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Abstract. This paper describes the design and testing of an axial induction controller implemented on a row of nine turbines 5 

on the Sedini Wind Farm in Sardinia, Italy. This work was performed as part of the EU Horizon 2020 research project 

CL-Windcon. An engineering wake model, selected for its good fit to historical SCADA data from the site, was used in the 

LongSim code to optimise turbine power reduction setpoints for a large matrix of steady-state wind conditions. The setpoints 

were incorporated into a dynamic control algorithm capable of running on site using available wind condition estimates from 

the turbines. The complete algorithm was tested in dynamic time-domain simulations using LongSim, using a time-varying 10 

wind field generated from historical met mast data from the site. The control algorithm was implemented on site, with the 

wind farm controller toggled on and off at 35-minute intervals to allow the performance with and without the controller to be 

compared in comparable wind conditions. Data was collected between July 2019 and early February 2020. The results have 

been analysed and indicate a positive increase in energy production resulting from the induction control, in line with 

LongSim model predictions, although a larger volume of valid data would be necessary to provide statistically robust 15 

conclusions. The measurements also provide a validation of the LongSim model, proving its value for both steady state 

setpoint optimisation and time-domain simulation of wind farm performance. 

1 Introduction 

Wake interactions are well known to reduce wind farm power output and increase turbine loads. Recent years have seen 

much interest in wind farm control concepts aimed at reducing these wake effects. The control objective is to increase 20 

overall wind farm power production while maintaining or reducing turbine fatigue loads, by manipulating the individual 

turbine controllers to minimise wake interaction effects, using either axial induction control or wake steering. Both control 

concepts involve deliberately reducing the power output of some individual turbines in order to achieve a net increase in 

total production from the farm. In the case of axial induction control, turbine power reduction is achieved by increasing the 

pitch angle and/or reducing rotor speed in order to reduce rotor thrust, thus weakening the wake. In wake steering control, 25 

the turbine is deliberately yawed out of the wind direction at angles typically up to 30 degrees, as this has the effect of 

changing the downstream path of the wake, which can thus be steered away from downstream turbines. 

Axial induction control has been investigated using large eddy simulation modelling, often without showing any positive 

gains in power production – see for example Gebraad (2014). It has since been tested in a boundary layer wind tunnel by 
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Campagnolo et al. (2016a, 2016b) as well as in an operational wind farm by Van Der Hoek et al. (2019). During the wind 30 

tunnel tests no net gains were obtained, but an increase in power production has been reported during the field tests 

compared to standard operation. As reported in van Wingerden et al. (2020), a survey among technical experts of wind farm 

control highlighted how the need for increased confidence in modelling the effects of wind farm control via more validation 

campaigns was seen as the top priority. 

As part of the EU Horizon 2020 research project CL-Windcon (www.clwindcon.eu) two field test experiments were 35 

designed and carried out at the Sedini Wind Farm in Sardinia, Italy, in order to test the two main concepts for active wake 

control in wind farms (axial induction and wake steering). This paper specifically reports on the axial induction control tests. 

Further details of all the tests can be found in Kern et al (2019). The results of the wake steering field tests during the same 

measurement campaign are reported in Doekemeijer et al. (2020). 

Section 2 presents an overview of the Sedini wind farm site and the planning of the induction control experiment. The initial 40 

controller design process is described in Section 3. In Section 4, the use of time-domain simulation modelling to test and 

refine the controller is described, while the field tests themselves are described in Section 5, and results are presented. 

2 The Sedini wind farm site 

Details of the Sedini onshore wind farm, planned instrumentation and test campaigns are provided in Schuler et al (2017). 

The farm consists of 43 GE 1.5 turbines laid out as in Figure 1. Most of the turbines are of type GE 1.5s (1.5 MW, 70.5m 45 

rotor diameter, 65 m hub height), but the seven turbines shown in red are the larger GE 1.5sle (1.5 MW, 77 m rotor diameter, 

80 m hub height). The diagonal row of turbines 13 and 31 – 38 is involved in the experiment described here, and since only 

wind directions blowing along this row from a roughly south-westerly direction are relevant to the experiment, only these 

nine turbines were modelled in the controller design phase. Terrain complexity has been ignored – the site is not completely 

flat, but the topography indicates that with south-westerly wind directions, the effect of the terrain on the wind flow at these 50 

nine turbines is likely to be relatively small. The wind rose in Figure 1 shows a preponderance of westerly wind during the 

field test period, with relatively little from the south-west. 

The original intention was to carry out both induction and wake steering field tests using this row of turbines. Preliminary 

design work for both sets of tests is documented in Knudsen et al (2019).  However, because of instrumentation issues, only 

the induction control tests were actually carried out, and this paper describes the final controller design and simulation 55 

testing, and presents results from the field tests which began in July 2019. A separate test of wake steering control was 

carried out by yawing turbines 26 and E5, as described in Kern et al (2019). 

Since no loads instrumentation was available on the turbines used for the induction control experiment, the induction control 

is aimed only at increasing the total power production from this row of turbines. The power output of turbines 31 – 37 can be 

http://www.clwindcon.eu/
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modified, and the power output of all nine turbines is monitored. Turbine 38 is used as a reference turbine and wind sensor, 60 

and it remains in baseline operation. Some additional gain might be expected if turbine 38 were also controlled, but this has 

been sacrificed to ensure that the accuracy of the wind estimation is not affected by any control action. Turbine 13 is not 

controlled as there are no turbines in its wake, but clearly its power output will be affected. 

During the field tests, the wake control is switched on and off at regular intervals (determined as in Section 3.5) so that the 

performance with and without control can be compared in similar wind conditions. 65 

  

Figure 1: Site layout. Induction control field test involves turbines 13 and 31-38, with winds from the south-west. The 

set-point optimisation maximises the total power from these nine turbines. Controlled turbines are in dark green. 

Turbine 38 is used as the reference from which wind conditions are calculated. Turbine 13 is affected but not 

controlled, as its wake does not affect other turbines. 70 

3 Controller design 

The design work was carried out using the LongSim code. This has been developed by DNV GL, and more details can be 

found in Bossanyi et al (2018). It is used for the initial steady-state setpoint optimisation, described in Section 3.2, and also 
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for the dynamic time-domain simulation testing described in Section 4. For illustration, a typical wind speed contour plot at 

one point in time during a dynamic simulation is shown in Figure 2. 75 

 

Figure 2: Typical wind speed contour plot from a LongSim dynamic simulation. Rotor planes of the nine turbines #13 

and #31 to #38 of the Sedini Wind Farm are represented as thick green lines, with blue lines pointing along the local 

wind direction with length proportional to the local wind speed magnitude. 

3.1 Wake modelling 80 

To allow rapid calculations and design iterations, LongSim does not use high-fidelity flow modelling, but makes use of fast 

engineering wake models embedded in an ambient flow field. A choice of different engineering models is available, and for 

the preliminary design reported in Knudsen et al (2019), several different wake models were used to investigate the 

sensitivity of the wake control performance to the wake model details, and it was clear that the wake model can make a big 

difference to the results. In this section, historical SCADA data from Sedini is used to help in the selection of a single wake 85 

model to be used in the final controller design. 

SCADA data recorded from 01/05/2018 to 05/03/2019 was processed to extract the 10-minute average power output for each 

of the nine turbines, and the ratio of power at each turbine #13 and #31-#37 to the power of the reference turbine #38 was 

plotted as a function of wind direction. The power ratio for any turbine showed a clear dip for any wind directions where the 

turbine was affected by a wake. For each turbine, as shown in Figure 5, the power ratios were binned in 5º bins and the mean 90 

and median ratio in each bin was calculated. The median was found to be more useful than the mean, as it avoids big spikes 
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caused by outliers in the data (see first plot of Figure 5 for example). Each candidate wake model was used to calculate a 

predicted power ratio for the direction corresponding to the middle of each bin (blue lines in Figure 5), and the RMS errors 

between the median and the predicted values were summed over the direction bins and then over all the turbines #13 and 

#31-#37 to give a measure of the goodness of fit for this wake model. The RMS errors for the different candidate wake 95 

models are shown Figure 4. All the wake models are implemented within the LongSim code, which was used to generate the 

results presented here. 

The candidate wake models included the EPFL model of Bastankhah and Porté-Agel (2016) and several variants of the 

model of Ainslie (1988). The EPFL model includes a number of parameters which many researchers have subsequently used 

as tuning parameters, adjusted to fit particular datasets, as has also been done within the CL-Windcon project (for example, 100 

the model was calibrated against wind tunnel measurements in Raach et al, 2018). Here, only the original parameters 

specified in Bastankhah and Porté-Agel (2016) were used and no attempt was made to tune them. It is likely in any case that 

different parameters would work best for different conditions of, for example, atmospheric stability, so it is more useful if  a 

general model can be found which does not rely on such tuning. The Ainslie model is treated as such a general model, in that 

the parameters defining the wake deficit profile and its downstream expansion are considered fixed, but a number of 105 

variations are still possible. In particular, the following variations of the basic Ainslie model were investigated here: 

a) Choice of wake-added turbulence model: either the Crespo-Hernández model (CH) as assumed in the EPFL model, or 

the Quarton-Ainslie model (QA) as used, for example, by WindFarmer (DNVGL, 2014), 

b) Choice of wake superposition models: the dominant wake model (DW) in combination with ‘large wind farm’ 

corrections as in WindFarmer (DNVGL, 2014), or the sum-of-absolute-deficits model (SD) as in Ruisi and Bossanyi 110 

(2019), 

c) Accounting explicitly for hub height in the modelling of the eddy viscosity parameter (the original model only uses the 

rotor diameter), 

d) More precise calculation of centreline deficit, using momentum conservation to avoid having to integrate over a 

radially-discretised flow (Anderson, 2019), 115 

e) Wake smearing to account for the effect of wake meandering over the averaging time as in Bossanyi et al (2018), 

f) Modification of the eddy viscosity term to account for atmospheric stability as in Ruisi and Bossanyi (2019). 

In respect of the last point, met mast data from the site was analysed to identify diurnal variations in the wind conditions, 

driven by predominant unstable and stable conditions during the daytime and night-time hours respectively, and estimate 

bulk Richardson numbers and correspondent Obukhov lengths (these two parameters are defined and discussed in Ruisi and 120 

Bossanyi (2019)) to classify atmospheric stability conditions occurring at the site. A summary of the atmospheric stability 

conditions by time of day at the site is shown in Figure 3. Given this information, the recently-developed stability-dependent 
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eddy-viscosity model of Ruisi and Bossanyi (2019) was used, allowing the effect of atmospheric stability to be directly 

accounted for. The SCADA data was split into three different classes based on the time of day: daytime (hours 7 – 17), 

night-time (hours 18 – 06), and overall. In the daytime the atmosphere is generally unstable, with an average historical 125 

Obukhov length of -255m (the negative value signifying unstable conditions), while the night-time period is generally stable, 

with an average historical Obukhov length of 237m. The overall average Obukhov length was 850m. 

 

Figure 3: Diurnal distribution of atmospheric stability conditions, classified into three categories based on the Bulk 

Richardson number estimated from the site mast at the Sedini Wind Farm site. 130 

The Ainslie model variations as detailed in a) to f) above correspond to the labels in Figure 4 as follows: 

 a) b) c) d) e) f)  

AinslieStandard QA DW      

AinslieMOL CH SD      

AinslieMOL_QA QA SD      

(AinslieSP4 QA *     *An experimental superposition model, since abandoned) 

AinslieSumOfDefs QA SD      

Ainslie_H_SoD QA SD      

Ainslie_H_SoD_Exact QA SD      

AinslieMOL_QA_Exact QA SD      

AinslieMOL_QA_WS_Exact QA SD      

 

The comparison of wake models in terms of overall RMS error is shown in Figure 4. The model selected for the final design 

is the one labelled “AinslieMOL_QA_Exact”, which has the lowest overall error for both daytime and night-time periods, 

and nearly the lowest overall. This is the stability-dependent variant of the Ainslie model (Ruisi and Bossanyi, 2019), 135 

together with Quarton-Ainslie added turbulence, sum-of-absolute-deficits superposition, explicit hub height, and the more 
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precise centreline deficit calculation (these options are described above). Other variants of the Ainslie model are available, 

differing from one another in subtle points of detail. Using the selected model with the Obukhov length for averaged-neutral 

conditions, the fit against the SCADA data is shown in Figure 5 for each of the turbines. 

 140 

Figure 4: Overall comparison of different wake models. 

 

  

Figure 5 (continued on next page …) 
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Figure 5 (… continued …) 
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Figure 5 (concluded): Selected model (blue) compared to SCADA data (black, with bin means shown dashed red and 155 

medians solid red). The vertical blue line shows the direction of the turbine just upstream. 

3.2 Steady-state setpoint optimisation 

Since the selected wake model includes a dependence on atmospheric stability, it would be possible to calculate optimal 

setpoints for different Obukhov lengths, and to use a measurement of the Obukhov length to modify the setpoints in real 

time, as will already be done for wind speed, direction and turbulence intensity. However, for the purposes of the Sedini 160 

experiment this would not be possible to arrange, and so the setpoints were calculated using the average Obukhov length of 

850m derived from the historical data, representing near-neutral conditions. A further improvement to the results would have 

been likely if it had been possible to use measured stability as a lookup table input. 

Using this wake model, the steady-state optimiser in LongSim was then used to generate tables of optimised power setpoints 

for each controlled turbine, i.e. #31 to #37. The merit function for optimisation was the total power from all 9 turbines, i.e. 165 

also including #38 and #13. Setpoints were calculated for wind speeds from 6 to 15 m/s in 1m/s steps, directions from 200 to 

270 degrees in 2-degree steps, and turbulence intensities of 9, 13 and 17%. The speed and direction ranges in the tables were 

extended to 3-18 m/s and 180-270 degrees by padding with null setpoints (i.e. no power reduction). The final look-up table 

(LUT) consists of setpoints as a function of wind speed, direction, turbulence intensity and turbine number. 

The effect on turbine loads is also important, and in general the merit function could include terms related to loads. 170 

However, this has not been done since there was no possibility within the project to measure loads on these turbines at 

Sedini. In general, most loads are generally expected to decrease anyway with axial induction control, both on controlled and 

on downstream turbines, although the pitch actuator duty cycle would increase because of the below-rated pitch action.  

The following sections describe how the resulting LUT was converted into a practically realisable control algorithm. 
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3.3 Measurement of the wind condition 175 

For practical application, the controller needs to have an estimate of wind speed, wind direction and turbulence intensity at 

each time step so that it can obtain the appropriate setpoints from the LUT. Since the setpoints are optimised on the 

assumption that the (undisturbed) wind condition is the same throughout the wind farm, wind condition estimates should be 

representative of the whole farm. In general, a met mast could be used if one is available, but more than one mast would be 

needed to cover different wind directions, so it would usually be better to use estimates from the turbine controllers. Each 180 

turbine controller can provide a direction estimate by filtering its nacelle position signal plus the wind vane misalignment, as 

long as suitably calibrated measurements are available. The turbine controller can usually provide a wind speed estimate, and 

if a separate turbulence intensity estimate is not available it can be obtained from the wind speed estimate standard deviation 

with appropriate calibration factors. The wind farm controller could then use the average or the median of the wind 

conditions estimates from all turbines which are currently unwaked, and use this to represent the whole farm. A low-pass 185 

filter can be applied with a variable time constant of the order of the time taken for a wind condition measured at the 

upstream edge of the farm to propagate to the middle of the farm. This introduces an appropriate delay as well as some 

smoothing. 

For the specific row of turbines used at Sedini, the following approach was used. The upstream turbine, #38, is always 

unwaked in wind directions of interest and is used to estimate the wind speed and turbulence intensity, which is then used for 190 

the LUT as if it represents the whole row of turbines. The wind direction for the LUT is as taken as the median of the 

individual wind direction estimates provided by all nine turbines in the row. This assumes that wake effects do not change 

the local wind direction, which is more likely to be true for induction control than for wake steering cases. 

The inflow wind speed is an estimate of the rotor averaged wind speed based on 1Hz operational data of turbine #38. The 

individual wind direction estimates are derived from the nacelle position sensor and the nacelle vane signals. Prior to starting 195 

the test, the nacelle position sensors signals had been calibrated using the preceding 3 months of SCADA data. The 

calibration process was designed such that the resulting wind direction estimates comply with the assumption that the time 

averaged wake velocity deficits propagate with the mean wind direction. An online algorithm ensures that the calibration of 

the nacelle position sensors is maintained over time in case irregularities occur.  

The turbulence intensity is derived from the standard deviation of the estimated wind speed, with a correction factor applied 200 

which has been derived by comparing the standard deviation calculated in the same way at a turbine close to the met mast 

against the standard deviation actually measured at the mast. 

The estimated wind speed and direction signals are 60s averages, while the turbulence intensities are instantaneous values 

from a running 10-minute estimation. 
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If turbine #38 is not running, the test continues using wind estimates from #37. If neither of those turbines is working, #36 is 205 

used. If all three turbines are not running, no wind farm control is applied. However, it should be noted that the optimal 

setpoints are only valid if all nine turbines are working. Cases with some turbines not working were not tested in simulation, 

and in the analysis of the field test results, data was discarded if not all turbines were working. 

3.4 Accounting for wind condition uncertainty 

The power reduction setpoints are optimised using steady-state calculations for specific ambient wind conditions which are 210 

assumed to apply over the whole wind farm. In the practical application, the wind condition used for the LUT to calculate 

setpoints at any specific time are not precisely known, partly because of uncertainties in measurements used, and partly 

because the wind conditions at any time are not uniform across the wind farm. The setpoint optimisation can already take 

account of such uncertainties by assuming probability distributions rather than fixed values for the wind speed, direction and 

turbulence intensity used for each optimisation, as described in Rott et al. (2018) and Simley et al. (2020) for the case of 215 

robust active wake control optimisation. This results in lookup tables which are smoothed out by those probability 

distributions, but the time needed for the optimisations greatly increases. Here an alternative approach is used, in which the 

LUT calculated for precise wind conditions is smoothed out subsequently, with each value replaced by a weighted average 

of nearby values, the weightings being determined by those assumed probability distributions. This has the advantage of 

faster optimisation, but also means that in principle the smoothing can be changed in real time according to the perceived 220 

uncertainties in wind conditions at the time. 

For the field tests, this post-hoc smoothing was carried out using fixed assumptions about the uncertainties, namely that the 

wind speed and direction have Gaussian distributions with standard deviations of 1m/s and 5º respectively. Because of the 

smaller dependence of the setpoints on turbulence intensity, no smoothing was applied for turbulence intensity. Prior to field 

testing, the smoothing assumptions were tested in simulation as described below. 225 

3.5 Final control algorithm design 

The final control algorithm updates the setpoints on a timestep of 60 seconds. At every timestep, the wind condition, 

estimated as described in Section 3.3, is used to generate a setpoint for each turbine using the setpoint LUT which has been 

smoothed as described in Section 3.4. The power reduction setpoints are then sent directly to the turbine controllers. 

For the purposes of the field test, the controller is toggled on and off every 35 minutes. This toggle frequency was selected 230 

on the basis that the wind advection time along the row from #38 to #13 will be of the order of 2 – 5 minutes in the wind 

speed range of interest, and a further 30 minutes before switching should be enough time to get a representative result, and 

the toggling should be frequent enough to obtain periods with similar wind conditions in both toggle states. Choosing 35 

minutes also ensures that switching does not occur at exactly the same time every day, which could introduce a bias due to 

interaction with diurnal changes in wind conditions. Data from the field tests was recorded at 1-minute intervals. 235 
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The final algorithm was tested in dynamic time-domain simulations as described in Section 4, before being implemented in 

the field. Section 5 describes the field test and presents an analysis of the results. 

4 Simulation testing 

Before the wind farm control was implemented in the field, dynamic simulations were run with LongSim to try to mimic the 

behaviour of the wind farm as closely as possible in realistic time-varying wind conditions, and to assess the likely 240 

performance of the wind farm control. 

The simulations used a correlated stochastic wind field covering the turbines, generated by LongSim starting from historical 

data measured at the Sedini met mast, thus ensuring that at least the lower-frequency wind variations are appropriate for the 

site. The simulation results provided time histories of wind conditions, setpoints and power outputs at each of the turbines. 

Simulations were run with and without wind farm control, and also with the control toggling on and off every 35 minutes as 245 

would be done in the field. 

4.1 Wind field 

The technique for generating the correlated ambient wind field has been described in Bossanyi et al (2018). The 10-minute 

average historical met mast data was inspected, and a period selected where the wind speeds and directions were varying 

over a range suitable for exercising the wind farm control. This time history was assumed to apply at a point in the middle of 250 

the row of turbines, and higher-frequency synthetic turbulence was added at that point, and also at a grid of points covering 

all the turbines, using assumed coherence properties, so that variations across the wind farm are realistically correlated, 

spatially and in time. LongSim’s default settings were used for the spectral and coherence properties of the wind. 

The wind field was modified by wind shear appropriate for the site, modelled with a shear exponent of 0.143, and the air 

density was taken as 1.177 kg/m3. 255 

4.2 Turbine model 

Although a detailed model of the turbine was not provided, LongSim has the option to model the turbine using power and 

thrust curves as a function of wind speed, which is sufficient for a basic evaluation. Power and thrust curves were provided 

covering the allowed range of power reduction setpoints. LongSim also models supervisory control, and in this case the yaw 

control algorithm provided by GE was implemented, to ensure a realistic response to changing wind directions. Figure 6 260 

illustrates the resulting yaw response during a short example simulation. 

The turbine was modelled with a 10-second first-order lag for implementation of the power reduction setpoint. This is an 

approximation to the actual behaviour; details of this were not provided, save that in lower winds the thrust reduction relies 

on a change in rotor speed, which might take a few seconds, but in higher winds only a change in blade pitch is needed, 



 

13 

 

which is faster. Simulation results confirmed that a lag of this order has only a very small effect on the induction control 265 

performance. The actual setpoint is a dimensional index number upon which the turbine controller acts to reduce both power 

and thrust, to an extent which varies with wind speed; details were not provided by the manufacturer for reasons of 

confidentiality, but the maximum reduction does not exceed 20% of rated power. 

 
Figure 6: Typical simulated yaw control response. 270 

4.3 Wake model 

The wake model selected as described in Section 3.1 was used for the simulations. As these are dynamic simulations, 

assumptions also need to be made concerning the dynamic wake response. LongSim’s default assumptions were used for the 

wake advection speed, namely that the advection speed is the average of the ambient speed and the speed integrated over the 

wake. Wake meandering was driven by the low-frequency lateral and vertical components of the wind field up to a 275 

wavenumber corresponding to two turbine diameters. The resulting wakes are simply embedded into the ambient wind field, 

which is assumed not to be otherwise affected by the presence of the turbines. 

4.4 Induction control algorithm 

The wind farm control algorithm used the same LUT as was subsequently implemented on site. Simulations were run first 

with the raw LUT, and then with the LUT corrected for wind condition uncertainties as described in Section 3.4, firstly just 280 

with 5º direction uncertainty and then with a further uncertainty of 1 m/s in wind speed. 

The wind conditions for the LUT were calculated as in the site implementation, i.e. using turbine #38 for wind speed and 

turbulence intensity and all nine turbines for direction, but ignoring any inaccuracy in the estimations, i.e. taking the actual 

simulated rotor-average wind speed and direction and turbulence intensity as if they were the measured values. The values 

were low-pass-filtered using a first-order filter with a time constant of 60s to represent approximately the way in which these 285 

signals would be derived in the field. Further filtering could be done, for example to help represent advection of the wind 

conditions along the line of turbines, but a systematic study was not conducted as this option was not available in the farm 

control software implemented in the field. 
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4.5 Simulation results with setpoint smoothing 

Site met mast data with suitable wind conditions for a period of just over 5 hours was selected, and used to generate a wind 290 

field covering the 9-turbine row. The simulation wind conditions are illustrated in Figure 7. 

 

 

 
Figure 7: Wind conditions for the initial simulations. The black line represents the smoothed 10-minute mast data 295 

which is assumed to apply at a point halfway down the row of turbines. The red line shows conditions from the 

simulated wind field at the turbine #38 rotor. 

Using this wind field, four simulations were carried out: 

• Base case, without induction control 

• Induction control, using the raw optimised setpoints 300 

• Induction control, with the setpoint table smoothed to account for a 5º uncertainty in wind direction 
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• Induction control, with the setpoint table smoothed to account for uncertainties of 5º in wind direction and 1m/s in wind 

speed 

Figure 8 shows how the setpoint variation becomes much smoother, using the first controlled turbine (#37) as an example. 

The effect on the total power production from the nine turbines, shown in Figure 9, is difficult to discern in the plot, so the 305 

mean values are given in Table 1.  

 
Figure 8: Effect of LUT smoothing on induction control setpoints (turbine #37 illustrated). For the base case, the 

setpoint is zero. 

 310 
Figure 9: Effect of LUT smoothing on total power output (note the plots are almost indistinguishable) 

Case Power [MW] Increase [%] 

Base case 3.7058 0 

Raw LUT 3.7613 1.50% 

Direction smoothing (5º) 3.7641 1.57% 

Final smoothing (5º, 1m/s) 3.7645 1.58% 

Table 1: Mean power values from Figure 9 

As well as giving smoother control action, this shows that smoothing to account for wind uncertainties, especially wind 

direction, increases the power gain achieved by induction control. This smoothing was therefore adopted for the LUT used in 

the field tests. More simulations could be run to optimise the amount of smoothing, but this was not considered worthwhile 315 

at this stage. 
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4.6 Simulation of controller toggling 

As a final test prior to the start of field testing, a longer simulation was run using a different sample of met mast data to 

generate the wind field, this time 22.5 hours in length, shown in Figure 10. 

 320 

 

 
Figure 10: Wind conditions for the toggling simulations. The red line represents the smoothed 10-minute mast data 

which is assumed to apply at a point halfway down the row of turbines. The black line shows conditions from the 

simulated wind field at the turbine #38 rotor. 325 
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Three simulation were run using this wind field: 

• Base case, without induction control 

• Induction control with the final smoothed LUT 

• Induction control toggling on and off every 35 minutes, as for the field tests 

 Figure 11 shows the power reduction setpoint at the first controlled turbine (#37), demonstrating the toggling effect in the 330 

third simulation. 

 

Figure 11: Induction control setpoints showing controller toggling (turbine #37 illustrated) 

The total power for the nine turbines is shown in Figure 12 for all three simulations. The difference is difficult to discern in 

the plot, so the mean values are given in Table 2. For this period, the induction control increases the power output by 1.3%, 335 

and if toggling on and off, this increase is halved, as would be expected. 

 

 

Figure 12: Total power output for the toggle test simulations 

Case Power [MW] Increase [%] 

Base case 3.496 0 

Induction control 3.541 1.29% 

Induction control toggled on and off 3.519 0.65% 

Table 2: Mean power values from Figure 12 340 
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5 Field testing 

The induction control test was initiated on site and data recording started on 11th July 2019. The following day, an offset 

applied to the wind direction used for the LUT, obtained empirically by matching measured directions to the directions 

where maximum wake deficits were observed, was corrected, so valid SCADA data was available from 10:50 on 12th July 

onwards. The SCADA data was recorded with a one-minute sampling frequency, and provided in a Matlab datafile. The file 345 

was updated periodically to include the latest data, which was analysed as described below. Some apparent inconsistencies 

were checked by running simulations with LongSim using wind fields created from the actual Turbine #38 SCADA data, 

and with setpoints toggled according to a flag recorded in the SCADA data, to try to mimic as closely as possible what was 

happening in the field. Comparison of simulated and measured results for all the turbines proved extremely useful, and 

revealed some interesting inconsistencies. For example, Figure 13 compares the simulated and measured power at turbines 350 

#34 and #33 during a 17-hour period. The power is very well predicted for #34, and similarly for all the other turbines except 

for #33: it is clear that this turbine was running in a curtailed mode. Unfortunately, the status flags in the recorded SCADA 

data did not include any indicator of curtailment. 

 

Figure 13: Measured and simulated power at turbines #34 and #33 355 

These simulations also proved to be a valuable tool for verifying the correct implementation of the setpoint changes in the 

field, as the simulated and measured setpoints for any turbine should match fairly closely through the period of the 

simulation. Figure 14, for example, shows an excellent match, and any significant discrepancies could be easily identified. 
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Figure 14: Measured and simulated setpoints at turbine #34 360 

5.1 Analysis of field test data 

The final dataset consisted of more than 6 months of SCADA data for the nine turbines at 1-minute resolution (298066 

records). This was run through an analysis program which carried out the following steps: 

1. The data was filtered to include only those records which were both relevant and correct. Firstly, some 43% of the 

records were rejected because of missing values of any of the variables of interest, namely the time stamp, the power at 365 

each turbine, the wind conditions (speed, direction and turbulence intensity) used for the setpoint table lookup, the 

operational state of each turbine, and the controller toggle state. Any records from periods when there were known 

technical issues affecting the control states were also discarded. The valid records were then filtered to include only the 

relevant wind conditions for which the control is active, namely wind speed in the range 6 – 15 m/s and direction in the 

range 180 – 270 degrees, as no setpoints were applied outside of this range. This left 21965 relevant records. Records 370 

with high or low turbulence intensity were not filtered out, because the setpoints continued to be applied even if the 

turbulence was out of the range for which they were designed. Finally, records where one or more turbines were not in 

normal operation were also discarded, leaving 12498 records, or just over 4% of the original data. For the sake of the 

subsequent processing steps, rather than actually discarding any records, the filtering was done by assigning a logical 

flag to each of the 1-minute records to say whether or not that record is accepted. 375 

2. The data is parsed to find the moments at which the toggle flag changes. The 5 minutes following the toggle change are 

discarded as ‘settling time’, and following this, 10-minute chunks are collected up to the next toggle change. Since the 

toggle interval is 35 minutes, there should be three such 10-minute chunks in each toggle period. However, the realities 

of real life mean that this is not always exactly true, so a 10-minute chunk is kept as long as its apparent length defined 

by the recorded start and end time is within 30 seconds of 10 minutes. 380 
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3. For each 10-minute chunk, the mean value of the filter flag is calculated, and the chunk is accepted if this is greater 

than 0.9 (i.e. at least 90% of the points within it are accepted). For each such chunk, the mean power (summed over 

turbines) is calculated, as well as the mean lookup table wind speed, wind direction and turbulence intensity, and also 

the mean toggle state (control ‘ON’ or ‘OFF’). The mean normalised power is also calculated, defined as the total 

power from the 9 turbines divided by the power at the reference turbine #38. Each chunk is classified as having control 385 

‘ON’ if the mean toggle state is greater than 0.9, or ‘OFF’ if less than 0.1 (these criteria are only needed to cope with 

occasional irregularities in the data). 

4. The 10-minute ‘ON’ and ‘OFF’ chunks are then binned according to wind conditions. 

5.2 Field test results 

The top left graph in Figure 15 shows the mean ‘ON’ and ‘OFF’ power in each wind speed bin. The crosses show the 390 

standard deviations of the points in the bin, and the bar chart below shows the number of ‘ON’ and ‘OFF’ points in each bin. 

There appears to be a consistent increase over the wind speed range of interest, apart from the 6-7 m/s bin, although it should 

be noted that the increase is generally smaller than the standard deviation of the points. The highest wind speed bin does not 

have enough points to be meaningful. Note also that at the lowest wind speeds, some heavily waked turbines may not be 

producing any power, and in that situation, the thrust coefficient depends on the supervisory control – a turbine generating 395 

no power might continue to rotate at minimum operating speed, or it might slow down to an idling speed, probably 

depending on how long the power remains low. No information was provided about this, so the setpoint optimisations 

assumed an intermediate thrust coefficient of 0.3 for any turbine producing zero power. This represents a source of 

uncertainty at the lowest wind speeds. The ‘unweighted increase’ figure simply represents the increase in the sum of the 

mean powers in all bins containing at least two ‘ON’ and two ‘OFF’ points, i.e. excluding the highest bin in this case. The 400 

lower plot shows the average turbulence intensities in each bin. These are all higher than the maximum 17% turbulence for 

which the controller was designed, and according to the modelling, the control performance decreases at higher turbulence. 

In many bins, the average turbulence intensity of ON points happens to be slightly higher than for OFF points, so it is 

possible that higher wake dissipation rather than the control action might account for some of the power increase. It is 

unclear how much of the ‘unweighted increase’ of 2.3% is due to higher turbulence intensity and how much is due to the 405 

control. 

The right hand side of Figure 15 shows the points binned against wind direction. Since the points in any bin might all have 

significantly different wind speeds, it makes sense to plot the mean normalised power as defined above, rather than the mean 

absolute power. Again, as there are not very many points per bin, the increase is smaller than the standard deviations, but the 

increase seems consistent. However, the largest increases are in the first few bins, where wake interactions (and hence the 410 

benefits of the control) should be small, but these points are unreliable because there are very few ON points, and with 

particularly high turbulence intensities. For the bins above 220 degrees, there are reasonable numbers of points and the ON 
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and OFF turbulence intensities are very similar (though still well above 17%), so the power increase starts to be credible. 

The unweighted increase is calculated as before – in this case all bins have enough points to be included, but the figure is 

clearly skewed by the unreliable increases in the first few bins. One would expect the two unweighted increase figures to 415 

converge once all the speed and direction bins are fully populated, since they represent the same set of datapoints. 

 

Figure 15: Field test results binned on wind speed and direction 

To better understand these results and how they relate to the model predictions, the points would need to be binned in three 

dimensions against wind speed, wind direction and turbulence intensity. There are clearly not enough points for this, but 420 

some insights can still be gained by two-dimensional binning on speed and direction. Figure 16 shows the ratio of mean ON 

and OFF power in each speed and direction bin containing at least one ON and one OFF point. The ratios are mostly greater 

than 1, peaking at 1.71 in just one bin, i.e. an increase of 71%. This extreme value is clearly not credible, but must be seen in 

the context of the actual numbers of points in each bin, shown in Figure 17, and the turbulence intensities shown in Figure 

18. The bin with the 71% increase contains just 4 ON points and 7 OFF points, and the average turbulence for the ON points 425 

is significantly higher. Most bins contain even fewer points, and in some bins the power ratio is less than 1. Many of the 

points (even more OFF points) are concentrated at low wind speed with directions above 260 degrees, which is right at the 

edge of the region where induction control is expected to be useful. The mean increase over all bins containing at least one 

ON and one OFF point is shown in Figure 16 as 2.42% over 47 bins. If we only accept bins with at least two ON and two 

OFF points, the mean increase is 4.66% over 33 bins, and if we require at least three points, it is 4.97% over 21 bins (note 430 
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that this includes some valid bins which do not show up in the contour plots because they are isolated from neighbouring 

bins). 

 

 Figure 16: Power ratio binned on wind speed and direction 

  435 

Figure 17: Numbers of points in each bin 

Also, from Figure 18, which shows the mean turbulence intensity for the ON and OFF points in each of the bins, it is clear 

that higher turbulence intensities were experienced during most of the measurement period than the 17% maximum that the 

induction control was designed for. The induction control is expected to be less effective in higher turbulence intensities, due 

to faster wake dissipation. 440 
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Figure 18: Mean turbulence intensities in each bin 

There is not enough data to bin in three dimensions, but to try to better understand the effect of turbulence intensity, the same 

data can be binned on direction and turbulence intensity, this time binning the ON/OFF ratio of the normalized power (using 

the power of turbine #38 as reference) to remove effect of different wind speeds within each bin. The results are shown in 445 

Figure 19, together with the corresponding plots showing the number of points per bin and, now, the mean wind speed per 

bin. 

 

Figure 19 (continued on next page) 
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 450 

 

 Figure 19 (concluded): Normalised power ratio binned on turbulence intensity and direction 

Now we can see that in many of the populated bins, there is a generally positive increase, which exceeds 20% in five bins, 

and averages 1.7% overall. The full statistics of the populated bins in Figure 19 are listed in Table 3, including the mean 

wind speed and turbulence intensity of the ON and OFF points. The number of points in each bin is not large, as expected. 455 

The turbulence intensities are necessarily quite similar within each turbulence bin; the mean wind speeds differ significantly 

across the analysed bins, but any potential bias due to wind speed variation is mitigated by the use of normalised power. 

Overall, there is no clear evidence for any bias arising from chance variations with this small number of points. 
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Power Direction Turbulence Points in bin Mean wind speed Mean turbulence 

Ratio bin [deg] bin [-] ON OFF ON OFF ON OFF 

1.37 245 0.18 5 14 8.77 8.31 0.1833 0.1856 

1.30 225 0.22 3 4 10.39 9.79 0.2056 0.2191 

1.28 225 0.18 10 10 9.96 8.85 0.1879 0.1756 

1.23 235 0.14 4 7 9.10 9.29 0.1559 0.1380 

1.21 255 0.14 8 9 8.42 7.68 0.1527 0.1462 

1.19 205 0.10 2 6 7.17 9.03 0.1190 0.1151 

1.17 215 0.26 3 2 10.18 9.88 0.2612 0.2483 

1.13 185 0.14 1 8 9.59 7.09 0.1491 0.1422 

1.11 185 0.18 2 12 12.66 7.62 0.1721 0.1812 

1.11 215 0.18 6 9 10.34 11.33 0.1839 0.1829 

1.10 255 0.22 9 16 8.89 8.47 0.2128 0.2163 

1.07 245 0.26 6 8 8.65 8.38 0.2530 0.2516 

1.07 235 0.22 10 10 9.45 8.49 0.2206 0.2189 

1.06 255 0.18 30 30 9.15 8.41 0.1790 0.1752 

1.03 245 0.14 4 3 7.95 6.97 0.1404 0.1462 

1.02 265 0.14 14 32 8.29 7.43 0.1464 0.1415 

1.01 195 0.22 4 9 10.14 9.41 0.2205 0.2167 

0.99 205 0.22 6 3 10.13 8.40 0.2159 0.2320 

0.99 245 0.22 6 9 8.17 8.80 0.2232 0.2147 

0.97 265 0.18 45 58 8.63 8.36 0.1766 0.1785 

0.96 185 0.22 4 6 9.55 9.07 0.2270 0.2130 

0.96 205 0.18 3 3 11.07 10.51 0.1903 0.1925 

0.95 235 0.18 5 7 8.33 7.94 0.1806 0.1852 

0.90 265 0.22 6 6 8.80 8.26 0.2090 0.2080 

0.89 215 0.22 9 4 10.65 10.29 0.2183 0.2223 

0.89 235 0.26 4 4 8.52 9.45 0.2515 0.2577 

0.84 225 0.14 3 4 7.74 7.43 0.1480 0.1508 

0.81 255 0.26 1 1 8.07 8.72 0.2490 0.2489 

0.77 225 0.26 1 2 9.46 9.83 0.2410 0.2480 

0.75 205 0.14 3 5 9.19 8.05 0.1469 0.1343 

0.71 265 0.10 2 2 6.73 6.47 0.1166 0.1102 

0.69 195 0.18 1 10 7.36 8.62 0.1944 0.1891 

Table 3: Statistics of populated bins in Figure 19 (ordered by the normalised power ratio) 
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5.3 Model validation using field test results 460 

Finally, the field test results have been used to validate the LongSim model, by running the model in conditions matched to 

the field test conditions as closely as possible, both in the steady state and in dynamic simulations. 

5.3.1 Steady-state model validation 

The model was run in steady state, both with and without induction control, for each of the bins containing at least one ON 

and one OFF point, corresponding to Figure 16. For each bin, the mean wind conditions (speed, direction and turbulence 465 

intensity) for the ON points was used as input to the model with induction control on, and the mean conditions for the OFF 

points were likewise used for the model runs with no induction control. The results are shown in Figure 20, which should be 

compared against Figure 16. The predicted overall increase, 2.38% is very similar to the field test result of 2.42%. However 

there are differences in individual bins. There is a very similar peak increase of 68% at 8.5 m/s, but at a different direction: 

225 compared to 245 degrees. In the measured data, the 8.5 m/s 225 degree bin showed a 29% increase, but it contained only 470 

3 ON and 2 OFF points. For the 8.5 m/s 245 degree bin, the model predicts a 17% increase rather than the measured 71%. 

The model also predicted a large 80% increase in the 6.5% 235 degree bin, but in this situation there would be some waked 

turbines generating zero power, and the assumed thrust coefficient may not be correct, as mentioned above. 

Apart from these differences in specific bins, and bearing in mind the small numbers of measured points in most bins, the 

general pattern of results over most of the bins indicates a quite encouraging comparison between modelled and measured 475 

results. 

 

Figure 20: Ratio of model predictions of power in each bin (compare Figure 16) 
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5.3.2 Dynamic model validation 

For the dynamic model validation, a period of just under 20 hours (06-Dec-2019 13:25:00 to 07-Dec-2019 09:14:00) was 480 

selected for which the wind conditions were appropriate for a reasonable amount of induction control activity to take place. 

A wind field was generated from the SCADA wind conditions as explained in Section 4, and used as input to a LongSim 

simulation, and using the SCADA toggle flag to switch the control on and off. The simulated turbine power and setpoint 

time histories were then compared against the measured SCADA data. The wind conditions are shown in Figure 21. These 

conditions are applied at a point close to the middle of the turbine row. For all other points, a wind field is generated 485 

stochastically by LongSim using a random number generator with assumed spectrum and coherence functions, so while the 

simulated results are expected to match the measured data at low frequencies, the higher frequency ‘noise’ should only have 

similar statistical characteristics rather than matching exactly second by second. 

   

Figure 21: SCADA wind speed, direction and turbulence intensity used for simulation 490 

Figure 22 shows the power production at the first three turbines, and also the last turbine. The power at turbine #38 is very 

well predicted. At turbine #37, it appears that the turbine must have been switched off for about the first 3.5 hours, but the 

agreement after that is very good. At the next turbine, #36, the measured power is higher than predicted by LongSim for the 

first 3.5 hours, presumably due to the fact that while #37 was not generating, it was not waking #36, whereas the simulation 

was not aware of the curtailment. After #37 started generating, the agreement is again very good. There is good agreement 495 

for the other turbines too, suggesting that wake effects are well predicted all along the row. Even for turbine 13, the 

agreement is quite good although it is a long way from where the wind speed used for the simulation was measured. Terrain 

effects on wind speed have not been modelled, and discrepancies at the higher frequencies are expected because the higher 

frequencies in the simulated wind field are synthesised statistically. 

Figure 23 shows the toggling power reduction setpoints at the first four controlled turbines. With the usual exception of the 500 

first 3.5 hours for turbine #37 when it was curtailed, the agreement is again very good. This is equally true for the three other 

controlled turbines, not shown. 
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  505 

 
Figure 22: Measured and predicted power at turbines #38, #37, #36 and #13, and the total of the nine turbines 
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Figure 23 (continued on next page) 

  510 

Figure 23 (concluded): Measured and predicted setpoints at turbines #37, #36, #35 and #34 

Conclusions 

As part of the EU Horizon 2020 research project CL-Windcon, a field test of an axial induction controller for a row of nine 

turbines at Sedini wind farm in Sardinia, Italy was carried out. The aim of the controller was to reduce individual turbine 

setpoints as a function of wind conditions, so as to reduce wake losses and increase the overall power output from the whole 515 

row. Historical data from the site was first used to confirm a choice of wake model, and the optimiser of the LongSim model 

was then used to generate turbine setpoint lookup tables as a function of wind speed, direction and turbulence intensity 

which would maximise the power output from the row. The tables were then incorporated into a practically realisable control 

algorithm, which makes use of available measurements to estimate the wind conditions and takes account of wind speed and 
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direction uncertainties. Using wind inputs derived from historical site data, dynamic time-domain simulations were 520 

performed in LongSim to verify the design choices and predict the likely dynamic performance. 

The algorithm was then implemented in the field, and data was collected for over six months, with the control action 

toggling on and off at 35-minute intervals so that the effect of the controller could be assessed. Because of the low 

occurrence of the appropriate wind conditions, and after filtering out any invalid records, there were eventually about 200 

hours of useful data, from which about 570 ten-minute periods could be extracted, covering a range of wind conditions. This 525 

number of datapoints was too small to be able to quantify the improvement precisely in a statistically meaningful way, and 

much too small to allow the data to be binned against all three of the most relevant variables (wind speed, wind direction and 

turbulence intensity). Alternative ways to bin the data against one or two variables at a time were therefore used to help 

identify possible biases, such as might be caused by differences in turbulence intensity within a bin, and normalising the 

power by the power of the leading turbine was useful to compensate for differences in wind speed. Alternative binning 530 

methods resulted in estimates in the range 1.7% to 2.4% for the average power increase over the relevant range of wind 

conditions, although it remains uncertain how much of this might still be attributable to other factors such as turbulence 

intensity. In our view, at least a few months of valid data would be required to achieve a reasonable level of confidence. 

Furthermore, the measured data was also used for validation of the LongSim software, demonstrating excellent agreement 

and confirming the suitability of LongSim as a valuable tool for designing and testing wind farm controllers. 535 
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