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Abstract. In typical industrial practice based on IEC standards, wind turbine simulations are computed in the time domain for
each mean wind speed bin using a few number of unsteady wind seeds. Software such as FAST, BLADED or HAWC2 can be
used to capture the unsteadiness and uncertainties of the wind in the simulations. The statistics of these aeroelastic simulations
output are extracted and used to calculate fatigue and extreme loads on the wind turbine components. The minimum require-
ment of having six seeds does not guarantee an accurate estimation of the overall statistics. One solution might be running more
seeds; however, this will increase the computation cost. Moreover, to move beyond Blade Element Momentum (BEM)-based
tools toward vortex/potential flow formulations, a reduction in the computational cost associated with the unsteady flow and
uncertainty handling is required. This study illustrates the unsteady wind aerodynamic statistics’ stationary character based on
the standard turbulence models. This character is shown based on the output of National Renewable Energy Lab (NREL) SMW
reference machine Blade Element Momentum (BEM) simulations. Afterwards, we propose a non-intrusive Polynomial Chaos
Expansion (PCE) to build a surrogate model of the loads’ statistics, the rotor thrust and torque, at each time step, to estimate

the extreme statistics more accurately and efficiently.

1 Introduction

The process of calculating loads on wind turbine components is one of the core parts of wind turbine aerodynamic and structural
design and optimization. In the last few decades, international organizations have developed different aeroelastic codes such as
Fatigue, Aerodynamics, Structures, and Turbulence (FAST) (Jonkman et al., 2005), BLADED (Bossanyi, 2003) and HAWC2
(Larsen and Hansen, 2007) to accurately calculate load time series based on the standardized or site-specific environmental
conditions. Engineers and researchers use wind turbine aeroelastic simulation output statistics to calculate extreme and fatigue
loads on wind turbine structures and estimate the unsteady power. To take into account the randomness in the unsteady wind,
according to IEC standards (IEC 61400-1), the simulation process must use a semi Monte Carlo (MC) method. Therefore, a
full simulation set should include a limited number of seeds for generating multiple wind speed time series of 600s.

In normal practice, for each mean wind speed, at least six different seeded unsteady wind time series are required as the
minimum to take into account the uncertainties. This limited number of unsteady simulations does not yield an entirely accurate
estimation of the statistics. Gradient-based optimization algorithms may not deal with these inaccuracies well. One option to

solve this problem is running more seeds, which will increase the computational cost. The increase in computational cost will
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play a more critical role in our decision making if we want to move towards vortex (van Garrel, 2003) and potential flow codes
for load calculations, as they require more computation resources inherently. An alternative approach to direct simulation is to
use a surrogate model that can provide us with an accurate statistical estimation set based on a limited number of simulations.

The origin of the surrogate model lies in Uncertainity Quantification (UQ) analysis (Sudret, 2007). There are many uncer-
tainty quantification implementations in wind energy. More specifically, surrogate models show much potential in wind farm
load estimation, wind turbine optimization or reliability analysis. Many researchers have investigated these potentials. For ex-
ample, Dimitrov et al. (2018); Schroder et al. (2018); van den Bos et al. (2018); Dimitrov (2019) used surrogate models to
estimate the loads on a wind turbine based on the stochastic variables gross parameters such as turbulence intensity, mean wind
or wind direction. Ashuri et al. (2016); Murcia et al. (2018); Schroder et al. (2020a) used surrogate models for uncertainty prop-
agation through the wind turbine models. More recently, the surrogate models have been used for the wind turbines reliability
assessments (Slot et al., 2020; Schroder et al., 2020b). Also, Wang et al. (2020) and Barlas et al. (2021) showed the appli-
cation of surrogate model in wind turbine optimization. However, very few have looked at building a surrogate model of the
aerodynamic model of wind turbine based on the random phases as the input. Fluck and Crawford showed an initial attempt to
build a surrogate model based on intrusive Polynomial Chaos Expansion (PCE) on simple lifting line and BEM models (Fluck
and Crawford, 2016a, 2018). As they were quickly faced with curse of dimensionality, they showed it is possible to reduce
the number of random variables in Veers’ unsteady wind model significantly. Afterwards, they used this reduced dimension
wind model to propagate stochasticity through a simple lifting line (Fluck and Crawford, 2016b) or BEM (Fluck and Crawford,
2018) model. However, with intrusive PCE it is necessary to change the model implementation fundamentally to incorporate
the random variables (Sudret, 2007). This might work for a simple model, but when we want to utilize commercially available
aeroelastic codes, this will be challenging or even impossible.

This paper’s goal is to build a non-intrusive PCE surrogate model of a deterministic aerodynamic model driven by stochastic
unsteady wind. This study’s implemented aerodynamic model takes wind time series as input and calculates thrust and torque
on a NREL 5SMW turbine rotor using BEM. The motivation is to build a surrogate model based on a limited amount of
simulation data to estimate the statistics of the aerodynamic model output at each time step of the time series quickly. Having
this surrogate model at hand helps us explore and experience the opportunities it can provide. This output guides future research
in the surrogate model realms for us in the long run. The surrogate model investigation presented is an exploration of the
potential benefits and limitations of PCE-based time-domain surrogate models, to help researchers and practitioners develop
future surrogate modeling approaches.

As the surrogate models are inherently cheap to run, we take this surrogate model through a Monte Carlo Simulation (MCS)
large number of times. The input of these MCS are the samples drawn from the uniform random variables. The unsteady wind
generator uses the same random variable distribution to make sure the generated time series will match a Gaussian process
(Veers, 1988). This process is presented in Figure 1 schematically. By this method, we can reduce the computational cost and
time for the aerodynamic simulation, without compromising the validity of the results. One can interpret this model as a tool
to map the input distribution (in this case, an uniform distribution of random seeds-phases) to the output distribution (in this

case, distribution of thrust and torque on the rotor).
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Figure 1. The common deterministic process of aerodynamic modeling vs the suggested surrogate model method schematic flow chart.

Fitting a surrogate model at each time step of 600s of the aerodynamic output times series, using the random phases (Fig-
ure 1), is computationally expensive and redundant to current practice. Therefore, we start by showing that the aerodynamic
simulation results based on Veer’s reduced model (Fluck and Crawford, 2017) statistically converges. We also show that the
unsteady wind aerodynamic process’s statistical properties are constant in time (stationary process). Therefore, by keeping
the computational effort the same, it is possible to run more simulations while shortening the length of the simulations. Fur-
thermore, more simulations with the same computational effort give us the chance to fit higher degree PCEs, which provides
a more accurate estimation of the statistics. We build four different PCEs surrogate models, with four different polynomial
degrees (degrees two to five) to pick the best in terms of accuracy and computational cost trade-off. These surrogate models
have been used for MCS for a large number of runs (cheaply). The results of the MC runs of the surrogate models are compared
with 48000 unsteady wind aerodynamic simulation results. In this case, the simulation results are the thrust and torque forces
induced on the NREL 5SMW in an unsteady wind. We compare the results by looking at the thrust and torque distribution from
both the deterministic and surrogate models. Finally, we show how the extreme loads extracted from the MCS can converge to
the extreme loads from the results from 48000 unsteady wind aerodynamic simulation results.

This paper is organized as follows. Section 2 describes the unsteady wind generation and aerodynamic model. Sections 3
and 4 explain the and statistical elements and PCE method used in the study. Next, in section 5, we set out the approach to
tackle the challenge. Section 6 provides the BEM simulation results, convergence of the sectional statistics the PCE fit on the
sectional statistics and the emulations output. At the end of the results section, we discussed the accuracy and efficiency of
the surrogate models developed in this study. This paper concludes in Section 7, reiterating the key findings of the study and

offering suggestions for fruitful future work in the area of wind turbine surrogates.
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2  Models
This section provides an overview of the unsteady wind generation basics and aerodynamic model used in this study.
2.1 Reduced Veers unsteady wind model

One famous unsteady wind model in the wind turbine community is the Veers model (Veers, 1988). The history of the model
goes back to the late 80s’ and has a long record in wind turbine load calculation practice. Very briefly, Veers unsteady wind

model is inherently an inverse Fourier transformation. The 1-D unsteady wind time series at location P is generated via:

Uso (tn) = Y v/ Speiemtnt27Em) "

For this inverse Fourier transformation in Eq (1), the frequencies w,, and are taken from the Kaimal spectrum (Figure 1).
The random phases are based on the independent random variable &,,, drawn from a uniform distribution over [0,1]. Finally,
the amplitude S,, is specified based on the power spectrum at the frequencies w,,, (Bossanyi et al., 2011).

In load calculation practice, Veers’ model for the unsteady wind is the method to generate turbulent boxes, commonly
implemented in TurbSim (Jonkman, 2009). The method is briefly explained in Fluck and Crawford (2017) and extensively
in Veers (1988). To make the unsteady wind in TurbSim, this method uses a large number of random variables on the order
of thousands is required Jonkman (2009). This large number of random variables pushes the surrogate model problem into
the curse of dimensionality very quickly. Therefore, building a PCE surrogate model is almost impossible. To tackle this
issue, Fluck and Crawford (2016b) showed that using only ten uniformly distributed independent random variables with ten
frequencies logarithmically sampled from the Kaimal spectrum (Veers, 1988) is enough for building unsteady wind time series.
This Reduced Veers’ model generated unsteady wind that can capture the same level of randomness and probability distribution
as the full model. This study used this reduced Veers model to generate unsteady wind time series. This method does not lead
to a model that fully replaces high fidelity Turbsim outputs but rather a surrogate model necessity to study trade-offs of various
accuracy and assumption aspects.

The randomness in the generated unsteady wind comes from the ten random variables, ¢;, in the & vector describing the
frequency components’ phases 27¢,, in the reduced Veers model in Eq. (1) (Fluck and Crawford, 2017). Based on the Veers
method (Veers, 1988) and in TurbSim (Jonkman, 2009), the employed sampling method is a pseudo-Random Number Gener-
ator (pRNG) which is the basis of MCS. However, the problem with this way of sampling for MCS is the lack of control over
the random variables’ domain as it may fill some voids in the domain and may leave some of it empty (Niederreiter, 1992).
Therefore, the random domain may not be filled evenly for the same reason. For this study, a low discrepancy Quasi Monte
Carlo (QMC) sampling method, namely the Sobol sequence (Sobol’, 1967) is used to draw samples from the random variables
in this work to calculate the PCE coefficients via the point collocation method. The main reasons to select the Sobol sequence
over other sampling methods are the samples’ consistency and computational efficiency (Kucherenko et al., 2015). A custom

random wind generator based on the reduced Veers model used these samples to generate unsteady wind fields.
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2.2 Aerodynamic model

The aerodynamic model for this study is a BEM model (Bossanyi et al., 2011) with frozen wake based on the work of Lupton
(2019). This non-linear BEM model is used to run simulations on a NREL 5SMW Jonkman et al. (2009) rotor to calculate thrust
and torque on the rotor. For the simulations, the rotor speed was kept constant based on the mean wind speed of the simulations.
Also, the pitch angle was set according to the data provided in Jonkman et al. (2009). There is no controller involved in the
simulations. The unsteady wind defined in the previous section is set at 100m hub height and remains the same on the rotor. The
Python package for BEM is bemused (Lupton, 2019). The NREL SMW model characteristics and properties are extracted
from Jonkman et al. (2009). The model employed in this study for the simulations and surrogate model is essentially equivalent
to the NREL SMW model in any wind turbine aerodynamic code (e.g. FAST, BLADED and HAWC), but nicely formulated in
Python. The model and analysis code used in this work has been previously verified against the NREL 5SMW full model using
BLADED by Lupton (Lupton, 2015).

3 Statistical convergence metric

For this study, we want to investigate the null hypothesis that cross-sectional statistics (statistics at each time step) of a combi-
nation of a large number of aerodynamic simulation outputs are similar. In other words, we want to investigate if the statistical
properties of the output at each time step converge as a function of the number of simulations (stationary process) for the
non-linear stochastically autocorrelated system. Figure 2 presents a generic example of distributions (histogram fits) at each
time step for a set of realizations of one random process. (The figure shows a schematic plot; therefore, histograms and fitted
distributions do not represent the plotted trajectories.)

To show that the sectional statistics of a large number of simulations are convergent, we need a metric to quantify the
difference between the distributions at each time step. There are different metrics for this purpose (Basu et al., 2011); for this
study, we use Hellinger distance (Hellinger, 1909) as a metric due to its ease of application and interpretation. The Hellinger
distance is the metric to quantify how similar two probability distributions are to each other. The distance is zero if they are the
same and is one when the two distributions are disjoint. The Hellinger distance for two discrete probability distributions P and

@, which have an equal number of bins, can be formulated as:

k
1
H(P,Q) = —=\|>_(VPi — V@:)? 2)
V2 i=1
In Eq.(2), p; and g; are the probabilities for P and () at every bin. In our case, to make the comparison fair, not only the number
of bins are the same, but also the bin width is the same for both P and (). This assures us that there is no artificial distance
reduction in the results.

In this study, we use Hellinger Distance to show the cross-sectional statistics changes for a large number of simulations

is minimal. Therefore, we can shorten the simulations without losing the accuracy of the sectional statistics. We also use the
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Figure 2. A schematic drawing presenting possible distributions at each time step based on a set of time trajectories for a Quantity of
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Hellinger distance as an error metrics to compare the accuracy of the MCS with the reference case. The reason behind choosing
this measure, instead of simply looking at the mean and stand deviation difference, is the distribution of the aerodynamic
model output. As the next section we will show, the distribution of the aerodynamic output is a Weibull distribution. Therefore,

comparing mean and standard deviation would not provide us the full statistical picture.

4 Polynomial Chaos Expansion Fundamentals

Uncertainty propagation of mathematical models has been the subject of many studies in the last thirty years. One method to
propagate uncertainty is using models of models, called surrogate models. A surrogate model is a cheap-to-run approximation
of the actual model (Kim and Boukouvala, 2019). Among surrogate models, the Polynomial Chaos Expansion (PCE) has gained
attention especially after the work of Ghanem and Spanos (2003) and Xiu and Karniadakis (2003). PCE is a method that uses
a variable described by its statistical distribution (random variable £) and projects the model onto a basis of polynomials. This
way, the uncertainty can be propagated through the model with a limited number of simulations (Tyson et al., 2015). In other
words, PCE is a technique to estimate the response of a mathematical or numerical model based on a series of orthogonal
polynomials, which are functions of a random variable &. The solution is expanded and described in stochastic space spanned

by & and the associated polynomial basis.
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The main reasons to use PCE instead of other surrogate model methods are; a) with minimum computational effort, one
can extract statistical moments directly from PCEs; b) PCEs are easy to integrate into deterministic linear and non-linear
mathematical models; c) one can build PCE surrogate model by treating the model as a black box (Kaintura et al., 2018;
Sudret, 2015) using a non-intrusive formulation.

In order to illustrate the application of PCE surrogates, assume Y (¢,,) = M(¢,,,&) where t,, is time step n, and £ is the
random variable vector, M(t,,,£) is our deterministic time marching mathematical model and Y (¢,,) is the output of the model

at time step n. Therefore, the stochastic output of the model Y (¢,,,£) can be expanded as:

Y (t,,€) = Zyz-(tn)%(é) 3)

where y; (t,,) are PCE coefficients at each time step and ¥;(£) is a member of an orthogonal polynomial class. These poly-
nomials are orthogonal with respect to the probability space of random variable £. The selection of the polynomial type is a
function of the probability distribution on the random variable £. For example, if a random variable £ has a normal distribution,
then a Hermite polynomial is selected (Xiu and Karniadakis, 2002).

The polynomials do not necessarily need to be selected from the specific polynomials family as long as they are orthogonal
polynomials. For instance, Fluck and Crawford (2018) showed exponential components worked best for their purposes. As the
randomness in this study comes in the form of a uniform distribution for wind frequency component phases ¢;, the surrogate
model is based on the Legendre polynomials (Xiu and Karniadakis, 2003). In practice, the PCE summation in Eq (3) is truncated
at a reasonably high order p. The task of fitting the expansion in Eq (3) is finding the coefficients y;(¢). There are two main

approaches to solve this problem:

— the intrusive approach where the model is projected on the orthogonal polynomials using a Galerkin projection (Ghanem
et al., 2017). This approach requires building a detailed stochastic model from the deterministic model governing equa-
tions. The intrusive approach was used by Fluck and Crawford (2016b, 2018) to build a surrogate model on lifting line
and BEM models.

— the non-intrusive approach allows calculating the PCE coefficients from a series of deterministic model evaluations. This
approach considers the model as a black box and does not require any model modification (Sudret, 2007; Eldred et al.,
2008). There are two sub-categories to calculate the coefficients, namely simulation methods and quadrature methods
(Sudret, 2007).

The presented work uses the non-intrusive approach to calculate the PCE coefficients. In the non-intrusive approach category
we primarily used a simulation method to calculate the PCE coefficients. In mathematical form, the output of the aerodynamic

model Mgero(tn, &) at time step n is thrust Tr¢(¢,,) and torque Trq(t,, ). Therefore, one can re-write Eq. (3) as:
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Trt(tn,€) = > Ti(tn)Ti(€) )
=1

Trq(tn.§) ~ ZTl(tn)\Ijl(g) )
=1

where the goal is to calculate the polynomial coefficients T;(t,,) and 7;(t,,) at each time step. This surrogate model’s input is
the random variable £ vector used in the reduced Veers model to generate the unsteady wind. The surrogate model’s output is
the thrust and torque at a specific time step for which the surrogate model is built. The main difference between Eq. (3) and
(4)(5) is the approximation with finite polynomial series expansion, as it is not feasible to take into account an infinite number
of polynomials. This work’s surrogate model is built employing the Python toolbox chaospy (Feinberg and Langtangen,
2015). chaospy is a numerical tool for uncertainty quantification using different methods, including PCE. For this study, we
used the point collocation method to calculate the coefficients due to the ease of implementation in the chaospy toolbox.

This method has been explained well in the literature (see Xiu et al. (2002), Ghanem and Spanos (2003), Sudret (2007)).

5 Surrogate Modeling Methodology

In this piece of work, whenever we talk about simulations, we mean aerodynamic simulations in time using the BEM aerody-
namic model introduced above. The input of the aerodynamic simulations is what we call wind time series or unsteady wind
and is auto-correlated by construct. This wind time series is generated based on the reduced Veers model explained above.
This study starts with running an extensive set of simulations based on the reduced Veers model at 12m /s mean wind speed,
aerodynamic simulation model and Sobol sampling, explained previously. This wind speed is the rated power wind speed for
NREL 5MW. Afterwards, as we have a large number of simulations output in our database, we can show that the thrust and
torque statistics with time are not changing significantly. Therefore the statistical process properties at each time step (e.g.
mean, standard deviation, etc.) would be significantly similar to other time steps. Knowing the process statistics stays the same
in time, we conclude that only building a single surrogate model, i.e., a single time-step or a few ones, would suffice for our
purpose. The accuracy of the PCEs depends on the polynomial degree. However, an increase in the polynomial degree pushes
the problem further toward the curse of dimensionality. The number of required coefficients to build the surrogate model
and the required number of simulations are presented in Table 1. Eq (6) presents the formula to calculate the number of PCE
coefficients. In Eq. (6), M is the required number of coefficients, /V is the number of random variables, and P is the polynomial

order.

(N +P)!
PINT

The table shows we need a large number of simulations to build an accurate PCE. According to Hosder et al. recommendation,

M+1= (6)

twice the number of simulations M + 1 can provide acceptable accuracy for the point collocation method (Hosder et al.). That

recommendation is the basis for the number of simulations in this study.
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Table 1. The number of coefficients and required data points to calculate the coefficients for 10 random variables and using the point
collocation method. This number of coefficients should be calculated for every time step. The last column demonstrates the simulation length

for the fitted PCEs as explained in Section 6.

Polynomial Degree | Number of Coefficients + 1 | No of Required simulations | Sims. Length to fit PCEs [s]

1 11 22 163.6
2 66 132 273
3 268 536 6.7
4 1001 2002 1.8
5 3003 6006 0.6

We want to limit the computational cost for a single average wind speed to 6 times 600s simulations (in total 3600s) to
be competitive with the standard practice in wind turbine aerodynamic simulation. Combining a large number of simulations
and 3600s cumulative simulations length leads to a large number of short simulations instead of a few long ones. We kept the
simulation’s cumulative length at 3600 seconds to make this trade-off fair. This means that as the simulations’ length decreases,
the number of simulations increases. Sobol sampling is the base of the unsteady wind generation and input to the aerodynamic
simulation setup. For every set of the required number of simulations in Table 1, the random phases are drawn independently
from the rest of the sets. For example, for the second row of Table 1, when we need 132 simulations, 132 unique samples of &
are drawn from the random domain. These £ have not been used for other simulation sets. By having a large number of data
points at each time step, we built a few surrogate models in time and compared the results with the simulations’ reference case.
For the sake of accuracy, in this study, we do not build any surrogate model based on 1st-degree polynomials.

Another approach to calculate the coefficients is Gaussian Quadrature (GQ). This method has been extensively explained in
the literature e.g. Le Maitre and Knio (2010). There are also extensions to GQ referred to as Sparse Gaussian Quadrature (SGQ)
methods that seek to reduce the number of simulations required to fit the surrogate (e.g. Smolyak). Our tests show that for a
standard GQ method with 10 random variables and polynomial orders 2, 3 and 4 we need 59049, 1048576, 9765625 evaluation
points respectively. On the other hand, the Smolyak sparse approach for GQ (Le Maitre and Knio, 2010; Smolyak, 1963),
will reduce the number of evaluation points drastically. We tested the SGQ method for polynomial orders of 2,3 and 4 with
10 uniform random variables and the Smolyak sparse approach for SGQ. The number of the required evaluations for each
polynomial order is 221, 1581 and 8761, respectively. We ran the evaluations for the SGQ method, calculated the weights and
built the polynomials. However, the results were not as promising as expected. The results from the SGQ method are shown
and briefly discussed in Section 6.4

For a stationary input (Reduced Veers model), the sample statistics of output converges at the rate of 1/+/n, where n is
the number of data points (in this case, 48000 data points at a one-time instance). Consequently, it is possible to estimate the
statistical parameters of the output distribution by different methods. One possible approach is using the maximum likelihood
estimator Rao (2008). A question that then arises is why we go through the complication of building a surrogate model. The

research goal we present here is to build a surrogate model of an aerodynamic model, whether the aerodynamic model is simple
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or complex, with the model capable of resolving the form of the performance statistics, as an alternative to maximum likelihood
estimation methods. We chose an aerodynamic model that is easy to simulate while complex enough to capture the inherent
non-linear behaviour. Hence, the specific aerodynamic example model does not compromise the validity of the method we

introduce here to later more complex aeroelastic simulations with e.g. FAST or BLADED.

6 Results

This section presents the results of our numerical experiments. We start by looking at the Hellinger distance of a large number of
aerodynamic simulation output, thrust and torque, and show the distance does not change significantly. Therefore, the sectional
statistics are almost the same across time steps. Afterwards, based on that conclusion, we built a number of surrogate models
for polynomial orders of 2 to 5 from a limited number of simulations and show the statistics match the reference case. Finally,

we show how extracted extreme thrust and torque are comparable with the reference case.
6.1 Sectional Statistical Convergence

As mentioned before, in Section 5, we started by running a broad set of reference simulations. For this case, we ran 48000
simulations for a 12m/s wind speed and turbulence intensity of 0.16. The wind generator code took 48000 samples from a 10
dimensional uniform distribution domain based on the quasi-random sampling method. Each sample is a 10 by 1 vector of &,
and we have 48000 of them. 48000 wind speed time histories were generated, and simulations on the aerodynamic models run
with a time step of 0.1s for 630s (in total 6300 time steps per simulation), with 30s transient period. We discarded the transient
period for all the processes in this study.

This simulation setup builds a database for the investigation and shows that the process distributions at each time step
changes are insignificant. Initially, we started calculating the histogram at each time step with identical binning for all of them.
Afterwards, using the Hellinger distance formulation, each histogram’s distance to the other histograms (5999 other histograms)
was calculated and stored in a matrix. Each row of this matrix shows the histogram difference at one time-step compared to the
other ones. Therefore, this is a symmetric matrix with zeros on the diagonal. What is important is the maximum of all of the
data in the matrix; in Figure 3a and 3b, we show the max of the Hellinger distance at each time step for the aerodynamic model
simulation outputs. The Hellinger distance is a normalized metric, and the distances are shown in the percentage. The plot
shows a comparison of all the 18 million possible combinations to calculate the Hellinger distance for each model output. For
the simulation outputs (thrust and torque), the distributions’ difference does not exceed 2.21%. This shows a sound coherence
in the statistics at each time step. Therefore, we can conclude that building a surrogate model on a limited number of time
steps, or even one time step, is enough, and it is not necessary to create a surrogate model on every time step as predicted by

the aerodynamic model form.

10
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Figure 3. Maximum Hellinger distance for thrust and torque at each time step. The upper and lower bounds for the extreme of the Hellinger

distance are indicated.

6.2 PCE Surrogate Model Construction

We use the same simulation setup as explained above for the reference case to run the specified number of simulations in
Table 1. These simulations are input for building the surrogate models. The number of samples drawn from the 10 dimensional
uniform random space is equal to the number of simulations in Table 1. The employed sampling method is Sobol, as tests show
it provides a better convergence for the PCE.

Referring to Figure 3, and the discussion in Section 6.1, the changes in statistical properties at each time step are minimal.
Therefore, one surrogate model that can accurately emulate the sectional statistics of the aerodynamic simulations’ output
would suffice. Knowing this means building surrogate models is more feasible from a computational cost perspective.

As explained in Section 5, we fit surrogate models at every time step of a large set of short simulations instead of a few
long ones for increasing polynomials order P. The number of simulations is based on the polynomial order as shown in Table
1. The length of the simulations that the surrogate model is built on every time step is the last column in Table 1 to keep the
cumulative length of the simulations at 3600s. Although it was unnecessary, for polynomial degrees 3 to 5, we build surrogate
models at every time step of the whole 10s worth of simulations to have an acceptable sample size for direct comparison. The
chaospy (Feinberg and Langtangen, 2015) toolbox was used to perform the task of building these surrogate models.

Figure 4 compares the descriptive statistics (first quartile )1, second quartile Q2 and third quartile Q3) for both thrust and
torque from the reference case with 48K simulation outputs and 48K MCS of the surrogate model build at each time step.
The results in Figure 4 show the PCE fits for four polynomial degrees; P on each plot indicate the polynomial degree. As the
polynomial degree increases from P =2 to P =4, the fit to the reference case improves, as is expected. However, it seems

there is more error in the mean value and quantiles when we move from P =4 to P =5 for both thrust and torque. This

11
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Figure 4. The 01, Q2 and Q3 comparison from the reference case (48K simulations) and extracted values from PCEs for both trust and
torque. The number of simulations used to build the PCEs and polynomial degree P are mentioned on the plots. The cumulative data length

of 3600s sufficient to build surrogates is shown with the vertical line.

12



290

295

300

305

310

315

increase in the error is explained further in Section 6.3 and Figure 6. We calculate the average difference for the MCS and

reference case over time for ()1, Q2 and Q3 from Figure 4 for polynomials P = 4 and P = 5. This is presented in Table 2.
6.3 Surrogate Model MCS

PCE surrogate models were constructed in the previous section. Those surrogates can now be exercised via MCS to quickly
provide output sampled statistics without actually running further simulations. We initially ranked the surrogate models con-
structed for each time-step based on their mean values and standard deviations for each polynomial order separately to choose
a single PCE surrogate model for the MCS carried out next. As the surrogate models are constructed as PCEs, mean and stan-
dard deviation extraction is a simple step from the PCE coefficients Owen et al. (2017). After ranking the surrogate models, we
selected the middle mean surrogate model from the ranked succession for each polynomial order. That provided us 4 surrogate
models for thrust and 4 surrogate models for torque, one per polynomial order.

Next, we took the selected surrogate models thorough MCS of the surrogate models 10° times. Essentially, we took random
samples from our 10 dimensional random domains 10® times and inserted those in the PCEs (Eq. (4) and Eq. (5)). The
MCS outputs are then used to check the surrogate model’s accuracy. One can argue that this method is cherry-picking the
surrogate models. This argument is valid for the low order (P = 2, 3) polynomial surrogate models. However, from Figure 4
we know these polynomial are not accurate regardless of which one we choose. This inaccuracy is more visible in Figure 6.
For polynomials of orders 4 and 5, referring to Figure 4, the polynomial selection procedure induces an insignificant effect on
the statistics.

To verify the surrogate models’ accuracy, we use the Hellinger distance explained in section 5. This time, the Hellinger
distance shows the difference between the surrogate model’s 106 MCS outputs per polynomial order with the reference case at
every time step. This procedure provides a vector of Hellinger distances for each polynomial degree, where the vector’s length
is the same as the number of time steps in the simulations. As Hellinger distance is sensitive to binning, the bins are identical
for each polynomial order surrogate model. The same bins were used to calculate the reference simulations’ histograms at each
time step. Figure 5 shows the average Hellinger distance changes within a narrow band for each polynomial degree. For the
order 4 and 5 polynomilas, we calculate the average of the Hellinger distances over 600s. The averaged Hellinger distance
presented in Table 2 serves as an error metric for the surrogate models.

Afterwards, we compare the histogram of those with one arbitrary time step of the reference case of 48000 simulations.
For each polynomial degree, regardless of the reference case time-step location in the time series, the difference between the
reference case and the MCS only depends on the polynomial order. In other words, the difference between the MCS result
histogram and the reference case histogram was only dependent on the polynomial degree and not the position of the time-step
in the time series as expected for a stationary process. Figure 6 compares the histogram of 105 MCS for the middle mean
ranked surrogate model to the reference case at one arbitrary time step for four polynomial degrees.

Figure 6 shows how the surrogate models match the simulations output histogram. It is visible that the polynomials order
P = 3 and P = 4 can cover the non-linearity in the results, while the second-order polynomial cannot. Polynomial order P = 5

does not work well for both thrust and torque. Although we met the rule of thumb for the number of simulations as mentioned in
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Figure 5. Hellinger distance between the different polynomial order surrogate models for one million MCS of the selected thrust and torque

surrogates and the reference case simulations 48K at every time step
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Figure 6. Thrust and torque Surrogate models with one million MCS vs the reference case histogram

Table 1, this shows an under fit for P = 5. This means more simulations are required to make the fit feasible. Both Figures 5 and
6 show that P = 4 provides an acceptable accuracy for the surrogate models. Therefore, further tests on the surrogate models
with P = 5 appear unnecessary. From Figures 5 and 6 we can conclude that the PCE surrogate model with polynomial order
P = 4 1is accurate enough to emulate the aerodynamic model with an acceptable accuracy, while covering its non-linearity.
Another metric to show the accuracy of the surrogate model is Normalized Root Mean Square Error (NRMSE), also known
as Lo norm error. The NRMSE is calculated for every time step for the first 10s by running MCS for the surrogate model P = 4
for the same input as the reference case simulations. This means we use the same samples we took from the 10 — D random

variables to generate the unsteady wind and then calculate the 48K reference case to run the surrogate model MCS. Figure 7
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shows the error against time. As expected and visible from Figure 4 the NRMSE is higher for torque and lower for thrust. In
both cases, the maximum NRMSE is less than 10%. This error is deemed acceptable as the surrogate model aims to provide
overall accurate statistics and not point-to-point accuracy in the estimation and is necessarily a trade-off between speed and
accuracy in the intended applications. Recall from Equations (4) and (5) that the PCE method is formulated as an expansion
over the space formed by polynomials which are functions of random variables. The simulation method of fitting the PCE
coefficients is essentially performing a statistical fit across the summative set of simulation results, rather than optimizing the
surrogate fit to a specific simulation. The NRMSE comparison here is therefore perhaps unfair to the intent of the PCE model,
the earlier comparisons of MCS histograms and Hellinger distances more appropriate metrics for the proposed PCE surrogate

model approach.
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Figure 7. Surrogate models P = 4 NRMSE for both Thrust and Torque with respect to the reference case

Figures 5, 6 and 7 show the PCE surrogate model has succeeded with the samples from the 10 — D uniform distribution and
converts them to an approximately Weibull distribution for both thrust and torque. This result highlights the ability of the PCE
surrogate in this study to deal with the inherent non-linearity of the combination of unsteady wind generation and aerodynamic

model together.

Table 2. The average Hellinger distance for polynomials P =4 and P = 5 and the quantile values difference with respect to the reference

case.

Case

No of aerodynamic sims

Avg. Hellinger distance
(thrust, torque) [%]

Thrust IM MCS vs 48 K
sims Ql, Qz and Qg [%]

Torque 1M MCS vs
48K sims )1, Q2 and
Qs [%]

Sims for PCE P =4
Sims for PCEP =5

2002
6006

5.6,5.0
8.7,6.1

0.90, 0.05, 0.50
3.36, 1.03, 2.42

4.94,2.44,0.21
14.12,6.22,1.10
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6.4 SGQ PCE results

As mentioned in Section 5, we also calculated the coefficients for the PCE using the SGQ method for the polynomial orders
2, 3 and 4. We used the same procedure described in the previous sections to run the simulations, build the surrogate models
(using chaospy), and select the surrogate models. This results in 6 surrogate models (3 for thrust and 3 for torque). We
checked the accuracy of the surrogate models in the same manner as explained in the previous section. We ran 106 MCS on the
6 selected surrogate models and compared the histograms of the results with the histogram from one arbitrary time step from

the reference case of 48000 simulations. The results of the investigation are presented in Figure 8.
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(b) Torque
Figure 8. Thrust and torque Surrogate models based on SGQ with one million MCS vs the reference case histogram

The results in Figure 8 show the SGQ method is less accurate than the point collocation method used in the previous section.
Although the SGQ method requires more evaluation points than the point collocation method, the under-performance of the
SGQ method is consistent for all the polynomial orders. As the initial accuracy test for the SGQ method did not provide
comparable results with the point collocation method, we did not pursue further investigation of the SGQ method in this study.
This finding is in line with literature that shows point collocation typically outperforms the SGQ in accuracy and efficiency
(Eldred and Burkardt, 2009).

The Hellinger distance Figures 9a and 9b show the difference between the SGQ surrogate model’s 105 MCS outputs per
polynomial order with the reference case at every time step. The Hellinger distance is much larger than what we showed in

Figure 5 using the point collocation method to build the surrogate models.
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Figure 9. Hellinger distance between the different polynomial order surrogate models for one million MCS of the selected thrust and torque

SGQ surrogates and the reference case simulations 48 K at every time step

6.5 Surrogate model efficiency

Building the surrogate models aims to emulate the output of the actual model in an accurate and computationally efficient
fashion. To inspect success in this respect, we start with computation time required to run 2002, 6006 and reference case
48K, 600s aerodynamic simulations. The previous section shows that we do not need the 600s length simulations to build the
surrogate models. Based on what we showed in Section 6.3, the required time to run 1s simulations (10-time steps) and building
one surrogate model are provided. The computational time in Table 3 includes the unsteady wind generation. Additionally, we
record the time required to build one surrogate model. The time to build one surrogate model for both thrust and torque is
similar, and the average is provided here. As IEC standards (IEC 61400-1) asks for at least six aerodynamic simulations per
average wind speed, we register the time for that set of aerodynamic simulations also. We perform aerodynamic simulations
and surrogate model building on Compute Canada WestGrid clusters. The CPU time for the aerodynamic simulations and

building the surrogate models is presented in Table 3.

Table 3. The computational time required to run aerodynamic simulations, building the surrogate models and the average Hellinger distance

Case No of aerodynamic sims | Simulation length Computation time Time required build 1

surrogate model

Sims for PCE P =4 2002 1s 10s 1min 2s
Sims for PCE P =5 6006 1s 31s 15min 54s
Common practice 6 600s 18.62s N/A
Reference case 48000 600s 41h 55min 48s N/A
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The computational time to build one surrogate model is long for P = 5. This is due to employing the point collocation
method to calculate the PCEs coefficients. The point collocation method is inherently a regression method, using least squares
to minimize the error (Feinberg and Langtangen, 2015). For a more complex aeroelastic model, the simulation times would
be increased, potentially substantially, shifting the balance of computational time from PCE construction toward aeroelastic
simulations. Of course, the aeroelastic simulations may be parallelized on available computing infrastructure.

After building the surrogate models, we ran large sets of MCS for the PCE surrogate models with the polynomial order 4 (as
it is the most accurate one) and tracked the required time to run the MCS. All the MCS were performed on Compute Canada
WestGrid clusters. The computation time for the MCS is shown in Table 4. As the computational time difference between

thrust and torque is insignificant, the one which took longer is mentioned here.

Table 4. Computational time to run MCS on the surrogate models with polynomial order 4.

No. MCS simulations | Surrogate model P =4

10, 100, 1K < 0.1s
10K < 0.25s
48 K 0.85s
100 K 1.70s
1M 30.84s
10M Smin 51s
100 M 55min 33s
288 M 2h 40min 1s
500 M 4h 46min 36s

The number of time steps in the reference case is 288 M (6000 time-steps multiplied by 48000 aerodynamic simulations).
Therefore, to have a fair comparison we can compare computational time for the reference case in Table 3 with 288 M MCS
in Table 4. Adding up the computational time required for the surrogate model input simulations and building the surrogate
model, still, the MCS is more efficient by a big margin.

The ease of running MCS provides the ability to have more samples from the random domain. More samples from the
random domain cover more of the statistical domain and capture the extreme loads more efficiently than running time marching
aerodynamic simulations and extrapolation. Figures 10 and 11 present the comparison between different MCS set sizes and
the reference case aerodynamic simulations, maximum, 99th percentile Pyg, 95th percentile Pys and 90th percentile Pyg. The
maximum load and the percentiles extracted from the P = 4 surrogate models run for both thrust and torque are shown in
relation to the number of MCS.

According to IEC standards (IEC 61400-1), the maximum load needs to be calculated based on the mean of the max (mean-
max) of at least six seeds of unsteady wind aerodynamic simulations per average wind speed. Therefore, we randomly grouped

the reference case simulations (48K simulations) into 8000 unique groups to have a fair comparison with the common practice.
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390 Afterwards, the mean of the max per group, and the 90th percentile Pyg, 95th percentile Pys and 90th percentile Pyy of each

group is calculated. These data are presented in Figures 10 and 11 as clouds of dots for both thrust and torque.
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Figure 10. Maximum load and percentile comparison between the aerodynamic simulations reference case, the MCS and groups aerodynamic

simulations for thrust

To extract the maximum value that matches the full reference case aerodynamic simulations, we need to run a large number
of MCS. Figure 10 and 11 show for the PCE order 4 the maximum thrust and torque from the MCS matches the reference case
around almost 1000 MCS. Looking at Pyg, Pys and Py for both surrogate models, the convergence happen at around the same

395 number of MCS. Figures 10 and 11 show after 1/ or 100K MCS the percentiles are close to the reference case. Interestingly,
the mean-max output from the grouped aerodynamic simulations has a wide distribution. This shows the inaccuracy of looking
at a small number of simulations to calculate the extreme loads. This distribution is smaller for the percentile data; however,
it is not comparable with the convergence of MCS outputs. Also, looking at the grouped simulations output, and compared to
the standard practice (mean-max) and Py, illustrates the conservative design approach of the IEC standards (IEC 61400-1).

400 Referring to the computational time required to build the surrogate model and then running the MCS, these plots show
promising results to extract accurate extreme loads from the surrogate models in a computationally efficient manner. Here
again, it is emphasized that the utility of the proposed PCE-based surrogate, with MCS of the constructed surrogate and
examination of the statistical loads distributions is the key contribution of the work. The point-to-point accuracy of the model
for a single run of the surrogate, as discussed earlier is not the focus of the surrogate, but rather the overall computational costs

405 and accuracy in spread of loading conditions that is our focus.
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7 Conclusion

This paper’s aim is to build a non-intrusive surrogate model of time marching aerodynamic simulations. The form of the
surrogate model used in this paper is a PCE. In Section 5, we explained the aerodynamic model used for this study. Then,
we briefly described the method that we are using to build the PCEs. One major challenge with the building of the surrogate
models is the curse of dimensionality, which we tried to tackle by using a reduced Veers model.

We showed how by increasing the number of simulations, the results’ statistics converge and do not change in time. As a
result, building a few accurate surrogate models, or even one, for a small length of time would suffice for our purpose. In other
words, time does not have any meaning in the sectional statistics. Therefore, to build an accurate surrogate model, we can
significantly reduce the simulation length while increasing the number of simulations. In the results section, we showed the
surrogate model using a fourth-order polynomial built on 2002 simulations with a length of 2s gives us sufficiently accurate
results in large MC runs to obtain output statistics. Afterwards, we demonstrate the surrogate model’s efficiency by comparing
the computational time required to run the aerodynamic simulations and build the surrogate model with the required time for
running MCS to have accurate statistics. Also, we show the high percentile values extracted from the MCS match the reference
case with a relatively low number of MCS and thus computationally efficient.

The BEM-based aerodynamic model approach is well known in the literature and research. We choose 30s transient time

for the simulations to ensure they do not include any transition results. As the model is a less complex BEM which is quick
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to run, this is not a challenge. However, for future work with actual aeroelastic codes (e.g. FAST), a smart way to deal with
initialization time is essential; otherwise, increasing the number of simulations and the model complexity would be very
expensive. For example, if the required initialization time is 60s (default in FAST), and we want to increase the number of
simulations from 6 six hundred second simulations (minimum requirement according to IEC 61400-1) to 6006 two-second
simulations, we are not doing any good in terms of computational cost. Aeroelastic and longer wakes will be studied for this
challenge and blended or common initialization period will be trialled.

Another challenge is the practical application of this surrogate model. The surrogate model that we build in this study is
one or a few time steps, each inherently the same due to the statistical similarity. If we want to build one time series from this
surrogate model, we have to sample the 10 dimensional random domain for the number of time steps to have a time series
to post-process. For example, suppose we want to have a 600s time series of thrust or torque with the time step of 0.1s for
the aerodynamic model that we developed in this study. In that case, we need to take 6000 samples from the 10 dimensional
uniform distribution random domain, and run MCS for each. However, this would provide us with 6000 thrust and torque
values, which will miss the auto-correlation, which is inherent in the generated unsteady wind, in the results. This drawback
is crucial if we, for instance, want to calculate fatigue loads from the surrogate model. This challenge will require a surrogate
form capable of resolving the correlation between time steps. Fluck and Crawford (2018) did this previously for intrusive PCEs
of an aerodynamic model, however as mentioned before, that can get very complicated for more advanced models.

Using non-conventional polynomials, such as what Fluck and Crawford (2018) did, might result in a more efficient poly-
nomial that requires fewer number simulations to build the surrogate model. Finally, we want to implement the method on
commercial wind turbine simulation packages such as FAST to test the approach in future work. It is important to again note
however that the physics model used in the current work is equivalent to FAST, just conveniently formulated in Python for
our surrogate model development efforts. The notion of the "reduced Veers model" worked for the aerodynamic simulations
we used in this study. However, this reduced model would not be efficient and sufficient to move towards commercial wind
turbine packages. Therefore, a new approach to reduce the data in a "turbulence box" Jonkman (2009) spatially and temporally
would be necessary. Similar work has been done in Guo and Ganapathysubramanian (2017) and will be explored together with

expansions of the methods invested by Fluck and Crawford (2017) using velocity increments across the wind field.
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