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Abstract. A new method is described to identify the aerodynamic characteristics of blade airfoils directly from operational

data of the turbine. Improving on a previously published approach, the present method is based on a new maximum likelihood

formulation that includes both errors in the outputs and in the inputs, generalizing the classical error-in-the-outputs only for-

mulation. Since many parameters are necessary to meaningfully represent the behavior of airfoil polars as functions of angle

of attack and Reynolds number, the approach uses a singular value decomposition to solve for a reduced set of observable5

parameters. The new approach is demonstrated by identifying high quality polars for small-scale wind turbines used in wind

tunnel experiments for wake and wind farm control research.

1 Introduction

Most simulation models of wind turbine rotors, from the low to the high end of the fidelity spectrum, rely on polars, i.e. on

the aerodynamic characteristics of the airfoils used on the blade. Clearly, irrespectively of its sophistication, the quality of the10

results that a simulation can deliver is bound to many details of the underlying mathematical model and numerical methods, but

also to the accuracy of the polars. Unfortunately, it is often difficult to have a precise knowledge of such a crucial ingredient.

In fact, whereas polars are typically characterized by ad hoc experiments or simulations conducted on isolated airfoils, there

are many reasons why the actual polars of a specific blade can differ from the nominal ones. To address this need, this paper

describes a new procedure for the tuning of polars based on turbine operational data.15

Airfoil polars are used for modeling the aerodynamics of rotors using lifting lines, in conjunction with blade element mo-

mentum (BEM), free vortex wake (FVW) and computational fluid dynamic (CFD) models. BEM methods are routinely used

for the aeroservoelastic analysis of wind turbines and provide most of today’s industrial-level simulation capabilities for load

analysis, design and control development activities (Manwell et al., 2009; Burton et al., 2011; OpenFast, 2020). Free vortex

wake methods (Sebastian and Lackner, 2012; Shaler et al., 2019) are not yet routinely used because of their higher compu-20

tational costs, but offer promising alternatives by removing some of the assumptions of BEM theory. On the higher end of

the spectrum, the large eddy simulation actuator line method (LES-ALM) (Troldborg et al., 2007; Churchfield and Lee, 2012;

Churchfield et al., 2012; Wang et al., 2019) is currently the main approach for the modeling of wakes, including the hot topic

of wind farm control (Fleming et al., 2013; Gebraad et al., 2016).
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In all of these approaches, a lifting line models the blade from the aerodynamic point of view. A generic lifting line is25

a three-dimensional curve running along the blade, which may be prebent and swept. The local chord, twist, airfoil type

and its relative position (for example, in terms of the chordwise offset of the aerodynamic center) are specified along the

curve. The lifting line is attached to the structural model of the blade, and moves with it following its travel around the rotor

disk and its deformation. At each instant of time during a simulation, the local flow relative to a generic point of the lifting

line can be computed. The local flow accounts for the wind inflow, for the motion of the blade and for the local induction30

generated by the rotor, whose details depend on the specific aerodynamic model (BEM, FVW or CFD). Given the local flow,

the angle of attack of the airfoil and the Reynolds number can be readily obtained. This allows one to compute the lift, drag and

moment aerodynamic coefficients at that location along the blade, typically by interpolating within look-up tables that store

the aerodynamic properties of the airfoil. Possible corrections are applied to take into account tip and root losses, unsteady

aerodynamics, dynamic stall, Coriolis-induced delayed stall and other effects, in turn producing the local aerodynamic force35

exerted on the blade at that location. By the principle of action and reaction, an equal and opposite force is applied to the flow

and, again depending on the specific formulation, this closes the loop between blade motion and fluid flow. A new estimate of

the local flow is therefore produced, and the process is repeated until convergence.

Since several years, the group of the senior author has developed scaled controlled wind turbine models for wind tunnel

testing (Bottasso et al., 2014, 2020). Applications have considered both wind turbine (Bottasso et al., 2014) and wind farm40

control (Campagnolo et al., 2016, 2020; Frederik et al., 2019). In addition to the collection of valuable data sets in the known,

repeatable, and controllable environment of the wind tunnel, the development and validation of digital copies of these experi-

ments has been one of the main ambitions of this research effort. Both aeroelastic BEM (Bottasso et al., 2014) and LES-ALM

(Wang et al., 2019) models of the experiments have been developed, in the latter case including not only the wind turbines,

but also the wind tunnel and the passive generation of a sheared and turbulent flow. Results collected to date demonstrate an45

excellent ability of the simulation models in reproducing the experiments, including multiple wake interactions and conditions

relevant to wind farm control (Wang et al., 2019; Wang, Muñoz-Simón , 2020; Wang, Sharma, et al., 2020; Wang, et al., 2020).

One crucial component of the simulation chain has been a method for estimating the polars directly from operational data of

the turbines (Bottasso et al., 2014). In fact, the blades of scaled wind turbine models operate in low Reynolds regimes, where

even relatively small changes in the operating conditions can cause significant changes in the aerodynamic characteristics of50

the blade sections. In addition, given the small size of these models, even modest manufacturing imperfections and normal

wear of the blades can lead to deviations from their nominal shape. Using the method of Bottasso et al. (2014), the nominal

airfoil polars are augmented with parametric correction terms, which are identified using a maximum likelihood (ML) criterion

based on operational power and thrust measurements. These data points are collected on the turbine at various operating

conditions, selected in order to span a desired range of angles of attack and Reynolds numbers. Since a large number of free55

parameters are necessary to represent the correction terms, the resulting problem is ill-posed and the parameters are collinear. To

address this issue, the original parameters are transformed into a new orthogonal set by using the singular value decomposition

(SVD). Because the new parameters are uncorrelated with each other, one can select an observability threshold, discard the
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unobservable set and solve only for the observable one. After having solved the identification problem, which is now well

posed, the solution is mapped back onto the space of the original physical parameters.60

Although this method works well in practice, it still suffers from assumptions that limit its effectiveness. Indeed, the classical

ML formulation is based on an input-output model, and assumes errors in the outputs only (Klein, 2006; Jategaonkar, 2015).

Following this approach, outputs differ from available measurements because of measurement errors and model deficiencies.

However, errors are not explicitly accounted for in the inputs, which are assumed to be equal to their measured values. In the

present context, inputs represent the operating conditions of the turbines, which are expressed by the ambient air density and65

wind speed, the rotor angular velocity and the blade pitch setting. Errors in such quantities have a non-negligible effect on the

outputs, and should be taken into account in a rigorous statistical sense.

To address this issue, the present paper proposes a new general formulation of ML identification that includes errors both in

the outputs and in the inputs. This generalized formulation leads to an optimization problem in the model parameters and the

unknown model inputs, which can now differ from their measured values. The proposed method is again cast within the SVD-70

based reformulation of the unknowns, to deal with the ill-posedness and redundancy of the parameters. The new formulation

is applied to the identification of the polars of small-scale controlled wind turbines, developed to support wind farm control

and wake research (Wang et al., 2019; Campagnolo et al., 2020; Frederik et al., 2019; Bottasso et al., 2020). Results indicate

that the new formulation delivers polars of superior quality with respect to the original error-in-the-outputs only formulation.

Specifically, the new polars were able for the first time to correctly predict the turbine power outputs in derated conditions,75

which had always defied previous efforts.

The paper is organized according to the following plan. Section 2 describes first the classical ML approach in §2.1 and its

reformulation in terms on uncorrelated parameters in §2.2; §2.3 presents the novel ML method with errors in both outputs and

inputs, while §2.4 discusses a way to take into account a priori information on the errors. Section 3 specializes the general for-

mulation of §2.3 to the identification of the polars of scaled wind turbines. Finally, Sect. 4 presents the results, and conclusions80

are drawn in Sect. 5.

2 Formulation

2.1 Classical maximum likelihood estimation with errors in the outputs

Consider a system described by the parametric model

y = h(p,u), (1)85

where u ∈ Rl are the inputs (or, in the present context, the operating conditions), p ∈ Rn the model parameters and y ∈ Rm the

outputs. In correspondence to the N inputs U = {u∗
1,u

∗
2, . . . ,u

∗
N}, N experimental measurements of the outputs are available

and noted Y = {y∗
1 ,y

∗
2 , . . . ,y

∗
N}. Because of modeling and measurement errors, the experimental measurements are in general

not identical to the outputs predicted by model (1), a difference that can be quantified by the residual r = y∗−y. The goal of

the estimation problem is to find the model parameters p that minimize the residuals r.90
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A classical approach to this parameter estimation problem is the ML method (Klein, 2006). The idea of maximum likelihood

estimation is to find the parameters p that maximize the probability J of obtaining the measurement sample Y , where J is

written as

J =
Nm

2
ln(2π) +

N

2
ln(detR) +

1

2

N∑
i=1

w2
i r
T
i R

−1ri, (2)

R being the residual covariance and wi a weight assigned to the i-th residual. In this work, weights are introduced to account95

for the fact that not all operating conditions appearing in the sample U might have the same importance. For example, it might

happen that some ui’s represent frequent typical operating conditions of the system, whereas others are less frequent or relevant

conditions. It might then be desirable to better match these more frequent conditions than the less frequent ones. One way to

achieve this behavior from the ML estimator is to assign weights to the residuals. The weights could be proportional to the

relative frequency of each operating condition in the lifetime of the system, or be inversely proportional to the distance of that100

operating condition to some nominal behavior, a concrete example of this latter case being explained later in the results section.

A robust implementation of this optimization problem is obtained by the following iteration (Klein, 2006):

1. Assuming temporarily frozen parameters equal to p, minimize J with respect to R, which yields the following expression

for the covariance matrix (Jategaonkar, 2015)

R =
1

NW

N∑
i=1

w2
i ri(p)rTi (p), (3)105

where W = 1/N ΣNi=1w
2
i .

2. Assuming a temporarily frozen error covariance R, solve the minimization problem

p = argmin
p

1

2

N∑
i=1

w2
i r

T
i (p)R−1ri(p). (4)

3. Return to step 1, and repeat until convergence.

In the following, alternating between steps 1 and 2 is termed a “major” iteration. The internal iterations necessary for the110

solution of the optimization problem at step 1 are termed in the following “minor” iterations.

2.2 Maximum likelihood estimation in terms of uncorrelated parameters

The estimation problem expressed by Eqs. (3,4) can be ill-posed, because of low observability and collinearity of the unknowns.

This is a classical difficulty in parameter estimation: on the one hand one would typically prefer a rich set of parameters that

give ample freedom to adjust the behavior of a model in order to accurately match the measurements; on the other hand,115

it might be difficult —if not altogether impossible— to always guarantee that there is enough informational content in the

measurements to correctly identify and distinguish the effects of each one of the unknown parameters.
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Indeed, the well posedness of the identification problem is associated with the curvature of the likelihood function with

respect to changes in the parameters. Around a flat maximum, different values of the parameters yield similar values of the

likelihood. A measure of the curvature of the solution space is provided by the Fisher information matrix (Jategaonkar, 2015).120

The inverse of this matrix is also useful because it bounds the variance of the estimates (Cramér-Rao bound) (Jategaonkar,

2015). Unfortunately, the Fisher information by itself does not offer a constructive way of reformulating a given ill-posed

problem.

To overcome this difficulty, Bottasso et al. (2014) proposed to transform the original physical parameters of the model into an

orthogonal parameter space. This mapping is obtained by diagonalizing the Fisher matrix using the SVD. As the new variables125

are now statistically independent, one can readily select and retain in the analysis only the parameters that are associated with

a sufficiently high level of confidence. Once the problem is solved, the uncorrelated parameters are mapped back onto the

original physical space.

This approach enables one to solve an identification problem with many free parameters, some of which might be interde-

pendent or not observable in a given data set. Furthermore, the SVD diagonalization reduces the problem size, retaining only130

the orthogonal parameters that are indeed observable. Finally, this approach reveals, through the singular vectors generated by

the SVD, the inter-dependencies that may exist among some parameters of the model, which may provide useful insight into

the problem itself.

A detailed description of the SVD-based version of ML identification is given in Bottasso et al. (2014). The same formulation

is used also in the present paper.135

2.3 Maximum likelihood estimation with errors in the inputs and outputs

The standard formulation of the ML identification presented in §2.1 considers the presence of noise in the outputs y. Indeed,

outputs are affected by measurement errors but also, being computed through a model, by the deficiencies of the model itself.

Although errors in the outputs are typically the primary source of uncertainty in a parameter estimation problem, there are

situations where significant errors may also be associated with the inputs u, which is the case of the present application. A140

formulation of ML that accounts for errors both in the outputs and inputs is presented next.

The parametric model (1) is expanded as

ŷ =

 y

u

=

 h(p,u)

u

 . (5)

Because of modeling and measurement errors, the experimental output measurements y∗ are in general not identical to the

model-predicted outputs y. Similarly, because of measurement errors and an imperfect realization of the operating conditions,145

the experimental inputs u∗ are in general not identical to the nominal ones u. These differences can be synthetically quantified

by the residual r̂ = ŷ∗− ŷ, where now ŷ∗ is an expanded vector that contains measurements of both outputs and inputs:

ŷ∗ =

 y∗

u∗

 . (6)
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The goal of the estimation problem is to find the model parameters p and system inputs ui that maximize the probability of

obtaining the measurements y∗ and u∗. According to the maximum likelihood criterion, Eq. (4) becomes150

p,u1, . . . ,uN = argmin
p,ui

1

2

N∑
i=1

w2
i r̂

T
i (p,ui)R̂

−1r̂i(p,ui), (7)

and Eq. (3) is now

R̂ =
1

NW

N∑
i=1

w2
i r̂i(p,ui)r̂

T
i (p,ui). (8)

Instead of solving the problem in a monolithic fashion, the following iteration can be conveniently used:

1. Initialize p (see §2.4) and set ui = u∗
i , i= [1,N ].155

2. Calculate R̂ from Eq. (8).

3. Assuming temporarily frozen inputs ui, solve

p = argmin
p

1

2

N∑
i=1

w2
i r̂

T
i (p,ui)R̂

−1r̂i(p,ui). (9)

This is formally identically to the classical (error-in-the-output only) ML formulation, which can be solved by the SVD-

based re-formulation in terms of uncorrelated parameters (Bottasso et al., 2014).160

4. Assuming temporarily frozen parameters p, solve

uj = argmin
uj

1

2

N∑
i=1

w2
i r̂

T
i (p,ui)R̂

−1r̂i(p,ui), j = [1,N ]. (10)

These are N decoupled small size problems, which return the values of the model inputs.

5. Return to step 2, and repeat until convergence.

This way the solution of the identification problem with input and output errors is obtained by using the classical error-in-the-165

output only ML implementation (using Eq. (9)), followed by a sequence of inexpensive optimizations to compute the model

inputs (using Eq. (10)). Notice that, as long as it converges, this iteration returns the same result as the monolithic solution of

problem (7,8).

2.4 Filtering of measurements based on a priori uncertainties

Often, a priori information on the expected uncertainties may be available. In such cases, the unknown true inputs ui can be170

bounded as

u∗
i −∆u≤ ui ≤ u∗

i + ∆u, (11)
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where ∆u are the expected uncertainty bounds. This a priori information can be used to retain in the cost function J only those

measurements for which the corresponding residual cannot be simply explained by the uncertainties (11), but must be due to

the model parameters p.175

To this end, notice first that the residual ri is a function of p and ui, i.e.

ri(p,ui) = y∗
i −h(p,ui). (12)

Indicating the j-th component of residual ri as rij , its maximum and minimum values for a given p are computed as

rMij = max
ui

rij (p,ui), (13a)

rmij = min
ui

rij (p,ui), (13b)180

subject to: u∗
i −∆u≤ ui ≤ u∗

i + ∆u. (13c)

If the maximum rMij and minimum rmij have different signs, then rij = 0 lies somewhere within this range and hence this resid-

ual component can be fully explained by input uncertainties. Therefore, it cannot drive meaningful changes in the parameters,

and should be neglected. Otherwise, this residual carries valuable information and should be retained. To account for this, a

filtered residual r̃ij is defined as185

r̃ij = min(|rij |). (14)

The a priori estimates are used to initialize the parameters p at step 1 of the iterative algorithm formulated in §2.3. A

standard ML method is used for the initialization, considering only errors in the outputs and using Eqs. (3,4) where the residual

components rij are replaced by the filtered ones r̃ij . Filtering accelerates the optimization, because it avoids meaningless

tuning of parameters caused by measurement noise. Once this initial estimate of the parameters is obtained, it is further refined190

by considering the a posteriori effects of noise in inputs and outputs by stepping through points 2–5 of the algorithm. Residual

filtering is not used further, because it is based on a priori assumptions relying on knowledge of the measurement chain, which

can only estimate bounds and might not reflect the actual noise effectively experienced for any given measurement.

In practice, a naive implementation of filtering can be very expensive. In fact, as the residual ri depends on p, one would have

to recompute the optimization problems (13) each time the parameters are updated, which becomes prohibitively expensive.195

The cost of filtering can be drastically reduced with a simple approximation, as graphically illustrated in Fig. 1. The figure

shows with a blue dotted line the residual component rij as a function of the input ui for a given value of the model param-

eters p(0). The counter (·)(0) refers to the values that the parameters assume at the beginning of each major iteration used to

solve problem (4). The minimum and maximum of this curve, corresponding to rmij and rMij , are respectively indicated with

blue lower and upper pointing triangles. These stationary points are computed at the beginning of each major iteration, by200

solving problems (13). For simplicity, this is obtained by a simple evaluation of the residuals over a regular subdivision of the

unknowns.

At the k-th minor iteration of the solution of problem (4), the model parameters have been updated and they now assume

the value p(k). The corresponding function rij is depicted in the figure with a red solid line, together with its new minimum
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Figure 1. Approximation of the maximal and minimal residuals.

and maximum points indicated by red lower and upper pointing triangles. To reduce the computational burden, these stationary205

points are not computed by solving (13), but are approximated.

The nature of the approximation is shown in the figure. The initial function rij corresponding to p(0) is shifted by the

difference r∗(k)ij
− r∗(0)ij

, i.e. the difference in the residual evaluated at the nominal inputs u∗
i for the two parameter values p(k)

and p(0). The shifted function is shown by the black dashed curve in Fig. 1. This is an inexpensive operation since it does not

require any optimization. This nominal difference is then used for shifting the minimum and maximum residuals from their210

initial value at p(0) to the new value at p(k). By this approximation, the maximum and minimum residuals are readily and

inexpensively updated at each iteration as

r
M(k)
ij

= r
M(0)
ij

+ r
∗(k)
ij
− r∗(0)ij

, (15a)

r
m(k)
ij

= r
m(0)
ij

+ r
∗(k)
ij
− r∗(0)ij

. (15b)

Based on these updated values, the residual filtering condition expressed by Eq. (13) can be readily updated.215

This approximation works very well in practice since the interval [u∗
i −∆u,u∗

i + ∆u] is small. In addition, by a standard

Taylor series analysis, one can show that this approximation entails neglecting terms that are quadratic in the changes of

the parameters within a major iteration, which are typically small. Finally, the approximation does not affect the quality of

the results, as the true stationary points are recomputed at each new major iteration of the ML algorithm. In this sense, the

approximation only speeds up the calculations of the minor iterations, but the results —at convergence of the major and minor220

loops— are the same that would have been obtained by a straightforward (but more expensive) solution of problem (13).
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3 Application to the identification of airfoil polars

The parameter identification problem setting described in the previous pages is completely general, and could be used for a

wide range of applications. However, for the specific problem at hand and with reference to Eq. (1), the outputs are defined

as y = (CP ,CT )T , where CP = 2P/(ρAV 3) and CT = 2T/(ρAV 2) are respectively the rotor power and thrust coefficients,225

and P is power, T thrust, ρ air density, A= πR2 the rotor swept area, R the rotor radius and V the wind speed. The inputs

describe the rotor operating conditions and are defined as u = (ρ,V,Ω,β)T , where Ω is the rotor angular velocity and β the

blade collective pitch angle. To obtain the power and trust coefficients, nominal values of the inputs are used for both the

measured and predicted cases.

The airfoil lift and drag coefficients, respectively noted CL and CD, are now assumed to be in error, and the goal of the230

estimation problem it to calibrate them in order to match a given set of measurements. This is achieved by defining changes

∆CL and ∆CD with respect to nominal values CL0
and CD0

, i.e.

∆CL = CL−CL0
= ∆CL(η,α,Re), (16a)

∆CD = CD −CD0
= ∆CD(η,α,Re), (16b)

where η is the spanwise location along the blade (because different airfoils are typically used at different stations along a235

rotor blade), α is the local angle of attack and Re = uc/ν the local Reynolds number, u being the relative flow speed, c the

chord length and ν the kinematic viscosity of air. The dependency of these functions on spanwise location, angle of attack and

Reynolds number is approximated using assumed shape functions and their associated nodal parameters pCL
and pCD

, which

therefore represent the tunable algebraic parameters of the model, i.e.

∆CL(η,α,Re)≈∆CL(pCL
), (17a)240

∆CD(η,α,Re)≈∆CD(pCD
). (17b)

Following Bottasso et al. (2014), instead of working directly with p = (pCL
;pCD

), which might not be all observable, these

variables are first transformed by the SVD into an uncorrelated set of parameters, which are then truncated with a variance

threshold, calibrated according to the ML criterion and are finally projected back onto the original functional space ∆CL and

∆CD.245

The dependency of y on p and u is expressed through model (1) using Blade Element Momentum (BEM) theory (Manwell

et al., 2009), as implemented in FAST (OpenFast, 2020).

The typical Reynolds number distribution along a wind turbine blade is almost constant for the majority of its span, but

assumes smaller values close to the blade tip and root. The implementation of this paper, improving on the work of Bottasso et

al. (2014), specifically considers that the airfoil polars depend on Re. The expected range of Reynolds numbers is discretized by250

linear shape functions and associated nodal values, and the local Reynolds number is computed at each spanwise station based

on local geometry and flow conditions. The results presented later on consider scaled wind turbine models for wind tunnel

testing. For these rotors, the chord-based Reynolds number is much lower than in typical full-scale applications, and ad hoc
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low-Reynolds airfoils (Lyon and Selig, 1998) are used. Because of the special flow regime of these airfoils, the formulation

is complemented by the conditions ∂CL/∂Re> 0 and ∂CD/∂Re< 0. The first of these conditions accounts for the earlier255

reattachment of the laminar separation bubble on the suction side of the airfoil for increasing Re, and the second for the shorter

chord extent of that same bubble (Selig and McGranahan, 2004). They are enforced as soft penalty constraints in problem (4)

by modifying the cost function as J = J + Jp, where

Jp =Wp

αM∫
αm

ReM∫
Rem

(
max

(
0,−∂CL

∂Re

)
+ max

(
0,
∂CD
∂Re

))
dRedα, (18)

where Wp is a penalty parameter, and [Rem,ReM ] and [αm,αM ] are the ranges of Reynolds and angle of attack of interest.260

4 Results

4.1 Experimental setup

A scaled wind turbine model of the G1 type (Campagnolo et al., 2016) was operated in the boundary layer wind tunnel of the

Politecnico di Milano in low turbulence (1%) conditions. The rotor blade design is based on one single low-Reynolds airfoil of

the RG14 type (Lyon and Selig, 1998). Measurements of the rotor thrust and power were obtained for 158 different operational265

conditions, chosen to span the range [5.87,8.81] for the tip speed ratio (TSR) λ= ΩR/V , and the range [−5,12] deg for the

blade pitch angle β. The wind speed V was varied in the interval [3.10,7.86] m/s, resulting in a range of Reynolds equal to

[10000,90000].

Table 1 reports a priori estimates of the uncertainties associated with the various measured quantities. Given the uncertainties

on the measurements, worst-case uncertainties on the power and thrust coefficients can be readily computed as270

∆CP = max

∣∣∣∣ 2(Q±∆Q)(Ω±∆Ω)

(ρ±∆ρ)A(V ±∆V )3
− 2QΩ

ρAV 3

∣∣∣∣ , (19a)

∆CT = max

∣∣∣∣ 2(T ±∆T )

(ρ±∆ρ)A(V ±∆V )2
− 2T

ρAV 2

∣∣∣∣ . (19b)

Table 1. A priori uncertainty estimates of measurements.

Quantity ∆V ∆β ∆Ω ∆ρ ∆Q ∆T

Uncertainty ±0.1 m/s ±0.2 deg ±1.5 rpm ±0.01 kg/m3 ±0.005 Nm ±0.03 N

The wind speed V was measured by a Mensor CPT-6100 pitot transducer (Mensor, 2016), which is affected by pressure and

alignment errors. The pitot tube measures the dynamic pressure, i.e. the difference ∆p= 1/2ρV 2 between the total and the275

static pressures. Since the wind speed is computed by inverting the dynamic pressure expression, errors in ∆p and ρ directly

pollute V . Additionally, a yaw and tilt misalignment may exist between the pitot axis and the incoming wind vector, increasing
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the error in V . The uncertainty of the air density was estimated from the hygrometer and barometer installed in the wind tunnel.

After considering all relevant factors, the uncertainty of the wind speed was determined using the guidelines described in ISO

(2008). The uncertainty in the blade pitch angle β was estimated by calibrating the actuator encoder with a Wyler Clinotronic280

Plus inclinometer (Campagnolo, 2013). Power was computed as P =QΩ, whereQ is the torque, which was measured by strain

gages at the rotor shaft. These sensors were calibrated by applying a known torque to the locked rotor. The rotor speed Ω was

measured by an optical incremental encoder with a count per revolution Ne = 10000 and an observation window tow = 4 ms,

which results in an error ∆Ω = 1/Netow ≈ 1.5 rpm. The thrust T was obtained by measuring with a strain gage bridge the

fore-aft bending moment at tower base; here again, the strain gages were calibrated by applying a known load to the turbine285

by a pulley and weight system. The contribution to the bending moment due to the drag of nacelle and rotor was obtained by a

dedicated experiment in the wind tunnel without the blades. Additional details on sensors and error quantification are discussed

in Campagnolo (2013) and Bottasso et al. (2014).

For each wind speed V , a turbine should operate at a specific TSR λ and blade pitch β, which are computed in region II to

maximize power capture and in region III to limit power output to the rated value. On the other hand, for the task of identifying290

the airfoil polars, a broad range of conditions is necessary in order to span a sufficient range of angles of attack and Reynolds

of interest. Although a broad range is necessary for the generality of the identified model, the conditions that are closer to the

nominal operating points —according to the regulation trajectory of the machine— are also the ones most likely encountered

during the actual operation of the turbine. To account for this fact, the weight wi of each operational condition i (see Eq. (2))

was assigned based on its distance to the nominal conditions, computed as295

di = min
s

√
ε1(Vi−V ∗(s))2 + ε2(βi−β∗(s))2 + ε3(λi−λ∗(s))2, (20)

where (·)∗ indicates a nominal value and ε1/2/3 are scaling factors. All data points were divided into four groups according to

their distance. Data points within each group were assigned the same weight, longer mean distances corresponding to lower

weights.

4.2 Identification results300

Nominal values of the blade polars are defined as the ones previously computed with the method of Bottasso et al. (2014).

Although of a good quality, these polars are however not always able to correctly represent the behavior of the turbine, for

example in derated conditions. To improve on this situation, the method proposed here was used to further correct the polars

and provide improved estimates.

The lift and drag coefficients were parameterized in terms of bi-linear shape functions, using seven nodal values for Reynolds305

and 21 for angle of attack for each one of the two coefficients. Since the G1 blades use one single airfoil type along their entire

span, it was not necessary to introduce the dependency on η appearing in the general expressions of Eqs. (16).

For the nominal polars, Fig. 2 plots the variance σ2 (which is the inverse of the singular values produced by the SVD

analysis) for the seven considered Reynolds numbers and the lowest 25 modes.
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Figure 2. Variance of the lowest 25 modes modes for varying Reynolds.

The figure shows that modes of intermediate Reynolds number have better observability, as most conditions do happen310

within this range. All modes with a variance above one (a threshold indicated in the figure by a horizontal dashed line) were

discarded, reducing the number of degrees of freedom from the initial 294 to 117, which improves the well posedness of the

problem and also reduces the computational cost.

The identification first used nominal model inputs u∗ and the residual filtering technique of §2.4 to identify an initial guess

to the system parameters p, a process that converged after nine major iterations of Eqs. (3,4). For the converged solution, Fig. 3315

shows the nominal model inputs (two upper plots) and the output residuals (two lower plots), including the nominal residual r∗,

the maximal residual rM , the minimal residual rm and the filtered residual r̃ (see Eqs. (13,14)) for each one of the measured

data points. The filtered residuals r̃ are zero for most conditions, indicating that the information carried by these data points

cannot be distinguished further from input measurement noise. In addition, all non-zero filtered residuals are small, indicating

an almost singular R̃, which is in fact used as termination criterion.320

An a priori estimate of the maximal uncertainties on the power and thrust coefficients can be computed based on Eqs. (19)

and Table 1, which yields

σP =

√√√√∑N
i=1w

2
i (∆CP,i)

2∑N
i=1w

2
i

= 0.037, (21a)

σT =

√√√√∑N
i=1w

2
i (∆CT,i)

2∑N
i=1w

2
i

= 0.047. (21b)
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Figure 3. Top two plots: nominal model inputs V , Ω, β, ρ. Bottom two plots: nominal, maximal, minimal and filtered residuals for the two

outputs ∆CP and ∆CT . All quantities are plotted for each one of the 158 operating conditions in the measurement set.

On the other hand, an a posteriori estimate of the uncertainties evaluated with nominal inputs u∗ is available by the covariance325

matrix R of Eq. (3) that, using unfiltered residuals, gives

σP =

√
R̂11 = 0.024, (22a)

σT =

√
R̂22 = 0.023. (22b)

As expected, the a posteriori estimates are smaller than the a priori ones, since the latter represent a worst case scenario.

The process was then continued, using the previously converged parameters as an initial guess, and now adding to the330

identification also the model inputs u to include the effects of their uncertainties. After three iterations, a converged solution

was obtained. The final identified inputs are denoted in the following as uI . For all operational conditions, Fig. 4 shows the

differences ∆u = uI −u∗ between identified and nominal values. In all subplots, two horizontal dashed lines indicate the a

priori uncertainties reported in Table 1. It is interesting to observe that most estimated inputs are within the a priori bounds,

indicating a good coherence between a priori and a posteriori statistics. The right part of the same figure reports the distributions335

of the errors that, except for wind speed, are close to normal. On the other hand, density appears to have a small bias, which

violates one of the assumptions of ML estimation.

Figure 5 shows the nominal (dashed lines) and identified (solid lines) lift (left plot) and drag (right plot) coefficients as

functions of angle of attack, for various Reynolds numbers. Values outside of the angle of attack and Reynolds ranges of the

plot are not identifiable with the available data set, and therefore are not shown. The nominal coefficients tuned according to340

Bottasso et al. (2014) cross each other, violating the consistency constraints on the laminar separation bubble expressed by

Eq. (18). In contrast, the new identified results do comply with the constraints.
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Figure 4. Differences between identified and nominal inputs for all operating conditions (left), and their corresponding distributions (right).
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Figure 5. Lift CL (left plot) and drag CD (right plot) coefficients as functions of angle of attack α, for various Reynolds numbers. Dashed

lines: nominal values according to Bottasso et al. (2014); solid lines: new identified values.
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Table 2 reports the correlation coefficients, computed from the extended covariance matrix R̂ at convergence as %ij =

R̂ij/(σiσj), where σk =
√
R̂kk. Because of symmetry, only the upper triangle is shown.

The correlation coefficient between the two outputs, ∆CP and ∆CT , is negative. This means that, on average, at the end of345

the identification process the power and thrust residuals have opposite signs. This is expected, since this behavior minimizes

the cost function of problem (7). Additionally, each input induces variations of the same sign in the two outputs; for example,

a larger wind speed or density imply higher power and thrust coefficients, whereas a larger blade pitch implies lower power

and thrust coefficients. Given that ∆CP and ∆CT have a negative correlation, the input-output correlation coefficients always

have different signs for both outputs, e.g. %(∆CP ,∆β) and %(∆CT ,∆β) have opposite signs. The signs of the input-input350

correlations can be explained in similar terms. For example, the correlation between density and blade pitch is negative because

these two inputs have correlations of opposite sign to the outputs, whereas the correlation between blade pitch and wind speed

is positive because these two inputs have correlations of the same sign to the outputs.

Table 2. Correlation coefficients among inputs and outputs.

∆CP ∆CT ∆ρ ∆β ∆V ∆Ω

∆CP 1.0000 -0.8518 0.7084 -0.5550 -0.6206 0.7969

∆CT - 1.0000 -0.8839 0.8540 0.1948 -0.6245

∆ρ - - 1.0000 -0.6661 -0.1100 0.2488

∆β - - - 1.0000 0.0134 -0.4751

∆V - - - - 1.0000 -0.5025

∆Ω - - - - - 1.0000

From the extended covariance matrix at convergence, the mean absolute a posteriori uncertainties of the inputs |uI −u∗|
were found to be 0.06 m/s for speed V , 0.09 deg for blade pitch angle β, 0.5 rpm for rotor speed Ω, and 0.005 kg/m3 for density355

ρ. By comparison with Table 1, all a posteriori uncertainties are smaller than the a priori ones, as expected.

4.3 Power derating cases

To verify the quality of the identified polars, derated operational conditions were considered. It should be stressed that these

conditions were not included in the identification data set, and therefore provide for a verification of the generality of the

results. These additional conditions are listed in Table 3 and correspond to values equal to 100%, 97.5%, 95% and 92.5% of360

rated power.

Figure 6 shows the results in terms of power (on the left) and thrust (on the right) coefficients, as functions of derating

percentage. In all plots, the experimental results are shown using a solid blue line with ∗ symbols; whiskers indicate the

uncertainties according to Eq. (19) and Table 1. Simulation results are computed with nominal measured inputs u∗, both for

the nominal polars p∗ according to Bottasso et al. (2014) and for the newly identified polars pI , and they are marked with365
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Table 3. Experimental conditions of the power derating cases.

Power Percentage 100% 97.5% 95% 92.5%

β [deg] 0.42 1.02 1.43 1.79

λ [rpm] 8.31 8.23 8.16 8.10

V [m/s] 5.87 5.88 5.88 5.88

× and ◦ symbols, respectively. The results indicate a marked improvement when using the newly identified polars, especially

regarding the rotor power coefficient.

92.5 95 97.5 100

Power derating percentage

0.3

0.32

0.34

0.36
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0.4
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0.44

92.5 95 97.5 100
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0.6

0.65

0.7

0.75

0.8

Experiments
Simulations with nominal polars
Simulations with identified polars

Figure 6. Results for the power derating cases. Left plot: power coefficient; right plot: thrust coefficient. Solid blue line with ∗ symbols:

experimental results, including uncertainties according to Table 1; solid orange line with ◦ symbols: simulation results with newly identified

polars; solid red lines with × symbols: simulation results with nominal polars according to Bottasso et al. (2014).

5 Conclusions

This paper has presented a new maximum likelihood identification method that, departing from the classical formulation,

accounts for errors both in the outputs and in the inputs. The new method is a generalization of the classical approach, where370

the system parameters are estimated together with the system inputs, which this way can differ from their actually measured

quantities because of noise. The new expanded formulation is solved using a partitioned approach, resulting in an iteration

between the standard parameter estimation and a series of decoupled and inexpensive steps to compute the inputs. To cope

with the ill-posedness of the problem caused by low observability of the parameters, the formulation uses an SVD-based

transformation into a new set of uncorrelated unknowns, which, after truncation to discard unobservable modes, are mapped375

back onto the original physical space. The formulation is further improved by an initialization step that accounts for a priori

information on the errors affecting the measurements, discarding all data points whose residuals can be simply explained by

uncertainties.
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The new proposed formulation was applied to the estimation of the aerodynamic characteristics of the blades of small-

scale wind turbine models. This is a particularly difficult problem, because an extended set of parameters is necessary in380

order to give a meaningful description of the polars, taking into account their variability with blade span, angle of attack and

Reynolds number; invariably, this results in an ill-defined problem because of the many unknown parameters and their possible

collinearity. In addition, measurement errors affect both the outputs and the inputs, the latter being particularly relevant and

representing the operating conditions of the turbines. On the other hand, good quality estimates of the polars are of crucial

importance for the accuracy of simulation models based on lifting lines.385

Results indicate that a higher quality of the estimates is achieved by the proposed method, compared to an error-in-the-

outputs only approach. Indeed, the estimated polars were for the first time able to correctly model also derated operating

conditions, which were not included in the parameter estimation process. All prior attempts at modeling these conditions failed

to a various extent, when using polars estimated by the standard maximum likelihood formulation. In addition, results indicate

that the present approach was successfully able to cope with the ill-posedness of the problem caused by the low observability390

of the many unknown parameters, which is an aspect of importance for the practical applicability of the method to complex

problems as the one considered here.

Code and data availability. An implementation of the polar identification method and the data used for the present analysis can be obtained

by contacting the authors.

Nomenclature395

A Rotor swept area

CD Drag coefficient

CL Lift coefficient

CP Power coefficient

CT Thrust coefficient400

J Cost function

p Pressure

p Model parameters

P Power

Q Torque405

r Residual

R Covariance matrix

Re Reynolds number

T Thrust
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u Model inputs410

V Wind speed

wi Weight of the ith measurement

y Model outputs

α Angle of attack

β Blade collective pitch angle415

η Non-dimensional blade span location

λ Tip speed ratio

Ω Rotor speed

ρ Density

% Correlation coefficient420

σ Standard deviation

(̂·) Expanded quantity

(̃·) Filtered quantity

(·)I Identified quantity

(·)∗ Measured quantity425

ALM Actuator Line Method

BEM Blade Element Momentum

CFD Computational Fluid Dynamics

FVW Free Vortex Wake

LES Large Eddy Simulation430

ML Maximum Likelihood

SVD Singular Value Decomposition

TSR Tip Speed Ratio
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