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Abstract. In the present work, a computationally efficient engineering model for the aerodynamic load calculation of non-

planar wind turbine rotors is proposed. The method is based on the vortex cylinder model, and can be used in two ways: either

as a correction to the currently widely used blade element momentum (BEM) method, or used as the main model, replacing

the BEM method in the engineering modelling complex. The proposed method needs the same order of computational effort as

the ordinary BEM method, which makes it ideal for time-domain aero-servo-elastic simulations. The results from the proposed5

method are compared with results from two higher-fidelity aerodynamic models: a lifting-line method and a Navier-Stokes

solver. For planar rotors, the aerodynamic loads are identical to the current BEM model when the drag force is excluded during

the calculation of the induced velocities. For non-planar rotors, the influence of the blade out-of-plane shape, measured by the

difference of the load between the non-planar rotor and the planar rotor, is in very good agreement with higher-fidelity models.

Meanwhile, the existing BEM methods, even with a correction of radial induction included, show relatively large deviations10

from the higher-fidelity method results.

Copyright statement. TEXT

1 Introduction

The blade element momentum (BEM) method has long been dominant in the low-fidelity aerodynamic modelling of horizontal-

axis wind turbines. Until now, it is the main working horse for wind turbine aero-servo-elastic simulations and is widely used15

in the wind turbine design and optimization framework. There are many explicit and implicit assumptions in the BEM method.

The BEM method explicitly assumes that uniform inflow is applied to the rotor that is operating at a high tip-speed ratio and

the stream tubes are independent of each other. The model also implicitly assumes a planar rotor with straight blades and using

quasi-steady aerodynamics. There has been extensive work on the modifications and corrections to the BEM method, such as

dynamic stall model (Leishman and Nguyen, 1990; Hansen et al., 2004; Larsen et al., 2007), dynamic inflow model (Schepers20

and Snel, 1995; Yu et al., 2019), polar-grid based unsteady BEM (Madsen et al., 2020a), modelling of turbulent inflow (Mann,

1994), high-thrust correction (Spera, 1994; Madsen et al., 2020a; Burton et al., 2021) and corrections for operation in yawed

conditions (Leishman, 2005).
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The results from the BEM method generally show surprisingly good agreement with higher-fidelity models, at least on the

integral level. However, due to the progress of wind turbine technology, modern multi-megawatt designs are generally more

flexible than the stiff machines of the 1980s. It implies that modern wind turbine blades typically have more prebend, larger

cone angle and larger deformations. The influence of blade out-of-plane shapes on the aerodynamics is then more pronounced

and can not simply be neglected. Some new developments have even more pronounced out-of-plane shapes. For example, a5

downwind wind turbine designed for low-wind conditions could have large cone and prebend and possibly dramatic out-of-

plane deformations (Madsen et al., 2020b). In addition, some wind turbines are equipped with winglets to reduce the drag force

and also the noise. Modern wind turbines are generally designed using mainly the BEM-based codes. Higher-fidelity tools such

as lifting-line method (LL) or fully-resolved Navier-Stokes solvers (often referred to as Computational Fluid Dynamics, CFD),

are mostly used for comparison or for very specific load cases due to the high computational effort. However, when the blades10

have large out-of-plane shapes due to prebend, deformation or cone, the results from these BEM codes will have relatively large

differences compared to the results from higher-fidelity tools (Madsen and Rasmussen, 1999). This is because the influence

of blade out-of-plane shapes is not correctly captured by these BEM-based codes. As a result, a design from an optimization

tool using a BEM-based aerodynamics module could be far from the actual optimal solution. There may even exist aeroelastic

instabilities that are not correctly captured by the BEM-based tools.15

On the other hand, rotor-resolved CFD and lifting-line method are computationally too expensive for extensive use in current

and near-future design optimization processes. Navier-Stokes solvers with fully resolved rotor geometry have no difficulties

predicting non-planar rotor effects. But for the lifting-line method, care should be taken on the influence of curved bound

vortex on itself (Li et al., 2020), the correct directions of applying the lift and drag force and also the possible non-circulatory

lift during the aerodynamic load calculation, to correctly predict the effects. Therefore, a low-fidelity model that could capture20

the most important features of the aerodynamics of non-planar rotors, while maintaining approximately the same level of

computational effort as the current BEM methods, would be of great value to both the scientific and the commercial wind

turbine communities. Both for the design optimization as well as for the aeroelastic simulations.

In order to correctly account for the out-of-plane shapes of the wind turbine blades in the low-fidelity model, the physics be-

hind the problem should be analyzed and then the most important aspects should be proactively modelled while less important25

features can be neglected. In the present work, the force on the non-planar rotor is firstly analyzed in a physically consistent

way using the Kutta-Joukowski theorem. The conclusion from the analysis is that the streamwise-shifted starting position of

the trailed vorticity, due to the non-planar bound vortex surface swept by the blades, will influence both axial and radial induc-

tion and both have direct influences on the aerodynamic loads. Therefore, we consider the vortex cylinder model (Branlard and

Gaunaa, 2015a) has the potential to capture these most important features in the aerodynamics of the non-planar rotors. There30

has been previous work by Crawford (2006) using a vortex cylinder model for the aerodynamic calculation of coned rotors.

In that work, the same idea of using the axial and radial induction from the vortex cylinder model is proposed, and the closed

equations for the model are given in the framework of momentum theory. Some comparisons with actuator disc results for

uniform-loaded cases are shown for the planar rotor. And for the coned rotors, the axial induction as well as aerodynamic loads

are compared with the results from actuator disc simulations performed by Mikkelsen (2004). The good agreement shows35
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the potential of the vortex cylinder model for the non-planar rotor. However, the work is limited to the momentum theory

framework while the equivalence of the vortex cylinder model and the momentum theory for planar rotors is not highlighted.

Furthermore, other important features of the vortex cylinder model for non-planar rotors, such as the similarity to the planar

rotors or the impact of unsteady airfoil aerodynamics on the steady-state results, are not described. Nevertheless, the pioneering

work by Crawford (2006) inspires the authors and is a good starting point for the current study, which also builds on previous5

efforts on superposition of vortex cylinders (Branlard and Gaunaa, 2015a).

In the present work, a detailed analysis of the vortex cylinder model for non-planar rotors will be performed. A method based

on the vortex cylinder model for the aerodynamic load calculation of such non-planar rotors is then proposed. The description

of the implementation of the proposed method is in the framework of the HAWC2 code (Larsen and Hansen, 2007). Some

details of the implementation may be different compared to other BEM-based aeroelastic codes. In the present work, only the10

out-of-plane shape of the blade is considered, which means the blade is assumed to have no in-plane sweep. The engineering

aerodynamic model for the blades with only in-plane shapes is described by Li et al. (2021). The structure of the work is as

follows: the Kutta-Joukowski analysis of the non-planar rotor is performed in Sect. 2. Then, the vortex cylinder model as well

as its relationship with the momentum theory are briefly introduced in Sect. 3. Some important aspects for the implementation

of the BEM method and the proposed method for non-planar rotors are described in Sect. 4. The coupling of the blade element15

theory with the vortex cylinder model, including details on the tip-loss correction and a summary of the algorithm, is described

in Sect. 5. The low-fidelity and higher-fidelity aerodynamic models for comparisons are described in Sect. 6. The setup of the

test cases is described and the results from the low-fidelity models are compared with the results from higher-fidelity models

in Sect. 7. Finally, the conclusions are drawn and the future work is summarized in Sect. 8.

2 Kutta-Joukowski analysis20

For the planar rotor with straight blades, the Kutta-Joukowski analysis was previously used to derive the similarity between

the superposition of the vortex cylinders and the BEM method by Branlard and Gaunaa (2015a). In this section, the influence

of the blade out-of-plane shapes on the aerodynamics is investigated using the Kutta-Joukowski theorem (Okulov et al., 2015).

The blade is assumed only possible to have out-of-plane shapes (dihedral or cone) but no in-plane shapes (blade sweep) in the

following analysis.25

The coordinate system is defined as follows and is illustrated in Fig. 1. The x−axis is the axial direction, positive in the

incoming wind direction. The rotation vector of the rotor is in the positive x−direction. The y−axis is the ‘radial’ direction,

which is positive in the direction of increasing radius of the blade. The z−axis is normal to both x−axis and y−axis, and its

direction is defined so that a right-handed system is found. The z−axis is defined as the tangential direction. The airfoils are

aligned perpendicular to the main-axis of the half-chord line.30

The local dihedral angle is defined to be positive when the blade is tilting upwind, and can be calculated using the blade

main-axis geometry.

κi =−arctan
dx

dy
(yi) (1)
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The analysis is applied to a non-planar rotor with given blade bound circulation and induced velocity at each blade section.

For section i of a blade with radius of ri, the bound circulation strength is ΓBi , the local dihedral angle is κi. The axial,

tangential and radial induced velocity are ua,i, ut,i and ur,i.

x

y 

z 

Figure 1. The definition of the coordinate system of the wind turbine with only out-of-plane shapes. The x−axis is the axial direction,

positive in the incoming wind direction. The y−axis is the ‘radial’ direction, which is positive in the direction of increasing radius of the

blade. The z−axis is the tangential direction and is normal to both x−axis and y−axis. Its direction is defined so that a right-handed system

is found. The rotation vector Ω is aligned with the x−axis.

The relative velocity experienced by the blade section is Vrel,i. The bound circulation of a blade section ΓB
i is tangent to the

local blade section.5

Vrel,i =


U0 +ua,i

ur,i

−Ωri +ut,i

 , ΓB
i = ΓB

i


−sinκi

cosκi

0

 (2)

With the Kutta-Joukowski theorem in three-dimensional vector form, the lift force on the blade is obtained.

fi = ρVrel,i×ΓB
i = ρΓB

i


(Ωri−ut,i)cosκi

(Ωri−ut,i)sinκi

(U0 +ua,i)cosκi +ur,i sinκi

 (3)

In Eq. (3), the force fi is corresponding to lifting force per unit curved blade length. The lifting force per unit radius,

corresponding to what is used in momentum theory analysis, is f∗
i = fi

ds
dr , as also shown by Madsen et al. (2020a). The ds

dr10

term is representing the ratio of the local change of curved blade length and local change of radius. For blades with only
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out-of-plane shapes, it is equal to: 1/cosκi.

f∗
i = fi

ds

dr
= ρΓB

i


Ωri−ut,i

(Ωri−ut,i)tanκi

(U0 +ua,i) +ur,i tanκi

 (4)

The force f∗
i is divided into two parts: a part with and a part without the direct contribution of the local dihedral angle κi.

f∗
i = ρΓB

i


Ωri−ut,i

0

U0 +ua,i

+ ρΓB
i


0

Ωri−ut,i
ur,i

tanκi (5)

For a non-planar rotor with upwind direction dihedral (κi > 0), such as prebend or upwind cone, some conclusions can be5

obtained according to Eq. (5). Comparing to the corresponding planar rotor (as shown later on in Fig. 4), the non-planar rotor

will have outboard radial force. Furthermore, there will be additional tangential driving force due to the radial induction, which

for the wind turbine case is positive. So, to get the correct tangential load distribution and consequently the aerodynamic power,

it is not only necessary to correctly model the influence of the non-planarity of the rotor on the axial and tangential induced

velocity, but also on the radial induced velocity. However, the radial induced velocity is not available from the momentum10

theory.

There are two tracks to modify the BEM method to model the non-planar effects. The first track is based on the previous

work on the development of the radial induction correction for the application in the BEM method, derived based on analytical

2-D actuator disc/strip model combined with an engineering fit of the numerical actuator disc simulations (Madsen, 1997;

Madsen et al., 2010):15

uMadsen
r (r) =

U0

2.24

CT,av(r)

4π
ln

[
0.042 + ( r

Rtot
+ 1)2

0.042 + ( r
Rtot
− 1)2

]
(6)

where CT,av(r) is the averaged thrust coefficient as function of the radial position and is defined as:

CT,av(r) =

∫ r
0
CT (r∗)2πr∗dr∗

πr2
(7)

However, the radial induction as well as the axial induction are corresponding to planar rotors.

Apart from the momentum theory, which effectively only applies to a planar rotor disc, it is possible to calculate the induced20

velocity, including the radial component, from analytical equations at each blade section with the superposition of vortex

cylinders. So, the second track is based on the vortex cylinder model where the assumption of the planar rotor in the previous

work by Branlard and Gaunaa (2015a) is relaxed. This approach inherently includes the effect of axial displacement of the

cylindrical wake of the non-planar rotor in a physically consistent manner. The model even has the potential to completely

replace the momentum theory in the BEM method and will be described in the following sections. In the present work, both25

methods will be tested numerically in Sect. 7.
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3 Vortex cylinder model

The vortex cylinder model is a simplified representation of the vortex system of a horizontal-axis wind turbine rotor. The model

consists of superposition of bound vortex discs, non-expanding vortex cylinders with both tangential and longitudinal vorticity

and root vortices (Branlard and Gaunaa, 2015a). An illustration of different components in the vortex cylinder model is shown

in Fig. 2.

Figure 2. Illustration of different components of a right vortex cylinder. The bound vortex disc (in blue) with radial vorticity γb, the vortex

cylinder (in grey) with longitudinal γl and tangential γt trailed vortex components, and a root vortex Γroot (in red).

5

This model can be considered as the special case of the Joukowski rotor model for the limiting case of the number of blades

tending to infinity. It has been shown by Branlard and Gaunaa (2015a) that for a planar rotor, the induced velocities from

the version of the vortex cylinder model where the wake rotation effect is neglected, is identical to the induced velocities

obtained from the momentum theory when the drag force component is not included in the force balancing from which the

induced velocities are calculated. It was also argued by Branlard (2017) that the correct way of implementing the blade element10

momentum (BEM) method should exclude the drag during the calculation of the induced velocities, and include the drag in the

aerodynamic load calculation afterwards.

One advantage of the vortex cylinder model over the momentum theory is that the induced velocity at any arbitrary point

in the flow field is known. In contrast, from the momentum theory, only the axial and tangential velocity at the rotor disc

and at infinitely far up- and down-stream of the rotor plane are known. This advantage has been used in the application of15

the vortex cylinder model in the calculation of the induction-zone of a wind turbine (Branlard and Meyer Forsting, 2015) and

the wind farm blockage effects (Branlard and Meyer Forsting, 2020). Another advantage of the vortex cylinder model over

the momentum theory is that it does not require the assumptions of a planar rotor and the flow with constant speed being

perpendicular to it. Other applications of the vortex cylinder model include modelling of wind turbines in yaw (Branlard

and Gaunaa, 2016) and modelling of the dynamic inflow effects (Yu et al., 2019). The results from all the aforementioned20

applications compare well with higher-fidelity tools, indicating that the main mechanisms are captured using this framework.

When applying the vortex cylinder method to a non-planar rotor, the starting position of the cylindrical vortex sheets follows

the curved bound vortex surface and will be displaced upstream or downstream compared to the case of a planar rotor. The

induced velocity on the non-planar rotor surface will therefore be different from the induced velocity of a planar rotor. This

effect can be modelled by the superposition of the vortex cylinders according to the curved bound vortex surface swept by the25
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blades that have out-of-plane shapes. However, the possibility of using the vortex cylinder model for the non-planar rotor is

not well recognized and is thus not widely utilized. The work of Crawford (2006) is on this topic, but the system closure for

the non-planar rotor is different compared to the current study. In the current implementation, the system closure is determined

in the far-wake, thus assuming the same method of system closure as for the non-planar rotors. Then, the equations of the

inductions of the non-planar rotor are in concise forms following this assumption. With the current system closure, which is5

an important assumption in this work, there are clear physical connections between the vortex cylinder model of a non-planar

rotor and a planar rotor, and subsequently the connection to the momentum theory. In the following content of this work, zero

yaw error, no rotor tilt and uniform inflow are assumed. The vortex cylinder is then a right cylinder as opposed to an oblique

cylinder used in yawed flow analysis (Branlard and Gaunaa, 2016).

3.1 The right vortex cylinder10

The equations of the inductions of a right vortex cylinder have been derived in detail by Branlard and Gaunaa (2015b). The

most important equations and conclusions are summarized in this section. A cylindrical vortex sheet can be decomposed into

tangential and longitudinal vorticity components. The strength of the tangential vorticity on the vortex cylinder is the ratio of

the total vorticity strength to the helical pitch h. The total vorticity strength of the vortex cylinder ∆Γtot is equal to the trailed

vorticity strength of all blades.15

γt =−∆Γtot

h
(8)

The tangential vorticity contributes to both axial and radial induced velocities. For the vortex cylinder with radius R at axial

position x= 0, the axial and radial induced velocity at the calculation point with radius of r and axial position of x are shown

to be in the form of complete elliptic integrals (Branlard and Gaunaa, 2015b).

ua(r,x) =
γt
2

[
R− r+|R− r|

2|R− r|
+
xk(r,x)

2π
√
rR

(
K
(
k2(r,x)

)
+
R− r
R+ r

Π
(
k2(r,0),k2(r,x)

))]
(9)20

ur(r,x) =− γt
2π

√
R

r

[
2− k2(r,x)

k(r,x)
K
(
k2(r,x)

)
− 2

k(r,x)
E
(
k2(r,x)

)]
(10)

where

k2(r,x) =
4rR

(R+ r)2 +x2
(11)

and K(m), E(m) and Π(n,m) are the complete elliptic integral of the first, second and third kind.

The other components of the vortex cylinder, which are the bound vortex disc, the longitudinal vorticity and the root vor-25

tex line, only have contribution to the tangential velocity. The tangential induced velocity of the entire flow field is derived
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by Branlard and Gaunaa (2015b) as follows:

ut(r,x) =


−∆Γtot

4πr (r < R,x= 0) or (r =R,x > 0)

−∆Γtot
2πr (r < R,x > 0)

0 otherwise (outside the vortex cylinder)

(12)

3.2 Superposition of vortex cylinders for planar rotors

Consider the superposition of the Joukowski rotor model to achieve radially varying bound circulation. There will be helical

trailed vorticities emanated along each blade with the strength equal to the derivative of the bound circulation strength with5

respect to the radius. In Joukowski’s rotor model, it is assumed that the radial distribution of the bound circulation of all blades

are the same. Then consider the corresponding vortex cylinder model that is the limiting case of Joukowski’s rotor model, where

the number of blades tends to infinity. It is consisted of a superposition of cylindrical vortex sheets with both tangential and

longitudinal vorticity. Details of the superposition of vortex cylinders have been described by Branlard and Gaunaa (2015a).

The most important aspects are summarized in this section.10

With the superposition of the vortex cylinders, the bound circulation is assumed to be piecewise constant along the blade.

The blade is discretized radially into n sections and there will be one calculation point for each section. Consequently, there

will be (n+ 1) trailing points corresponding to (n+ 1) vortex cylinders. For the inner-most part of the rotor, which is usually

the rotor hub and is defined from the center of rotation to the beginning of the first blade section, the bound circulation strength

is zero since there are no blades. For the ease of notation and calculation, two ghost sections with the index of 0 and n+1 with15

zero circulation strength are introduced. For the system, the number of unknown variables is n, which is equal to the number

of sections. A sketch of the superposition of the cylindrical vortex system is shown in Fig. 3.
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Figure 3. Sketch of the superposition of the cylindrical vortex system. The blade is extending from Rroot to Rtot and is discretized into n

sections. For section i, the radius of this calculation point is ri and the two neighbouring vortex cylinders are with the radius ofRi andRi+1,

and with the tangential vorticity strength of γt,i and γt,i+1. Two ghost sections with the index of 0 and n+1 are introduced. These two ghost

sections are defined to have zero bound circulation strength.
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The closure of the system determines the tangential vorticity strength of each vortex cylinder. The closure of the system is

determined at the far-wake, the cylindrical vortex sheet is assumed to convect at a constant speed equal to the mean of the two

far-wake velocities surrounding the vortex sheet (Branlard and Gaunaa, 2015a). It can be shown that the system closure can be

performed in the form of helical pitch h(r) or the annulus axial induction factor a(r) at the rotor disc, and the two formulations

are equivalent to each other. The system closure in the form of the annulus axial induction factor will be used in this work and5

will be briefly described.

With the system closure, the axial induction factor of section i is calculated as follows:

ai =−ua,i
U0

=
1

2

[
1−

√
1−CT,eff,i

]
(13)

The effective thrust coefficient CT,eff,i is equal to the thrust coefficient from the Kutta-Joukowski analysis CT,KJ,i minus the

contribution of wake rotation CT,rot,i.10

CT,eff,i = CT,KJ,i−CT,rot,i (14)

where

CT,KJ,i =
NBf

∗
i,xdr

1
2ρU

2
0 2πridr

= ks,i

(
1 +

ks,i
4λ2

ri

)
= ks,i

(
1 + a′i

)
(15)

CT,rot,i =
∑
j≥i+1

(
ks,j
2

)2
(

1

λ2
Rj

− 1

λ2
Rj+1

)
(16)

The wake rotation effect increases toward the rotor rotational axis, and decreases when the tip-speed ratio increases. For15

typical modern wind turbine designs the effect of this term is rather small and may be neglected.

In Eqs. (15) and (16), ks,i is the total non-dimensional bound circulation of section i and λr is the local speed ratio for the

position with radius r. The tangential induction factor a′i is defined as follows and can be calculated according to Eq. (12) with

the condition of x= 0.

ks,i =
ΩΓi
πU2

0

(17)20

λr =
Ωr

U0
(18)

a′i =
−ut,i
Ωri

=

∑n
j=i

Γj−Γj+1

4πri

Ωri
=
ks,i
4λ2

ri

(19)

Considering Eqs. (15) and (16), when the wake rotation effect is included, the aerodynamic loading of a section is dependent

on all sections that are further outboard comparing to it. The system could be solved from outboard to inboard using Eq. (13),

and the system closure is completed when the annulus axial induction factor of all blade sections are calculated. Then, the25

tangential vorticity of the vortex cylinder that is just inside section i is obtained from the annulus axial induction factor of this

section and the neighbouring section inside. The equation can be derived from Eq. (9) using the condition of x= 0.

γt,i = 2U0(ai− ai−1) (20)
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3.3 High-thrust correction

In the vortex cylinder model, the relationship between the axial induction factor and the effective thrust coefficient is in the

same form as in the momentum theory: CT,eff,i = 4ai(1− ai), by inversing Eq. (13). However, when the thrust coefficient

(CT ) is high, especially when CT > 1, the momentum theory breaks down and the vortex cylinder model will give unphysical

results. Then, corrections should be made for these high-thrust conditions. Different high-thrust corrections are available, such5

as the linear extrapolation by Spera (1994) and the polynomial function of a and CT by Madsen et al. (2020a). To be consistent

with the BEM module implemented in the HAWC2 code (Larsen and Hansen, 2007), the polynomial function of a and CT

by Madsen et al. (2020a) is chosen. Then, in the system closure, the equation of axial induction factor from the thrust coefficient

in Eq. (13) should be replaced by:

ai = fMadsen
a−CT

(CT,i) = k3C
3
T,i + k2C

2
T,i + k1CT,i (21)10

where the coefficients k1 . . .k3 are defined: k1 = 0.2460, k2 = 0.0586 and k3 = 0.0883.

3.4 System closure of non-planar rotors

The system closure of the vortex cylinder model for planar rotors has been described in Sect. 3.2. It is assumed that each

vortex cylinder convects with a constant velocity that is determined in the far-wake. With this method of system closure, the

relationship between the vortex cylinder model and the momentum theory is revealed by Branlard and Gaunaa (2015b) and15

the results are generally in good agreement with higher-fidelity models. The reason is probably that the error introduced when

assuming the convective velocity is constant balances the error introduced when assuming the non-expanding wake as shown

for the uniformly loaded disc (Øye, 1990; Madsen et al., 2007). In the present work, we assume the same method of system

closure as for the planar rotor case: the closure is determined at the far-wake, and can be used for non-planar rotors with

moderate out-of-plane shapes. With this assumption, the equations are in concise forms and can clearly show the connections20

between the model for a non-planar rotor and a planar rotor. However, this assumption does not necessarily hold for extreme

cases. To investigate this, a numerical test of blades with relatively large prebend and cone angle will be shown in Sect. 7.

For illustration, we show the superposition of the vortex cylinders for a non-planar rotor and the corresponding planar

rotor with the same radial discretization in Fig. 4. For each section, the corresponding planar rotor has the same total bound

circulation (of all blades) Γpl
i as that of the non-planar rotor Γnp

i .25

3.4.1 Similarity of thrust coefficient

The first similarity is the calculation of the thrust coefficient of the non-planar rotor and the corresponding planar rotor. For

the non-planar rotor, the Kutta-Joukowski thrust coefficient of section i is calculated from the x−component of the force in

Eq. (5), obtained using the Kutta-Joukowski analysis.

Cnp
T,KJ =

ΩΓnp
i

πU2
0

(1 + a′np) (22)30
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Figure 4. Side-view of the vortex system of the non-planar rotor and the corresponding planar rotor. The two vortex systems are with the

same radial discretization and radial distribution of bound vorticity. The tangential and longitudinal trailed vorticity strengths of the two

systems will be identical.

For the planar rotor, the thrust coefficient is also obtained using Eq. (5):

Cpl
T,KJ =

ΩΓpl
i

πU2
0

(1 + a′pl) (23)

Since Γnp
i = Γpl

i , and when assuming the tangential induction factor a′ of the non-planar rotor and the corresponding planar

rotor are the same, which will be proven analytically in Sect. 3.4.3, then the Kutta-Joukowski thrust coefficient of the non-

planar rotor and the planar rotor are identical. In addition, the contribution of the wake rotation to the thrust coefficient will5

also be identical. So, with the given bound circulation distribution of the non-planar rotor, the thrust coefficient distribution can

be directly calculated as if the rotor is planar. This is true no matter the wake rotation effect is included or excluded.

3.4.2 Similarity of tangential and longitudinal vorticity in the wake

The second similarity is that the two vortex wake systems are having the same tangential and longitudinal vorticity strength

distribution. For the two rotors with the same radial distribution of bound circulation, it can be easily shown that the trailed10

vorticity strengths between each section are the same.

Γnp
i −Γnp

i+1 = Γpl
i −Γpl

i+1 (24)

According to the assumption, the closure of the superposition of the vortex cylinders is determined at the far-wake (infinitely

far downstream). Therefore, there is no influence of the changed starting position of the vortex cylinders. As a result, both the

tangential and longitudinal vorticity of the non-planar rotor wake is the same as that of the corresponding planar rotor that has15

the same bound circulation distribution.

According to the description in Sect 3.4.1, the annulus axial induction of the corresponding planar rotor can be calculated

from the thrust coefficient of the non-planar rotor since the thrust coefficient of the two rotors are identical. Then, since the non-

11



planar rotor and the corresponding planar rotor have the same tangential vorticity strength, the tangential vorticity strength of

the non-planar rotor can be calculated from the annulus axial induction factor of the corresponding planar rotor using Eq. (20).

This means with given bound circulation distribution, the tangential vorticity of the non-planar rotor can also be calculated as

if the rotor is planar. The same argument can also be made for the longitudinal vorticity in the wake.

3.4.3 Similarity of tangential induction5

It is assumed that the radial distribution of the tangential induction factor of the non-planar rotor is the same as the correspond-

ing planar rotor in Sect. 3.4.1, this will be analytically proven in this section. Firstly, consider the superposition of the planar

vortex cylinders consisting of bound vortex discs as well as tangential and longitudinal trailed vorticities, as shown in Fig. 4.

The total strength of the root vortex is zero. Since the tangential vorticities have no contribution to the tangential induction,

only the bound vortex discs and the longitudinal vorticity are considered here. For a better illustration, the side view of a part10

of the axisymmetric vortex system that was illustrated in Fig. 4 is shown in Fig. 5.
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Figure 5. Side-view of a part of the axisymmetric vortex system of the planar rotor. The bound vorticity and trailed vorticity are highlighted.

The two points of interest are marked with ××× and +++, which are just inside and outside the section i. The two circular contours of C1 and C2

pass through the two points of interest respectively.

Consider the point××× in Fig. 5 with radial position of ri that is between Ri and Ri+1, and is just inside the vortex cylinder

(x= 0+). The circular contour line C1 is perpendicular to the flow, passes point ××× with radius ri and centered on the line of

r = 0. With the axisymmetry of the flow, the tangential velocity has the same value all along the circular contour.

Recall the definition of circulation:15

Γ =

∮
C

V ·dl (25)
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The relationship between the velocity along the contour line C1, which is the tangential velocity at ri and the net circulation

through the contour C1, is obtained using the definition of circulation in Eq. (25).

i∑
j=1

(
Γj−1−Γj

)
=−Γi = ut(ri,0

+)2πri (26)

So, the tangential velocity at point××× that is just inside the vortex cylinder is:

ut(ri,0
+) =− Γi

2πri
(Ri < ri <Ri+1) (27)5

For the point +++ in Fig. 5 with radial position of ri and is just outside the vortex cylinder (x= 0−), consider the circular

contour line C2 with radius ri that is perpendicular to the flow, passing point +++ and is centered on the line of r = 0. Similarly,

use the definition of circulation in Eq. (25), the tangential velocity at point +++ is zero since there is no net circulation passing

through the contour C2.

ut(ri,0
−) = 0 (28)10

There is a jump of the tangential velocity when the flow passes through the bound vorticity disc. The tangential velocity at

the disc should be the mean value of the tangential velocities at the two sides of the disc.

ut(ri,0) =
1

2

[
ut(ri,0

−) +ut(ri,0
+)
]

=− Γi
4πri

(Ri < ri <Ri+1) (29)

The same result was obtained for the planar rotor case by Branlard and Gaunaa (2015b) by evaluation of the contribution of

each component of the cylindrical vortex system to the tangential velocity. As for the planar rotor, the side view of a part of the15

vortex system of the non-planar rotor that was illustrated in Fig. 4 is shown in Fig. 6.

 

 
 
 
 
 
 
 
 
 
 

Γ𝑖𝑖+1 

Γ𝑖𝑖  
𝐶𝐶1 𝐶𝐶2 

Γ𝑖𝑖−1 

𝑟𝑟𝑖𝑖+1 

𝑟𝑟𝑖𝑖  

𝑟𝑟𝑖𝑖−1 

𝑅𝑅𝑖𝑖  

𝑅𝑅𝑖𝑖+1 

Γ𝑖𝑖−1 − Γ𝑖𝑖  

Γ𝑖𝑖 − Γ𝑖𝑖+1 

⋮ 

⋮ 

𝑈𝑈0 
× + 

  

Γ𝑖𝑖+1 

Γ𝑖𝑖  

Γ𝑖𝑖−1 

Γ𝑖𝑖 − Γ𝑖𝑖+1 

Γ𝑖𝑖−1 − Γ𝑖𝑖  

⋮ 

⋮ 

𝐶𝐶1 𝐶𝐶2 

Figure 6. Side-view of a part of the axisymmetric vortex system of the non-planar rotor. The bound vorticity and trailed vorticity are

highlighted. The two points of interest are marked with ××× and +++, which are just inside and outside the section i. The two circular contours

of C1 and C2 pass through the two points of interest.
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Similar as for the planar rotor case, consider the point××× in Fig. 6 with radial position of ri that is between Ri and Ri+1, and

is just inside the vortex cylinder. With the axisymmetry of the flow and the definition of the circulation in Eq. (25), the tangential

velocity is derived to be identical to the planar rotor case in Eq. (27). It is important to point out that the net circulation through

the contour (C1 or C2) is not influenced by the path of the circulation on either side of the contour.

For the point +++ that is just outside the vortex cylinder, the tangential velocity is derived to be zero and is identical to the5

planar rotor case in Eq. (28). Then, with the same argument as for the planar rotor, the tangential velocity at the curved bound

vortex surface of the non-planar rotor should be the mean value of the tangential velocities at the two sides and is in identical

form as that for the planar rotor case in Eq. (29).

3.5 Relationship between vortex cylinder model and momentum theory

The relationship between the vortex cylinder model and the momentum theory will be described separately for the planar rotor10

and the non-planar rotor.

3.5.1 Planar rotor

For a planar rotor at a high tip-speed ratio, when excluding the contribution of drag to the momentum balancing for deter-

mining the induced velocities, the converged results from the momentum theory are equal to those from the vortex cylinder

model (Branlard and Gaunaa, 2015a). As the tip-speed ratio decreases, results from the vortex cylinder model and basic 2-D15

momentum theory start differing, especially toward the rotor axis. As also shown in (Branlard and Gaunaa, 2015a), this dif-

ference stems from the pressure drop caused by centrifugal forces due to wake rotation, which is not included in the classic

2-D momentum framework that the BEM method is built on. The contribution of wake rotation to the thrust coefficient derived

from the vortex cylinder model in Eq. (16) can be applied to the momentum theory as a modification to account for this effect

(Branlard and Gaunaa, 2015a). When the wake rotation effect is included in the momentum theory, the annulus axial induced20

velocity as well as the tangential induced velocity from the momentum theory and the vortex cylinder model are identical.

The radial induced velocity is available from the vortex cylinder model, but is not modelled in the momentum theory. How-

ever, for straight blades forming planar rotor, the radial induced velocity has no effect on the convergence calculation or the

aerodynamic load calculation. This is because the radial velocity has no contribution to the projection of the velocity into the

2-D airfoil section for the straight, non-swept blades that are perpendicular to the rotor axis. These relationships can be written25

in the following mathematical form, where the subscript of VC represents the vortex cylinder model and the subscript of MT

represents the momentum theory, the superscript of pl represents the planar rotor.

ua,MT = upl
a,VC (30a)

ut,MT = upl
t,VC (30b)

ur,MT ≡ 0 (30c)30

14



3.5.2 Non-planar rotor

For a non-planar rotor, the inductions from the momentum theory with wake rotation effect included are equivalent to the

inductions from the vortex cylinder model for the corresponding planar rotor and excluding the radial induced velocity. This

means the momentum theory equivalently assumes the rotor is planar when calculating inductions. Then, the vortex cylinder

model for the non-planar rotor is equivalent to the momentum theory with the following corrections: For the annulus axial5

induced velocity, the correction is the difference of the results of the non-planar rotor and the corresponding planar rotor from

the vortex cylinder model. The tangential induced velocity from both methods are the same, as described in Sect. 3.4.3. The

radial induction is not available from the momentum theory, so the correction should be the complete radial induction of the

non-planar rotor from the vortex cylinder model.

These relationships between the momentum theory and the vortex cylinder model for the non-planar rotor are summarized10

in the equations as follows, where the superscript of np represents the non-planar rotor.

unp
a,VC = ua,MT + ∆ua (31a)

unp
t,VC = ut,MT (31b)

unp
r,VC = ur,MT + ∆ur (31c)

where the corrections are:15

∆ua = unp
a,VC−u

pl
a,VC (32a)

∆ur = unp
r,VC (32b)

4 Some important aspects in models using blade element theory

Some important aspects of the implementation of the low-fidelity models that use blade element theory and rely on the 2-D

airfoil data are briefly discussed. They are important for the load calculation and to get good agreement with the higher-fidelity20

models.

4.1 Impact of unsteady airfoil aerodynamics on steady state

For the blade with out-of-plane shapes, it is necessary to include the unsteady airfoil aerodynamics model (usually referred

to as the dynamic stall model), even for the steady-state simulation. Otherwise, the results of the tangential forces will have

a visible error. The reason originates from the conclusions of unsteady 2-D aerodynamics: the correct circulatory lift can be25

obtained if the magnitude of the effective angle of attack is determined at the three-quarter-chord point, but the direction of

it should be determined by the velocity at the quarter-chord point (Gaunaa, 2002; Bergami and Gaunaa, 2012). For the low-

fidelity model using blade element theory, the angle of attack is usually determined at only one calculation point per section.

For instance, for the BEM module in the HAWC2 code, it corresponds to the three-quarter-chord point. The direction of

the circulatory lift is then equivalently transformed to perpendicular to the velocity at the quarter-chord point by including an30
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additional torsion rate drag that is proportional to the circulatory lift. In addition, the non-circulatory part of the lift force should

be correctly included. For the blade with out-of-plane shapes, even when the rotational speed is constant, the mid-chord point

will experience a component of acceleration that is perpendicular to the chord due to the projection of centrifugal acceleration.

In addition, the angular velocity vector will also have a projection in the 2-D section that will result in an effective pitching

motion of the airfoil section. The contribution of both the mid-chord acceleration and the torsion rate should be included when5

calculating the aerodynamic force. For details, see the reports by Hansen et al. (2004) and Pirrung and Gaunaa (2018).

4.2 Curved blade length projection correction

For blades with in-plane or out-of-plane shapes, the curved blade length in an elementary annulus (ds) is different from the

change of the radius (dr). Then, for the momentum analysis in a stream-tube, it is necessary to multiply the local thrust and

torque coefficient with the term of ds
dr to account for this difference (Madsen et al., 2020a). For the Kutta-Joukowski analysis10

of the non-planar rotor in Eq. (5), the term of ds
dr is already included in the equation of force. So, it is not necessary to include

this term again in the thrust coefficient in Eq. (22) during the convergence calculation using the vortex cylinder model.

5 Blade element theory with vortex cylinder model

The BEM method is the blade element theory coupled with the momentum theory. Similarly, the vortex cylinder model should

be coupled with the blade element theory for the aerodynamic load calculation of a rotor with finite number of blades. The15

link between the blade element theory and the vortex cylinder method is the relationship of the blade bound circulation and the

trailed vorticity strength of the vortex cylinder. The trailed vorticity strength is calculated from the total bound circulation of

the two neighbouring sections using Eq. (24). The total bound circulation is calculated from the blade bound circulation and

assuming all blades have the same bound circulation strength.

Γi =NBΓBi (33)20

The blade bound circulation is calculated from the circulatory part of the lift coefficient CCL . For quasi-steady simulations,

the circular part of the lift coefficient can be replaced by the quasi-steady lift coefficient CQSL .

ΓB =
1

2
VrelcC

C
L (34)

In this section, the coupling of the vortex cylinder model and the blade element theory will be firstly described in Sect. 5.1.

The application of the tip-loss factor for the non-planar rotor is important, and is described in Sect. 5.2. Finally, the implemen-25

tation of the proposed vortex cylinder model is summarized in Sect. 5.3.

5.1 Vortex cylinder model as a correction to BEM or as the full model

According to the relationship between the momentum theory and the vortex cylinder model described in Sect. 3.5, there are

two possible methods of using the vortex cylinder model when coupling with the blade element theory. Firstly, the vortex
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cylinder model can be used as a modification to the existing BEM model, which is named and labelled as BEM-VC model.

Otherwise, the vortex cylinder model can be considered as the complete replacement of the momentum theory in the BEM

method. With the blade element theory coupled with the vortex cylinder model, we have the blade element vortex cylinder

(BEVC) model, which does not include any momentum theory results. The reader may argue that the BEVC model should

completely replace the BEM model for the prediction of the aerodynamic loads in an existing aeroelastic code. As a first step,5

the authors recommend the use of the vortex cylinder model as a correction to the BEM method (BEM-VC). This is because

the framework of the BEM method with many sub-models and corrections has been implemented in the aeroelastic codes and

has been intensively tested.

5.2 Tip-loss correction

Prandtl’s tip-loss factor is commonly applied to the BEM method to account for the difference between a finite number of10

blades and the assumption of infinite number of blades in the momentum theory (Glauert, 1935; Sørensen, 2015). Similarly,

the vortex cylinder model also assumes infinite number of blades. Also, considering the relationship between the momentum

theory and the vortex cylinder model discussed in the previous sections, a tip-loss correction should be applied to the vortex

cylinder model. The tip-loss factor F presented by Glauert (1935) was implemented in the BEM module in the HAWC2 code

(Madsen et al., 2020a):15

F =
2

π
cos−1

(
exp

(
−NB

2

Rtot− r
r sinϕ

))
(35)

where ϕ is the inflow angle.

The tip-loss correction is applied by scaling the thrust coefficient with the inverse of the tip-loss factor when calculating the

blade axial induction.

apl
B = fa−CT

(CT,eff/F ) (36)20

where the subscript B indicates the induction at the blade.

5.2.1 Tip-loss for non-planar rotor

Care should be taken when applying the tip-loss correction to the non-planar rotor. The first aspect is the angle to use when

calculating the tip-loss factor in Eq. (35). The inflow angle in the rotor coordinate system, which is the flow angle seen by

the rotor plane, is usually used (Madsen et al., 2020a). Another possible choice is the flow angle in the sectional coordinate25

system, which is the flow angle seen by the 2-D airfoil section. For planar rotors, it is not necessary to distinguish between them

because they are identical. Since the tip-loss factor is developed for planar rotors, it is not possible to analytically show which

one is better than the other when applied to non-planar rotors. In a preliminary numerical investigation that is not reported in

the present work, it was discovered that results when using the sectional flow angle to calculate the tip-loss factor are in slightly

better agreement with the higher-fidelity models compared to using the inflow angle. As a result, the sectional flow angle is30

recommended when calculating the tip-loss factor, and is used in the BEM-VC method when calculating the results in Sect. 7.
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The second aspect is that the tip-loss factor is only to model the amplified axial induction at the blade compared to the

annulus-averaged axial induction, it should not directly change the trailed (tangential or longitudinal) vorticity strength of the

vortex cylinders. Recall the similarity of the vortex cylinder model for the non-planar rotor and the corresponding planar rotor

with the same circulation distribution described in Sect. 3.4. The correct implementation of the tip-loss correction in the vortex

cylinder model for the non-planar rotor could be considered as a two-step approach.5

In the first step, the axial induction factor at the blade of the corresponding planar rotor with the tip-loss correction is

calculated using Eq. (36). The second step is to calculate the difference between the annulus axial induction of the non-planar

rotor and the planar rotor using the vortex cylinder model. From the effective thrust coefficient, the annulus-averaged axial

induction factor of the planar rotor is calculated.

apl
∞ = fa−CT

(CT,eff) (37)10

where the subscript∞ represent infinite number of blades or annulus-averaged value.

The tangential vorticity of the vortex cylinder is calculated from the annulus axial induction of the planar rotor apl
∞ using

Eq. (20) and is duplicated here with the update notation.

γnp
t,i = γpl

t,i = 2U0(apl
∞,i− a

pl
∞,i−1) (38)

Then, the annulus axial induction factor of the non-planar rotor anp
∞ can be calculated using Eq. (9). Finally, the axial15

induction at the blade section i of the non-planar rotor is then equal to the sum of the blade axial induction of the planar rotor

and the difference of the annulus axial induction of the non-planar rotor and the planar rotor.

anp
B = apl

B + anp
∞− apl

∞ (39)

The tip-loss factor is only applied to the axial induction but not applied to the tangential or radial induction, which is

following the application of the tip-loss correction in the BEM module in the HAWC2 code.20

5.2.2 Erroneous implementation

If the model is used without clearly distinguishing between the axial induction on the blade and the annulus-averaged axial

induction, the resulting system closure could be wrong. If using the blade axial induction factor apl
B instead of the annulus axial

induction factor apl
∞ to calculate tangential vorticity in Eq. (38), the tangential vorticity will be directly scaled by the tip-loss

factor, which is unphysical. Then, the annulus axial induction and the radial induction calculated using Eqs. (9) and (10) will25

be directly scaled by the tip-loss factor due to the wrong tangential vorticity.

For the planar rotor with straight blades, the calculated aerodynamic loads on the blade using the erroneous method will

still be correct. The tangential vorticity from the erroneous method is wrong and the radial induction calculated using Eq. (10)

will then be wrong. However, the blade axial induced velocity and the tangential induced velocity are correctly calculated. In

addition, the radial induction has no contribution to the aerodynamic loads because it has no contribution to the flow seen by30

the 2-D section when the blade is straight and the rotor is planar, as described in Sect. 3.5.1.
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5.2.3 Other implementation of tip-loss correction

The tip-loss correction used in the present work is scaling the thrust coefficient when calculating the blade axial induction and

is actually only applied to the planar part of the axial induction. There are other definitions of the tip-loss factor, such as the

ratio of the blade axial induction and the annulus-averaged axial induction (Branlard and Gaunaa, 2014). Then, it is possible to

directly utilize the tip-loss factor as:5

F =
anp
∞

anp
B

(40)

However, consider that the tip-loss factor is originally developed for planar rotors. As in Prandtl’s simple model of system of

material sheets, the flow will go around the vortex disc edges. Also for the modern definition of the tip-loss factors (Branlard and

Gaunaa, 2014), planar rotor disc is always assumed. Then, the method of directly applying Prandtl’s tip-loss factor in Eq. (35)

to the non-planar axial induction as in Eq. (40) is then without a clear physical background and thus not recommended.10

5.3 Algorithm of proposed vortex cylinder models

As has been described previously in this section, the proposed vortex cylinder model can be used in two ways: either as a

correction to the BEM method (BEM-VC) or is solely used and coupled with the blade element theory (BEVC). Details of the

implementation of both methods have been described previously in this work, and are summarized in Algorithm 1.
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Algorithm 1 Overview of the proposed BEM-VC / BEVC method

for each time step do

for each blade section do

Calculate the angle of attack α at the three-quarter-chord point using:

section velocity, deflection, pitch angle, torsion rate, twist, induced wind and free wind

Compute the quasi-steady lift coefficient CQS
L and drag coefficient CQS

D using the airfoil look-up table

BEVC model:

Calculate the bound circulation strength ΓB , Eq. (34)

Calculate the Kutta-Joukowski thrust coefficient CT,KJ, Eq. (22)

BEM-VC model:

Compute the curved blade length projection correction ds
dr

(Madsen et al., 2020a, Eq. (32))

Calculate the thrust coefficient CT,MT and torque coefficient CQ of each stream tube by projecting the lift and possibly the drag

with respect to the rotor plane, see Madsen et al. (2020a). The ds
dr

term should be included

Comment: CT,MT = CT,KJ when drag is excluded in the momentum balancing

end for

for each blade section, from most outboard towards inboard do

Optional: Compute thrust coefficient due to wake rotation, Eq. (16)

Compute the effective thrust coefficient of the annulus CT,eff, Eq. (14)

Divide CT,eff by the tip-loss factor F in Eq. (35) to get the scaled thrust coefficient: CT,eff/F

BEVC model:

Compute the blade axial induction factor of the corresponding planar rotor apl
B using the scaled thrust coefficientCT,eff/F , Eq. (21)

BEM-VC model:

Compute the blade axial induction factor aBEM as in BEM method, using the scaled thrust coefficient CT,eff/F , Eq. (21)

Comment: aBEM = apl
B when drag is excluded in the momentum balancing

Compute the annulus induction factor of the corresponding planar rotor apl
∞ using the thrust coefficient CT,eff, Eq. (21)

Compute the strength of the tangential vorticity γt using apl
∞, Eq. (38)

Compute the annulus axial induction of the non-planar rotor anp
∞, based on Eq. (9)

Compute the blade axial induction of the non-planar rotor anp
B , Eq. (39)

Compute the tangential induced velocity ut, Eq. (29)

Compute the radial induced velocity ur , Eq. (10)

end for

for each blade section do

Compute aerodynamic forces including dynamic stall and Theodorsen effects (Hansen et al., 2004; Pirrung and Gaunaa, 2018)

end for

end for
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6 The models for comparison

The higher-fidelity models for the comparison are the Navier-Stokes solver EllipSys3D (Michelsen, 1992, 1994; Sørensen,

1995) and the lifting-line module in the aerodynamic solver MIRAS (Ramos-García et al., 2016), both developed at the Tech-

nical University of Denmark (DTU). The lower-fidelity aerodynamic models used for comparison are the BEM method, the

BEM method with radial induction correction by Madsen et al. (2020a) (BEM-ur) and the proposed BEM-VC method. Details5

of these model setups are given in this section.

6.1 Navier-Stokes solver

The pressure-based incompressible three-dimensional solver EllipSys3D was used to solve the Reynolds-Averaged Navier-

Stokes equations, using a finite volume discretization. An inlet/outlet strategy was followed for the boundary conditions of

the outer limit of the CFD domain. The flow was assumed to be fully turbulent, and the k-ω SST model (Menter, 1994) was10

employed. These higher-fidelity simulations are labelled in the present work as CFD.

Several rotor-resolved meshes were built. They were generated in two consecutive steps, that were fully scripted in order to

ensure a similar resulting grid quality. First, a structured mesh of the blade surface was generated with the openly available

Parametric Geometry Library (PGL) tool (Zahle, 2019). A total of 128 cells were used in the spanwise direction, and the

chordwise direction was discretized with 256 cells. Secondly, the surface mesh was radially extruded with the hyperbolic mesh15

generator Hypgrid (Sørensen, 1998) to create a volume grid. A total of 256 cells were used in this process, and the resulting

outer domain was located at approximately 11 rotor diameters. A boundary layer clustering was taken into account, with an

imposed first cell height of 1× 10−6 m, in order to target y+ values lower than unity. The resulting volume meshes accounted

for a total of 14.2 million cells. The grid topology is illustrated in Fig. 7, through the particular case of the baseline straight

blade.20

Figure 7. Visualization of straight blade CFD mesh. Left: blade surface mesh (for clarity, only 1 out of 16 grid lines shown). Middle: lower

half of outer domain surface mesh (1 out of 16 grid lines). Right: detail of volume mesh, cut at mid-span (1 out of 8 grid lines).
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While a steady solver was used, unsteady separation is expected near the root of the wind turbine blade in operation. To

mitigate the effects that this can have on the conclusions of the present work, all the CFD quantities were averaged for the last

350 iterations.

6.2 Lifting-line solver

The lifting-line module in the aerodynamic solver MIRAS (Ramos-García et al., 2016) is implemented as a time-marching5

approach and uses the 2-D airfoil data. This work uses a modified version of the lifting-line module that includes the influence

of the curved bound vortex on the induced velocity as described by Li et al. (2020) which is labelled as LL-mod in that work.

The bound vorticity is located at the quarter-chord line and the calculation points are placed on the three-quarter-chord line.

The influence of the curved bound vortex is modelled by adding the difference of the induced velocity due to the 3-D bound

vorticity and an imaginary 2-D bound vorticity (infinitely long line vortex) evaluated at the three-quarter-chord point to the10

induced velocity of the blade section (Li et al., 2020). The curved bound vortex influence is assumed to be constant along

the chord. The angle of attack to determine the circulatory lift and drag coefficient is the angle of attack at the three-quarter-

chord point. The flow environment to determine lift and drag, especially the direction of the lift and drag force, is at the

quarter-chord point. In addition, as the discussion in Sect. 4.1, the non-circulatory lift is included in the lifting-line model when

calculating the aerodynamic forces. For the setup in this study, each blade is discretized into 50 sections with cosine spacing.15

Each simulation is calculated for 20 thousand time steps and each step correspond to 1.5◦ of azimuthal angle, resulting in a

total of 83.3 revolutions. The airfoil data is from 2-D fully turbulent CFD results (Bortolotti et al., 2019). The vortex core size

in the calculations is 0.1% of the local chord length. The first row of trailed vorticities begins from the trailing edge of the

blade.

6.3 Low-fidelity models20

Three low-fidelity aerodynamic models are used for the comparison. The first one is the BEM method implemented in the

HAWC2 code version 12.8 (Larsen and Hansen, 2007). The second one is the BEM method with radial induction correction

in Eq. (6) (BEM-ur) in the same version of HAWC2 code, and is described by Madsen et al. (2020a). The third one is the

BEM-VC method proposed in this work and is implemented in a test version of the HAWC2 code based on version 12.8. As

has been discussed in Sect. 5.1, the proposed BEM-VC method utilizes the vortex cylinder model as a correction to the existing25

BEM method. The results should be identical to the BEVC model when the drag is excluded in the momentum balancing. So,

the results from the BEVC model, which solely uses the vortex cylinder model and not directly uses the momentum theory,

are not shown. For the low-fidelity models in the HAWC2 code, each time step corresponds to 0.01 s and each simulation is

calculated for 700 s to get the steady-state value. Each blade is discretized radially into 80 sections. The airfoil data is also

from 2-D fully turbulent CFD results and is identical to those used in the lifting-line method. As has been described in Sect.30

5.2, the flow angle seen by the airfoil section is used to calculate the tip-loss factor for the BEM-VC method. For the BEM

method and BEM-ur method, the original implementation of the tip-loss factor in the HAWC2 code using the inflow angle is
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applied. Since all three low-fidelity models are implemented in the HAWC2 code, it is then guaranteed the transformation of

the velocity and force between different coordinate systems during the computation is consistent.

7 Results

In this section, the distributed aerodynamic load in the axial and tangential direction, as well as the integrated loads of aerody-

namic thrust and power from different low-fidelity models, are compared with results from higher-fidelity models. The axial5

and tangential loads are defined to be positive when aligned with x− and z−coordinate respectively as defined in Fig. 1. The

higher-fidelity models are the Navier-Stokes solver (CFD) and the lifting-line method (LL) as described in Sect. 6. By com-

paring the results from the three low-fidelity models with higher-fidelity models, it will be highlighted to which extent the

influence of the non-planar rotor geometry can be correctly modelled by each of the lower-fidelity models.

7.1 Test cases10

There are five different wind turbine blades used for the comparison, all of them are based on the IEA-10.0-198 10 MW

reference wind turbine (RWT) (Bortolotti et al., 2019). The baseline straight blade is modified by aligning the half-chord line

to a straight main-axis. For the upwind dihedral blades, the main-axes that determine the planforms are obtained from modified

Bézier curves which are parameterized with: dihedral ratio r̄s, dihedral magnitude ∆d and tip dihedral angle Λtip. In addition,

some cases with large cone angles are applied to these dihedral blades to exploit the range of capability of the models. The15

radius of the unconed rotor is 99 m, of which the hub radius is 2.8 m. The parameterization of the dihedral blades is very similar

to that for the previous study of swept blades (Li et al., 2018). The dihedral blades W-1 to W-4 are corresponding to Blade-1

to Blade-4 in the previous study, but with out-of-plane shapes (dihedral) instead of in-plane shapes (sweep). The blades are

assumed to be stiff, which means the effect of elastic deformation is not included. In addition, the pitch angle is zero for all test

cases.20

Figure 8. The parameterization of the dihedral blade with dihedral ratio r̄s, dihedral magnitude ∆d and tip dihedral angle Λtip. The figure

is from (Li et al., 2018) but the definition of the parameters are modified.

The parameters of these upwind dihedral blades are summarized in Table 1. The main-axes of these dihedral blades are

illustrated in Fig. 8. The purpose of having dihedral blades with different dihedral magnitude and different tip dihedral angle

is to represent different possible shapes of the dihedral blades.

The airfoils are aligned perpendicular to the curved main-axis, which is the half-chord line. The chord and twist distribution

of the dihedral blades remain unchanged compared to the baseline straight blade. The radius of the dihedral blades are identical25

to that of the baseline straight blade, but the curved blade length is increased due to the dihedral. For the simulations in this
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section, the uniform inflow of 8 m s−1 with no yaw error is applied to the rotor with a constant rotational speed of 0.855 rad s−1.

For the unconed rotors, the tip-speed ratio is 10.58. At this operational condition, the thrust coefficient of the unconed rotor

with baseline straight blades is 0.90 and the rotor power coefficient is 0.46, as predicted using the BEM method. At a radius of

70 m, the angle of attack predicted by the BEM method is 5.76◦.

Table 1. The parameters of the planforms of the four upwind dihedral blades used for the comparison.

Name Dihedral ratio r̄s Dihedral magnitude ∆d Tip dihedral angle Λtip

W-1 50% 10% 20◦

W-2 50% 10% 40◦

W-3 25% 5% 20◦

W-4 25% 5% 40◦
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Figure 9. Side-view of the main-axes of the four different upwind dihedral blades used for the comparison. The dihedral blades from left to

right are W-1 to W-4.

7.2 The distributed load

For the test cases described in Sect. 7.1, the distributed aerodynamic loads calculated from different aerodynamic models are

summarized and are compared in this section. For the calculation of the aerodynamic loads, both lift and drag force are included.

In this study, the focus is on the influence of blade dihedral on the loads. The near-root region (i.e. up to an approximate radius

of 20 m), experienced flow separation in the CFD solution, and it is not the focus of this study.10
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7.2.1 Baseline blade with zero cone

Firstly, the steady-state results of the baseline straight blade without cone calculated from different models are compared and

plotted in Fig. 10. Please note that the distributed loads plotted from all models are corresponding to aerodynamic force per

unit radius. The three BEM methods give identical results as expected. The results from the higher-fidelity models are similar

to the results from the BEM models.
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Figure 10. Comparison of axial load (left) and tangential load (right) of the baseline straight blade calculated from CFD, lifting-line method

(LL), BEM method, BEM with radial induction (BEM-ur) and the proposed BEM-VC method. The results from three BEM variants coincide

with each other as expected.
5

7.2.2 Dihedral blade with zero cone

The steady-state results of the different upwind dihedral blades with zero cone angle are calculated with different aerodynamic

models. The axial load and tangential load of the dihedral blade W-1 is shown in Fig. 11. The distributed loads correspond to

aerodynamic force per unit radius, the curved blade length projection correction described in Sect. 4.2 is applied.

Comparing the distributed load of the baseline straight blade and the dihedral blade W-1, it is difficult to draw conclusions for10

the axial load or the tangential load, because no clear trends can be seen. In order to clearly show the influence of the dihedral

on the loads predicted by different aerodynamic models, the difference of the loads of the dihedral blade W-1 with respect to

the baseline straight blade are shown in Fig. 12. This is done by directly subtracting the load of the baseline straight blade

from the load of the dihedral blade for the same radius. Consistently to this remark, the following comparisons throughout this

work only include the difference of the distributed loads. The absolute loads are not shown since it is more difficult to draw15

conclusions from them.

It can be seen that for the difference of both the axial and tangential load, both higher-fidelity models (CFD and LL) predict

a fairly similar pattern of spanwise load redistribution. For the spanwise location that is further inboard compared to where
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Figure 11. Comparison of axial load (left) and tangential load (right) of the dihedral blade W-1 calculated from CFD, lifting-line method

(LL), BEM method, BEM with radial induction (BEM-ur) and the proposed BEM-VC method.
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Figure 12. Comparison of the difference of the axial load (left) and tangential load (right) of the dihedral blade W-1 compared to the baseline

blade calculated from CFD, lifting-line method (LL), BEM method, BEM with radial induction (BEM-ur) and the proposed BEM-VC

method.
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the blade starts to dihedral, the axial and tangential loads of the upwind dihedral blade are lower compared to the baseline

straight blade. When moving from the spanwise location where the blade starts to dihedral towards halfway until the blade tip,

both axial and tangential loads are also lower compared to the baseline. When moving further towards the tip, both axial and

tangential loads are then increased compared to the baseline until the blade tip.

A similar pattern of spanwise load redistribution was also observed for swept blades in the previous works (Li et al., 2018,5

2020, 2021). However, the redistribution of the loads only takes place where the blade is swept. The loads of the swept blade

and the straight blade are almost identical for the inboard part of the blade, where the blade is still straight. Instead, for the

dihedral blade, the influence of the blade dihedral has a pronounced influence on the inboard part of the blade that is still

straight. This means the blade dihedral at the outboard part of the blade has an influence throughout the spanwise locations of

the blade instead of only on the part of the blade that has dihedral. This could be explained by the out-of-plane blade shape10

moving the starting position of the trailed vortex system in the axial direction. That, in turn, could effectively move the inner

parts of the rotor further into or out of the induction field created by the vortex sheets trailed from the outer sections. By

contrast, the influence of blade sweep on the trailed vortex is only on the azimuthal starting position of the trailed vortex. If

we consider the trailed vortex as a frozen helical wake, sweeping the blade would only result in an azimuthal twisting of the

helical wake. Therefore, the shape of the vortex wake would almost remain unchanged, so that the influence on the induction15

would not be global.

For both the ordinary BEM method and the BEM method with radial induction correction (BEM-ur), the influence of blade

dihedral is not correctly predicted. For the inboard part of the blade that has no dihedral, both methods predict zero offset of

loads. The BEM method predicts lowered axial load for the entire portion of the blade that has dihedral. For the tangential load,

the BEM method predicts neglectable differences compared to the baseline straight blade. The performance of the BEM method20

is as expected because of the assumption of radially independence in the stream tube theory and the changed streamwise starting

position of the trailed vorticity due to blade dihedral is not modelled. The BEM-ur method is able to predict the increase of the

load near the tip, for both axial and tangential loads. However, the decrease of the loads near where the blade starts to dihedral

and also further inboard is not predicted. Because for the BEM-ur method, the radial dependency is modelled to a limited

extent and is only on the radial induction but not on the axial induction (Madsen et al., 2020a). In addition, the axial and radial25

induction from the BEM-ur method corresponds to a planar rotor.

In comparison, the proposed BEM-VC method correctly predicts the pattern and the magnitude of the load redistribution for

both axial and tangential loads. The decrease of the loads further inboard compared to where the blade starts to dihedral is also

well predicted. It should be highlighted that the spanwise location of the crossing of the zero load difference is also in good

agreement with the results from higher-fidelity models (CFD and LL). The largest error with the BEM-VC method is mainly30

for the tip-most part: the increase of the load is over-predicted for both axial and tangential loads. This could be due to the use

of Prandtl’s tip-loss correction in the model. This model is based on a wake shape corresponding to that from a planar rotor with

straight blades. The authors believe that a more advanced aerodynamic model that can replace the current tip-loss correction,

if coupled with the proposed vortex cylinder model, could have better agreement with higher-fidelity models. An example is
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the near-wake model (Madsen and Rasmussen, 2004; Pirrung et al., 2017) which approximately models the near-wake as the

helical trailed vorticity and is currently coupled with a far-wake model that is based on the momentum theory.

It should be mentioned that the difference between the higher-fidelity models (CFD and LL) and the BEM-VC method for

the baseline straight blade is of similar magnitude as the influence due to blade dihedral. However, since the model predicts the

sensitivity of changes in dihedral relatively well, it is favourable to be used for parameter studies and to be eventually integrated5

in a multi-fidelity aerodynamic optimization framework. For example, in order to design a rotor with dihedral blades, higher-

fidelity models could be used for the initial design of a straight blade. Then, the proposed vortex cylinder model could be used

to explore the sensitivity of different dihedral parameters on the aerodynamic loads, with a relatively low computational effort.

The results of the other three upwind dihedral blades are shown in Appendix B1. The same conclusions as that for the blade

W-1 also hold for these results.10

7.2.3 Upwind cone

To exploit the range of validity of the proposed method, a large upwind cone of 15◦ is applied to the baseline straight blade as

well as the blades with upwind dihedral (W-1 to W-4). For the coned cases, the radius of the rotor will decrease compared to

the radius of the rotor having the same blades but with zero cone. For better comparison, the abscissa in the figures correspond

to the radius of the blade without cone, and the loads are defined as force per unit radius. The factor of ds
dr , which now equals15

to the secant of the sum of the cone angle (θc, positive when cone up-wind) and the dihedral angle κ, is multiplied to the loads

of the coned blades.

ds

dr
(ri) =

1

cos(κi + θc)
(41)

For the baseline straight blade with 15◦ of cone upwind, the difference of the loads compared to the straight blade without

cone is plotted in Fig. 13. For the upwind dihedral blades with 15◦ of cone further upwind, the difference of the loads compared20

to the baseline blade with the same upwind cone angle are calculated. The results of the upwind coned dihedral blade W-

1 is shown in Fig. 14 in this section. The results of the other dihedral blades with further upwind cone are summarized in

Appendix B2.

For the straight blade with large cone in Fig. 13, the results from the proposed method are in good agreement with the

results from higher-fidelity models (CFD and LL). The proposed method predicts the same trends as the higher-fidelity models25

while the BEM method and BEM-ur method predict different trends. For the upwind dihedral blades with large cone angle

in Fig. 14 and in Appendix B2, the results from the proposed method are also in better agreement with the higher-fidelity

model compared to the BEM method and BEM-ur method. However, the results from the proposed method are having some

differences compared to the higher-fidelity model probably due to the limitation of the current tip-loss correction, especially

near the blade tip that has large blade dihedral.30
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Figure 13. Comparison of the difference of the axial load (left) and tangential load (right) of the baseline blade with 15◦ of cone upwind

compared to the baseline blade without cone calculated from CFD, lifting-line method (LL), BEM method, BEM with radial induction

(BEM-ur) and the proposed BEM-VC method.
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Figure 14. Comparison of the difference of the axial load (left) and tangential load (right) of the dihedral blade W-1 with 15◦ of cone upwind

compared to the baseline blade with the same cone calculated from CFD, lifting-line method (LL), BEM method, BEM with radial induction

(BEM-ur) and the proposed BEM-VC method.
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7.2.4 Downwind cone

To further exploit the range of validity of the proposed method, a large downwind cone angle of 15◦ is applied to the baseline

straight blade as well as the blades with upwind dihedral (W-1 to W-4). As has been discussed, the radius of the coned rotor

will change compared to the radius of the rotor with the same blades but without cone. For better comparison, the abscissa of

the figures correspond to the radius of the blade without cone, and the loads are again defined as force per unit radius. The term5

of ds
dr calculated from Eq. (41) should be multiplied to the loads of the coned blades. For the downwind-coned straight blade,

the difference of the loads compared to the baseline straight blade without cone is plotted in Fig. 15.
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Figure 15. Comparison of the difference of the axial load (left) and tangential load (right) of the baseline blade with 15◦ of cone downwind

compared to the baseline blade without cone calculated from CFD, lifting-line method (LL), BEM method, BEM with radial induction

(BEM-ur) and the proposed BEM-VC method.

For the upwind dihedral blades with 15◦ of cone downwind on top of it, the difference of the loads compared to the baseline

blade with the same cone angle downwind are calculated. The results of the coned dihedral blade W-1 is shown in Fig. 16 in

this section. The results of the other upwind dihedral blades with downwind cone are summarized in Appendix B3.10

It can be seen that for both the straight blade and the upwind dihedral blade with large downwind cone, the results from the

proposed method (BEM-VC) are in good agreement with the results from the higher-fidelity models (CFD and LL). On the

other hand, the BEM method and the BEM method with radial induction correction (BEM-ur) are not able to correctly predict

the difference of the loads.

7.3 Integrated aerodynamic loads15

The integrated aerodynamic loads, which are the aerodynamic power and thrust from different models are compared in this

section. Please note that when comparing the integrated aerodynamic loads, errors in the distributed loads may cancel out.
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Figure 16. Comparison of the difference of the axial load (left) and tangential load (right) of the upwind dihedral blade W-1 with 15◦ of

cone downwind compared to the baseline blade with the same cone calculated from CFD, lifting-line method (LL), BEM method, BEM with

radial induction (BEM-ur) and the proposed BEM-VC method.

So, it is important to bear in mind that the performance of the different aerodynamic models is not fully represented by their

abilities to predict the total aerodynamic power or thrust of the rotor. The aerodynamic force (per unit length of radius) F ∗ on

each blade section is consisted of the axial force F ∗a , the tangential force F ∗t and the radial force F ∗r . They are defined to be

positive when aligned with x−, z− and y−coordinate respectively as defined in Fig. 1. For the calculation of the aerodynamic

load, both lift and drag force are included. The position of applying the force on the blade section is p. For simplicity, we use5

the half-chord point coordinate as p. This means we neglect the distance between the half-chord point and the quarter-chord

point and also the contribution of the twist to the vector p. In addition, the contribution of the sectional airfoil aerodynamic

moment (calculated from Cm) to the aerodynamic momentum of the rotor is also neglected. Then, the distributed aerodynamic

moment from each blade section is:

M = p×F ∗ =


x

y

0

×

F ∗a

F ∗r

F ∗t

=


yF ∗t

−xF ∗t
xF ∗r − yF ∗a

 (42)10

The x−component of the aerodynamic moment M is the contribution to aerodynamic torque. Then, the aerodynamic power

of the rotor is the integrated contribution of Mx of all NB blades at rotational speed of Ω:

P =NBΩ

Rtot∫
0

yF ∗t dr (43)
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The aerodynamic thrust of the rotor is the total contribution of the axial force of all NB blades:

T =NB

Rtot∫
0

F ∗a dr (44)

The aerodynamic power and thrust of the rotor with baseline straight blades without cone are summarized in Table 2. For the

rotors with dihedral blades without cone, it is difficult to directly draw conclusions from the absolute value of power and thrust.

To better illustrate and compare the integral effects of the rotor dihedral represented by the aerodynamic power and thrust5

predicted using different methods, the relative difference of the aerodynamic power and thrust with respect to the baseline rotor

from each method are calculated and are summarized in the bar plots in Fig. 17 and 18.

Table 2. The aerodynamic power (in kW) and thrust (in kN) of the rotor with baseline straight blades calculated using different aerodynamic

models. The operational condition is with uniform wind speed of 8 m s−1, rotational speed 0.855 rad s−1 and zero cone angle.

Name CFD LL BEM BEM-ur BEM-VC

Power 4358.6 4501.6 4450.8 4450.5 4451.8

Thrust 1070.7 1086.9 1084.0 1084.2 1083.9

3.13
2.89

1.73
1.57

2.05 1.91

0.92
0.71

1.01

0.31 0.24

-0.02

6.24
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Figure 17. The relative difference of power of the dihedral blades without cone compared to the baseline straight blade. The operational

condition is with uniform wind speed of 8 m s−1, rotational speed 0.855 rad s−1 and zero cone angle.

For the aerodynamic power, the relative change predicted by LL is underestimated compared to the prediction by CFD but

the results are showing similar trends. One of the reasons could be the use of the 2-D airfoil data in the lifting-line method.10
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Figure 18. The relative difference of thrust the dihedral blades without cone compared to the baseline straight blade. The operational

condition is with uniform wind speed of 8 m s−1, rotational speed 0.855 rad s−1 and zero cone angle.

The ordinary BEM method predicts almost no influence of dihedral on power, only except for W-1 that predicts the correct

direction that the power increases but underestimates the magnitude. The BEM-ur method predicts the same direction as CFD

and LL that the power of the dihedral rotors are increased compared to the baseline. However, the magnitude of the increment

is overestimated by a factor of approximately two. Comparing to the other two BEM methods, the relative increment of power

predicted by the proposed BEM-VC method is in better agreement with the predictions by CFD and LL.5

For the aerodynamic thrust, the magnitude of the relative decrement is overestimated by approximately 20% by LL com-

paring to CFD. The BEM method predicts the correct trend that the thrust decreases but the magnitude is underestimated

compared to LL and CFD. The BEM-ur method predicts a small increase of aerodynamic thrust instead of a decrease of thrust

as predicted by the higher-fidelity models. The relative change of the thrust predicted by the proposed BEM-VC method is

very similar to the results predicted by LL, and the relative difference of the predicted relative change is less than 20%.10

In summary, the proposed BEM-VC model is in better agreement with higher-fidelity models when predicting the integrated

aerodynamic power and thrust of the dihedral rotor, compared to the ordinary BEM method. The BEM method with radial

induction correction (BEM-ur) is predicting worse compared to the BEM method for both aerodynamic power and thrust.

7.4 Low loading cases

The results shown up to this point in this work are all corresponding to fairly high thrust coefficients around approximately15

0.9. In this section, the results for operational conditions corresponding to lower thrust coefficients are shown. For simplicity,

three of the operational conditions defined in the IEA Wind TCP Task 37 report (Bortolotti et al., 2019) that anticipated lower

thrust coefficients are used. The operational conditions of these lower loading cases are summarized in Table 3, by means of

wind speed, tip-speed-ratio and pitch angle θp. For each case, the rotational speed is 0.909 rad s−1, and uniform inflow with no
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yaw error is applied to the rotor. For each operational condition, the baseline straight blade is pitched with θp and the thrust

coefficient predicted by BEM is also included in Table 3. In order to allow the comparability of the results of this straight

blade with the blade accounting for a dihedral angle, the effects of pitching were introduced as an additional twist instead of

a rotation around the pitching axis. The motivation for this was related to the introduction of in-plane geometry components

by pitching the blade. The twisted blade is named W-1-U*, where * is the wind speed. For the results shown in the previous

Table 3. The different operational conditions of the lower loading cases used for the comparison.

wind speed [ m s−1] tip-speed-ratio [-] additional constant twist θp [◦] CT of straight blade from BEM [-]

12.0 7.5 5.98 0.42

15.0 6.0 11.77 0.21

20.0 4.5 18.51 0.09

5

sections, the lifting-line (LL) results were in good agreement with the CFD results. Therefore, only the LL method is used to

generate the higher-fidelity results for the comparison in this section.

First, the differences of the axial load and tangential load of the dihedral blade W-1-U12 and the pitched straight blade are

shown in Fig. 19. As for the high loading case in Fig. 12, both the ordinary BEM method and the BEM method with radial
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Figure 19. Comparison of the difference of the axial load (left) and tangential load (right) of the dihedral blade W-1-U12 compared to the

baseline blade calculated from different models. The wind speed is 12 m s−1, the tip-speed-ratio is 7.5 and the additional twist angle θp is

5.98◦.

induction correction (BEM-ur) are not able to correctly predict the influence of blade dihedral. In comparison, the proposed10

BEM-VC method correctly predicts the shape and magnitude of the load redistribution for both axial and tangential loads.

The decrease of the load further inboard compared to where the blade starts to dihedral is also well predicted. As for the high
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loading case, the largest difference between the LL and the BEM-VC results are mainly for the tip-most part. As previously

mentioned, this could be due to the use of Prandtl’s tip-loss correction in the model.

The results for the dihedral blades W-1-U15 and W-1-U20, at wind speeds of 15 m s−1 and 20 m s−1 respectively, are shown

in Fig. 20 and 21. The same conclusion can be made from these lower loading results. However, with the decrease of the

thrust coefficient, the difference between the prediction by the BEM method and the LL method decreases. This is because the5

relative importance of the induced velocities decrease in these cases, making the performance more directly dictated by the

velocity components from the inflow and the rotor rotation, and less from the induced velocities.
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Figure 20. Comparison of the difference of the axial load (left) and tangential load (right) of the dihedral blade W-1-U15 compared to the

baseline blade calculated from different models. The wind speed is 15 m s−1, the tip-speed-ratio is 6.0 and the additional twist angle θp is

11.77◦.

7.5 Computational effort

The computational effort to obtain the steady-state results used in the present work, measured in CPU time, are summarized in

this section. The CFD computations using EllipSys3D were performed on DTU’s high-performance computing (HPC) cluster10

Jess, in which each node has 20 cores running at 2.8 GHz. All the CFD simulations of the present work required a wall clock

time of approximately 3.5 h when using 216 cores. The lifting-line (LL) computations using the MIRAS code were performed

on the Sophia HPC cluster, in which each node has 32 cores running at 2.9 GHz. Each of the LL simulations in the present

work required a wall clock time of approximately 100 h when using 32 cores. Note that the computational time for the LL

method in the MIRAS code in this study is relatively high, because the settings were chosen to achieve the highest possible15

fidelity irrespective of the computational cost. Therefore the computational effort for the MIRAS calculations in this work

is not indicative of the performance for normal use of the tool. Settings that increased the computational effort in this work
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Figure 21. Comparison of the difference of the axial load (left) and tangential load (right) of the dihedral blade W-1-U15 compared to the

baseline blade calculated from different models. The wind speed is 20 m s−1, the tip-speed-ratio is 4.5 and the additional twist angle θp is

18.51◦.

are: small time steps, not using far-wake cut-off, etc. The computational time is expected to be largely decreased if efforts are

dedicated to improving the simulation setup. However, this is beyond the scope of the present work.

The computations using the HAWC2 code were performed on a single core of a 2018 workstation at 4.8 GHz. The simula-

tions were performed with structural properties included and with large stiffness to approximate stiff structures. The simulations

were run for 600 s in the simulation-time to reach steady-state. The simulations required a wall clock time of approximately5

600 s and 650 s for the BEM method and the BEM-VC method, respectively. For a stand-alone version of the BEM method

or the BEM-VC/BEVC method, one steady-state computation can be done in much less than one second using a single CPU

core.

8 Conclusions and future work

A new computationally efficient method for the aerodynamic load calculation of non-planar rotors is described. The method10

is based on the vortex cylinder model, and can be used in two ways: either as a correction to the currently widely used

blade element momentum (BEM) method, or as the main model, replacing the BEM method in the engineering modelling

complex. For uniform inflow that is perpendicular to the rotor plane, the influence of the blade out-of-plane shapes on the

distributed aerodynamic loads, measured by the difference of the loads between the non-planar rotor and the planar rotor, is

shown to be in good agreement with higher-fidelity models. The predicted distributed and integrated aerodynamic loads are in15

better agreement with higher-fidelity models than the baseline BEM method and also a BEM method with a radial induction

correction. While the present work focused on stiff geometries, the developed framework would be able to handle out-of-

plane deflections during aeroelastic simulations accounting for blade elasticity, without any loss of generality. The new model
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is approximately as numerically efficient as ordinary BEM-based models, which makes it favourable for aero-servo-elastic

simulation as well as design optimization of horizontal-axis wind turbines whose blades have out-of-plane shapes. Therefore,

the authors recommend the use of the proposed model as a correction to the existing BEM codes.

For the future work on the model applications, it would be interesting to use both the standard BEM method and the proposed

method for the aerodynamic or aeroelastic design of a non-planar rotor under the same constraints. Higher-fidelity models,5

such as CFD or lifting-line method could be used for the benchmark of the different designs, as done in the present work. The

method is also favourable for integration in a multi-fidelity aerodynamic design framework. There are also several ways in

which future work could improve the model. Firstly, it would be favourable to have modifications to the existing Prandtl’s tip-

loss correction. For example, it is possible to use the distance between the tip vortex and the calculation point when calculating

the correction for a non-planar rotor, instead of using the radial distance as currently implemented in the model. Secondly,10

it would be beneficial to further develop the model for the application of blades with both in-plane and out-of-plane shapes.

One possible track of the development is to couple the vortex cylinder model and the near-wake model, which approximately

models the near-wake as helical trailed vorticities and is currently coupled with a far-wake BEM method. Thirdly, it would

be interesting to investigate the unsteady effects of the non-planar rotor, such as aerodynamic damping and dynamic inflow

effect. Fourthly, it would be beneficial to further develop the vortex cylinder model for the application of non-planar rotors in15

yawed flow. Finally, further development of the model focusing on analytical gradients would be favourable for application in

a gradient-based wind turbine design optimization framework.

Code and data availability. TEXT

Author contributions. AL conducted the study as part of his PhD research. The idea of the proposed model originates from MG. The proposed

model is jointly developed by MG, AL and GRP. The similarities of the superposition of the vortex cylinder model of non-planar rotor and20

planar rotor are described by AL and MG. The application of the tip-loss correction as well as high-thrust correction for the non-planar rotor

is described by AL and MG. The implementation of the proposed model in HAWC2 code and the computations using the HAWC2 code are

performed by AL with contribution from GRP. The CFD method is introduced by SGH and the CFD results are computed by SGH. The

post-processing of the CFD results is performed by SGH with contribution from AL. The lifting-line results are computed by AL and the

post-processing is performed by AL. All authors jointly draw the conclusions of the work and contribute to writing this work.25

Competing interests. DTU Wind Energy develops and distributes HAWC2 on commercial and academic terms.

Disclaimer. TEXT

37



Acknowledgements. The authors would like to thank our colleague Néstor Ramos García in DTU Wind Energy for the suggestions in the

lifting-line simulation using MIRAS, a vortex code mainly developed by him. This work has been supported by the Smart Tip project, funded

by Innovation Fund Denmark (J.nr. 7046-00023B).

38



Appendix A: Nomenclature

a axial induction

a′ tangential induction

CL lift coefficient

CD drag coefficient5

Cm moment coefficient

CQ torque coefficient

CT thrust coefficient

CT,eff effective thrust coefficient

CT,KJ Kutta-Joukowski thrust coefficient10

CT,rot thrust coefficient due to wake rotation

CT,av averaged coefficient for the radial induction function

∆d dihedral magnitude

f lift force vector on the blade with the definition of force per unit length of curved blade length

f∗ lift force vector on the blade with the definition of force per unit radius15

F ∗ aerodynamic force vector on the blade with the definition of force per unit radius

F tip-loss factor

h helical pitch

k factor for the calculation of the elliptic integral

k1, k2, k3 factors for the relationship between axial induction and thrust coefficient20

ks normalized sectional circulation of the vortex cylinder

M the aerodynamic moment vector

NB number of blades

P aerodynamic power of the rotor

r radius of the calculation point25

R radius of the vortex cylinder

Rtot radius of the rotor

T aerodynamic thrust of the rotor

ua axial induced velocity

ut tangential induced velocity30

ur radial induced velocity

∆ua the correction to the axial induced velocity

∆ur the correction to the radial induced velocity

U0 wind speed
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Vrel relative velocity

x axial position of the calculation point with respect to the vortex cylinder

Greek letters

Γ bound vorticity strength of the vortex cylinder, equal to the bound vorticity strength of all blades5

ΓB blade bound vorticity strength

Γroot root vortex

∆Γ trailed vorticity strength of the vortex cylinder

γb radial bound vorticity strength

γl longitudinal vorticity strength of the vortex cylinder10

γt tangential vorticity strength of the vortex cylinder

Λtip tip dihedral angle

ϕ inflow angle

ρ density of air

θc cone angle15

κ dihedral angle

Ω rotor speed

λr speed ratio at radius r

Subscripts20

a in the axial direction

t in the tangential direction

r in the radial direction

i at blade section i

B the value at the blade25

∞ the annulus averaged value

eff effective value

tot the total value

MT from the momentum theory

BEM from the BEM method30

VC from the vortex cylinder model

Superscripts

B the value at the blade

np the non-planar rotor

pl the planar rotor35
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QS quasi-steady

C circulatory part

Appendix B: Results of the distributed load

B1 Zero cone angle5

The difference of the loads of the dihedral blades (W-2 to W-4) with zero cone compared to the baseline straight blade without

cone.

0 10 20 30 40 50 60 70 80 90 100

Radius [m]

-300

-250

-200

-150

-100

-50

0

50

100

150

O
ff

s
e

t 
o

f 
a

x
ia

l 
lo

a
d

 [
N

 m
-1

]

CFD

LL

BEM

BEM-u
r

BEM-VC

0 10 20 30 40 50 60 70 80 90 100

Radius [m]

-40

-20

0

20

40

60

80

100

O
ff
s
e
t 
o
f 
ta

n
g
e
n
ti
a
l 
lo

a
d
 [
N

 m
-1

]

CFD

LL

BEM

BEM-u
r

BEM-VC

Figure B1. Comparison of the difference of the axial load (left) and tangential load (right) of the dihedral blade W-2 compared to the

baseline blade calculated from CFD, lifting-line method (LL), BEM method, BEM with radial induction (BEM-ur) and the proposed BEM-

VC method.

B2 Upwind cone

The difference of the loads of the dihedral blades (W-2 to W-4) with 15◦ cone upwind compared to the baseline straight blade

with the same upwind cone.10

B3 Downwind cone

The difference of the loads of the dihedral blades (W-2 to W-4) with 15◦ cone downwind compared to the baseline straight

blade with the same downwind cone.
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Figure B2. Comparison of the difference of the axial load (left) and tangential load (right) of the dihedral blade W-3 compared to the baseline

blade calculated from different aerodynamic models.
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Figure B3. Comparison of the difference of the axial load (left) and tangential load (right) of the dihedral blade W-4 compared to the baseline

blade calculated from different aerodynamic models.
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Figure B4. Comparison of the difference of the axial load (left) and tangential load (right) of the dihedral blade W-2 with 15◦ of cone upwind

compared to the baseline blade with the same cone calculated from CFD, lifting-line method (LL), BEM method, BEM with radial induction

(BEM-ur) and the proposed BEM-VC method.
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Figure B5. Comparison of the difference of the axial load (left) and tangential load (right) of the dihedral blade W-3 with 15◦ of cone upwind

compared to the baseline blade with the same cone calculated from different aerodynamic models.
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Figure B6. Comparison of the difference of the axial load (left) and tangential load (right) of the dihedral blade W-4 with 15◦ of cone upwind

compared to the baseline blade with the same cone calculated from different aerodynamic models.
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Figure B7. Comparison of the difference of the axial load (left) and tangential load (right) of the dihedral blade W-2 with 15◦ of cone

downwind compared to the baseline blade with the same cone calculated from CFD, lifting-line method (LL), BEM method, BEM with

radial induction (BEM-ur) and the proposed BEM-VC method.
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Figure B8. Comparison of the difference of the axial load (left) and tangential load (right) of the dihedral blade W-3 with 15◦ of cone

downwind compared to the baseline blade with the same cone calculated from different aerodynamic models.
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Figure B9. Comparison of the difference of the axial load (left) and tangential load (right) of the dihedral blade W-4 with 15◦ of cone

downwind compared to the baseline blade with the same cone calculated from different aerodynamic models.
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