

2013 e 
Measure-correlate-

predict 
4   

Lidar; long-term 

representation and 

correlation 

Holtslag, 2013 

2014 e 
Measure-correlate-

predict 
 0.7 6.4  Redouane, 2014 

2010 e Plant performance 3 1 4 Energy loss model Clive, 2010 

2010 e 
Terrain data and 

resolution 
3  4  Clive, 2010 
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2012 e 
Terrain data and 

resolution 
  1.5  Brown, 2012 

2010 e Total wind speed 7 3 10  Clive, 2010 

2012 e Total wind speed  3 13  Brower, 2012 

2013 e Total wind speed 8.9   Reference data Holtslag, 2013 

2013 e Total wind speed 5.1   Lidar Holtslag, 2013 

2015 e Total wind speed  3 10  Brower et al., 2015 

2014 o Total wind speed  9 16 Nine locations Redouane, 2014 

2011 e 
Vertical 

extrapolation 
 1 3  Comstock, 2011 

2011 e 
Vertical 

extrapolation 
 0 4  Faghani, 2011 

2012 e 
Vertical 

extrapolation 
 0 6.3  Brower, 2012 

2013 e 
Vertical 

extrapolation 
5   Reference data Holtslag, 2013 

2013 e 
Vertical 

extrapolation 
0   Lidar Holtslag, 2013 

2013 e 
Vertical 

extrapolation 
 0 5  Mortensen, 2013 

2014 e 
Vertical 

extrapolation 
 0 2  Redouane, 2014 

2015 e 
Vertical 

extrapolation 
 0.7 3.6  Mortensen et al., 2015 

2016 e 
Vertical 

extrapolation 
 2 6 Nonforested Kelly, 2016 

2017 e 
Vertical 

extrapolation 
1   

Industry accepted; 1% per 

10 m 
Langreder, 2017 

2019 e 
Vertical 

extrapolation 
 0 7 

Depends on shear and 

terrain 
Kelly et al., 2019 

2010 o 
Vertical 

extrapolation 
1.9   Analyst comparison Walter, 2010 
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2019 o 
Vertical 

extrapolation 
 0 4 

Depends on shear and 

terrain 
Kelly et al., 2019 

2012 e Wake effect   2  Brown, 2012 

2014 e Wake effect 16   
Actuator disk and 

computational fluid 

dynamics models 

Abiven et al., 2014 

2014 e Wake effect 0   Park and Ainslie models Abiven et al., 2014 

2019 e Wake effect   6  Slinger et al., 2019 

2007 e 
Wind speed 

measurement 
2.4    Breakey, 2019 

2010 e 
Wind speed 

measurement 
3 1 4  Clive, 2010 

2010 e 
Wind speed 

measurement 
2   WindPro 2.7 Nielsen et al., 2010 

2011 e 
Wind speed 

measurement 
 1 2.5 Ideal flow; calibration Hatlee, 2011 

2011 e 
Wind speed 

measurement 
 1.5 5 

Nonideal flow; total 

measurement 
Hatlee, 2011 

2011 e 
Wind speed 

measurement 
3.1    Rogers, 2011 

2011 e 
Wind speed 

measurement 
 1.5 3.5  Comstock, 2011 

2011 e 
Wind speed 

measurement 
 2 3  Faghani, 2011 

2012 e 
Wind speed 

measurement 
 0.5 1.5  Brown, 2012 

2012 e 
Wind speed 

measurement 
 1 2.5 Single anemometer Brower, 2012 

2013 e 
Wind speed 

measurement 
5   

Reference data; wind 

statistics 
Holtslag, 2013 

2013 e 
Wind speed 

measurement 
3   Lidar; wind statistics Holtslag, 2013 
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2013 e 
Wind speed 

measurement 
 2 5 Wind measurement Mortensen, 2013 

2014 e 
Wind speed 

measurement 
 0 5 Measurement campaign Redouane, 2014 

2015 e 
Wind speed 

measurement 
2   

Anemometer and 

calibration 
Geer, 2015 

2015 e 
Wind speed 

measurement 
2   Two met masts Brower et al., 2015 

2016 e 
Wind speed 

measurement 
2    Kelly, 2016 

2017 e 
Wind speed 

measurement 
0.8    Breakey, 2019 

2019 e 
Wind speed 

measurement 
1.58 1.54 1.86 

Range of standard, 

recommended, and lidar 

methods 

Medley and Smith, 2019 

2019 e 
Wind speed 

measurement 
4   Lidar calibration Slater, 2019 

2019 e 
Wind speed 

measurement 
 2.23 2.68 

Range from using 

computational fluid 

dynamics models or not 

Crease, 2019 

2019 e 
Wind speed 

measurement 
 6 8  Keck et al., 2019 

2013 o 
Wind speed 

measurement 
 2 3 Lidar on flat terrain Albers et al., 2013 

2015 o 
Wind speed 

measurement 
 1.1 2.2 Anemometer Clark, 2015 

2016 o 
Wind speed 

measurement 
 1 2 

Anemometer; industry 

accepted 
Smith et al., 2016 

2009 e 
Wind speed 

modeling 
7    VanLuvanee et al., 2009 

2010 e 
Wind speed 

modeling 
4 2 6 Flow model accuracy Clive, 2010 
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2010 e 
Wind speed 

modeling 
 3 10  Brower et al., 2010 

2011 e 
Wind speed 

modeling 
 2 5  Faghani, 2011 

2012 e 
Wind speed 

modeling 
 1 5.5  Brown, 2012 

2012 e 
Wind speed 

modeling 
 2 10 Flow model Brower, 2012 

2013 e 
Wind speed 

modeling 
 1.7 6.9  Abiven et al., 2013 

2015 e 
Wind speed 

modeling 
10  12  Brower et al., 2015 

2017 e 
Wind speed 

modeling 
 3 5 WAsP Jog, 2017 

2017 e 
Wind speed 

modeling 
 0.9 2 Ensemble model Jog, 2017 

2017 e 
Wind speed 

modeling 
2.9 1.4 7.6  Poulos, 2017 

2019 e 
Wind speed 

modeling 
2.5   

2.5% per km of 

extrapolation distance in 

WAsP; industry-

recommended assumption 

Zhang et al., 2019 

2015 o 
Wind speed 

modeling 
 4 10  Brower et al., 2015 

2016 o 
Wind speed 

modeling 
1.2  4.3 

Weighted absolute total 

error in WindFarmer 
Neubert, 2016 
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Appendix C 465 

 
Figure C1: As in Fig. 8, the trend in energy-production loss: (a) estimated total curtailment loss, (b) observed total availability loss, 
and (c) estimated total wake loss. Note that the ranges of the horizontal and vertical axes differ in each panel.  

  



72 
 

Author contribution 470 

 JCYL performed the literature search, conducted the data analysis, and prepared the article. MJF provided guidance 

and reviewed the article.  

Competing interests 

The authors indicate no conflict of interest.  

Acknowledgments  475 

This work was authored by the National Renewable Energy Laboratory (NREL), operated by the Alliance for 

Sustainable Energy, LLC, for the U.S. Department of Energy (DOE), under Contract No. DE-AC36-08GO28308. Funding 

provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Wind Energy Technologies 

Office. The views expressed in the article do not necessarily represent the views of the DOE or U.S. Government. The U.S. 

Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains 480 

a nonexclusive, paid up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow 

others to do so, for U.S. Government purposes.  

The authors would like to thank our external collaborators including Matthew Breakey, Matthew Hendrickson, Kisha 

James, Cory Jog, and the American Wind Energy Association; our colleagues at NREL including Sheri Anstedt, Derek Berry, 

Rachel Eck, Julie Lundquist, Julian Quick, David Snowberg, Paul Veers, and the NREL library; Carlo Bottasso as our editor 485 

and Mark Kelly as our peer reviewer.  

  



73 
 

References 

Abascal, A., Herrero, M., Torrijos, M., Dumont, J., Álvarez, M. and Casso, P.: An approach for estimating energy losses due 

to ice in pre-construction energy assessments, in WindEurope 2019, WindEurope, Bilbao, Spain., 2019. 490 

Abiven, C., Brady, O. and Triki, I.: Mesoscale and CFD Coupling for Wind Resource Assessment, in AWEA Wind Resource 

and Project Energy Assessment Workshop 2013, AWEA, Las Vegas, NV., 2013. 

Abiven, C., Parisse, A., Watson, G. and Brady, O.: CFD Wake Modeling: Where Do We Stand?, in AWEA Wind Resource 

and Project Energy Assessment Workshop 2014, AWEA, Orlando, FL., 2014. 

Albers, A., Klug, H. and Westermann, D.: Outdoor Comparison of Cup Anemometers, in German wind energy conference, 495 

DEWEK 2000, p. 5, Wilhelmshaven, Germany., 2000. 

Albers, A., Franke, K., Wagner, R., Courtney, M. and Boquet, M.: Ground-based remote sensor uncertainty – a case study for 

a wind lidar. [online] Available from: https://www.researchgate.net/publication/267780849_Ground-

based_remote_sensor_uncertainty_-_a_case_study_for_a_wind_lidar, 2013. 

Anderson, M.: Seasonality, Stability and MCP, in AWEA Wind Resource and Project Energy Assessment Workshop 2008, 500 

AWEA, Portland, OR., 2008. 

Apple, J.: Wind Farm Power Curves: Guidelines for New Applications, in AWEA Wind Resource and Project Energy 

Assessment Workshop 2015, AWEA, New Orleans, LA., 2015. 

AWS Truepower: Closing The Gap On Plant Underperformance: A Review and Calibration of AWS Truepower’s Energy 

Estimation Methods., 2009. 505 

AWS Truepower: AWS Truepower Loss and Uncertainty Methods, Albany, NY. [online] Available from: 

https://www.awstruepower.com/assets/AWS-Truepower-Loss-and-Uncertainty-Memorandum-5-Jun-2014.pdf (Accessed 29 

August 2017), 2014. 

Balfrey, D.: Data Processing, in AWEA Wind Resource and Project Energy Assessment Workshop 2010, AWEA, Oklahoma 

City, OK., 2010. 510 

Barthelmie, R. J., Murray, F. and Pryor, S. C.: The economic benefit of short-term forecasting for wind energy in the UK 

electricity market, Energy Policy, 36(5), 1687–1696, doi:10.1016/J.ENPOL.2008.01.027, 2008. 

Baughman, E.: Error Distributions, Tails, and Outliers, in AWEA Wind Resource and Project Energy Assessment Workshop 

2016, AWEA, Minneapolis, MN., 2016. 

Beaucage, P., Kramak, B., Robinson, N. and Brower, M. C.: Modeling the dynamic behavior of wind farm power generation: 515 

Building upon SCADA system analysis, in AWEA Wind Resource and Project Energy Assessment Workshop 2016, AWEA, 

Minneapolis, MN., 2016. 

Bernadett, D., Brower, M., Van Kempen, S., Wilson, W. and Kramak, B.: 2012 Backcast Study: Verifying AWS Truepower’s 

Energy and Uncertainty Estimates, Albany, NY., 2012. 

Bernadett, D., Brower, M. and Ziesler, C.: Loss Adjustment Refinement, in AWEA Wind Resource and Project Energy 520 



74 
 

Assessment Workshop 2016, AWEA, Minneapolis, MN., 2016. 

Bird, L., Cochran, J. and Wang, X.: Wind and Solar Energy Curtailment: Experience and Practices in the United States., 2014. 

Bleeg, J.: Accounting for Blockage Effects in Energy Production Assessments, in AWEA Wind Resource and Project Energy 

Assessment Workshop 2018, AWEA, Austin, TX., 2018. 

Bleeg, J., Purcell, M., Ruisi, R. and Traiger, E.: Wind Farm Blockage and the Consequences of Neglecting Its Impact on 525 

Energy Production, Energies, 11(6), 1609, doi:10.3390/en11061609, 2018. 

Breakey, M.: An Armchair Meteorological Campaign Manager: A Retrospective Analysis, in AWEA Wind Resource and 

Project Energy Assessment Workshop 2019, AWEA, Renton, WA., 2019. 

Brower, M.: What do you mean you’re not sure? Concepts in uncertainty and risk management, in AWEA Wind Resource and 

Project Energy Assessment Workshop 2011, AWEA, Seattle, WA., 2011. 530 

Brower, M. C.: Wind resource assessment : a practical guide to developing a wind project, Wiley., 2012. 

Brower, M. C.: Measuring and Managing Uncertainty, in AWEA Wind Resource and Project Energy Assessment Workshop 

2014, AWEA, Orlando, FL., 2014. 

Brower, M. C.: State of the P50, in AWEA WINDPOWER 2017, AWEA, Anaheim, CA., 2017. 

Brower, M. C. and Robinson, N. M.: Validation of the openWind Deep Array Wake Model (DAWM), in AWEA Wind 535 

Resource and Project Energy Assessment Workshop 2013, AWEA, Las Vegas, NV., 2013. 

Brower, M. C., Robinson, N. M. and Hale, E.: Wind Flow Modeling Uncertainty: Quantification and Application to Monitoring 

Strategies and Project Design, Albany, NY., 2010. 

Brower, M. C., Bernadett, D., Van Kempen, S., Wilson, W. and Kramak, B.: Actual vs. Predicted Plant Production: The Role 

of Turbine Performance, in AWEA Wind Resource and Project Energy Assessment Workshop 2012, AWEA, Pittsburgh, PA., 540 

2012. 

Brower, M. C., Robinson, N. M. and Vila, S.: Wind Flow Modeling Uncertainty: Theory and Application to Monitoring 

Strategies and Project Design, Albany, NY., 2015. 

Brown, G.: Wakes: Ten Rows and Beyond, a Cautionary Tale!, in AWEA Wind Resource and Project Energy Assessment 

Workshop 2012, AWEA, Pittsburgh, PA., 2012. 545 

Byrkjedal, Ø., Hansson, J. and van der Velde, H.: Development of operational forecasting for icing and wind power at cold 

climate sites, in IWAIS 2015: 16th International Workshop on Atmospheric Icing of Structures, p. 4, IWAIS, Uppsala, 

Sweden., 2015. 

Clark, S.: Wind Tunnel Comparison of Anemometer Calibration, in AWEA Wind Resource and Project Energy Assessment 

Workshop 2015, AWEA, New Orleans, LA., 2015. 550 

Clifton, A., Smith, A. and Fields, M.: Wind Plant Preconstruction Energy Estimates: Current Practice and Opportunities, 

National Renewable Energy Laboratory, NREL/TP-5000-64735, Golden, CO., 2016. 

Clive, P.: Wind Farm Performance, in AWEA Wind Resource and Project Energy Assessment Workshop 2010, AWEA, 

Oklahoma City, OK., 2010. 



75 
 

Colmenar-Santos, A., Campíez-Romero, S., Enríquez-Garcia, L., Pérez-Molina, C., Colmenar-Santos, A., Campíez-Romero, 555 

S., Enríquez-Garcia, L. A. and Pérez-Molina, C.: Simplified Analysis of the Electric Power Losses for On-Shore Wind Farms 

Considering Weibull Distribution Parameters, Energies, 7(11), 6856–6885, doi:10.3390/en7116856, 2014. 

Comstock, K.: Uncertainty and Risk Management in Wind Resource Assessment, in AWEA Wind Resource and Project 

Energy Assessment Workshop 2011, AWEA, Seattle, WA., 2011. 

Comstock, K.: Identifying Pitfalls and Quantifying Uncertainties in Operating Project Re-Evaluation, in AWEA Wind 560 

Resource and Project Energy Assessment Workshop 2012, AWEA, Pittsburgh, PA., 2012. 

Conroy, N., Deane, J. P. and Ó Gallachóir, B. P.: Wind turbine availability: Should it be time or energy based? – A case study 

in Ireland, Renew. Energy, 36(11), 2967–2971, doi:10.1016/J.RENENE.2011.03.044, 2011. 

Cox, S.: Validation of 25 offshore pre-construction energy forecasts against real operational wind farm data, in AWEA Wind 

Resource and Project Energy Assessment Workshop 2015, AWEA, New Orleans, LA., 2015. 565 

Craig, A., Optis, M., Fields, M. J. and Moriarty, P.: Uncertainty quantification in the analyses of operational wind power plant 

performance, J. Phys. Conf. Ser., 1037(5), 052021, doi:10.1088/1742-6596/1037/5/052021, 2018. 

Crease, J.: CFD Modelling of Mast Effects on Anemometer Readings, in WindEurope 2019, WindEurope, Bilbao, Spain., 

2019. 

Crescenti, G. H., Poulos, G. S. and Bosche, J.: Valuable Lessons From Outliers In A Wind Energy Resource Assessment 570 

Benchmark Study, in AWEA Wind Resource and Project Energy Assessment Workshop 2019, AWEA, Renton, WA., 2019. 

Cushman, A.: Industry Survey of Wind Farm Availability, in AWEA Wind Resource and Project Energy Assessment 

Workshop 2009, AWEA, Minneapolis, MN., 2009. 

Dahlberg, J.-Å.: Assessment of the Lillgrund Windfarm., 2009. 

Derrick, A.: Uncertainty: The Classical Approach, in AWEA Wind Resource and Project Energy Assessment Workshop 2009, 575 

AWEA, Minneapolis, MN., 2009. 

Drees, H. M. and Weiss, D. J.: Compilation of Power Performance Test Results, in AWEA Wind Resource and Project Energy 

Assessment Workshop 2012, AWEA, Pittsburgh, PA., 2012. 

Drunsic, M. W.: Actual vs. Predicted Wind Project Performance: Is the Industry Closing the Gap?, in AWEA Wind Resource 

and Project Energy Assessment Workshop 2012, AWEA, Pittsburgh, PA., 2012. 580 

Dutrieux, A.: How long should be long term to reduce uncertainty on annual wind energy assessment, in WindEurope 2019, 

WindEurope, Bilbao, Spain., 2019. 

Ehrmann, R. S., Wilcox, B., White, E. B. and Maniaci, D. C.: Effect of Surface Roughness on Wind Turbine Performance, 

Albuquerque, NM., 2017. 

Elkinton, M.: Strengthening Wake Models: DNV GL Validations & Advancements, in AWEA Wind Resource and Project 585 

Energy Assessment Workshop 2013, AWEA, Las Vegas, NV., 2013. 

Elkinton, M.: Current view of P50 estimate accuracy based on validation efforts, in AWEA WINDPOWER 2017, AWEA, 

Anaheim, CA., 2017. 



76 
 

EMD International A/S: WindPRO 2.4., 2004. 

Faghani, D.: Measurement Uncertainty of Ground-Based Remote Sensing, in AWEA Wind Resource and Project Energy 590 

Assessment Workshop 2011, AWEA, Seattle, WA., 2011. 

Faghani, D., Desrosiers, E., Aït-Driss, B. and Poulin, M.: Use of Remote Sensing in Addressing Bias & Uncertainty in Wind 

Measurements, in AWEA Wind Resource and Project Energy Assessment Workshop 2008, AWEA, Portland, OR., 2008. 

Faubel, A.: Digitalisation: Creating Value in O&M, in WindEurope 2019, WindEurope, Bilbao, Spain., 2019. 

Filippelli, M., Bernadett, D., Sloka, L., Mazoyer, P. and Fleming, A.: Concurrent Power Performance Measurements, in 595 

AWEA Wind Resource and Project Energy Assessment Workshop 2017, AWEA, Snowbird, UT., 2017. 

Filippelli, M., Sherwin, B. and Fields, J.: IEC 61400-15 Working Group Update, in AWEA Wind Resource and Project Energy 

Assessment Workshop 2018, AWEA, Austin, TX., 2018. 

Friis Pedersen, T., Gjerding, S., Enevoldsen, P., Hansen, J. K. and Jørgensen, H. K.: Wind turbine power performance 

verification in complex terrain and wind farms, Denmark., 2002. 600 

Garrad Hassan and Partners Ltd: GH WindFarmer Theory Manual, Bristol, England., 2009. 

Geer, T.: Towards a more realistic uncertainty model, in AWEA Wind Resource and Project Energy Assessment Workshop 

2014, AWEA, Orlando, FL., 2014. 

Geer, T.: Identifying production risk in preconstruction assessments: Can we do it?, in AWEA Wind Resource and Project 

Energy Assessment Workshop 2015, AWEA, New Orleans, LA., 2015. 605 

Germer, S. and Kleidon, A.: Have wind turbines in Germany generated electricity as would be expected from the prevailing 

wind conditions in 2000-2014?, edited by P. Leahy, PLoS One, 14(2), e0211028, doi:10.1371/journal.pone.0211028, 2019. 

Gillenwater, D., Masson, C. and Perron, J.: Wind Turbine Performance During Icing Events, in 46th AIAA Aerospace Sciences 

Meeting and Exhibit, American Institute of Aeronautics and Astronautics, Reston, Virigina., 2008. 

Gkarakis, K. and Orfanaki, G.: Historical wind speed trends and impact on long-term adjustment and interannual variability 610 

in Cyprus, in WindEurope 2019, WindEurope, Bilbao, Spain., 2019. 

Graves, A., Harman, K., Wilkinson, M. and Walker, R.: Understanding Availiability Trends of Operating Wind Farms, in 

AWEA WINDPOWER 2008, AWEA, Houston, TX., 2008. 

Halberg, E.: A Monetary Comparison of Remote Sensing and Tall Towers, in AWEA Wind Resource and Project Energy 

Assessment Workshop 2017, AWEA, Snowbird, UT., 2017. 615 

Halberg, E. and Breakey, M.: On-Shore Wake Validation Study: Wake Analysis Based on Production Data, in AWEA Wind 

Resource and Project Energy Assessment Workshop 2013, AWEA, Las Vegas, NV., 2013. 

Hale, E.: External Perspectives: Estimate Accuracy and Plant Operations, in AWEA Wind Resource and Project Energy 

Assessment Workshop 2017, AWEA, Snowbird, UT., 2017. 

Hamel, M.: Estimating 50-yr Extreme Wind Speeds from Short Datasets, in AWEA Wind Resource and Project Energy 620 

Assessment Workshop 2014, AWEA, Orlando, FL., 2014. 

Hamilton, S. D., Millstein, D., Bolinger, M., Wiser, R. and Jeong, S.: How Does Wind Project Performance Change with Age 



77 
 

in the United States?, Joule, doi:10.1016/j.joule.2020.04.005, 2020. 

Hasager, C., Bech, J. I., Bak, C., Vejen, F., Madsen, M. B., Bayar, M., Skrzypinski, W. R., Kusano, Y., Saldern, M., Tilg, A.-

M., Fæster, S. and Johansen, N. F.-J.: Solution to minimize leading edge erosion on turbine blades, in WindEurope 2019, 625 

WindEurope, Bilbao, Spain., 2019. 

Hatlee, S.: Measurement Uncertainty in Wind Resource Asessment, in AWEA Wind Resource and Project Energy Assessment 

Workshop 2011, AWEA, Seattle, WA., 2011. 

Hatlee, S.: Operational Performance vs. Precon Estimate, in AWEA Wind Resource and Project Energy Assessment Workshop 

2015, AWEA, New Orleans, LA., 2015. 630 

Healer, B.: Liquid Power Markets 201, in AWEA Wind Resource and Project Energy Assessment Workshop 2018, AWEA, 

Austin, TX., 2018. 

Hendrickson, M.: 2009 AWEA Wind Resource & Project Energy Assessment Workshop - Introduction, in AWEA Wind 

Resource and Project Energy Assessment Workshop 2009, AWEA, Minneapolis, MN., 2009. 

Hendrickson, M.: Extending Data – by whatever means necessary, in AWEA Wind Resource and Project Energy Assessment 635 

Workshop 2010, AWEA, Oklahoma City, OK., 2010. 

Hendrickson, M.: Industry Survey of Wind Energy Assessment Techniques, in AWEA Wind Resource and Project Energy 

Assessment Workshop 2011, AWEA, Seattle, WA., 2011. 

Hendrickson, M.: Extreme Winds in the Suitability Context: Should we be Concerned?, in AWEA Wind Resource and Project 

Energy Assessment Workshop 2014, AWEA, Orlando, FL., 2014. 640 

Hendrickson, M.: P50 Bias Update: Are we there yet??, in AWEA Wind Resource and Project Energy Assessment Workshop 

2019, AWEA, Renton, WA., 2019. 

Hill, N., Pullinger, D., Zhang, M. and Crutchley, T.: Validation of windfarm downtime modelling and impact on grid-

constrained projects, in WindEurope 2019, WindEurope, Bilbao, Spain., 2019. 

Holtslag, E.: Improved Bankability: The Ecofys position on LiDAR use, Utrecht, Netherlands., 2013. 645 

Horn, B.: Achieving Measurable Financial Results in Operational Assessments, in AWEA Wind Resource and Project Energy 

Assessment Workshop 2009, AWEA, Minneapolis, MN., 2009. 

Istchenko, R.: WRA Uncertainty Validation, in AWEA Wind Resource and Project Energy Assessment Workshop 2014, 

AWEA, Orlando, FL., 2014. 

Istchenko, R.: Re-examining Uncertainty and Bias, in AWEA Wind Resource and Project Energy Assessment Workshop 2015, 650 

AWEA, New Orleans, LA., 2015. 

Jaynes, D.: The Vestas Operating Fleet: Real-World Experience in Wind Turbine Siting and Power Curve Verification, in 

AWEA Wind Resource and Project Energy Assessment Workshop 2012, AWEA, Pittsburgh, PA., 2012. 

Jog, C.: Benchmark: Wind flow, in AWEA Wind Resource and Project Energy Assessment Workshop 2017, AWEA, 

Snowbird, UT., 2017. 655 

Johnson, C.: Actual vs. Predicted performance – Validating pre construction energy estimates, in AWEA Wind Resource and 



78 
 

Project Energy Assessment Workshop 2012, AWEA, Pittsburgh, PA., 2012. 

Johnson, C., White, E. and Jones, S.: Summary of Actual vs. Predicted Wind Farm Performance: Recap of WINDPOWER 

2008, in AWEA Wind Resource and Project Energy Assessment Workshop 2008, AWEA, Portland, OR., 2008. 

Johnson, J.: Typical Availability Losses and Categorization: Observations from an Operating Project Portfolio, in AWEA 660 

Wind Resource and Project Energy Assessment Workshop 2011, AWEA, Seattle, WA., 2011. 

Jones, S.: Project Underperformance: 2008 Update, in AWEA WINDPOWER 2008, AWEA, Houston, TX., 2008. 

Kassebaum, J.: Power Curve Testing with Remote Sensing Devices, in AWEA Wind Resource and Project Energy Assessment 

Workshop 2013, AWEA, Las Vegas, NV., 2013. 

Kassebaum, J. L.: What p-level is your p-ower curve?, in AWEA Wind Resource and Project Energy Assessment Workshop 665 

2015, AWEA, New Orleans, LA., 2015. 

Keck, R.-E., Sondell, N. and Håkansson, M.: Validation of a fully numerical approach for early stage wind resource assessment 

in absence of on-site measurements, in WindEurope 2019, WindEurope, Bilbao, Spain., 2019. 

Kelly, M.: Uncertainty in vertical extrapolation of wind statistics: shear-exponent and WAsP/EWA methods, DTU Wind 

Energy, No. 0121, Roskilde, Denmark., 2016. 670 

Kelly, M., Kersting, G., Mazoyer, P., Yang, C., Hernández Fillols, F., Clark, S. and Matos, J. C.: Uncertainty in vertical 

extrapolation of measured wind speed via shear, DTU Wind Energy, No. E-0195, Roskilde, Denmark., 2019. 

Kim, K. and Shin, P.: Analysis on the Parameters Under the Power Measurement Uncertainty for a Small Wind Turbine, in 

WindEurope 2019, WindEurope, Bilbao, Spain., 2019. 

Kline, J.: Wind Farm Wake Analysis: Summary of Past & Current Work, in AWEA Wind Resource and Project Energy 675 

Assessment Workshop 2013, AWEA, Las Vegas, NV., 2013. 

Kline, J.: Wake Model Validation Test, in AWEA Wind Resource and Project Energy Assessment Workshop 2016, AWEA, 

Minneapolis, MN., 2016. 

Kline, J.: Detecting and Correcting for Bias in Long-Term Wind Speed Estimates, in AWEA Wind Resource and Project 

Energy Assessment Workshop 2019, AWEA, Renton, WA., 2019. 680 

Lackner, M. A., Rogers, A. L. and Manwell, J. F.: Uncertainty Analysis in MCP-Based Wind Resource Assessment and Energy 

Production Estimation, J. Sol. Energy Eng., 130(3), 31006–31010, doi:10.1115/1.2931499, 2008. 

Langel, C. M., Chow, R., Hurley, O. F., van Dam, C. P., Ehrmann, R. S., White, E. B. and Maniaci, D.: Analysis of the Impact 

of Leading Edge Surface Degradation on Wind Turbine Performance, in AIAA SciTech 33rd Wind Energy Symposium, p. 13, 

American Institute of Aeronautics and Astronautics, Kissimmee, FL., 2015. 685 

Langreder, W.: Uncertainty of Vertical Wind Speed Extrapolation, in AWEA Wind Resource and Project Energy Assessment 

Workshop 2017, AWEA, Snowbird, UT., 2017. 

Latoufis, K., Riziotis, V., Voutsinas, S. and Hatziargyriou, N.: Effects of leading edge erosion on the power performance and 

acoustic noise emissions of locally manufactured small wind turbines blades, in WindEurope 2019, WindEurope, Bilbao, 

Spain., 2019. 690 



79 
 

Lee, J.: Banter on Blockage, in AWEA Wind Resource and Project Energy Assessment Workshop 2019, AWEA, Renton, 

WA., 2019. 

Lee, J. C. Y., Fields, M. J. and Lundquist, J. K.: Assessing variability of wind speed: comparison and validation of 27 

methodologies, Wind Energy Sci., 3(2), 845–868, doi:10.5194/wes-3-845-2018, 2018. 

Liew, J., Urbán, A. M., Dellwick, E. and Larsen, G. C.: The effect of wake position and yaw misalignment on power loss in 695 

wind turbines, in WindEurope 2019, WindEurope, Bilbao, Spain., 2019. 

Lunacek, M., Fields, M. J., Craig, A., Lee, J. C. Y., Meissner, J., Philips, C., Sheng, S. and King, R.: Understanding Biases in 

Pre-Construction Estimates, J. Phys. Conf. Ser., 1037(6), 062009, doi:10.1088/1742-6596/1037/6/062009, 2018. 

Maniaci, D. C., White, E. B., Wilcox, B., Langel, C. M., van Dam, C. P. and Paquette, J. A.: Experimental Measurement and 

CFD Model Development of Thick Wind Turbine Airfoils with Leading Edge Erosion, J. Phys. Conf. Ser., 753(2), 022013, 700 

doi:10.1088/1742-6596/753/2/022013, 2016. 

McAloon, C.: Wind Assessment: Raw Data to Hub Height Winds, in AWEA Wind Resource and Project Energy Assessment 

Workshop 2010, AWEA, Oklahoma City, OK., 2010. 

McCaa, J.: Wake modeling at 3TIER, in AWEA Wind Resource and Project Energy Assessment Workshop 2013, AWEA, 

Las Vegas, NV., 2013. 705 

Medley, J. and Smith, M.: The “Why?”, “What?” and “How?” of lidar type classification, in WindEurope 2019, WindEurope, 

Bilbao, Spain., 2019. 

Mibus, M.: Conservatism in Shadow Flicker Assessment and Wind Farm Design, in AWEA Wind Resource and Project 

Energy Assessment Workshop 2018, AWEA, Austin, TX., 2018. 

Mönnich, K., Horodyvskyy, S. and Krüger, F.: Comparison of Pre-Construction Energy Yield Assessments and Operating 710 

Wind Farm’s Energy Yields, Oldenburg, Germany., 2016. 

Mortensen, N. G.: Planning and Development of Wind Farms: Wind Resource Assessment and Siting, Roskilde, Denmark., 

2013. 

Mortensen, N. G. and Ejsing Jørgensen, H.: Comparative Resource and Energy Yield Assessment Procedures (CREYAP) Pt. 

II, in EWEA Technology Workshop: Resource Assessment 2013, Dublin, Ireland., 2013. 715 

Mortensen, N. G., Ejsing Jørgensen, H., Anderson, M. and Hutton, K.-A.: Comparison of resource and energy yield assessment 

procedures, in Proceedings of EWEA 2012 - European Wind Energy Conference & Exhibition European Wind Energy 

Association (EWEA), p. 10, Technical Universtiy of Denmark., 2012. 

Mortensen, N. G., Nielsen, M. and Ejsing Jørgensen, H.: Comparison of Resource and Energy Yield Assessment Procedures 

2011-2015: What have we learned and what needs to be done?, in Proceedings of the European Wind Energy Association 720 

Annual Event and Exhibition 2015, European Wind Energy Association., 2015a. 

Mortensen, N. G., Nielsen, M. and Ejsing Jørgensen, H.: EWEA CREYAP benchmark exercises: summary for offshore wind 

farm cases, Technical Universtiy of Denmark., 2015b. 

Murphy, O.: Blade Erosion Performance Impact, in 21st Meeting of the Power Curve Working Group, PCWG, Glasgow, 



80 
 

Scotland., 2016. 725 

Neubert, A.: WindFarmer White Paper., 2016. 

Nielsen, P., Villadsen, J., Kobberup, J., Madsen, P., Jacobsen, T., Thøgersen, M. L., Sørensen, M. V., Sørensen, T., 

Svenningsen, L., Motta, M., Bredelle, K., Funk, R., Chun, S. and Ritter, P.: WindPRO 2.7 User Guide, 3rd Edition, Aalborg, 

Denmark., 2010. 

Olauson, J., Edström, P. and Rydén, J.: Wind turbine performance decline in Sweden, Wind Energy, 20(12), 2049–2053, 730 

doi:10.1002/we.2132, 2017. 

Osler, E.: Yaw Error Detection and Mitigation with Nacelle Mounted Lidar, in AWEA Wind Resource and Project Energy 

Assessment Workshop 2013, AWEA, Las Vegas, NV., 2013. 

Ostridge, C.: Understanding & Predicting Turbine Performance, in AWEA Wind Resource and Project Energy Assessment 

Workshop 2014, AWEA, Orlando, FL., 2014. 735 

Ostridge, C.: Using Pattern of Production to Validate Wind Flow, Wakes, and Uncertainty: Using Pattern of Production to 

Validate Wind Flow, Wakes, and Uncertainty, in AWEA Wind Resource and Project Energy Assessment Workshop 2015, 

AWEA, New Orleans, LA., 2015. 

Ostridge, C.: Wind Power Project Performance White Paper 2017 Update, Seattle, WA., 2017. 

Ostridge, C. and Rodney, M.: Modeling Wind Farm Energy, Revenue and Uncertainty on a Time Series Basis, in AWEA Wind 740 

Resource and Project Energy Assessment Workshop 2016, AWEA, Minneapolis, MN., 2016. 

Papadopoulos, I.: DNV GL Energy Production Assessment Validation 2019, Bristol, England., 2019. 

Pedersen, H. S. and Langreder, W.: Hack the Error Codes of a Wind Turbine, in WindEurope 2019, WindEurope, Bilbao, 

Spain., 2019. 

Perry, A.: Cross Validation of Operational Energy Assessments, in AWEA Wind Resource and Project Energy Assessment 745 

Workshop 2017, AWEA, Snowbird, UT., 2017. 

Peyre, N.: How can drones improve topography inspections, terrain modelling and energy yield assessment?, in WindEurope 

2019, WindEurope, Bilbao, Spain., 2019. 

Poulos, G. S.: Complex Terrain Mesoscale Wind Flow Modeling: Successes, Failures and Practical Advice, in AWEA Wind 

Resource and Project Energy Assessment Workshop 2017, AWEA, Snowbird, UT., 2017. 750 

Pram, M.: Analysis of Vestas Turbine Performance, in AWEA Wind Resource and Project Energy Assessment Workshop 

2018, AWEA, Austin, TX., 2018. 

Pryor, S. C., Barthelmie, R. J. and Schoof, J. T.: Inter-annual variability of wind indices across Europe, Wind Energy, 9(1–2), 

27–38, doi:10.1002/we.178, 2006. 

Pullinger, D., Ali, A., Zhang, M., Hill, M. and Crutchley, T.: Improving accuracy of wind resource assessment through 755 

feedback loops of operational performance data: a South African case study, in WindEurope 2019, WindEurope, Bilbao, 

Spain., 2019. 

Randall, G.: Energy Assessment Uncertainty Analysis, in AWEA Wind Resource and Project Energy Assessment Workshop 



81 
 

2009, AWEA, Minneapolis, MN., 2009. 

Redouane, A.: Analysis of pre- and post construction wind farm energy yields with focus on uncertainties, Universität Kassel., 760 

2014. 

Rezzoug, M.: Innovative system for performance optimization: Independent data to increase AEP and preserve turbine lifetime, 

in WindEurope 2019, WindEurope, Bilbao, Spain., 2019. 

Rindeskär, E.: Modelling of icing for wind farms in cold climate: A comparison between measured and modelled data for 

reproducing and predicting ice accretion, Examensarbete vid Institutionen för geovetenskaper. [online] Available from: 765 

urn:nbn:se:uu:diva-133381 (Accessed 5 December 2019), 2010. 

Robinson, N.: Blockage Effect Update, in AWEA Wind Resource and Project Energy Assessment Workshop 2019, AWEA, 

Renton, WA., 2019. 

Rogers, A. L., Rogers, J. W. and Manwell, J. F.: Uncertainties in Results of Measure-Correlate-Predict Analyses, in European 

Wind Energy Conference 2006, p. 10., 2006. 770 

Rogers, T.: Effective Utilization of Remote Sensing, in AWEA Wind Resource and Project Energy Assessment Workshop 

2010, AWEA, Oklahoma City, OK., 2010. 

Rogers, T.: Estimating Long-Term Wind Speeds, in AWEA Wind Resource and Project Energy Assessment Workshop 2011, 

AWEA, Seattle, WA., 2011. 

Sareen, A., Sapre, C. A. and Selig, M. S.: Effects of leading edge erosion on wind turbine blade performance, Wind Energy, 775 

17(10), 1531–1542, doi:10.1002/we.1649, 2014. 

Schramm, M., Rahimi, H., Stoevesandt, B. and Tangager, K.: The Influence of Eroded Blades on Wind Turbine Performance 

Using Numerical Simulations, Energies, 10(9), 1420, doi:10.3390/en10091420, 2017. 

Shihavuddin, A., Chen, X., Fedorov, V., Nymark Christensen, A., Andre Brogaard Riis, N., Branner, K., Bjorholm Dahl, A. 

and Reinhold Paulsen, R.: Wind Turbine Surface Damage Detection by Deep Learning Aided Drone Inspection Analysis, 780 

Energies, 12(4), 676, doi:10.3390/en12040676, 2019. 

Sieg, C.: Validation Through Variation: Using Pattern of Production to Validate Wind Flow, Wakes, and Uncertainty, in 

AWEA Wind Resource and Project Energy Assessment Workshop 2015, AWEA, New Orleans, LA., 2015. 

Simon, R. L.: Long-term Inter-annual Resource Variations in California, in Wind Power, pp. 236–243, Palm Springs, 

California., 1991. 785 

Slater, J.: Floating lidar uncertainty reduction for use on operational wind farms, in WindEurope 2019, WindEurope, Bilbao, 

Spain., 2019. 

Slinger, C. W., Harris, M., Ratti, C., Sivamani, G. and Smith, M.: Nacelle lidars for wake detection and waked inflow energy 

loss estimation, in WindEurope 2019, WindEurope, Bilbao, Spain., 2019a. 

Slinger, C. W., Sivamani, G., Harris, M., Ratti, C. and Smith, M.: Wind yaw misalignment measurements and energy loss 790 

projections from a multi-lidar instrumented wind farm, in WindEurope 2019, WindEurope, Bilbao, Spain., 2019b. 

Smith, M., Wylie, S., Woodward, A. and Harris, M.: Turning the Tides on Wind Measurements: The Use of Lidar to Verify 



82 
 

the Performance of A Meteorological Mast, in WindEurope 2016, WindEurope., 2016. 

Spalding, T.: Wind Farm Blockage Modeling Summary, in AWEA Wind Resource and Project Energy Assessment Workshop 

2019, AWEA, Renton, WA., 2019. 795 

Spengemann, P. and Borget, V.: Review and analysis of wind farm operational data validation of the predicted energy yield 

of wind farms based on real energy production data., 2008. 

Spruce, C. J. and Turner, J. K.: Pitch Control for Eliminating Tower Vibration Events on Active Stall Wind Turbines, Surrey, 

United Kingdom., 2006. 

Staffell, I. and Green, R.: How does wind farm performance decline with age?, Renew. Energy, 66, 775–786, 800 

doi:10.1016/j.renene.2013.10.041, 2014. 

Standish, K., Rimmington, P., Laursen, J., Paulsen, H. and Nielsen, D.: Computational Predictions of Airfoil Roughness 

Sensitivity, in 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 

American Institute of Aeronautics and Astronautics, Reston, Virigina., 2010. 

Stehly, T., Beiter, P., Heimiller, D. and Scott, G.: 2017 Cost of Wind Energy Review, Golden, CO., 2018. 805 

Stoelinga, M.: A Multi-Project Validation Study of a Time Series-Based Wake Model, in WindEurope 2019, WindEurope, 

Bilbao, Spain., 2019. 

Stoelinga, M. and Hendrickson, M.: A Validation Study of Vaisala’s Wind Energy Assessment Methods., 2015. 

Tchou, J.: Successfully Transitioning Pre-Construction Measurements to Post-Construction Operations, in AWEA Wind 

Resource and Project Energy Assessment Workshop 2012, AWEA, Pittsburgh, PA., 2012. 810 

Tindal, A.: Wake modelling and validation, in AWEA Wind Resource and Project Energy Assessment Workshop 2009, 

AWEA, Minneapolis, MN., 2009. 

Trudel, S.: Icing Losses Estimate Vadliation: From Development To Operation, in AWEA Wind Resource and Project Energy 

Assessment Workshop 2016, AWEA, Minneapolis, MN., 2016. 

VanLuvanee, D., Rogers, T., Randall, G., Williamson, A. and Miller, T.: Comparison of WAsP, MS-Micro/3, CFD, NWP, 815 

and Analytical Methods for Estimating Site-Wide Wind Speeds, in AWEA Wind Resource and Project Energy Assessment 

Workshop 2009, AWEA, Minneapolis, MN., 2009. 

Veers, P., Dykes, K., Lantz, E., Barth, S., Bottasso, C. L., Carlson, O., Clifton, A., Green, J., Green, P., Holttinen, H., Laird, 

D., Lehtomäki, V., Lundquist, J. K., Manwell, J., Marquis, M., Meneveau, C., Moriarty, P., Munduate, X., Muskulus, M., 

Naughton, J., Pao, L., Paquette, J., Peinke, J., Robertson, A., Sanz Rodrigo, J., Sempreviva, A. M., Smith, J. C., Tuohy, A. and 820 

Wiser, R.: Grand challenges in the science of wind energy, Science (80-. )., 366(6464), doi:10.1126/science.aau2027, 2019. 

Walls, L.: A New Method to Assess Wind Farm Performance and Quantify Model Uncertainty, in AWEA Wind Resource and 

Project Energy Assessment Workshop 2018, AWEA, Austin, TX., 2018. 

Walter, K.: Wind Assessment: Raw Data to Hub Height Winds, in AWEA Wind Resource and Project Energy Assessment 

Workshop 2010, AWEA, Oklahoma City, OK., 2010. 825 

Waskom, M., Botvinnik, O., Ostblom, J., Lukauskas, S., Hobson, P., MaozGelbart, Gemperline, D. C., Augspurger, T., 



83 
 

Halchenko, Y., Cole, J. B., Warmenhoven, J., Ruiter, J. de, Pye, C., Hoyer, S., Vanderplas, J., Villalba, S., Kunter, G., Quintero, 

E., Bachant, P., Martin, M., Meyer, K., Swain, C., Miles, A., Brunner, T., O’Kane, D., Yarkoni, T., Williams, M. L. and Evans, 

C.: mwaskom/seaborn: v0.10.0, , doi:10.5281/zenodo.3629446, 2020. 

White, E.: Continuing Work on Improving Plant Performance Estimates, in AWEA Wind Resource and Project Energy 830 

Assessment Workshop 2008, AWEA, Portland, OR., 2008a. 

White, E.: Understanding and Closing the Gap on Plant Performance, in AWEA WINDPOWER 2008, AWEA, Houston, TX., 

2008b. 

White, E.: Operational Performance: Closing the Loop on Pre-Construction Estimates, in AWEA Wind Resource and Project 

Energy Assessment Workshop 2009, AWEA, Minneapolis, MN., 2009. 835 

Wilcox, B. J., White, E. B. and Maniaci, D. C.: Roughness Sensitivity Comparisons of Wind Turbine Blade Sections, 

Albuquerque, NM., 2017. 

Wilkinson, L., Kay, E. and Lawless, M.: Braced for the Storm? Startling Insights into the Impact of Climate Change on 

Offshore Wind Operations, in WindEurope 2019, WindEurope, Bilbao, Spain., 2019. 

Wilks, D. S.: Statistical methods in the atmospheric sciences, Academic Press, Amsterdam, Netherlands., 2011. 840 

Winslow, G.: Secondary Losses: Using Operational Data to Evaluate Losses and Revisit Estimates, in AWEA Wind Resource 

and Project Energy Assessment Workshop 2012, AWEA, Pittsburgh, PA., 2012. 

Wiser, R., Bolinger, M., Barbose, G., Barghouth, N., Hoen, B., Mills, A., Rand, J., Millstein, D., Jeong, S., Porter, K., Disanti, 

N. and Oteri, F.: 2018 Wind Technologies Market Report., 2019. 

Wolfe, J.: Deep Array Wake Loss in Large Onshore Wind Farms (A Model Validation), in AWEA Wind Resource and Project 845 

Energy Assessment Workshop 2010, AWEA, Oklahoma City, OK., 2010. 

Žagar, M.: Wind Resource from an OEM perspective, in WindEurope 2019, WindEurope, Bilbao, Spain., 2019. 

Zhang, M., Pullinger, D., Hill, N. and Crutchley, T.: Validating wind flow model uncertainty using operational data, in 

WindEurope 2019, AWEA, Renton, WA., 2019. 

 850 


