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Abstract. We present an analytical model for assessing the aerodynamic performance of a wind turbine rotor through a differ-
ent parametrization of the classical Blade Element Momentum (BEM) model. The model is named the Radially Independent
Actuator Disc model (RIAD) and it establishes an analytical relationship between the local-thrust loading and the local-power,
known as the Local-Thrust-Coefficient and the Local-Power-Coefficient respectively. The model has a direct physical inter-
pretation, showing the contribution for each of the 3 losses: wake-rotation-loss, tip-loss and viscous-loss. The gradients for
RIAD is found through the use of the Complex-step-method and power optimization is used to show how easily the method
can be used for rotor optimization. The main benefit of RIAD is the ease at which it can be applied for rotor optimization, and
especially load constraint power optimization as it is described in Loenbaek et al. (2020). The relationship between the RIAD
input and the rotor chord and twist is established and it is validated against a BEM solver.

Keyword: BEM, Rotor Optimization

1 Introduction

Wind turbine rotors are with their increasing size subject to continuous optimization with the overall objective of reducing the
cost of energy. Such optimizations are very complex because both the aerodynamic and the structural performance need to be
included in the optimization setup. Combining both aerodynamics and structural performance has shown very promising trends
indicating that a further cost reduction is possible, see e.g. Perez-Moreno et al. (2016), Zahle et al. (2015), Bottasso et al. (2010).
However, these optimization studies build on existing aerodynamic and aeroelastic tools, include numerous design variables
and constraints, and can be very complex. Thus, it is challenging to make a very general optimization study to map the design
space. That is the reason for investigating alternative methods and models to ease the exploration of optimal rotor designs.
The development of aerodynamic models for wind turbines is closely linked to that of propellers and helicopters. The first
theoretical model for predicting the aerodynamic performance of a rotor was the so-called 1D momentum theory developed
by Betz (Betz, 1926) and Joukowsky, which resulted in the famous maximum power extraction limit of 59.3% known as the
Betz-Joukowsky-limit or often just as the Betz-limit (Okulov and van Kuik, 2012). The model assumed constant loading along

the rotor radius in the flow direction.
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Later Glauert developed the Blade Element Momentum theory (BEM) (Durand and Glauert (1935), Sgrensen (2016)), which
is an extension where momentum theory is used for radially independent stream-tubes. It also included correction models for
tip-loss and highly loaded rotors. The model has since then been extended with multiple correction models to account for yaw
misalignment, shear profiles, turbulent inflow, etc.

In this paper, we present an aerodynamic rotor performance model which we refer to as the Radially Independent Actuator
Disc (RTIAD) model. It establishes a direct analytical relationship between the local-thrust loading and the local-power, which
is a useful simplification for rotor optimization. The model is equivalent to BEM but reduces the rotor design space to only two
independent variables at each radial station, i.e. the Local-Thrust-Coefficient (C'r) and the glide-ratio (C;/Cy) as well as the
global tip-speed-ratio (). The equivalent input for a BEM at each radial station is the design Lift-Coefficient (C}), the design
Drag-Coefficient (Cy), and the Rotor-Solidity (o) with the same global parameter. Most BEM formulations do not compute
the local-power directly, which is often an important optimization objective. At the same time, rotor optimization constraints
are often formulated in terms of loading. Both the objective and constraints are outputs from the BEM and their equations are
usually fairly convoluted. Using RIAD, the local-thrust loading (C'17) is the independent design parameter and the local-power
is computed explicitly through a single equation. It makes it easy to recast the optimization problem, which generally requires
a robust optimization algorithm, into a straightforward root finding problem, which makes the optimization faster and more
robust.

The paper starts by presenting the derivation of the RIAD model, which then leads into computing the gradients for RIAD.
These gradients are used for power optimization, leading to a simple optimization method. In the end, the relationship between
RIAD inputs and blade chord and twist is then established, and RIAD is validated against a BEM solver. As this paper presents
an aerodynamic model to be used for optimization, this paper is Part 1 where the model is used for load constraint power

optimization in Part 2 (Loenbaek et al., 2020).

2 The RIAD model

In the following the Radially Independent Actuator Disc (RIAD) model is presented which start by establishing the relationship
between global and local parameters for a wind turbine rotor as well as introducing normalization. The relationship between
the local forces is then established, leading to an implicit equation for the local-power. A set of approximate closure equations
is then used to establish an explicit equation. The physical interpretation of the different factors and terms is then presented

and at the end, some details regarding the tip-loss-factor and the exclusion of drag from the induced velocity is discussed.
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2.1 Relationship between global and local coefficients

Starting with the Fundamental theorem of calculus the following equation can be made for the global values for thrust (7") and

power (P):
RaT
T— / o dr (1)
0
R@P
P / P 2
T
0

Where %—I is the thrust-loading-density and %—I: is the power-density.
Introducing the classical non-dimensional relations for thrust (Cr) and power (Cp) as well as the local equivalent which is

introduced as the Local-Thrust-Coefficient (C' 1) and Local-Power-Coefficient (Cpp):

T= %pOVQWRQCT (3)
pP= %poVSﬂ'RQCP @
Zf = %pQ?TTVQCLT (®))
g]: = %pQ?TTV3CLp (6)

Combining the equations the following equations can be found for Cr and Cp:

1
Cr= Q/C'LdeF @)
0
1
Op =2 / O, prdF 8)
0

Where 7 is the Normalized-Radius (7 = r/R). A sketch of the relationship between the local and global coefficients can be

seen in figure 1.
2.2 Relationship between local coefficients

To establish a relationship between the local coefficients C'; 7 and C, p the forces are assumed to be aerodynamic forces where
the lift force is orthogonal to the local flow and where there is loss from viscous drag in the local flow direction. The force is

assumed to originate from a rotating wind turbine blades with rotational speed w. The tangential force density is then given as

1 9P

o7 5, - Introducing the local lift density g—f and drag density %—f as well as the local flow angle ¢ the following equations can
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Figure 1. Sketch of the relationship between Local Coefficients (Crr,Crp) and Global Coefficients (Cr,Cp).

be made:
oT 0L
= Ecosqﬁ )
1 0P OL . 0D
EE—ESIH(ﬁ*WCOSQI) (10)

Where 0D /Jr = 0 in equation 9 to exclude drag from induction. Using the common normalization of dL/0r and 9D /0r

oL 1 .,
E = ipBCV’r‘elCl (11)
oD 1 . .,

E = §pBCVrelCd (12)

together with equation 5 and 6 the following equations can be found:

Crr =0oV2,Cicos¢ (13)
C - .
AL: =0oV?2,Cising — oV,2,Cycosd (14)

Where o is the rotor solidity (o = Bc/27r) and Vrel the normalized relative velocity. A sketch of the air-flow and forces can
be seen in figure 2.

Combining equation 13 and 14 an equation for C p can be found as:

Crp <CLT77:7/\a gdﬂb) = MCrrtang — MZ%CLT (15)
! !

This is a general equation for the relationship between the C'rr and C, p, but it is implicit since tan ¢ depends on C'p.
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Example span
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Figure 2. Sketch of the relationship between the air-flow and the forces at each span location.

2.3 Explicit equation for C1 p (Closure relation between Cr 1 and tan ¢)

The local flow angle ¢ is given from the induced velocities (Sgrensen, 2016, p. 101, eq 7.3) as:

1—a

O N ey

(16)

where a is the axial induction factor, a,, is the tangential induction factor.

Equation 16 introduces two new variables (a,a,). In order to make an explicit equation for tan¢ as a function of Crr two
equations relating Cr to a and a,, respectively are needed. These are the closure equations.

There does not exist a general set of model closure equations, but different approximate closures have been proposed. The most

widely used set is referred to as the Glauert closure, which is an implicit assumption made for most BEM’s. The closures are

given as:
Crr=4a(l —a)F (Ning, 2014, p. 4 eq. 2) 17
a(l—a) = N*7%a,(1+a,) (Sgrensen, 2016, p. 50 eq. 4.36) (18)

Where F' is the tip-loss factor, which is further described in section 2.5. For now F' €]0,1] with ' — 0 as 7 — 1. Combining

equation 17, 18 with equation 16 an explicit equation for tan ¢ in terms of C' can be found. This leads to an explicit equation

for CLPZ
¢ 1 c 2NF c
Crp <CLT7f>/\7 C,d> = 5 <1 +14/1— ;T> Crr- L *AFFdCLT (19)
: N RPN
1D power viscous loss

wake rotation loss

Equation 19 is the main result of this section. It states an explicit relationship between the local power and the local loading.
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2.4 Physical interpretation and input sensitivity

Equation 19 has a straightforward physical interpretation which is also highlighted through under bracing of factors and terms,
with an additional loss coming from the tip-loss factor (£"). A sketch showing the impact of different losses for a specific input

can be seen in figure 3.

Input Power
1D power Wake rotation loss Tip loss Viscous loss Net power
Cr=2% Cp =32 =059 ACp=-001 ACp=-0.04 ACp = —0.10 Cp=0.43
C>z\ i ZO 1 W C 22X Cr A7 &a _ C
(@— ) ;(1+ 1-— /LT) LT « N/ NeiirCry F<1 — LTAT & = JLP
LT = 3§
ACLp

EEEEEEEEE

Figure 3. Sketch showing a graphical representation of the losses and the mathematical origin. The input is for span-wise constant local-thrust

and glide-ratio.

The 1D power is the classical 1D momentum theory result by Betz and Joukowsky (Okulov and van Kuik, 2012), but here
applied for radially independent streamtubes (3 (1++/1—Cprr) Cpr =4a(l —a)?).

The Wake rotation loss is the power loss that originates from the conservation of angular momentum. When extracting power
from the rotational motion, the force that is rotating the blades leads to an opposing and equal magnitude force on the fluid,
resulting in the fluid rotating in the wake of the turbine. Since there needs to be conservation of power, the potential power
that can be extracted is lowered, leading to wake-rotation-loss. From figure 3 the wake-rotation-loss is seen to affect the root
region of turbine. This is further investigated in figure 4, where the wake-rotation-loss-factor is plotted as a function of the local
tip-speed-ratio (A7) for different values of the local loading (C7). The effect of changing the local loading, is seen to have a
limited effect. From figure 4 b) the wake-rotation-loss is seen to be insignificant for A7 > 5 which is approximately from the
mid-span and outwards for a modern utility scale turbine with A ~ 7 — 10. From the example in figure 3 the wake-rotation-loss
is seen to have the smallest impact on the global power with ACp = —0.01.

The Tip loss is the power loss associated with the rotor having a finite number of blades and not acting as an actuator disc
with an infinite number of blades. This effect is captured in the tip-loss-factor (¥) which is further described in section 2.5. The
tip-loss model that is used in this paper, captures the impact on the induced velocities in the rotor plane, with the additionally

induced velocities coming from the vorticity released at the tip of the blade. The most important parameter for tip-loss, is the
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Figure 4. Significance of wake-rotation-loss. a) wake-rotation-factor vs. local-tip-speed-ratio (A7). Black dashed line is the limit at 1/2. b)
difference between the wake-rotation-factor and the limit at 1/2 vs. local-tip-speed-ratio (A7). Notice that the y-axis is log-scale. Red dashed

line is at 99% of the limit. Notice that the solid lines are for different values of C'r,r. Higher C'r 7 leads to higher wake-rotation-loss.

tip-speed-ratio (\), with the tip-loss getting smaller with increasing tip-speed-ratio. From figure 3 the tip-loss is seen to affect
the power at the tip as one might expect (hub or root loss was not included, but easily could have been).

The Viscous loss is simply the loss associated with the viscous drag from the airfoil profile. The viscous loss is found to be
linear in inverse-glide-ratio (Cy/C}), loading (C1, 1) and local-tip-speed-ratio (A7). With a larger value for each of them leading
to a larger loss. Opposed to both wake-rotation-loss and tip-loss a larger tip-speed-ratio is found to result in larger losses. As a
consequence, there will exist an optimal tip-speed-ratio since either extreme (A — 0, A — oco) will lead to 0 or negative power.
This is further discussed in section 3.3. From figure 3 the loss is seen to increase towards the tip since the local-tip-speed-ratio
(A7) is increasing. Viscous-loss is seen to be the most significant loss of the 3, although it should be noted that a glide-ratio of

% =40 is a fairly low value for a realistic modern rotor design and is here chosen to make the loss easily visible for the figure.

2.5 Tip-loss factor

The tip-loss factor is commonly implemented for BEM’s, and although some different tip-correction has been proposed, the

tip-loss model by Glauert is a common one to used and it is also the one used here. It is given as:

2 B(1/fr—1
F(¢,7,\) = p cos lexp <(2§17;1¢)> (Sgrensen, 2016, p. 132 eq. 8.29) (20)
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Where B is the number of blades (which for simplicity is set to 3 thought out the paper). The Glauert tip-loss model leads to a
recursive problem due to the mutual dependence between C1 7, sin¢ and F'. It is not possible to find an explicit equation for

F in terms of Cpp, but it is possible to find a iterative scheme that can solve for F. The iterative scheme is given as:

. ) 1+4,/1- %=
sing; (Crr, 7\, Fi) = - - (1)
\/(1+,/1C;j) + (W Nz G )
2 B(1/f—1
Fip1(Crr, 7\ sing;) = - cos texp <(28/1;¢)> (22)

Where an acceptable tolerance for F is reached with at most 30 iterations (| F;; 1 — F;| < 10~?) where a good initial guess for
F would be 1.

The Glauert tip-loss model, breaks the explicit relationship between C'r and Cp in equation 19, since F needs to be
solved through iterations. An explicit relationship could be obtained by using the Prandtl tip-loss model instead, which is given

as:

2 B
Fprandu (T, A) = ~ cos texp <2 V14N (1- F)) (Sgrensen, 2016, p. 131, eq. 8.26) (23)

Which does not depend on Cr. Using Prandtl’s tip-loss model, the effect on the tip-loss is found to be larger compared to
Glauert’s tip-loss model, but investigating it further here is out of scope for this paper.
Although the Prandtl tip-loss model is much simpler and easier to implement, the Glauert model is used throughout this

paper as it is the one used for the BEM validation later in section 4.2.
2.6 Blade loading without drag in induction

Whether or not to include drag when computing the thrust loading (including drag in equation 13) is still a standing question for
the derivation of BEM, and excluding drag in the derivation here should not be seen as an argument in favor of this approach,
but merely as a consequence that it makes the mathematical derivation simpler as well as the resulting equation for local power
(equation 19). If drag should be included for the computation of the induced velocities it should be noted that it is not just a
matter of including drag in equation 13, as the closure equation in equation 18 also needs an additional A7 %(a +ap) to be
added on the right-hand-side, if it should be consistent with the BEM described in Ning (2014).

A consequence of excluding drag from equation 13 there arises a difference between the forces seen from the blade, and the
forces seen by the air where equation 13 is the thrust force as seen by the air and where equation 14 is the tangential force seen
by the blade. Often in optimization it is the thrust load at the blade that is of interest and equation 24 shows the relationship

between the two local-thrust loading’s:

Crr
. C Cy 1tW1-7%
Crr plade <CLT77“,)\, 7) d (24)

=Crr | 14+ -
¢ Co x4+ /2272 4 Cpx

Where Cpr is the local-thrust as seen by the air.
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3 Gradients for RIAD and power optimization

In this section, a method for computing the gradients for RIAD is presented. The gradients are then used for power optimization.
First, it is applied for loading optimization for maximum power and it is then further extended for optimization wrt. tip-speed-

ratio and loading. In the end, a discussion of how optimization with RIAD fits within the current state of the art is given.
3.1 Gradients with complex step

The local power equation (equation 19) is an analytical expression (with some complications for the tip-loss-factor) and in
principle, it is straightforward to compute the gradient for any of the input variables. But it is tedious and error-prone and the
tip-loss-factor makes it fairly complicated. The Complex step method (Martins et al., 2000) is therefore found to be an easier
way to compute the gradients, without any loss of accuracy. It also has the benefit that little additional work needs to be done
when equations 19 is implemented to compute the gradients. The conceptual idea behind the complex-step-method is fairly
simple and for the sake of making the reader familiar with it, it is summarized here. For a proper description, the reader is
referred to Martins et al. (2000).

The complex step method is based on the observation that the Taylor-series-expansion of an analytical function with a

complex step (or perturbation) gives the following (taking equation 19 as an example with a step in Cr7):

AN o Ca\ , . 0CLp _ Ca 9
Crp <CLT +1ih, 7, A, Cz) =CLp <CLT7T’,)\7 Cl) —Hh@CLT <CLT77"7/\a Cz) +O(h7) (25)

Where ¢ is the complex unit and A the step size. Taking the imaginary component of equation 25 and dividing by the step size

the approximate gradient can be found as:

+O(h?) (26)

9C,p o T|Cur (Cur+inin 2]
(ereng) ===

Equation 26 is seen to have some similarity to computing the gradient through finite difference. But the key difference is that
finite difference requires the difference between two function evaluations, which leads to a rounding error. For finite difference
there is an optimal step size (h) where the combination of the truncation error (O(h?)) and the rounding error is as small
as possible. This is not the case for the complex-step-method, where the rounding error is eliminated by not computing a
difference between two function evaluations and the step size can be arbitrarily small. Using a step size of h =107 the
truncation error (O(h?) ~ 10~'®) is found to be smaller than machine precision (10~1¢) and the gradient is therefore accurate
to machine precision. This method applies to any analytical expression, but special care should be taken with functions that
might lead to undesirable effects for complex numbers like the absolute value function or similar. This is not of concern for

equation 19.
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3.2 Loading optimization for max power

The problem of maximizing Cp w.r.t. Cr is a classic problem, that will be used here to demonstrate how easily RIAD can
solve this problem. It is thought to show the strength of using RIAD for optimization as opposed to using a regular BEM since
the solutions is fairly easy to find.

The C'p maximizing problem can be stated as:

cp (e n. E2 27
max{ P( LT, 7C>:| ( )

LT 1
Where the bold-face signifies that it is a function/vector changing with span (7). Since the model assumes radial independence
the maximization can be moved within the integration for Cp (equation 8) and the maximization can be made for C p at each

span location (7) independently, which can be stated as:

-, Cq
c Crr, 7"\, — 28

Iggjf{ LP( Lr,T Cl)] (28)
Since equation 19 is a smooth function the optimization problem can be simplified as finding the root wrt. C'p for the following
equation:

oCrLp _, Cq 8

A— | = f — 2
8CLT <CLTar7 ) Cl 0 or CLT € 07 9 ( 9)
I
~ Cd ~ Cd

Crpopt (T,)\> C’z) =CLp (CLT,optaT7)\7 Cz) (30)

Where ggi ; is computed with equation 26, and the outcome from the optimization is the C' that maximizes C'f, p, which is
referred to as Cr opt and C'p p op respectively. The root for equation 29 can be found with common root solving algorithms
like bisection or Brent’s method, eliminating the need for an optimizer to solve the problem. It should be noticed that to get
the true gradient when including Glauert’s tip-loss-factor (described in section 2.5), the complex step should be included when
solving for the tip-loss-factor (equations 21, 22) otherwise the effect of the tip-loss on the gradient will not be included.
Applying the optimization with similar input as for figure 3 </\ =1, g—; = 40) , the resulting C'rr opt and C'rp ope is shown
in figure 5. C' 7 opt is seen to be mostly affected at the root and tip of the rotor, compared to the Betz-Joukowsky optimum. At
the root C' 7 op 18 tending to a value of 3/4 and at the tip going towards 0. The mid-span is seen to have a slightly decreasing
slope. For C'1, p,opt the 3 losses (wake-rotation-loss, tip-loss, viscous-loss) are highlighted as shaded region. Cr,p op¢ is seen to
have a local maximum at 7 = 0.31 from where viscous-loss and later tip-loss is seen to grow for increasing 7. For decreasing 7

the wake-rotation-loss is seen to increase.
3.3 Tip-speed-ratio optimization for maximum power

The Loading optimization in section 3.2 required two inputs ()\, %) to maximize C'p, but in this section the optimization

will be extended to also include the tip-speed-ratio as an optimization parameter leaving only the glide-ratio as an input. The

10
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Input: A\ =7, &b = 40, = Output: Or = 0.80,Cp = 0.44

I Viscous-loss

CLP,max
(0.31,0.52)

— CLT,opt

— CLP,opt

Local Power (Cpp) or Local Thrust (Crr) []

T T T
0.1 0.2 0.3 0.4 0.5 0.6 0.7
Normalized rotor radius (7 = r/R) [-]

e
o

Figure 5. Optimal local-thrust (C', 1) and optimal local-power (C'r, p) vs. normalized radius (), with A = 7 and span-wise constant g—; =40

as input.

optimization problem can be stated as:

Cq
max {op <CLT,>\,>} 31)

ACLr C,

Using the same assumption as for the loading optimization the optimization for C'; 1 can be solved as it was described in

section 3.2 assuming that Cr1 o, i for a fixed X. A nested optimization can therefore be stated as:

c
max {cp (CLT,O,,t, Pyt )} (32)
A (@)

The solution to the above optimization problem can be found by solving:

an Cd o Cl Cl
G (Comanr G ) =0 re [0'2‘\/ (o>m¢ (ca)maj 9

4

Cd Cd
CP,opt a = CP CLT,opta )\opta a (34)

Where the bounding region is found from experience. The outcome from the optimization is the tip-speed-ratio that maximizes

the power coefficient. They are referred to as Ayp: and Cp ope. To compute the gradient of C'p, equation 8 is used and the

11
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complex step is applied as follows:
ac ca\ 1 c
P d . d g~
W (CLT’Opt7)\’(:'l) = EI Q/CLP (CLT7opt(T)7)\+ZhaC,l(T)) 7dr (35
0

Where for practical implementation the problem is discretized along the span and the integration can be performed using the
trapezoidal rule. As it was the case for loading optimization the problem can be solved by the use of root-solving algorithms
like bisection or Brent’s method.

In figure 6 the result of solving the optimization problem for optimal tip-speed-ratio with varying span-wise constant glide-

ratio is shown. As expected, the optimal tip-speed-ratio is seen to increase as the glide-ratio increase due to the balance between

I Cr=067 Ccp-02
14 Cr =067 Cp =023 with tiploss 250,133
without tip-loss Cr =084 Cp =053
12 - ~
—_ —>
— (150,10.5
510 -
=
.0
T g
3 (60,6.8)
2 V
g 67 Cr=075Cp=039 Cr=080 Cp=047 Cp=083 Cp=0.51
E
E 44
B 20,3.0
g (20,3.9)
21 #51.7)
0 T T T T T T T T T T T
0 25 50 75 100 125 150 175 200 225 250 275 300

Glide ratio (g—;) [-]

Figure 6. Optimal tip-speed-ratio (Aop¢) Vs. span-wise constant glide-ratio (%)' Both with and without tip-loss included in the optimization.

For the case with tip-loss included, 5 points are highlighted, showing sketches of the local-thrust (C'z 1) and the local-power (C'z. p.

the viscous-losses (increases with increasing A) and wake-rotation-losses as well as tip-losses (decreases with increasing \).
It is interesting to notice the significant impact of including tip-loss on A,:, with the inclusion of tip-loss leading to a larger
Aopt. 4 points along the A, curve in figure 6 is highlighted, showing sketches of the local-thrust and local-power with the

difference to the Betz-Joukowsky limit shown by shaded red region.
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Figure 7. Optimal power coefficient (Cp,op¢) Vs. span-wise constant glide ratio (%)' The same 5 points as in figure 6 is highlighted, but

only the local-power (C'r, p) is show for the sketches with the addition of the point of max local-power (C'r, p,max)-

The associated C'p, ¢ is shown in figure 7. The 3 power loss contributions are shown as shaded regions and the viscous-loss
is seen to be the most significant regardless of the glide-ratio. Tip-loss is seen to be the second most significant loss, at least
for g—; > 25, which anyway would be a very low values for a modern utility scale wind turbine. The slope of Cp . is seen to
become flat for large values of the glide-ratio, and the improvement in C'p, oy from g—; =100to g—; = 15018 ACp,opt = 3.5%

and that is with a glide-ratio improvement of A% = 50%.
3.4 Compared to other work

The results of C'p maximization presented in figure 5, 6 and 7 are not in itself novel results. Similar results have been shown
by (Wilson et al., 1976, sec. 3.1-2), (Manwell et al., 2010, sec. 3.9), (Sgrensen, 2016, cap. 5) and (Jamieson, 2018, sec. 1.9).
The novelty is the ease at which these results can be obtained and the generality at which this method can be applied. In all of
the mentioned works, the optimization method relies on excluding mechanisms like rotational-effects, drag, or tip-loss to find
a solution without the use of an optimizer. Common to them all is the exclusion of drag for the induced velocity as it was also
done within this paper. However, the reason to exclude drag from the induced velocity within this paper is for the derivation

of RIAD to be simpler. Including drag in the induced velocity will make equation 19 more complicated, but the optimization
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methods presented in section 3.2 and 3.3 would still be applicable. A large part of why RIAD is easy to use and implement
for optimization is the use of the complex-step-method, which is arguably not an invention of RIAD and it could as well be
applied for a regular BEM, with the same result, although the optimization would be more convoluted. RIAD is established on
a better BEM parametrization dedicated to optimization when solving load-constrained power optimizations as it is shown in

Part 2 of this paper (Loenbaek et al., 2020).

4 From RIAD to rotor blade planform

Section 2.3 presented the connection between inputs, such as local-thrust, tip-speed-ratio and glide-ratio, for rotor power
performance and sections 3.2 and 3.3 presented the power optimization. But the presented methods only contains information
about the loading and power at the actuator disc, where this section establishes the connection between the RIAD inputs and
the blade planform, such as blade chord and twist. The blade planform is then used as an input for a BEM solver to validate

that RIAD and BEM are equivalent formulations.
4.1 Equations for chord and twist

An equation for chord can be found from equation 13 while applying the closure equations (equations 17, 18) for cos ¢ resulting

in the following:

87T’I’~RCLT 1 1

B(, = 272 4 Cor 2
A7"+\/“ T (1+ 1Cf,T> +<AF+\/A2F2+C§T)

To compute the chord it is seen that additional inputs are required such as lift-coefficient (C}), the number of blades (B), and

C(OLT,'F,)\,C],R,B) =

(36)

2

rotor radius (R).
An equation for twist can be found in much the same way, by using equation 16 for tan ¢ and applying the closure equations.

Combining it with: ¢ = & + 0yist + Opitcn, the following equation for the twist can be found:

144/1— L
Orwist (OLTa 7, >\) = tan™? —a— apitch 37)
AF 4 4 A272 4 Co

¢

4.2 Validation with BEM

To show that RIAD is an equivalent formulation of the BEM equations, a planform design is created through equations 36 and
37 and evaluated with a BEM solver. The BEM solver used for the validation is CCBlade (Ning, 2014).

Running CCBlade requires an airfoil polar (C;,Cy vs. «) and to keep it as simple as possible a single airfoil polar is used
all along the blade span. The airfoil is taken to be FFA-W3-301 (Bjorck, 1990) with the aerodynamic data from Bak et al.

(2013). The design point for the polar was for simplicity taken as the angle-of-attack with maximum glide-ratio, resulting in

14
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the following:

Cy

— =92 38

, (38)
a=10.6° (39)
C,=1.52 (40)

Running the optimization for Ay as described in section 3.3, gave A, = 8.4 which is the tip-speed-ratio used for the design.
To give the design some real dimensions, a rotor radius of R = 50m is used.

The resulting planform design can be seen in figure 8. Using the planform design as input for CCBlade as well as the other

a)

Chord (
1

O -
N—r

50
40
30 1
20 A
10 A

TWiSt (9twi5t) [deg]

—10

20 25 30 35 40 45 50
Rotor radius (r) [m]

o -
ot
—
(a=)
—
ot

Figure 8. a) Blade chord b) Blade twist both as a function of radius. The number of blades is assumed to be B = 3.

inputs, the resulting local-thrust and local-power was found from CCBlade. A comparison between RIAD and CCBlade can
be seen in figure 9. a) shows the values for C'r and C'p for both the solvers. b) shows the difference between RIAD and
CCBlade for both C',r and Cp using a log-scale on the y-axis. Both as a function of the normalized radius. In the root
region the two methods is seen to agree to machine precision, but with an error that is growing towards the tip and reaching a
difference of 10~ (which is still 3 significant digits). The growing error is found to disappear if tip-loss is excluded (agrees
to machine precision) and the difference is also seen to disappear if the drag is included for the induction as well as including
the tip-loss. The difference is therefore attributed to some small implementation difference regarding the tip-loss, but as the
difference is anyway insignificant the difference is not investigated any further. It should be noted that for the comparison with

CCBlade, it is C'L7 piade that is used, where C'7 p1q4e Was discussed in section 2.6.
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Figure 9. a) local-thrust (C' ) and local-power (C'r, p) for RIAD (line) and CCBlade (dots). b) the difference between the two methods for

local-thrust (AC',7) and local-power (AC', p). The difference is seen to increase towards the tip, but the agreement is still within 3 significant

digits and is therefore thought to be insignificant. The difference is likely a small implementation difference within tip-loss modeling.
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5 Conclusion

A rotor performance model called Radially-Independent-Actuator-Disc model (RIAD) was presented. It is a different parametriza-
tion of the Blade-Element-Momentum (BEM) equations which is found to be better for wind turbine optimization. The model
relates the local-rotor-power output (Local-Power-Coefficient - C';, p) to the local-rotor-loading input (Local-Thrust-Coefficient
300 - C'Lr)ata given radial station (7). The model is a simple equation, shown in equation 19, from which different physical effects
can easily be interpreted, such as wake-rotation-loss, tip-loss and viscous-loss.
A method to computing gradients for RIAD was presented, through the use of the complex-step-method, which allows to
compute the gradient to machine precision with a minimum of additional work required.
The gradients were used for classical power-coefficient (C'p) maximization, which was first applied for loading optimization
305 (Crr along the span) for a given tip-speed-ratio and glide-ratio. The optimization was then extended for combined optimization
of tip-speed-ratio and loading, leading to a nested optimization for Cp which only requires the glide-ratio along the span as an
input. Using span-wise constant glide-ratio it was shown that viscous-loss is the most significant loss, regardless of the value
of glide-ratio. The optimization results by themself have been done before, but the novel development is the ease at which the
optimal result can be achieved and the generality at which the method can be applied. But the real strength of using RIAD for
310 optimization is for load-constraint rotor optimization as it is described in Part 2 (Loenbaek et al., 2020).
The relationship between local-thrust along the span and the blade chord and twist was presented and they were used to
create the input for validation with a BEM solver (Ning, 2014). The difference between the two methods was found to agree
to 3 significant digits with a likely small implementation difference for the tip-loss modeling. In this way, it was shown that

RIAD and BEM are equivalent, with the difference being the parametrization.
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6 Nomenclature

6.1 Rotor Local variables

Variables that are scalars at a given radius location (7). Bold-face variables indicates it is a function or vector changing with

radius.
Symbol  Description Unit

T Bold face local variables symbolizes a function or vector changing with the rotor radius () -

r Rotor radius variable [0, R] m
o Thrust loading density Nm~!
%—1: Power loading density Wm~?

L 9P Tangential loading density Nm~!
oL Lift loading density Nm~!
%—If Drag loading density Nm~!

T Normalized rotor radius variable (7 = %) -

Crr Local thrust coefficient (normalized 97 /Jr - taken as the loading seen by the air) -

Crrbiade Local thrust coefficient as seen by the blade (including drag) -
Crr,opt  Local thrust coefficient that maximizes C p for a given A and % -
Crp Local power coefficient (normalized 0 P/0r) -
CrLpopt  Optimal local power coefficient for given A and % -

a Axial induction factor -
ap Tangential induction factor -
C Lift coefficient -
Cyq Drag coefficient -
& Airfoil glide ratio -
%‘; Inverse airfoil glide ratio -

c Blade chord m

o Rotor solidity o = £¢ .
F Tip-loss-factor (described in section 2.5) -

10) Flow angle at the rotor plane (see figure 2) deg
Vel Relative wind speed V,..; = \/(V(l —a))? + (wr(1—ap))? ms~!
Vol Relative wind speed Vil = \/(1 - a)2 + A\272(1— ap)2 i

o} Airfoil angle-of-attack deg

Otwist Blade twist deg

18
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320 6.2 Rotor Global variables

Variables that are scalars for the whole rotor.

Symbol Description Unit
R Rotor radius m
T Rotor thrust N
P Rotor power W
v Free stream wind speed ms ™!
Opitcn  Blade pitch angle deg
w Rotor rotational speed st
Cr Rotor thrust coefficient -
Cp Rotor power coefficient -

Cpopt  Rotor power coefficient with A,y and Crr,opt -

. . _ WR
A Rotor tip-speed-ratio (A = %) -
Aopt Rotor tip-speed-ratio that maximized C'p for a given % -

B Number of blades -
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