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Abstract. We present an analytical model for assessing the aerodynamic performance of a wind turbine rotor though
::::::
through

a different parametrization of the the classical Blade Element Momentum (BEM) model. The model is named the Radially

Independent Actuator Disc model (RIAD) and it establishes an analytical relationship between the local-thrust loading and

the local-power, known as the Local-Thrust-Coefficient and the Local-Power-Coefficient respectively. The model has a direct

physical interpretation, showing the contribution for each of the 3 losses: wake-rotation-loss, tip-loss and viscous-loss. The5

gradients for RIAD is found through the use of the Complex-step-method and power optimization is used to show how easily

the method can be used for rotor optimization. The main benefit of RIAD is the ease at which it can be applied for rotor

optimization, and especially load constraint power optimization as it is described in Loenbaek et al. (2020). The relationship

between the RIAD input and the rotor chord and twist is established and it is validate
::::::::
validated against a BEM solver.
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1 Introduction

Wind turbine rotors are with their increasing size subject to continuous optimization with the overall objective of reducing the

cost of energy. Such optimizations are very complex , because both the aerodynamic and the structural performance need to be

included in the optimization setup. Combining both aerodynamics and structural performance have
::
has

:
shown very promising

trends indicating that a further cost reduction is possible, see e.g. Perez-Moreno et al. (2016), Zahle et al. (2015), Bottasso15

et al. (2010). However, these optimization studies build on existing aerodynamic and aeroelastic tools, include numerous

design variables and constraints, and can be very complex. Thus, it is challenging to make a very general optimization study

to map the design space. That is the reason for investigating alternative methods and models to ease the exploration of optimal

rotor designs.

The development of aerodynamic models for wind turbines is closely linked to that of propellers and helicopters. The first20

theoretical model for predicting the aerodynamic performance of a rotor was the so-called 1D momentum theory developed

by Betz (Betz, 1926) and Joukowsky, which resulted in the famous maximum power extraction limit of 59.3% known as the

Betz-Joukowsky-limit or often just as the Betz-limit (Okulov and van Kuik, 2012). The model assumed constant loading along

the rotor radius in the flow direction.
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Later Glauert developed the Blade Element Momentum theory (BEM) (Durand and Glauert (1935), Sørensen (2016)), which25

is an extension where momentum theory is used for radially independent stream-tubes. It also included correction models for

tip-loss and highly loaded rotors. The model has since then been extended with multiple correction models to account for yaw

misalignment, shear profiles, turbulent inflow, etc.

In this paper, we present an aerodynamic rotor performance model which we refer to as the Radially Independent Actuator

Disc (RIAD) model. It establishes a direct analytical relationship between the local-thrust loading and the local-power, which is30

a useful simplification for rotor optimization. The model is equivalent to BEM , but reduces the rotor design space to only two

independent variables at each radial station, i.e. the Local-Thrust-Coefficient (CLT ) and the glide-ratio (Cl/Cd) as well as the

global tip-speed-ratio (λ). The equivalent input for a BEM at each radial station is the design Lift-Coefficient (Cl), the design

Drag-Coefficient (Cd),
:
and the Rotor-Solidity (σ) with the same global parameter. Most BEM formulations do not compute

the local-power directly, which is often an important optimization objective. At the same time, rotor optimization constraints35

are often formulated in terms of loading. Both the objective and constraints are outputs from the BEM and their equations are

usually fairly convoluted. Using RIAD, the local-thrust loading (CLT ) is the independent design parameter and the local-power

is computed explicitly though
::::::
through a single equation. It makes it easy to recast the optimization problem, which generally

requires a robust optimization algorithm, into a straightforward root finding problem, which makes the optimization faster and

more robust.40

The paper start
::::
starts

:
by presenting the derivation of the RIAD model, which then leads into computing the gradients for

RIAD. These gradients are used for power optimization, leading to a simple optimization method. At the end
::
In

:::
the

::::
end, the

relationship between RIAD inputs and blade chord and twist is then established, and RIAD is validate against
::::::::
validated

::::::
against

:
a BEM solver. As this paperpresents

:::
This

::
is
::::
Part

::
1

::
of

:
a
::::::::
two-part

:::::
paper.

::::
Part

:
1
::::::::
describes

:
an aerodynamic model to be used for

optimization, this paper is Part 1
::
for

::
a
::::
wind

::::::
turbine

:::::
rotor

:::
and

:::
the

:::
use

::
of

:::
the

::::::
model

::
for

::::::
power

:::::::::::
optimization.

:::
Part

::
2
::
is

::::::::
described

::
in45

:::::::::::::::::::
Loenbaek et al. (2020) where the model is used for load constraint power optimizationin Part 2 (Loenbaek et al., 2020)

::::::
applied

::
for

::::
load

::::::::::
constrained

:::::
power

:::::::::::
optimization.

2 The RIAD model

In the following the Radially Independent Actuator Disc (RIAD) model is presented which start
:::::
starts by establishing the

relationship between global and local parameters for a wind turbine rotor as well as introducing normalization. The relationship50

between the local forces is then established, leading to an implicit equation for the local-power. A set of approximate closure

equations is then used to establish an explicit equation. The physical interpretation of the different factors and terms is then

presented and at the end
:
, some details regarding the tip-loss-factor and the exclusion of drag from the induced velocity is

discussed.
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2.1 Relationship between global and local coefficients55

Starting with the Fundamental theorem of calculus the following equation can be made for the global values for thrust (T ) and

power (P ):

T =

R∫
0

∂T

∂r
dr (1)

P =

R∫
0

∂P

∂r
dr (2)

Where ∂T
∂r is the thrust-loading-density and ∂P

∂r is the power-density.60

Introducing the classical non-dimensional relations for thrust (CT ) and power (CP ) as well as the local equivalent which is

introduced as the Local-Thrust-Coefficient (CLT ) and Local-Power-Coefficient (CLP ):

T =
1

2
ρ0V

2πR2CT (3)

P =
1

2
ρ0V

3πR2CP (4)

∂T

∂r
=

1

2
ρ2πrV 2CLT (5)65

∂P

∂r
=

1

2
ρ2πrV 3CLP (6)

Combining the equations the following equations can be found for CT and CP :

CT = 2

1∫
0

CLT r̃dr̃ (7)

CP = 2

1∫
0

CLP r̃dr̃ (8)

Where r̃ is the Normalized-Radius (r̃ = r/R). A sketch of the relationship between the local and global coefficients can be70

seen in figure 1.

2.2 Relationship between local coefficients

To establish a relationship between the local coefficients CLT and CLP the forces are assumed to be aerodynamic forces where

the lift force is orthogonal to the local flow and where there is loss from viscous drag in the local flow direction. The force is

assumed to originate from a rotating wind turbine blades with rotational speed ω. The tangential force density is then given as75
1
ωr

∂P
∂r . Introducing the local lift density ∂L

∂r and drag density ∂D
∂r as well as the local flow angle φ the following equations can
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Figure 1. Sketch of the relationship between Local Coefficients (CLT ,CLP ) and Global Coefficients (CT ,CP ).

be made:

∂T

∂r
=
∂L

∂r
cosφ (9)

1

ωr

∂P

∂r
=
∂L

∂r
sinφ− ∂D

∂r
cosφ (10)

Where ∂D/∂r = 0 in equation 9 to exclude drag from induction. Using the common normalization of ∂L/∂r and ∂D/∂r80

∂L

∂r
=

1

2
ρBcV 2

relCl (11)

∂D

∂r
=

1

2
ρBcV 2

relCd (12)

together with equation 5 and 6 the following equations can be found:

CLT = σṼ 2
relCl cosφ (13)

CLP
λr̃

= σṼ 2
relCl sinφ−σṼ 2

relCd cosφ (14)85

Where σ is the rotor solidity (σ =Bc/2πr) and Ṽrel the normalized relative velocity. A sketch of the air-flow and forces can

be seen in figure 2.

Combining equation 13 and 14 an equation for CLP can be found as:

CLP

(
CLT , r̃,λ,

Cd
Cl
,φ

)
= λr̃CLT tanφ−λr̃Cd

Cl
CLT (15)

This is a general equation for the relationship between the CLT and CLP , but it is implicit since tanφ depends on CLT .90
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Figure 2. Sketch of the relationship between the air-flow and the forces at each span location.

2.3 Explicit equation for CLP (Closure relation between CLT and tanφ)

The local flow angle φ is given from the induced velocities (Sørensen, 2016, p. 101, eq 7.3) as:

tanφ=
1− a

λr̃ (1 + ap)
(16)

where a is the axial induction factor, ap is the tangential induction factor.

Equation 16 introduces two new variables (a,ap). In order to make an explicit equation for tanφ as a function of CLT two95

equations relating CLT to a and ap respectively are needed. These are the closure equations.

There does not exist a general set of model closure equation
::::::::
equations, but different approximate closures have been proposed.

The most widely used set is referred to as the Glauert closure, which is an implicit assumption made for most BEM’s. The

closures are given as:

CLT = 4a(1− a)F (Ning, 2014, p. 4 eq. 2) (17)100

a(1− a) = λ2r̃2ap(1 + ap) (Sørensen, 2016, p. 50 eq. 4.36) (18)

Where F is the tip-loss factor, which is further described in section 2.5. For now F ∈]0,1] with F → 0 as r̃→ 1. Combining

equation 17, 18 with equation 16 an explicit equation for tanφ in terms of CLT can be found. This leads to an explicit equation

for CLP :

CLP

(
CLT , r̃,λ,

Cd
Cl

)
=

1

2

(
1 +

√
1− CLT

F

)
CLT︸ ︷︷ ︸

1D power

· 2λr̃

λr̃+
√
λ2r̃2 + CLT

F︸ ︷︷ ︸
wake rotation loss

−λr̃Cd
Cl
CLT︸ ︷︷ ︸

viscous loss

(19)105

Equation 19 is the main result of this section. It states an explicit relationship between the local power and the local loading.
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2.4 Physical interpretation and input sensitivity

Equation 19 has a straight forward
:::::::::::::
straightforward physical interpretation which is also highlighted through under bracing of

factors and terms, with an additional loss coming from the tip-loss factor (F ). A sketch showing the impact of different losses

for a specific input can be seen in figure 3.

Figure 3. Sketch showing a graphical representation of the losses and the mathematical origin. The input is for span-wise constant local-thrust

and glide-ratio.

110

The 1D power is the classical 1D momentum theory result by Betz and Joukowsky (Okulov and van Kuik, 2012), but here

applied for radially independent streamtubes
(
1
2

(
1 +
√

1−CLT
)
CLT = 4a(1− a)2

)
.

The Wake rotation loss is the power loss that originates from the conservation of angular momentum. When extracting power

from the rotational motion, the force that is rotating the blades leads to an opposing and equal magnitude force on the fluid,

resulting in the fluid rotating in the wake of the turbine. Since there needs to be conservation of power, the potential power115

that can be extracted is lowered, leading to wake-rotation-loss. From figure 3 the wake-rotation-loss is seen to affect the root

region of turbine. This is further investigated in figure 4, where the wake-rotation-loss-factor is plotted as a function of the local

tip-speed-ratio (λr̃) for different values of the local loading (CLT ). The effect of changing the local loading, is seen to have a

limited effect. From figure 4 b) the wake-rotation-loss is seen to be insignificant for λr̃ > 5 which is approximately from the

mid-span and outwards for a modern utility scale turbine with λ≈ 7−10. From the example in figure 3 the wake-rotation-loss120

is seen to have the smallest impact on the global power with ∆CP =−0.01.

The Tip loss is the power loss associated with the rotor having a finite number of blades and not acting as an actuator disc

with an infinite number of blades. This effect is captured in the tip-loss-factor (F ) which is further described in section 2.5.

The tip-loss model that is used in this paper, captures the impact on the induced velocities in the rotor plane, with the additional

::::::::::
additionally induced velocities coming from the vorticity released at the tip of the blade. The most important parameter for125
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Figure 4. Significance of wake-rotation-loss. a) wake-rotation-factor vs. local-tip-speed-ratio (λr̃). Black dashed line is the limit at 1/2. b)

difference between the wake-rotation-factor and the limit at 1/2 vs. local-tip-speed-ratio (λr̃). Notice that the y-axis is log-scale. Red dashed

line is at 99% of the limit. Notice that the solid lines are for different values of CLT . Higher CLT leads to higher wake-rotation-loss.

tip-loss, is the tip-speed-ratio (λ), with the tip-loss getting smaller with increasing tip-speed-ratio. From figure 3 the tip-loss is

seen to affect the power at the tip as one might expect (hub or root loss was not included, but easily could have been).

The Viscous loss is simply the loss associated with the viscous drag from the airfoil profile. The viscous loss is found to be

linear in inverse-glide-ratio (Cd/Cl), loading (CLT ) and local-tip-speed-ratio (λr̃). With a larger value for each of them leading

to a larger loss. Opposed to both wake-rotation-loss and tip-loss a larger tip-speed-ratio is found to result in larger losses. As a130

consequence
:
, there will exist an optimal tip-speed-ratio , since either extreme (λ→ 0,λ→∞) will lead to 0 or negative power.

This is further discussed in section 3.3. From figure 3 the loss is seen to increase towards the tip since the local-tip-speed-ratio

(λr̃) is increasing. Viscous-loss is seen to be the most significant loss of the 3, although it should be noted that a glide-ratio of
Cl

Cd
= 40 is a fairly low value for a realistic modern rotor design and is here chosen to make the loss easily visible for the figure.

2.5 Tip-loss factor135

The tip-loss factor is commonly implemented for BEM’s, and although some different tip-correction has been proposed, the

tip-loss model by Glauert is a common one to used and it is also the one used here. It is given as:

F (φ, r̃,λ) =
2

π
cos−1 exp

(
−B(1/r̃− 1)

2sinφ

)
(Sørensen, 2016, p. 132 eq. 8.29) (20)
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Where B is the number of blades (which for simplicity is set to 3 thought out the paper). The Glauert tip-loss model leads to a

recursive problem due to the mutual dependence between CLT , sinφ and F . It is not possible to find an explicit equation for140

F in terms of CLT , but it is possible to find a iterative scheme that can solve for F . The iterative scheme is given as:

sinφi (CLT , r̃,λ,Fi) =
1 +

√
1− CLT

Fi√(
1 +

√
1− CLT

Fi

)2
+
(
λr̃+

√
λ2r̃2 + CLT

Fi

)2 (21)

Fi+1 (CLT , r̃,λ,sinφi) =
2

π
cos−1 exp

(
−B(1/r̃− 1)

2sinφi

)
(22)

Where an acceptable tolerance for F is reached with at most 30 iterations (|Fi+1−Fi|< 10−9) where a good initial guess for

F would be 1.145

The Glauert tip-loss model, breaks the explicit relationship between CLT and CLP in equation 19, since F needs to be

solved through iterations. An explicit relationship could be obtained by using the Prandtl tip-loss model instead, which is given

as:

FPrandtl (r̃,λ) =
2

π
cos−1 exp

(
−B

2

√
1 +λ2 (1− r̃)

)
(Sørensen, 2016, p. 131, eq. 8.26) (23)

Which does not depend on CLT . Using Prandtl’s tip-loss model, the effect on the tip-loss is found to be larger compared to150

Glauert’s tip-loss model, but investigating it further here is out of scope for this paper.

Although the Prandtl tip-loss model is much simpler and easier to implement, the Glauert model is used through out

:::::::::
throughout this paper as it is the one used for the BEM validation later in section 4.2.

2.6 Blade loading without drag in induction

Whether or not to include drag when computing the thrust loading (including drag in equation 13) is still a standing question for155

the derivation of BEM, and excluding drag in the derivation here should not be seen as an argument in favor of this approach,

but merely as a consequence that it makes the mathematical derivation simpler as well as the resulting equation for local power

(equation 19). If drag should be included for the computation of the induced velocities it should be noted that it is not just a

matter of including drag in equation 13, as the closure equation in equation 18 also needs an additional λr̃Cd

Cl
(a+ ap) to be

added on the right-hand-side, if it should be consistent with the BEM described in Ning (2014).160

A consequence of excluding drag from equation 13 there arises a difference between the forces seen from the blade, and the

forces seen by the air where equation 13 is the thrust force as seen by the air and where equation 14 is the tangential force seen

by the blade. Often in optimization it is the thrust load at the blade that is of interest and equation 24 shows the relationship

between the two local-thrust loading’s:

CLT,blade

(
CLT , r̃,λ,

Cd
Cl

)
= CLT

1 +
Cd
Cl

1 +
√

1− CLT

F

λr̃+
√
λ2r̃2 + CLT

F

 (24)165

Where CLT is the local-thrust as seen by the air.
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3 Gradients for RIAD and power optimization

In this section
:
,
:
a method for computing the gradients for RIAD is presented. The gradients is

::
are

:
then used for power opti-

mization. First,
:
it is applied for loading optimization for maximum power and it is then further extended for optimization wrt.

tip-speed-ratio and loading. At
::
In the end, a discussion of how optimization with RIAD fits within the current state of the art is170

given.

3.1 Gradients with complex step

The local power equation (equation 19) is an analytical expression (with some complications for the tip-loss-factor) and in

principleit is straight forward ,
::
it
::
is

:::::::::::::
straightforward to compute the gradient for any of the input variables. But it is tedious and

error prone
:::::::::
error-prone and the tip-loss-factor makes it fairly complicated. The Complex step method (Martins et al., 2000) is175

therefore found to be an easier way to compute the gradients, without any loss of accuracy. It also has the benefit that little

additional work needs to be done when equations 19 is implemented to compute the gradients. The conceptual idea behind the

complex-step-method is fairly simple and for the sake of making the reader familiar with it, it is summarized here. For a proper

description,
:
the reader is referred to Martins et al. (2000).

The complex step method is based on the observation that the Taylor-series-expansion of an analytical function with a180

complex step (or perturbation) gives the following (taking equation 19 as an example with a step in CLT ):

CLP

(
CLT + ih, r̃,λ,

Cd
Cl

)
= CLP

(
CLT , r̃,λ,

Cd
Cl

)
+ ih

∂CLP
∂CLT

(
CLT , r̃,λ,

Cd
Cl

)
+O(h2) (25)

Where i is the complex unit and h the step size. Taking the imaginary component of equation 25 and dividing by the step size

the approximate gradient can be found as:

∂CLP
∂CLT

(
CLT , r̃,λ,

Cd
Cl

)
=
I
[
CLP

(
CLT + ih, r̃,λ, Cd

Cl

)]
h

+O(h2) (26)185

Equation 26 is seen to have some similarity to computing the gradient through finite difference. But the key difference is that

finite difference requires the difference between two function evaluations, which leads to a rounding error. For finite difference

there is an optimal step size (h) where the combination of the truncation error (O(h2)) and the rounding error is as small

as possible. This is not the case for the complex-step-method, where the rounding error is eliminated by not computing a

difference between two function evaluations and the step size can be arbitrary
::::::::
arbitrarily small. Using a step size of h= 10−9190

the truncation error (O(h2)≈ 10−18) is found to be smaller than machine precision (10−16) and the gradient is therefore

accurate to machine precision. This method is applicable
::::::
applies to any analytical expression, but special care should be taken

with functions that might lead to undesirable effects for complex numbers like the absolute value function or similar. This is

not of concern for equation 19.
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3.2 Loading optimization for max power195

The problem of maximizing CP w.r.t. CLT is a classic problem, that will be used here to demonstrate how easily RIAD can

solve this problem. It is thought to show the strength of using RIAD for optimization as opposed to using a regular BEM since

the solutions is fairly easy to find.

The CP maximizing problem can be stated as:

max
CLT

[
CP

(
CLT ,λ,

Cd

Cl

)]
(27)200

Where the bold-face signifies that it is a function/vector changing with span (r̃). Since the model assumes radial independence

the maximization can be moved within the integration for CP (equation 8) and the maximization can be made for CLP at each

span location (r̃) independently, which can be stated as:

max
CLT

[
CLP

(
CLT , r̃,λ,

Cd
Cl

)]
(28)

Since equation 19 is a smooth function the optimization problem can be simplified as finding the root wrt.CLT for the following205

equation:

∂CLP
∂CLT

(
CLT , r̃,λ,

Cd
Cl

)
= 0 for CLT ∈

[
0,

8

9

]
(29)

⇓

CLP,opt

(
r̃,λ,

Cd
Cl

)
= CLP

(
CLT,opt, r̃,λ,

Cd
Cl

)
(30)

Where ∂CLP

∂CLT
is computed with equation 26, and the outcome from the optimization is the CLT that maximizes CLP , which is210

referred to as CLT,opt and CLP,opt respectively. The root for equation 29 can be found with common root solving algorithms

like bisection or Brent’s method, eliminating the need for an optimizer to solve the problem. It should be noticed that in order

to get the true gradient when including Glauert’s tip-loss-factor (described in section 2.5), the complex step should be included

when solving for the tip-loss-factor (equations 21, 22) otherwise the effect of the tip-loss on the gradient will not be included.

Applying the optimization with similar input as for figure 3
(
λ= 7, Cl

Cd
= 40

)
, the resulting CLT,opt and CLP,opt is shown215

in figure 5. CLT,opt is seen to be mostly affected at the root and tip of the rotor, compared to the Betz-Joukowsky optimum. At

the root CLT,opt is tending to a value of 3/4 and at the tip going towards 0. The mid-span is seen to have a slightly decreasing

slope. For CLP,opt the 3 losses (wake-rotation-loss, tip-loss, viscous-loss) are highlighted as shaded region. CLP,opt is seen to

have a local maximum at r̃ = 0.31 from where viscous-loss and later tip-loss is seen to grow for increasing r̃. For decreasing r̃

the wake-rotation-loss is seen to increase.220

3.3 Tip-speed-ratio optimization for maximum power

The Loading optimization in section 3.2 required two inputs
(
λ, Cl

Cd

)
to maximize CP , but in this section the optimization

will be extended to also include the tip-speed-ratio as an optimization parameter leaving only the glide-ratio as an input. The
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Figure 5. Optimal local-thrust (CLT ) and optimal local-power (CLP ) vs. normalized radius (r̃), with λ= 7 and span-wise constant Cl
Cd

= 40

as input.

optimization problem can be stated as:

max
λ,CLT

[
CP

(
CLT ,λ,

Cd

Cl

)]
(31)225

Using the same assumption as for the loading optimization the optimization for CLT can be solved as it was described in

section 3.2 assuming that CLT,opt is for a fixed λ. A nested optimization can therefore be stated as:

max
λ

[
CP

(
CLT,opt,λ,

Cd

Cl

)]
(32)

The solution to the above optimization problem can be found by solving:

∂CP
∂λ

(
CLT,opt,λ,

Cd

Cl

)
= 0 λ ∈

[
0.2 ·

√(
Cl
Cd

)
min

,

√(
Cl
Cd

)
max

]
(33)230

⇓

CP,opt

(
Cd

Cl

)
= CP

(
CLT,opt,λopt,

Cd

Cl

)
(34)

Where the bounding region is found from experience
::
by

::::::::
observing

::::
that

::::
λopt::::

has
::
an

:::::::::::
approximate

:::::::::::
proportional

::::::::
behaviour

:::
of

:::::::

√
Cl/Cd::::

and
:::
the

:::::
limits

:::
are

::::::
simply

::::::::::
determined

::
to

::::::
contain

:::
the

:::::::
optimal

:::::::
solution. The outcome from the optimization is the tip-

speed-ratio that maximizes the power coefficient. They are referred to as λopt and CP,opt. To compute the gradient of CP ,235
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equation 8 is used and the complex step is applied as follows:

∂CP
∂λ

(
CLT,opt,λ,

Cd

Cl

)
=

1

h
I

2

1∫
0

CLP

(
CLT,opt(r),λ+ ih,

Cd
Cl

(r)

)
r̃dr̃

 (35)

Where for practical implementation the problem is discretized along the span and the integration can be preformed
:::::::::
performed

using the trapezoidal rule. As it was the case for loading optimization the problem can be solved by the used of root solving

:::
use

::
of

::::::::::
root-solving

:
algorithms like bisection or Brent’s method.240

In figure 6 the result of solving the optimization problem for optimal tip-speed-ratio with varying span-wise constant glide-

ratio is shown. As expected, the optimal tip-speed-ratio is seen to increase as the glide-ratio increase due to the balance between

Figure 6. Optimal tip-speed-ratio (λopt) vs. span-wise constant glide-ratio ( Cl
Cd

). Both with and without tip-loss included in the optimization.

For the case with tip-loss included, 5 points are highlighted, showing sketches of the local-thrust (CLT ) and the local-power (CLP .

the viscous-losses (increases with increasing λ) and wake-rotation-losses as well as tip-losses (decreases with increasing λ).

It is interesting to notice the significant impact of including tip-loss on λopt, with the inclusion of tip-loss leading to a larger

λopt. 4 points along the λopt curve in figure 6 is highlighted, showing sketches of the local-thrust and local-power with the245

difference to the Betz-Joukowsky limit shown by shaded red region.
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Figure 7. Optimal power coefficient (CP,opt) vs. span-wise constant glide ratio ( Cl
Cd

). The same 5 points as in figure 6 is highlighted, but

only the local-power (CLP ) is show for the sketches with the addition of the point of max local-power (CLP,max).

The associated CP,opt is shown in figure 7. The 3 power loss contributions are shown as shaded regions and the viscous-loss

is seen to be the most significant regardless of the glide-ratio. Tip-loss is seen to be the second most significant loss, at least

for Cl

Cd
> 25, which anyway would be a very low values for a modern utility scale wind turbine. The slope of CP,opt is seen to

become flat for large values of the glide-ratio, and the improvement in CP,opt from Cl

Cd
= 100 to Cl

Cd
= 150 is ∆CP,opt = 3.5%250

and that is with a glide-ratio improvement of ∆ Cl

Cd
= 50%.

3.4 Compared to other work

The results of CP maximization presented in figure 5, 6 and 7 are not in it self
::::
itself novel results. Similar results have been

shown by (Wilson et al., 1976, sec. 3.1-2), (Manwell et al., 2010, sec. 3.9), (Sørensen, 2016, cap. 5) and (Jamieson, 2018, sec.

1.9). The novelty is the ease at which these results can be obtained and the generality at which this method can be applied. In255

all of the mentioned works,
:
the optimization method relies on excluding mechanisms like rotational-effects, drag

:
,
:
or tip-loss

::
or

::
an

::::::::::
assumption

::
of

::::::::
constant

::::
axial

::::::::
induction

:
to find a solution without the use of an optimizer. Common to them all is the

exclusion of drag
:::
For

:::::::::::::::::::::::::::::::::::::::::::::::::
Wilson et al. (1976); Manwell et al. (2010); Sørensen (2016)

::::
drag

::
is

::::::::
excluded for the induced velocity

as it was also done within this paper. However, the reason to exclude drag from the induced velocity within this paper is for
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the derivation of RIAD to be simpler. Including drag in the induced velocity will make equation 19 more complicated, but the260

optimization methods presented in section 3.2 and 3.3 would still be applicable. A large part of why RIAD is easy to use and

implement for optimization is the use of the complex-step-method, which is arguably not an invention of RIAD and it could

as well be applied for a regular BEM, with the same result, although the optimization would be more convoluted. RIAD is

established on a better BEM parametrization dedicated to optimization when solving load-constrained power optimizations as

it is shown in Part 2 of this paper (Loenbaek et al., 2020).265

4 From RIAD to rotor blade planform

Section 2.3 presented the connection between inputs, such as local-thrust, tip-speed-ratio and glide-ratio, for rotor power

performance and sections 3.2 and 3.3 presented the power optimization. But the presented methods only contains information

about the loading and power at the actuator disc, where this section establishes the connection between the RIAD inputs and

the blade planform, such as blade chord and twist. The blade planform is then used as an input for a BEM solver to validate270

that RIAD and BEM are equivalent formulations.

4.1 Equations for chord and twist

An equation for chord can be found from equation 13 while applying the closure equations (equations 17, 18) for cosφ resulting

in the following:

c(CLT , r̃,λ,Cl,R,B) =
8πr̃RCLT
BCl

1

λr̃+
√
λ2r̃2 + CLT

F

1√(
1 +

√
1− CLT

F

)2

+

(
λr̃+

√
λ2r̃2 + CLT

F

)2
(36)275

To compute the chord it is seen that additional inputs are required such as lift-coefficient (Cl), the number of blades (B),
:
and

rotor radius (R).

An equation for twist can be found in much the same way, by using equation 16 for tanφ and applying the closure equations.

Combining it with: φ= α+ θtwist + θpitch, the following equation for the twist can be found:

θtwist (CLT , r̃,λ) = tan−1

 1 +
√

1− CLT

F

λr̃+
√
λ2r̃2 + CLT

F


︸ ︷︷ ︸

φ

−α− θpitch (37)280

4.2 Validation with BEM

To show that RIAD is an equivalent formulation of the BEM equations, a planform design is created through equations 36 and

37 and evaluated with a BEM solver. The BEM solver used for the validation is CCBlade (Ning, 2014).

Running CCBlade requires an airfoil polar (Cl,Cd vs. α) and to keep it as simple as possible a single airfoil polar is used all

along the blade span. The airfoil is taken to be FFA-W3-301 (Bjorck, 1990) with the aerodynamic data from Bak et al. (2013)285
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::::::::::::
(Re= 10 · 106). The design point for the polar was for simplicity taken as the angle-of-attack with maximum glide-ratio,

resulting in the following:

Cl
Cd

= 92 (38)

α= 10.6◦ (39)

Cl = 1.52 (40)290

Running the optimization for λopt as described in section 3.3, gave λopt = 8.4 which is the tip-speed-ratio used for the design.

To give the design some real dimensions, a rotor radius of R= 50m is used.

The resulting planform design can be seen in figure 8. Using the planform design as input for CCBlade as well as the other

Figure 8. a) Blade chord b) Blade twist both as a function of radius. The number of blades is assumed to be B = 3.

inputs, the resulting local-thrust and local-power was found from CCBlade. A comparison between RIAD and CCBlade can

be seen in figure 9. a) shows the values for CLT and CLP for both the solvers. b) shows the difference between RIAD and295

CCBlade for both CLT and CLP using a log-scale on the y-axis. Both as a function of the normalized radius. In the root region

the two method are
::::::
methods

::
is

:
seen to agree to machine precision, but with an error that is growing towards the tip and reaching

a difference of 10−4 (which is still 3 significant digits). The growing error is found to disappear if tip-loss is excluded (agrees

to machine precision) and
:::
the difference is also seen to disappear if

::
the

:
drag is included for the induction as well as including

the tip-loss. The difference is therefore attributed to some small implementation difference regarding the tip-loss, but as the300

difference is anyway insignificant the difference is not investigated any further. It should be noted that for the comparison with

CCBlade, it is CLT,blade that is used, where CLT,blade was discussed in section 2.6.
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Figure 9. a) local-thrust (CLT ) and local-power (CLP ) for RIAD (line) and CCBlade (dots). b) the difference between the two methods for

local-thrust (∆CLT ) and local-power (∆CLP ). The difference is seen to increase towards the tip, but the agreement is still within 3 significant

digits and is therefore thought to be insignificant. The difference is likely a small implementation difference within tip-loss modeling.
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5 Conclusion

A rotor performance model called Radially-Independent-Actuator-Disc model (RIAD) was presented. It is a different parametriza-

tion of the Blade-Element-Momentum (BEM) equations which is found to be better for wind turbine optimization. The model305

relates the local-rotor-power output (Local-Power-Coefficient - CLP ) to the local-rotor-loading input (Local-Thrust-Coefficient

- CLT ) at a given radial station (r̃). The model is a simple equation, shown in equation 19, from which different physical effects

can easily be interpreted, such as wake-rotation-loss, tip-loss and viscous-loss.

A method to computing
:::::::
compute

:
gradients for RIAD was presented, through the use of the complex-step-method, which

allows to compute the gradient to machine precision with a minimum of additional work required.310

The gradients were used for classical power-coefficient (CP ) maximization, which was first applied for loading optimization

(CLT along the span) for a given tip-speed-ratio and glide-ratio. The optimization was then extended for combined optimization

of tip-speed-ratio and loading, leading to a nested optimization for CP which only requires the glide-ratio along the span as an

input. Using span-wise constant glide-ratio it was shown that viscous-loss is the most significant loss, regardless of the value

of glide-ratio. The optimization results by them self has
:::::::
themself

::::
have been done before, but the novel development is the ease315

at which the optimal result can be achieved , and the generality at which the method can be applied. But the real strength of

using RIAD for optimization , is for load-constraint rotor optimization as it is described in Part 2 (Loenbaek et al., 2020).

The relationship between local-thrust along the span and the blade chord and twist , was presented and they were used to

create the input for validation with a BEM solver (Ning, 2014). The difference between the two methods was found to agree to

3 significant digits with a likely small implementation difference for the tip-loss modelling
::::::::
modeling. In this way

:
, it was shown320

that RIAD and BEM are equivalent, with the difference being the parametrization.
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6 Nomenclature

6.1 Rotor Local variables

Variables that are scalars at a given radius location (r). Bold-face variables indicates it is a function or vector changing with

radius.325
Symbol Description Unit

x Bold face local variables symbolizes a function or vector changing with the rotor radius (r) -

r Rotor radius variable [0,R] m

∂T
∂r Thrust loading density Nm−1

∂P
∂r Power loading density Wm−1

1
ωr

∂P
∂r Tangential loading density Nm−1

∂L
∂r Lift loading density Nm−1

∂D
∂r Drag loading density Nm−1

r̃ Normalized rotor radius variable (r̃ = r
R ) -

CLT Local thrust coefficient (normalized ∂T/∂r - taken as the loading seen by the air) -

CLT,blade Local thrust coefficient as seen by the blade (including drag) -

CLT,opt Local thrust coefficient that maximizes CLP for a given λ and Cl

Cd
-

CLP Local power coefficient (normalized ∂P/∂r) -

CLP,opt Optimal local power coefficient for given λ and Cl

Cd
-

a Axial induction factor -

ap Tangential induction factor -

Cl Lift coefficient -

Cd Drag coefficient -
Cl

Cd
Airfoil glide ratio -

Cd

Cl
Inverse airfoil glide ratio -

c Blade chord m

σ Rotor solidity σ = Bc
2πr -

F Tip-loss-factor (described in section 2.5) -

φ Flow angle at the rotor plane (see figure 2) deg

Vrel Relative wind speed Vrel =
√

(V (1− a))
2

+ (ωr(1− ap))2 ms−1

Ṽrel Relative wind speed Ṽrel =
√

(1− a)
2

+λ2r̃2 (1− ap)2 -

α Airfoil angle-of-attack deg

θtwist Blade twist deg
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6.2 Rotor Global variables

Variables that are scalars for the whole rotor.
Symbol Description Unit

R Rotor radius m

T Rotor thrust N

P Rotor power W

V Free stream wind speed ms−1

θpitch Blade pitch angle deg

ω Rotor rotational speed s−1

CT Rotor thrust coefficient -

CP Rotor power coefficient -

CP,opt Rotor power coefficient with λopt and CLT,opt -

λ Rotor tip-speed-ratio
(
λ= ωR

V

)
-

λopt Rotor tip-speed-ratio that maximized CP for a given Cl

Cd
-

B Number of blades -

19



Author contributions. KL came up with the concept and main idea, as well as made the analysis. All author have interpreted the results and330

made suggestions for improvements. KL prepared the paper with revisions of all co-authors.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. We would like to thank Innovation Fund Denmark for funding the industrial PhD project which this article is a part of.

We would like to thank all the former employees at Suzlon Blade Sciences Center for being a great source of motivation with their interest

in the results.335

We would like to thank Mads Holst Aagaard Madsen from DTU Risø for the inspiration to use the complex-step-method.

20



References

Bak, C., Zahle, F., Bitsche, R., Yde, A., Henriksen, L. C., Nata, A., and Hansen, M. H.: Description of the DTU 10 MW Reference Wind

Turbine, DTU Wind Energy Report-I-0092, pp. 1–138, https://doi.org/10.1017/CBO9781107415324.004, 2013.

Betz, A.: Wind-Energie, und ihre aus- nutzung durch Windmuehlen (Wind energy and their utilization by windmills), Gottingen, Vanden-340

hoeck, 1926, 1926.

Bjorck, A.: Coordinates and Calculations for the FFA-Wl-xxx, FFA-W2-xxx, FFA-W2-xxx and FFA-W3-xxx Series of Airfoils for Horizon-

tal Axis Wind Turbines, Tech. rep., The Aeronautical Research Institute of Sweden, 1990.

Bottasso, C. L., Campagnolo, F., and Croce, A.: Multi-disciplinary constrained optimization of wind turbines, European Wind Energy Con-

ference and Exhibition 2010, EWEC 2010, 3, 2241–2250, https://doi.org/10.1007/s11044-011-9271-x, 2010.345

Durand, W. F. and Glauert, H.: Airplane Propellers, pp. 169–360, Springer Berlin Heidelberg, Berlin, Heidelberg,

https://doi.org/10.1007/978-3-642-91487-4_3, 1935.

Jamieson, P.: Innovation in Wind Turbine Design, John Wiley & Sons Ltd, Chichester, UK, https://doi.org/10.1002/9781119137924, 2018.

Loenbaek, K., Bak, C., and McWilliam, M.: Preliminary Rotor Design Exploration - Part 2: Wind Turbine Rotor Optimization with Radial

Independence, Wind Energy Science, 2020.350

Manwell, J. F., McGowan, J. G., and Rogers, A. L.: Aerodynamics of Wind Turbines, in: Wind Energy Explained, 2, pp. 91–155, John Wiley

& Sons, Ltd, Chichester, UK, https://doi.org/10.1002/9781119994367.ch3, 2010.

Martins, J. R., Kroo, I. M., and Alonso, J. J.: An automated method for sensitivity analysis using complex variables, 38th Aerospace Sciences

Meeting and Exhibit, https://doi.org/10.2514/6.2000-689, 2000.

Ning, S. A.: A simple solution method for the blade element momentum equations with guaranteed convergence, Wind Energy, 17, 1327–355

1345, https://doi.org/10.1002/we.1636, 2014.

Okulov, V. L. and van Kuik, G. A.: The Betz-Joukowsky limit: on the contribution to rotor aerodynamics by the British, German and Russian

scientific schools, Wind Energy, 15, 335–344, https://doi.org/10.1002/we.464, 2012.

Perez-Moreno, S. S., Zaaijer, M. B., Bottasso, C. L., Dykes, K., Merz, K. O., Réthoré, P. E., and Zahle, F.: Roadmap to the multidisci-

plinary design analysis and optimisation of wind energy systems, Journal of Physics: Conference Series, 753, https://doi.org/10.1088/1742-360

6596/753/6/062011, 2016.

Sørensen, J. N.: The general momentum theory, vol. 4, Springer London, https://doi.org/10.1007/978-3-319-22114-4_4, 2016.

Wilson, R. E., Lissaman, P. B., and Walker, S. N.: Aerodynamic performance of wind turbines., Tech. rep., Oregon State University, Corvallis,

1976.

Zahle, F., Tibaldi, C., Verelst, D. R., Bak, C., Bitsche, R., and Blasques, J. P. A. A.: Aero-Elastic Optimization of a 10 MW Wind Turbine,365

Proceedings - 33rd Wind Energy Symposium, pp. 201–223, 2015.

21

https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1007/s11044-011-9271-x
https://doi.org/10.1007/978-3-642-91487-4_3
https://doi.org/10.1002/9781119137924
https://doi.org/10.1002/9781119994367.ch3
https://doi.org/10.2514/6.2000-689
https://doi.org/10.1002/we.1636
https://doi.org/10.1002/we.464
https://doi.org/10.1088/1742-6596/753/6/062011
https://doi.org/10.1088/1742-6596/753/6/062011
https://doi.org/10.1088/1742-6596/753/6/062011
https://doi.org/10.1007/978-3-319-22114-4_4

