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Abstract.

Detailed simulation of wind generation as driven by weather patterns is required to quantify the impact on the electrical

grid of the power fluctuations in offshore wind power fleets. This article focuses on studying the power fluctuations of high

installation density offshore fleets since they present a growing challenge to the operation and planning of power systems in

Europe. The Belgian offshore fleet is studied because it has the highest density of installation in Europe by 2020 and a new5

extension is expected to start operations by 2028. Different stages of the future installed capacity, turbine technology and

turbine storm shutdown technologies are examined and compared. This paper analyzes the distribution of power fluctuations

both overall and during high wind speeds. The simulations presented in this article use a new t-student distributed wind speed

fluctuations model that captures the missing spectra from the weather reanalysis-simulations. An updated plant storm shutdown

model captures the plant behavior of modern high wind speed turbine operation. Detailed wake modeling is carried out using10

a calibrated engineering wake model in order to capture the Belgium offshore fleet and its tight farm to farm spacing. Long

generation time series based on 37 years of historical weather data in 5 min resolution are simulated in order to quantify the

extreme fleet-level power fluctuations. The model validation with respect the operational data of the 2018 fleet shows that the

methodology presented in this article is able to capture the distribution of wind power and its spatio-temporal characteristics.

The results show that the standardized generation ramps are expected to be reduced towards the 4.4 GW of installations15

due to the larger distances between plants. The most extreme power fluctuations occur during high wind speeds, with large

down-ramps occurring in extreme storm events. Extreme down-ramps are mitigated using modern turbine storm shutdown

technologies; while extreme up-ramps can be mitigated by the system operator. Extreme ramping events also occur at bellow

rated wind speeds, but mitigation of such ramping events remains a challenge for transmission system operators.

1 Introduction20

Belgium has adopted the target of a 65% reduction of greenhouse gases emission levels by 2050, a less ambitious target than the

European target of 80% by 2050. Nevertheless, Belgium is expected to increase the share of renewable energy sources, with an

expected increase of wind energy share of between 37% to 44% by 2050 (Mikova et al., 2019). Belgium offshore wind power

fleet will be, by the end of 2020, one of the areas with the highest installation density (approximately 10 MW/km2), with an
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installed capacity of circa 2.3 GW over a marine area of circa 225 km2 in the proximity to the Netherlands. Furthermore, the25

planned expansion of the Belgium offshore fleet will bring the capacity up to between 4.0 and 4.4 GW by 2028 (Elia, 2019,

2017). Previous studies of the impact of the Belgian offshore fleet in its energy system exist: Elia (2018) studies the impact

of storm and ramping events on the system imbalances; while Buijs et al. (2009) investigates the required investment by the

Belgium power system for integrating the 2.3 GW of offshore wind.

Geographical smoothing of the fleet-wise offshore wind production is expected in the 4.4 GW scenario as the new plants30

are located further apart from the existing fleet and due to the decrease of correlation between power productions from plants

further apart. Several studies explore the effects of the distance among wind power plants in the fleet/portfolio wind production

such as: (Santos-Alamillos et al., 2017; Tejeda et al., 2018; Roques et al., 2010; Koivisto et al., 2016). Additionally, the expected

increase in rotor diameter, hub height and general improvements of wind turbine technology can have a smoothing effect in the

fleet-wise wind power production (Koivisto et al., 2019).35

The distribution of the fleet-level power fluctuations is necessary to understand and model the impact of the future expansions

of the Belgian offshore fleet into the Belgian energy system (Huber et al., 2014). Holttinen et al. (2011) present a detailed

analysis on the impacts of large amounts of wind power on design and operation of power systems. Holttinen et al. (2016)

shows that characteristics of variability and uncertainty of wind power are an important input for wind integration studies, with

impacts, e.g., on system balancing and grid reinforcing needs. A long term dynamical simulation of the offshore wind power40

generation is required to assess the impact of the extreme power fluctuations in the energy system Pfenninger (2017).

The purpose of this paper is to quantify the distribution of ramp rates as a measure for power fluctuations when extending

the offshore wind capacity in Belgium. To do this we propose a methodology for simulating wind power production time series

and performing a validation using operational measurements on the 2018 fleet. This article concentrates on the simulations of

the time series of offshore wind production for several scenarios. The stimulated time series can be used as inputs in full power45

and energy system impact analyses, but a full detailed model of the energy system is not in scope.

This article includes several novel methodologies: first, it presents a t-student distributed wind speed fluctuations model

and its validation. This model is based on the work by Mehrens et al. (2016) that shows that wind speed fluctuation are non-

Gaussian, and by Koivisto et al. (2016) that models the error terms in a multivariate auto-regressive model with a marginally

t-student distributed Gaussian copula. Second, it presents an update to the hysteresis plant storm shutdown model by Litong-50

Palima et al. (2016) and its validation. Third, the methodology for simulating power production takes into account wake losses

including farm to farm interactions. Fourth, a detailed validation of the results in terms of capacity factors (CF), high wind

speed operation, power fluctuations and spatial-correlations for the existing fleet demonstrates the simulation capability of the

model chain used. Additionally, this article has practical significance because it illustrates how the proposed methodology can

be used to accurately predict the distribution of the fleet-level power fluctuations including its most severe extremes.55
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2 Literature Synthesis

Large energy system modeling is required in order to design, plan, and adapt to, the future transition to greener technolo-

gies. Pfenninger et al. (2014) presents a literature review on large energy system models and identifies the main challenges of

large energy system simulations as: (a) temporal/spacial resolution, (b) uncertainty and transparency, (c) growing complexity

of interconnected energy systems with diverse mixture of technologies (d) integrating the impact of policy and other human60

behaviours. Furthermore, Engeland et al. (2017) present a review of the modeling approaches for variable renewable energy

(VRE, i.e. wind and solar). This review highlights the different methodologies required to simulate the generation of a wind

power fleet as a time series. Holttinen et al. (2016) highlight the importance of modeling geographical smoothing when analyz-

ing variability and uncertainty of wind power in system integration studies. The most common approaches are: (1) stochastic

time series simulations, (2) simulations based on meteorological reanalysis-simulations, and (3) combinations of them.65

Stochastic time series simulation of fleet-level wind power production is possible: Ekström et al. (2017), Koivisto et al.

(2016), Klöckl and Papaefthymiou (2010) and Olauson et al. (2017) are examples of applications and implementations of

extended vector auto-regressive models to simulate VRE generation time series. Sørensen et al. (2002) introduced the use of

an stochastic time series model for simulating the wind speed fluctuations by combining the Kaimal turbulent spectra (for

fluctuations within 10- min resolutions) with a low frequency spectra designed to simulate the weather patterns in larger scale70

fluctuations. All these simulation approaches rely on stochastic time series models to capture the auto- and cross-correlations of

the power time series on multiple locations. Some of these stochastic models are trained on measured historical data, and have

the limitation of not being able to predict the production time series on wind power fleets too different (i.e. installed capacity,

locations, turbine types) from the original data. Direct stochastic power simulations have the advantage of not requiring the

simulation of wind speeds, but instead rely on empirical transformations of the data to correct for the non-stationarity, non-75

Gaussianity and correlation structure of power fluctuations. Fertig (2019) introduces an empirical model to apply stochastic

models to different installed capacity and locations.

Weather driven wind power time series generation consists in modelling the wind production as driven by wind speed time

series obtained from: (1) meteorological reanalysis datasets such as: ERA-interim (Dee et al., 2011), MERRA (Gelaro et al.,

2017) or ERA-5 (Hersbach et al., 2020); (2) weather research and forecasting (WRF) model simulations (Skamarock et al.,80

2008). Example applications of this approach can be read in: Nuño et al. (2018); Olauson and Bergkvist (2015); Marinelli

et al. (2014); Leahy and Foley (2012); Von Bremen (2010); Staffell and Pfenninger (2016); Thomaidis et al. (2016); Staffell

and Pfenninger (2018). The main advantages of using a meso-scale driven generation simulations are: (a) the simulations rely

on the predictions of wind speeds and wind directions, among other meteorological parameters, and therefore have physical

consistency between different locations/times. (b) The simulations can be performed on any combination of installed capacity,85

locations, wind turbine technologies. (c) The simulations can be extended to cover larger periods of time, which will be

necessary for reliability or extreme event probability estimations, Pfenninger (2017). The disadvantages are: (a) low spatio-

temporal resolution means that not all the variability in the wind speed is captured. Hourly resolution is widely used in most

studies, but simulations can be carried out with 10 min resolutions or more but with a significant additional computational
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costs (Liu et al., 2011; Talbot et al., 2012). Spatial resolution of 10 km is widely used in wind energy (González-Aparicio90

et al., 2017), but WRF simulations can be performed in up to 100m x 100m (Liu et al., 2011; Talbot et al., 2012), while modern

reanalysis datasets have resolutions between 10-75 km, (González-Aparicio et al., 2017; Olauson, 2018). (b) Smooth time

series are obtained because the weather models tend to filter the high frequency oscillations from the signals in order to help

with convergence. (c) Due to the coarse temporal resolution turbulence spectra is missing; which is necessary to simulate with

higher resolutions than 10 min.95

Stochastic models are designed to capture the missing wind speed fluctuations: Veers (1988) demonstrated that time series

interpolated from a grid of correlated time series produce a decrease in the apparent spectra; and proposed a methodology to

add missing fluctuations to compensate for this effect. Larsén et al. (2012) reports the missing spectra in WRF with respect

to measurements and analyses the implications to extreme wind speed estimation, Larsén and Kruger (2014) introduce and

apply the spectral correction for WRF in South Africa, while Sørensen et al. (2018) apply it in the 2025 wind power scenario100

in South Africa. Koivisto et al. (2020) calibrates the parameters of the stochastic wind speed fluctuations model based on mea-

surements. Mehrens et al. (2016) presents non Gaussian distribution of wind speed fluctuations in WRF and in measurements

in offshore met masts sites. Olauson et al. (2016) presents an empirical approach to model the fluctuations by introducing a

machine learning regression model for the volatility and optimizing the phase angles between the different Fourier modes of

the fluctuations to capture auto- and cross-correlations. For reference, Liu et al. (2017); Kiviluoma et al. (2016); Apt (2007)105

present modern experimental spectra of wind power generation.

The wake behind the turbine is a well studied flow characterized by a decrease on the mean wind speed and an increase

on the turbulence downstream, Porté-Agel et al. (2020) provides a review of the work on the wake modeling and measuring

field. In summary, the wakes translate into a lower power production on turbines operating on the wake of other turbines. Wind

turbine wakes recover as a function of the distance from the turbine which causes the effect to be most important when turbines110

are closely spaced. As turbines in the Belgian fleet are tightly spaced, significant wake effects are expected.

Farm wake is the aggregated effect of the wakes from all the turbines in a farm to the turbines in a nearby farm. Such

effects have been reported to retain wind speed deficits of up to 2% at downstream distances between 20-60 km (Volker et al.,

2017). This distance of expected influence of farm wakes depends on the plant size, number of turbines and on the atmospheric

boundary layer stability Porté-Agel et al. (2020). Farm effects are important in this study because of the proximity between the115

offshore wind plants in the Belgian waters.

Agora Energiewende et al. (2020) and Volker et al. (2017) report an expected capacity factor of around 30%-50% for areas

with high power density (10 MW/km2) spreading over areas between 1-10 km2, depending on the wind resource on the region.

Note that these capacity factors include the intra-farm (wakes of turbines in the same farm) and farm-to-farm wake losses.
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3 Methods120

3.1 Future wind turbine technology and installed capacity scenarios

To build representative scenarios for 2025-2028, the trends in offshore turbine technology are analyzed in terms of turbine

capacity, specific power and hub height, see Fig. 1. The trends combine the current turbines installed or planned in Belgium

and the Netherlands, the technology projections (Danish Energy Agency, 2020), and the commercial wind turbine prototype

information available on the main wind turbine manufacturer’s websites. Two turbine technology scenarios are used in the125

present study (Tech A and Tech B). The two scenarios assume same rated power but different specific power; the few MW

range of difference in rated power from different manufacturers is expect not to have significant impact on the results.
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Figure 1. Trends in specific power, hub height and turbine capacity for offshore turbines.

The power curves from the two turbine technologies are approximated based on the specific power; using the power and

thrust coefficient curves of large rotors in DTU Wind Energy’s database. Modern wind turbines are offered with high wind

speed operation, which consists in extending the cut-off wind speed and implementing different control strategies to reduce the130

aeroelastic loads on the turbine components and hence reduce the power production. In this study a generic high wind speed

operation technology (HWS Deep) is compared with respect the traditional cut-off wind speed at 25 ms−1, see Fig. 2. The

HWS deep type represents modern turbines designed to continue operation at high wind speeds and mitigate the ramping due

to storm shutdowns. Note that these curves do not represent any specific turbine offered by any manufacturer.

Installation scenarios are split into three stages: BE2018 represents the validation dataset in which operational data is avail-135

able, BE 2.3 GW consists of the plants in BE2018 and the plants to be commissioned by 2020, BE 4.4 GW consists of the

plants in BE 2.3 GW and future extension, see Fig. 3. The turbine and layout used in the plants in BE 2.3 GW scenario are

known (Sørensen et al., 2020). The BE 4.4 GW scenario is studied by varying the turbine and shutdown technology for the

additional 2.1GWof installations. The plant layout in BE 4.4 GW is generated by maximizing the spacing between the turbines

needed to reach the full installed capacity. Furthermore, the offshore fleet in the Netherlands (to start operating by 2020) is also140

modelled in the BE 2.3 GW and 4.4 GW scenarios because of its proximity .
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Figure 2. Power curves and technical parameters for assumed technology and storm shutdown scenarios.

Figure 3. Plant and turbine locations for the different stages of offshore wind installations. The Dutch plants are taken into account when

modelling external wake impacts on the Belgian fleet

3.2 Modeling

This section describes all the methodology used to produce the power time series simulations, including wake modeling, wind

speed time series generation and wind plant storm shutdown modeling implemented in our model-chain: CorRES (correlations

in renewable energy sources).145

3.2.1 Wake

Wake effects are modelled using the engineering wake model proposed in Bastankhah and Porté-Agel (2014). This wake

model consists of self-similar Gaussian wind speed deficits in Eq. (1), a linear wake expansion in Eq. (2), and energy deficit

superposition in Eq. (3). In these equations ∆u is the wind speed deficit downstream, u∞ is the undisturbed wind speed, CT
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is the thrust coefficient, σ is the wake width, k is the wake expansion coefficient, D is the rotor diameter, (x,r) is the location150

where the deficit is to be evaluated in wake coordinates, while N is the number of wind turbines in the farm.

∆u

u∞
=

(
1−

√
1− CT

8(σ/D)2

)
exp
(
− r2

2σ2

)
(1)

σ

D
= k

x

D
+ 0.2

(
1 +
√

1−CT
2
√

1−CT

)
(2)

u= u∞−

√√√√
N∑

m=1

∆u2
m (3)

This model is used because of its simplicity and because it has been formulated to hold mass and momentum conservation155

equations in the wake flow behind a turbine, see Porté-Agel et al. (2020).

The wake model is used to generate a plant power curve by simulating the power outcome of the plant as a function of

the undisturbed mean wind speed and mean wind direction, P (u,θ). The wake model is evaluated including all turbines from

neighboring farms, therefore it includes both intra-farm and farm-to-farm wakes. The resolution of the wake modelling is

1 degree in wind direction and 0.5 ms−1 in wind speeds. The plant power curve is interpolated on each time stamp of the160

wind speed and wind directions time series, ensuring the 360-degree periodicity on the wind direction. A simplified wake

model calibration is performed to determine the wake expansion parameter that better fits the measured capacity factors in the

BE2018 fleet.

3.2.2 Wind speed time series simulation

Wind speed time series on multiple locations are simulated by combining a pre-computed database of meteorological reanalysis165

simulations (uWRF) and a stochastic model to compensate for the missing fluctuations (δu), see Eq. (4), where xj is the location

of plant j at a given time, t. The following methodology is based on Sørensen et al. (2008) and Koivisto et al. (2020).

u(xj , t) = uWRF(xj , t) + δu(xj , t) (4)

CorRES meteorological reanalysis data is obtained running WRF (Skamarock et al. (2008)) to downscale the ERA-Interim

reanalysis data (Dee et al. (2011)) in a 10 km x 10km x 1 h resolution. Hahmann et al. (2010) and Hahmann et al. (2015) give170

a detailed description of the WRF simulations used in CorRES. The model results are stored on multiple heights above ground

(50,80,100,120,150). Linear interpolation in horizontal coordinates and piece wise power law interpolation is used to obtain

the time series on a given farm center position.
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The stochastic model used to compensate the missing high frequency spectra and the turbulence contribution to the inter-

timestep variability in the wind speed signals is characterized by its power spectral density (PSD), Sjj(f), see Eq. (5). Where175

the coefficient a1 is a parameter of the spectra, while f0 controls the lower frequency from which variability will be added.

Koivisto et al. (2020) reports the calibration of a1 and f0 to wind speed measurements in Høsøre, Risø and Cabauw. The

fluctuations spectra is designed to capture the full range spectra as reported by Larsén et al. (2016) with the addition of the f0

parameter, used to minimize the low frequency modification of the WRF time series.

Sjj(f) =
a1

f
5/3
0 + f5/3

(5)180

Since the simulations represent several locations, the coherence between the wind speed fluctuations (on a given frequency)

between two locations is specified by the coherence function, γjk(f), in Eq. (6). Where Ajk is the decay coefficient, djk is the

distance between the locations, ujk is the mean wind speed on the locations.

γjk(f) = e−Ajkdjkf/ujk (6)

The decay coefficient is defined as a function the streamwise (As) and transversal (At) components in Eq. (7), by projecting185

them along the direction of locations-alignment. Sørensen et al. (2008) reports calibrated values of At = 4 and As = ujk/2

based on multiple location measurements in Høsøre. Where αjk is the direction of alignment and θjk is the mean wind direction

in the locations.

Ajk =
√

(As cos(θjk − 270−αjk))2 + (At sin(θjk − 270−αjk))2 (7)

The spectral matrix, S, is computed using the cross-spectra and coherence functions on a discretized frequency bin (with190

center frequency fm), for every pair of location j and k, see Eq. (8).

Sjk(fm) = γjk(fm)
√
Sjj(fm)Skk(fm) (8)

The time series generation methodology presented in Veers (1988) is used. The spectral matrix is approximated by a real,

lower triangular matrix H, such that S(fm) = H(fm)HT (fm). This matrix is computed in an iterative manner following Eq.

(9).195

Hjk(fm) =





(
Sjk(fm)−∑k−1

l=1 Hjl(fm)Hkl(fm)
)1/2

if j = k
(
Sjk(fm)−∑k−1

l=1 Hjl(fm)Hkl(fm)
)
/Hjk(fm) if j < k

(9)
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Finally, the complex Fourier coefficients of the wind speed fluctuations, Vj(fm), are computed as a linear combination of the

weights given by H(fm) and a series of independent, unit-magnitude, white noise signals with random phases φkm uniformly

distributed on the interval (0,2π), see Eq. (10). The Gaussian-process time series, Vj(t), are obtained by applying an inverse

Fourier transformation.200

Vj(fm) =
j∑

k=1

Hjk(fm)eiφkm (10)

In the present work the wind speed fluctuations are transformed using an iso-probability transformation to a truncated

t-student marginally distributed Gaussian-copula, see Eq. (11). This transformation consist in transforming the Gaussian dis-

tributed fluctuations to the uniform space, using their cumulative density function, FN,j , and then apply the inverse cumulative

density function of the truncated t-distributed Gaussian-copula, F−1
t,υ,τ,j . The degree of freedom of the t-student marginals, υ,205

and the degree of truncation, τ , are unique and the same for all plants, and are calibrated based on the measured wind speed

fluctuations. Truncation of the t-student distribution is applied in order to match the extreme fluctuations seen on the wind

speed measurements.

δu,j(t) = F−1
t,υ,τ,j(FN,j(Vj(t))) (11)

A simplified model for correcting the extreme wind speed events, u= g(u)×u, is described in Eq. (12). This correction does210

not affect wind speeds lower than 20 ms−1 , while it applies a linearly growing factor for wind speeds above, with a maximum

factor of 1.08 for wind speeds above 26 ms−1 . This correction is based on the validation study of extreme wind speeds by

Bastine et al. (2018) and the measured wind speeds from existing offshore wind power plants in Belgium.

g(u) =





1 if u <= 20

0.08(u− 20)/6 +1 if 20< u < 26

1.08 if u >= 26

(12)

3.2.3 Wind turbine/plant storm shutdown215

Wind turbine storm shutdown operation consists in four different wind speed set points that specify the mean wind speed

shutdown limits for 10min, 30s and 1s windows (u600, u30 and u1). The turbine goes into shutdown if the wind speed moving

average on a period is larger than its limit, for periods of 600,30,1 seconds. The turbine only goes back to operation when the

10 min moving average wind speed is lower that the restart wind speed. In the present work modern turbine high wind speed

operation (HWS Deep) is modelled with a linear decrease of power and different shutdown wind speed set points, see Fig. 4.220

Wind farm storm shutdown behaviour is different from the individual turbine shutdown: in a wind farm not all the turbines

will shutdown at exactly the same time because the wind speed fluctuations in each turbine are different, which means that
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Figure 4. Single turbine storm shutdown for the three high wind speed operation technologies.

each turbine has a different wind speed time series that reaches shutdown at different times. Macdonald et al. (2014) studies the

high wind speed shutdowns behaviour of two wind farms in Great Britain. Plant shutdown is characterized by discrete levels of

reduced capacity operation, each level representing the power curve for the plant when a number of turbines are off. The wind225

farm storm shutdown hysteresis model presented in Litong-Palima et al. (2016) is extended to model the plant-level operation

of turbines with modern high wind speed operation. The hysteresis model consists of a simple algorithm that forces the power

to move proportionally along the power curve unless the wind speed reaches the restart or shutdown curves, see Fig. 4. The

turbine-level storm shutdown is thus first transformed to plant-level behaviour based on simulating a set of storm cases on high

resolution on turbine-level generic plant.230

CorRES allows modelling a wind power plant as both multiple-turbines and plant-level. However, the large scale simulations

of the entire fleet are computationally feasible only on plant-level. Plant simulations with individual turbine storm shutdown

simulations are carried out for 15 historical high wind speed days (in which max wind speed is larger 20 ms−1 in the WRF

data) in 1s resolution. These simulations are used to define the plant power curve, the restart line and the shutdown line, see Fig.

5. In this Fig. it can be observed that the high wind speed operation part of the plant power curve differs from the piece-wise235

linear behavior of the individual turbine; this a consequence of the difference between the wind speed fluctuations on each

turbine.

Figure 5. Plant vs single turbine storm shutdown for (a) 25 ms−1 direct cut-off (b) HWS deep. Multiple turbine simulations are aggregated

in 5min. The shutdown hysteresis curve (in red) is an example case where restart occurs before the entire plant has shutdown.
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3.3 Measured data for model validation and calibration

The measured generation on 15 min resolution from 2015 to 2018 from the plants in BE2018 are used for model validation,

see Fig. 3. Measured generation on 1 min resolution for 2018 is aggregated to 5 min resolution to validate the simulated 5 min240

ramps. The measured values with wind speed between 5 and 15 ms−1 and no power generation are classified as not available.

Such data points were considered to be either measurement errors or indicating that the whole fleet is unavailable.

Wind speed nacelle anemometer measurements are available on the plants in BE2018 in 10 minute resolutions from 4

turbines in the corners of each plant. For comparison to CorRES simulations, the mean of the 4 turbines is taken to represent

the effective wind speed of the plant and a fleet-level wind speed is defined by taking the weighted mean by installed capacity.245

The wake model wake expansion parameter is calibrated in order to minimize the errors in predicting the capacity factors in

the plants of BE2018 during the 2015-2018 period. The wake model calibration produces generation time series with consistent

wake/blockage losses as observed in the measurements, but the model applies a constant wake expansion over the whole time

series.

Model validation consists in comparing the temporal structure of the wind speed and power time series. A detail comparison250

is done in terms of wind speed and power production distributions; wind speed and power fluctuations distributions; and spatial

correlation of power and power fluctuations.

4 Results for BE2018

Fig. 6 illustrates the wind speed fluctuation in 10 min measured and modelled with different approaches. This Fig. illustrates

the need for adding fluctuations to the WRF datasets, and in particular, the need for non-Gaussian distributed fluctuations.255

Figure 6. Wind speed fluctuations in 10min: measured, WRF, WRF with Gaussian fluctuations (CorRES(Gaussian)) and WRF with t-student

Gaussian copula fluctuations (CorRES(t)).

Fig. 7 presents the qq-plot for the 10 min wind speed fluctuation on each of the plants in BE2018. It can be seen that the

introduction of t-distributed fluctuations better represents the measured wind speed fluctuations. Table 1 presents the validation

of extreme values of wind speed. It can be seen that WRF without fluctuations and without extreme correction factor (see eq.

12) under-predict the extreme wind speeds. The extreme values are better capture by CorRES; but due to the stochastic nature

of the fluctuation model, many realizations of the time-series will need to be sampled to capture the maxima.260
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Figure 7. qq-plot of simulated vs measured wind speed fluctuation in 10min.

Wind speed Prct 99.9 Prct 99.99 Max

WRF 22.8 25.4 26.2

CorRES 23.9 27.9 30.0

Measured 25.2 28.2 31.3

Table 1. Extreme (fleet-level mean) wind speed validation by comparing high percentiles (Prct) and maximum.

A comparison of the measured and modeled fleet-level (weighed average of individual plants by installed capacity) wind

speed and power distributions of the BE2018 is depicted in Fig. 8. Note that the measured wind speeds include wake deficits

(below 14 ms−1 ), while CorRES wind speed simulations are given without wake losses (with wakes considered in the trans-

formation from wind speed to power). Despite this difference, it can be seen that the fleet power production including the

storm shutdown is accurately captured. The distribution of power production for measurements and CorRES, differ around265

rated power, because wind turbine availability is not modeled in CorRES.

Figure 8. Measured and CorRES simulations of power vs wind speed, with their histograms for BE2018.

The validation of the spatial correlation of power production and power fluctuations is presented in Fig. 9. Note that CorRES

is able to capture the spatial correlation trends: a decrease in correlation between the power of plants as a function of the

distance between them. Similarly, the spatial correlation trend for the power ramps (fluctuations) is well reproduced by our

simulations. This capability of simulating the spatial and temporal correlation between plants ensures accurate simulations of270

future installed capacity scenarios with different geographical installation distributions.
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Figure 9. (a) Correlation of power production vs distance between two plants. (b) Correlation of power ramps vs distance between two plants

for 15 min (1 lag) and 60 min (4 lag).

Model validation results in terms of capacity factors (CF), standard deviation of standardize production (SD) and standard

deviation of different power fluctuation on different time windows (5min: DP5, 15min: DP15, 1h: DP60) are presented in

table 2. The measured fleet CF is slightly over-predicted, this over-prediction becomes of 1.13% when a standard loss factor

from un-availability (0.97) is applied. In this article availability is not applied as a factor to the full time series in order to be275

conservative in the amount of full range power fluctuations.

Measured CorRES Residual Measured CorRES Residual

CF 0.399 0.416 4.3% SD_DP5 0.013 0.015 15.4 %

CF with availability 0.399 0.404 1.1% SD_DP15 0.033 0.032 -3.0%

SD 0.350 0.351 0.3% SD_DP60 0.087 0.089 2.3%

Prct 1 DP5 -0.040 -0.043 7.5% Prct 99 DP5 0.040 0.044 10.0%

Prct 1 DP15 -0.099 -0.091 -8.1% Prct 99 DP15 0.101 0.091 -9.9%

Prct 1 DP60 -0.255 -0.249 -2.4% Prct 99 DP60 0.270 0.257 -4.8%

Prct 0.1 DP5 -0.089 -0.078 -1.2% Prct 99.9 DP5 0.081 0.076 -6.2 %

Prct 0.1 DP15 -0.226 -0.151 -33.2% Prct 99.9 DP15 0.205 0.156 -23.9%

Prct 0.1 DP60 -0.495 -0.432 -12.7% Prct 99.9 DP60 0.511 0.429 -16.0%

Table 2. BE2018 residuals (prediction error) in capacity factor (CF), in standard deviation of standardised power (SD), standard deviation of

5, 15 and 60 min power fluctuations (DP5, DP15, DP60).

The distributions of different power fluctuation on different time windows (5min, 15min, 1h) are presented in Fig. 10. Over

all, the distribution of the different power ramps are well captured by the model, besides the small differences on the tails. The

difference in the tails is a combination of the lack of availability model in CorRES, the stochastic nature of the wind speed

fluctuations models and the fact that only three years of measurements are available.280
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Figure 10. Distributions of standardized power fluctuations on different windows: (a) 5 min (DP_5), (b) 15 min (DP_15) and (c) 1h (DP_60).

5 Results for future fleet

Results of the 37 years of simulations for the different scenarios (installed capacity, turbine technology and shutdown tech-

nology) in terms of CF, SD and standard deviation of power ramps (SD DP) are shown in table 3. The capacity factor of the

Belgian offshore wind fleet is expected to increase sequentially from BE 2018, to 2.3 GW, to the 4.4 GW fleet. A larger

capacity factor is obtained when the technology B is used in the 4.4 GW fleet, while the deep storm shutdown technology only285

increases the CF marginally.

The standard deviation of the power shows an increase from BE 2018 to BE 2.3 GW scenarios due to the increased capacity

factor, installed capacity, hub heights and to larger wake losses. In the 4.4 GW scenario, technology B shows a slightly larger

SD than technology A due to the steeper power curve and larger hub heights; technology A does not increase SD with respect

the 2.3 GW scenario.290

The standard deviation of power ramps decrease from BE 2018 to 2.3 GW to 4.4 GW, due to the effect of geographical

smoothing. There is no significant difference between the standard deviation of the power ramps among turbine or storm

shutdown technologies.

CF ratio CF SD ratio SD SD DP5 ratio SD DP5 SD DP15 ratio SD DP15 SD DP60 ratio SD DP60

BE 2018 (877 MW) 0.420 100% 0.346 100% 0.015 100% 0.035 100% 0.092 100%

2.3 GW 0.430 103% 0.354 102% 0.013 81% 0.031 88% 0.088 96%

4.4 GW

Tech A
25 m/s 0.449 107% 0.354 102% 0.011 69% 0.026 74% 0.079 86%

Deep 0.450 107% 0.355 102% 0.010 67% 0.026 74% 0.078 85%

Tech B
25 m/s 0.485 116% 0.357 103% 0.011 70% 0.027 76% 0.080 87%

Deep 0.488 116% 0.358 103% 0.010 68% 0.026 74% 0.078 85%

Table 3. Capacity factors (CF), standard deviation of standardised power (SD), and standard deviations of power ramps in 5 min, 15 min

and 60 min (SD DP5, SD DP15, SD DP60); and their relative ratios with respect BE 2018. All statistics are computed over the 37yrs of

simulations.
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Fig. 11 presents the comparison of the power fluctuations during low wind speeds (fleet-level weighted mean wind speed

below 15 m/s) over the different installation/technology scenarios. The 4.4GWscenarios show the lowest variability of power295

fluctuations, followed by BE 2.3GWand BE 2018. These fluctuations are mainly caused by wind speed fluctuations and depend

on the steepness of the power curve, the distribution of low wind speed ramps is symmetric because the power curve behaves

almost linearly in this wind speed range. Technology A is omitted for clarity from Fig. 11 because it behaves very similar to

technology B.

Figure 11. Distributions of standardized power fluctuations during low wind speeds in all the scenarios on different time windows: (a) 5 min

(DP_5), (b) 15 min (DP_15) and (c) 1h (DP_60). The curves for the BE 4.4GW scenarios are on top of each other.

Similarly, Fig. 12 shows the comparison of the power fluctuations during high wind speeds (fleet-level weighted mean wind300

speed larger than 15 m/s). The geographical smoothing and the high wind speed operation significantly reduce the tails (i.e.

extreme events) of the power fluctuation distributions. The 2.3GW scenario shows a large reduction in the extreme power

ramping with respect to BE 2018. Furthermore, all scenarios show non symmetric distributions with larger extreme positive

ramps. Extreme negative ramps (at high wins speed) occur when the fleet shutdowns during a storm, while large positive ramps

occur when the turbines restart after a shutdown during high wind speeds. In the 4.4 GW scenario, the 25 m/s direct cut-off305

shutdown shows the largest extreme power fluctuations for positive and negative ramps at high wind speed with a frequency of

mid-range ramp events above the BE 2018 scenario. While BE 4.4 GW HWS deep shows the least extreme power fluctuations

of all scenarios. The extreme positive ramps at high wind speeds for BE 4.4 GW HWS deep and BE 2.3 GW are larger than

the extreme negative ramps; these extreme positive ramps are a consequence of the turbine restart operation.

The extreme ramping events during low wind speeds are lower than the ramps at high wind speed for BE 2028 and BE 4.4310

GW with 25 m/s direct cut-off. While similar extreme ramp values for low and high wind speeds are seen for the 2.3 GW and

4.4 GW with HWS deep scenarios for negative power ramps.

The extreme power ramps on different time windows for all scenarios (on all wind speeds) are summarized in table 4. There

is a reduction in extreme ramps between the BE 2018 and 2.3 GW scenarios. In the 4.4 GW scenario, the HWS deep mitigates

the extreme ramp events with respect both BE 2018 and 2.3 GW scenarios, while the reference direct cutoff shows an increase315
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Figure 12. Distributions of standardized power fluctuations during high wind speeds in all the scenarios on different time windows: (a) 5

min (DP_5), (b) 15 min (DP_15) and (c) 1h (DP_60).

in extreme events. From tables 3 and 4 it can be concluded that geographical distribution of installations has the major impact

on the general level of variability (standard deviation of power ramps), while the storm shutdown type impacts the tails of the

ramp distribution, especially for DP5 and DP15.

DP5 Prct. 0.01 ratio Prct. 0.01 Prct. 0.1 ratio Prct. 0.1 Prct. 99.9 ratio Prct. 99.9 Prct. 99.99 ratio Prct. 99.99

BE 2018 (877 MW) -0.130 100.0% -0.078 100.0% 0.078 100.0% 0.136 100.0%

2.3 GW -0.097 74.6% -0.061 78.2% 0.063 80.8% 0.097 71.3%

4.4 GW

Tech A
25 m/s -0.102 78.5% -0.050 64.1% 0.052 66.7% 0.098 72.1%

Deep -0.072 55.4% -0.048 61.5% 0.050 64.1% 0.075 55.1%

Tech B
25 m/s -0.110 84.6% -0.054 69.2% 0.054 69.2% 0.107 78.7%

Deep -0.076 58.5% -0.050 64.1% 0.050 64.1% 0.079 58.1%

DP15 Prct. 0.01 ratio Prct. 0.01 Prct. 0.1 ratio Prct. 0.1 Prct. 99.9 ratio Prct. 99.9 Prct. 99.99 ratio Prct. 99.99

BE 2018 (877 MW) -0.268 100.0% -0.171 100.0% 0.178 100.0% 0.291 100.0%

2.3 GW -0.224 83.6% -0.147 86.0% 0.156 87.6% 0.237 81.4%

4.4 GW

Tech A
25 m/s -0.224 83.6% -0.125 73.1% 0.131 73.6% 0.230 79.0%

Deep -0.170 63.4% -0.117 68.4% 0.124 69.7% 0.187 64.3%

Tech B
25 m/s -0.236 88.1% -0.131 76.6% 0.134 75.3% 0.245 84.2%

Deep -0.179 66.8% -0.121 70.8% 0.124 69.7% 0.191 65.6%

DP60 Prct. 0.01 ratio Prct. 0.01 Prct. 0.1 ratio Prct. 0.1 Prct. 99.9 ratio Prct. 99.9 Prct. 99.99 ratio Prct. 99.99

BE 2018 (877 MW) -0.604 100.0% -0.425 100.0% 0.463 100.0% 0.732 100.0%

2.3 GW -0.561 92.9% -0.395 92.9% 0.434 93.7% 0.629 85.9%

4.4 GW

Tech A
25 m/s -0.541 89.6% -0.366 86.1% 0.393 84.9% 0.600 82.0%

Deep -0.489 81.0% -0.343 80.7% 0.375 81.0% 0.544 74.3%

Tech B
25 m/s -0.537 88.9% -0.380 89.4% 0.397 85.7% 0.588 80.3%

Deep -0.503 83.3% -0.354 83.3% 0.374 80.8% 0.553 75.5%

Table 4. Extreme power ramps in 5 min, 15 min and 60 min; and their relative ratios with respect BE2018.
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6 Discussions

The increase in CF in the 4.4 GW scenario with wind turbine technology B is due to the larger rotor size, but financial analysis320

may result in selections of turbines with less expensive rotors. Similarly, the 2.3 GW scenario showed a larger CF than BE

2018 because of the overall trend in increasing rotor sizes.

In general, the power fluctuation decrease in the 4.4 GW scenario. This is caused by the larger distances between plants,

which causes a geographical smoothing due to lower correlation between the individual plant power time series. This results

are consistent with the literature (Holttinen et al., 2016; Koivisto et al., 2016, 2019, 2020).325

There is a trend to have the most extreme power fluctuations occur during high wind; such that it is possible to lose 75% of the

installed capacity in one hour during an extreme storm event. But the use of modern high wind speed operation technologies

mitigates the impact of extreme down-ramps; to the point that similar extreme down-ramp events are seen at low and high

wind speeds. Extreme up-ramps are more likely than similar size down-ramps; this is caused because the wind turbine storm

shutdown technologies only mitigates the shutdowns and not the restart part of the power curve. Mitigation of such up-ramp330

events (during and after storms) should be considered as they represent some of the largest power fluctuation events.

The extreme ramping events at low wind speeds become equally important as the high wind speed extreme ramps when

turbines with modern high wind speed operation are installed. This means that mitigation approaches that operate at both high

and low wind speeds are needed to further reduce power fluctuations. Geographical distribution of installations has a major

impact on the standard deviation of power ramps and therefore it can be used for further mitigation of power fluctuations.335

Even though the t-distribution wind speed fluctuations was deemed necessary to accuracy capture the power fluctuations.

A more theoretically sound modeling approach could consists in a stochastic model with non-stationary Gaussian wind speed

fluctuations, in which the variance is a function of the stability and turbulence intensity time series. These additional variables

are available in some of the weather models.

Improved wake modelling could also be implemented in the presented approach; the use of computational fluid dynamics340

Reynolds averaged (RANS) wake models such as van der Laan et al. (2015) has been proven to be more accurate to predict not

only wake losses but also losses due to blockage effects (Bleeg et al., 2018), and therefore produce more accurate generation

time series. Due to the large size of the Belgian-Dutch fleet such simulations were not possible in the present study. Another

possible improvement of the wake modeling is to consider stability dependent plant power curves, this means that the power

time series will be interpolated using the wind speed, wind direction and stability time series. Additional improvements in the345

inclusion of wind turbine dynamics could open the possibility to make simulations in higher time resolution, but such models

were considered out of scope for this study.

To further reduce the conservatism of the present analysis a stochastic availability model should be considered. This will

remove the discrepancy between the distribution of fleet-level wind power production seen at around rated power. Nevertheless,

the proposed methodology successfully represented the fleet-level ramp distributions as compared with the measured data.350
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7 Conclusions

The model validation shows that the methodology presented in this article is able to capture the distribution of fleet-level wind

speed and power production, while at the same time capturing the main spatio-temporal characteristics of the time series. The

t-student and extreme wind speed corrections helped better capture the extreme events in the wind speed and power fluctuation

distributions. The hysteresis plant storm shutdown model is able to capture the modern high wind speed operation technologies355

offered by the main turbine manufacturers. The use of a long time series (37 years) of generation is fundamental in order to

quantify the likelihood of the extreme fleet-level power fluctuations.

The future 4.4 GW fleet has an increased capacity factor while at the same time shows a reduction in the standardized

power fluctuations with respect the 2.3 GW fleet. However, for the high wind speeds events, a reduction of the extreme power

ramps is only achievable with the use of modern high wind speed operation. Turbines with high wind speed operation affect360

the business case of a project by a marginal increase of the CF and a reduction of the imbalance costs, while at the same time

this type of extended range operation makes the turbines more expensive. This means that the imbalance prices should be set

to give a financial incentive to the developers to select such technologies. On the energy system level, these technologies are

crucial for extreme ramp event mitigation in cases where there is such a tightly packed wind power fleet. Even though, the

most extreme power fluctuations occur in the up-ramp, i.e. in the restart after shutdown; this can be mitigated by controlling365

the restart. This could be implemented in the turbine level by implementing a gradual restart curve or on the system level by

forcing the plants to come back to power in a gradual manner.

The extreme ramping events at low wind speeds become equally important as at high wind speeds when modern high wind

speed operation is installed in the fleet. This means that approaches that operate at both high and low wind speeds are needed to

achieve further reductions of power fluctuations. Geographical distribution of installations has the major impact on the standard370

deviation of power ramps and therefore it is a good candidate for further mitigation of power fluctuations.

The methodology and analysis presented in this article are relevant for the future offshore installations in the North Sea.

It is expected that countries like Germany and United Kingdom will reach similar density of offshore installation as there is

currently in Belgium (Agora Energiewende et al., 2020).
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