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Abstract.

Annual energy production (AEP) is often the objective function in wind plant layout optimization studies. The conventional

method to compute AEP for a wind farm is to first evaluate power production for each discrete wind direction and speed

using either computational fluid dynamics simulations or engineering wake models. The AEP is then calculated by weighted-

averaging (based on the wind rose at the wind farm site) the power produced across all wind directions. We propose a novel5

formulation for time-averaged wake velocity that incorporates an analytical integral of a wake deficit model across every wind

direction. This approach computes the average flow field more efficiently, and layout optimization is an obvious application to

exploit this benefit. The clear advantage of this new approach is that the layout optimization produces solutions with comparable

AEP performance yet is completed two orders of magnitude faster. The analytical integral and the use of a Fourier expansion to

express the wind speed and wind direction frequency create a relatively smooth solution space for the gradient-based optimizer10

to excel in comparison to the existing weighted-averaging power calculation.

1 Introduction

The layout of a wind plant is a primary design element that influences its performance. Optimizing the layout can be thought

of as a wake avoidance problem, wherein turbines are placed such that they avoid the wakes from other turbines as much as

possible. Power losses from wake interactions can be on the order of 10–20% in wind farms (Barthelmie et al., 2007, 2009).15

When turbines are placed within about 3 rotor diameters, these power losses can be as high as 40% (Stanley et al., 2019); even

within 15 diameters, wake interactions are non-negligible (Meyers and Meneveau, 2012).

In controls and optimization applications, the wake velocity deficit is approximated with low-fidelity analytical models. The

classical top-hat model parameterizes the wake expansion rate and computes the wake deficit as a function of downstream

position (Jensen, 1983). Improvements on this approach aim to replace the discrete boundaries of the top-hat model with a20

continuous profile, such as the Jensen-cosine (Tian et al., 2015, 2017) and Gaussian (Bastankhah and Porté-Agel, 2014) models.

More involved engineering models such as the TurbOPark model (Nygaard et al., 2020) account for wake combination and

wake-added turbulence more formally in their formulation. The curled wake model is a mid-fidelity numerical model derived
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from the Reynolds-averaged Navier-Stokes equations (Martínez-Tossas et al., 2019, 2021). The trade off to explicitly capturing

more of the flow physics is the added complexity, both in the calibration of additional parameters and in computational cost.25

These steady-state wake models are well-suited to estimate wake velocity in simulations with a single wind direction. However,

computing average wake velocities or energy production for different wind speeds and directions requires averaging the results

of multiple simulations. This process is cumbersome, especially with the more complex models like the curled wake model.

Layout optimization studies leverage these low-fidelity models to approximate the wake velocity within the wind farm. Tur-

bines are placed to minimize wake interactions and thereby maximize annual energy production (AEP) of the plant. Gradient-30

based optimization algorithms leverage the derivative of the objective function to choose search directions for optimal solutions,

while gradient-free optimization only evaluates the objective function (thereby avoiding its derivatives) and is useful for dis-

continuous and noisy functions. Gradient-free algorithms are common practice in industry for small wind farms (Stanley et al.,

2021), but scale poorly with additional degrees of freedom (Herbert-Acero et al., 2014; Ning and Petch, 2016). Gradient-based

optimization, on the other hand, is more robust in systems with a larger number of design variables. The simplest structure35

for the design variables is to assign the position of each turbine independently (Feng and Shen, 2015; Gebraad et al., 2017).

A strategy to reduce the number of design variables is to restrict the layout to a grid (González et al., 2017; Perez-Moreno

et al., 2018), or use a combination of placement along the farm boundary and a grid on the interior (Stanley and Ning, 2019).

These approaches reduce the cost of the layout optimization study, especially for larger wind farms. However, they restrict the

freedom and flexibility of the wind farm developer and produce simplistic layouts that can underperform in practice. Research40

that addresses the calculation of AEP has focused on statistical methods to improve the efficiency of estimating this quantity

(King et al., 2020; Padrón et al., 2019), or on defining the discrete inputs of the wake model (such as the wind rose and power

and thrust curves) with analytical functions (Murcia et al., 2015). These mathematical approaches are promising but leave room

for a physics-based framework to modify the formulation of AEP.

AEP is an integral quantity. The total power production of a wind plant is calculated based on the wind speed flowing through45

each turbine. For a single wind speed and direction, this procedure is straightforward. Figure 1 illustrates the flow field around

a single turbine, as is often studied in wake modeling problems. The velocity contour plots represent the weighted-averaged

flow distribution based on the wind roses shown below each respective contour plot. Figure 1a shows the velocity distribution

when the wind rose contains only one predominant wind direction. If there is more than one wind direction, the flow fields

from each speed-direction bin must be averaged with weights equal to their normalized frequency as seen in Figure 1b-c. For50

example, in Figure 1b the frequency of the 270◦ wind direction is greater than that for 225◦ (and the freestream wind speed is

held constant), and so the velocity contour plot shows the wake directed horizontally with a stronger velocity deficit compared

with the angled wake. This procedure is extended across every discrete wind speed-direction bin with the contribution to the

sum weighed by the frequency of that bin. Figure 1c illustrates the averaged flow field and how the higher-frequency wind

directions manifest as more pronounced wake deficits in the contour plot. The AEP of the wind plant is therefore a numerical55

integral of the power as a function of wind speed and direction:

AEP =

WD∑
i=1

WS∑
j=1

P (θ′i,U∞(θ′i)j)fifj , (1)
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Figure 1. Left: velocity contour plot of flow through a wind turbine for a single wind direction. Center: averaging effect of two wind

directions. Right: the annually-averaged velocity flow field. Note that the wind roses (bottom) display the frequency of each wind direction

with a constant wind speed of 8 m/s for every direction.

where P is the total power of the wind farm as a function of wind direction θ′ and freestream wind speed U∞ and fi and fj

are the frequency of each discrete wind direction and speed, respectively.

The inspiration for the FLOW Estimation and Rose Superposition (FLOWERS) flow field model is to analytically compute60

the average wake velocity given the frequency and magnitude of the wind speed coming from every direction. Since the

average wake velocity is conceptualized similarly to AEP, extending the FLOWERS approach to calculating AEP would be

straightforward. We hypothesize that the analytical integration will considerably reduce the computational cost of average wake

velocity and AEP calculations compared to the numerical integration.

In this paper, we first derive the equations for the time-averaged wake velocity and a new formulation for AEP in Section 2,65

including its application in the wind plant layout optimization problem. In Section 3, the AEP calculations from FLOWERS

are compared to the numerical integration method, which is the standard approach in the NREL FLORIS model (NREL, 2021).

Finally, in Section 4, the performance of the FLOWERS AEP in the optimization of wind farm layouts is compared against the

numerical integration-based optimizer.
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Figure 2. Left: a schematic of the top-hat wake model in Cartesian coordinates with the wind aligned with the x-direction. Right: the wake

region in polar coordinates, rotated by a wind direction θ′, with the wake boundary defined by the angle θc.

2 Mathematical Formulation70

2.1 Time-Averaged Wake Speed

To derive a mathematical formulation for the time-averaged flow distribution, we use the classical Jensen (top-hat) wake deficit

model (Jensen, 1983):

U(x,y)

U∞
= 1− 1−

√
1−CT

(kx+ 1)2
W (x,y), (2)

where x and y are the streamwise and spanwise position, respectively, normalized by the rotor radius with the origin at the75

turbine location. In this coordinate frame, the wind is coming from the negative x-direction. We only consider the 2D plane at

hub height such that wake deficit is not a function of a vertical position z. CT is the thrust coefficient which is realistically a

function of the local inflow speed; we simplify it to be a function of the freestream wind speed U∞. U is the wake speed, k is

the wake expansion coefficient, and W (x,y) represents the Jensen wake region: W (x,y) = 1 if |y| ≤ kx+ 1 and x≥ 0 and is

zero elsewhere. This geometry is illustrated in Figure 2a.80

We transform Eq. 2 from Cartesian to polar coordinates denoted by r and θ, where x= r cos(θ) and y = r sin(θ). We allow

the wind direction θ′ to be variable in Eq. 3:

U(r,θ,θ′) = U∞(θ′)

[
1−

1−
√

1−CT (U∞(θ′))

(kr cos(θ− θ′) + 1)2
W (r cos(θ− θ′), r sin(θ− θ′))

]
. (3)

To clarify, θ is the angular position in polar coordinates where we wish to compute the average wake velocity, and θ′ is the

wind direction defined within that coordinate frame. We integrate across all wind directions θ′ to compute the average wake85
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speed at a given location (r,θ). In doing so, we weight each wind direction with its frequency f(θ′), so the weighted-averaged

wind speed denoted by U(r,θ) is written as:

U(r,θ) =
1

2π

π∫
−π

U∞(θ′)f(θ′)

[
1−

1−
√

1−CT (U∞(θ′))

(kr cos(θ− θ′) + 1)2
W (r,θ,θ′)

]
dθ′. (4)

We define two new variables to simplify this expression. Let u= θ− θ′ be the angular position relative to the wind direction.

Also, the wake region W (r,θ,θ′) is zero for θ outside of the wake region defined by θc: θ = θ′± θc. In our coordinate system,90

the wake geometry is defined by the line sin(θc) = k cos(θc) + 1/r, as shown in Figure 2b. We solve this equation for r > 1

since we are interested in the wake speed at positions outside of the rotor area:

tan(θc) =

1
r + k

√
1 + k2− ( 1

r )2

−kr +
√

1 + k2− ( 1
r )2

. (5)

We must include the interaction between multiple wakes for this formulation to be useful in systems of several turbines. The

wake velocity deficit is defined as the difference between the freestream velocity and the wake velocity. Eq. 4 can be split into95

these two components. Then, we linearly superimpose the deficits to form a relation for the total velocity deficit caused by all

turbines:

U(r,θ) =
1

2π

π∫
−π

U∞(θ′)f(θ′) dθ′ − 1

2π

∑
i

θc∫
−θc

U∞(θi−u)f(θi−u)

[
1−

√
1−CT (U∞(θi−u))

(kri cos(u) + 1)2

]
du, (6)

where ri and θi are the relative radius and polar angle with respect to each turbine position (ri =
√

(x−xi)2 + (y− yi)2

and tan(θi) = yi/xi, where xi and yi represent the position of the center of the ith turbine). The relevant information about100

the wind conditions is the wind direction θ′, the wind speed U∞(θ′), and the wind direction frequency f(θ′). Note that for

simplicity a single average wind speed is used for each wind direction. These quantities are specified for a particular location

by the wind rose. In practice, the wind rose is a discrete data set in which wind directions (and their associated average speeds

and frequencies) are binned. We define g(θ′) = 1
2πU∞(θ′)f(θ′) and h(θ′) = 1

2π

[
1−

√
1−CT (U∞(θ′))

]
U∞(θ′)f(θ′). If we

expand g(θ′) and h(θ′) with Fourier series:105

g(θ′) =
c0
2

+

N∑
n=1

cn cos(nθ′) + dn sin(nθ′) (7)

h(θ′) =
a0
2

+

N∑
n=1

an cos(nθ′) + bn sin(nθ′), (8)

then the wind rose is defined continuously rather than discretely. The Fourier coefficients a0, an, bn, c0, cn, and dn can be

easily found for a given g(θ′), h(θ′), and N . For a wind rose with B wind direction bins, the maximum number of terms in110
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this discrete Fourier transform is N = ceiling(B/2), where “ceiling” indicates that we round up to the nearest integer. Also,

we approximate the fraction in the second term in the right hand side of Eq. 6 using a second-order Taylor expansion:

U(r,θ) =

π∫
−π

g(θ′) dθ′ −
∑
i

θc∫
−θc

h(θi−u)

[
1

(kr+ 1)2
+

kru2

(kr+ 1)3

]
du. (9)

The first integral in the right-hand side of Eq. 9 represents the weighted-average of the freestream velocity, denoted by U∞

hereafter. Using Eq. 7,115

U∞ =

π∫
−π

g(θ′) dθ′ =

π∫
−π

[
c0
2

+

N∑
n=1

cn cos(nθ′) + dn sin(nθ′)

]
dθ′ = c0π. (10)

The second integral on the right-hand side of Eq. 9 represents the average wake velocity deficit ∆Ui(ri,θi). Using Eq. 8,

∆Ui(ri,θi) =

θc∫
−θc

[
a0
2

+

N∑
n=1

an cos(n(θi−u)) + bn sin(n(θi−u))

][
1

(kri + 1)2
+

kriu
2

(kri + 1)3

]
du.

Solving the above integral yields:
120

∆Ui(ri,θi) =
a0θc[kri(θ

2
c + 3) + 3]

3(kri + 1)3
+

N∑
n=1

2[an cos(nθi) + bn sin(nθi)]

[n(kri + 1)]3

[
sin(nθc){n2[kri(θ

2
c + 1) + 1]− 2kri}+ 2nθckri cos(nθc)

]
. (11)

The time-averaged wake speed U(r,θ) at a given location (r,θ) is the difference between the free stream and the wake averaged

velocity:

U(r,θ) = U∞−
∑
i

∆Ui(ri,θi), (12)125

where U∞ and ∆Ui(ri,θi) can be found from Eq. (10) and Eq. (11), respectively.

2.2 Annual Energy Production

The power P produced by a turbine is a function of the incoming wind speed:

P (U) =
1

2
Cp(U)ρAU3, (13)

where ρ is the density of air (assumed to be constant), Cp is the power coefficient, A is the swept area of the rotor, and

U is the velocity at the location of the center of the turbine when it is not present. The average turbine power would be

P (U) = 1
2ρACp(U)U3. However, the integral to compute this average is intractable in our formulation. The power coefficient

is dependent on the local wind speed, but U is not known as a function of wind direction prior to the integration; to obtain it, we
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would need to calculate the wake speed independently for each wind direction, which negates the purpose of the FLOWERS

approach. Also, including the nonlinear U3 term in the integral introduces complications with the wake superposition and the

definition of the independent wake regions. We make two simplifications to compensate: Cp is calibrated as a function of the

average wake speed U , and we substitute U
3

into Eq. 13 instead of evaluating U3. Therefore, the AEP for a given turbine is:

P (U) =
1

2
Cp(U)U

3
.

2.3 Layout Optimization Problem130

We apply this novel formulation of time-averaged wake velocity and AEP to the wind plant layout optimization problem. For

M turbines in a wind plant, there are 2M design variables to independently specify the position of each turbine in 2D space.

The objective function is the total AEP of the plant, which we aim to maximize. The turbines are constrained within a specified

boundary with a minimum separation of two rotor diameters. Gradient-based optimization is performed with the Sequential

Least Squares Programming (SLSQP) algorithm. This optimizer solves a minimization problem, so we technically minimize135

−AEP :

min
xi,yi

−AEP (xi,yi,θ
′,U∞(θ′),f(θ′))

s.t. boundary constraints

Sij ≥ 2D,

(14)

where xi and yi are the center of the turbine i in Cartesian coordinates and Sij represents the separation between the centers

of turbines i and j.

The primary benefits of FLOWERS lie in its suitability to drive layout optimization as a wake avoidance problem, despite140

the fact that simplifications made to develop FLOWERS might induce some errors in the predicted magnitude of AEP. The

optimizer relies on the objective function to provide a quantitative metric to compare possible solutions; in this case with

gradient-based optimization, the ratio of the objective function evaluated for two different solutions is of importance. In other

words, the objective function’s output itself is not necessarily critical as long as the mapping between inputs and outputs in the

function remains consistent. If we think of the layout optimization problem as a wake avoidance problem, then the objective145

function must be able to approximate wake magnitudes and downstream influence to minimize their interactions. Turbines

aligned with predominant wind directions and turbines with close spacing will reduce AEP in the FLOWERS optimization,

just as it will in the numerical integration-based optimization. Wake avoidance can be achieved despite a less accurate esti-

mate of AEP because the factors that cause positive or negative changes to AEP are still present. The gradient throughout

the optimization space will be different because the objective functions are not identical. However, with a sufficiently strict150

convergence criterion, we predict that the FLOWERS optimization will still find a similar quality solution to the numerical

integration technique. A more accurate AEP estimate can be added as a final post-processing step once the layout optimization

is complete.

7



3 AEP Comparison

3.1 Aligned Case155

We start by comparing the AEP estimates for an illustrative test case of three turbines aligned with a predominant wind

direction. The AEP for the numerical integration approach is computed using the Jensen wake deficit model with the same

nominal (i.e. based on ambient turbulence intensity and excluding wake-added turbulence) wake expansion coefficient as in

FLOWERS (k = 0.05). The rotor diameter is D = 126 m throughout this paper based on the NREL 5MW (Jonkman et al.,

2009). Figure 3 illustrates the wind rose and farm layout for this case and the flow fields generated from the FLOWERS and160

Jensen models.

The FLOWERS AEP is 2.9% lower than the result from the numerical integration approach. Substantial wakes only exist

for three discrete wind directions in this example, so the profile of U versus θ′ is mostly uniform except for a sharp decrease in

these aligned orientations. As a result, the difference betweenU
3

andU3 contributes to this small discrepancy. Also, the aligned

placement of the turbines leads to strong wake deficits. In FLOWERS, we neglect local wind conditions when computing the165

wake velocity and instead normalize the velocity deficit by the global freestream velocity and assume a uniform Cp and CT

across all turbines; the Jensen numerical integration implementation, on the other hand, normalizes the velocity deficit with and

computes Cp and CT as a function of the local wind velocity. When the magnitude of the wake velocity deficit is pronounced,

these assumptions in the FLOWERS formulation become more noticeable. Despite the differences in modeling assumptions,

the AEP estimates match closely.170

One important feature of the FLOWERS solution is its smoothness. Despite using the discrete top-hat model, the flow field

in Figure 3b is continuous. The Fourier transform of the wind rose information and the analytical integration results in a smooth

solution. On the other hand, the numerical integration in the conventional approach relies on discrete wind direction bins. The

contour plot in Figure 3c clearly illustrates the discrete boundaries of the wakes for the three dominant wind directions.

3.2 Generalized Case175

We now examine the differences in AEP between FLOWERS and the Jensen numerical integration more broadly. Forty ran-

domized test cases were generated. A random number of turbines between 4 and 50 was chosen for each. The layout of the

turbines is randomized within a square boundary of side length 25D, and a minimum separation of 4D between the turbines is

enforced. Each wind rose is randomly selected from the WIND Toolkit (Draxl et al., 2015). Figure 4 displays the number of

turbines and annual average wind speed for each case.180

We compare the computation time and percent difference in AEP between the two methods in Figure 5. The FLOWERS

AEP computation is on average about 22 times faster than the Jensen numerical integration. This difference scales with the

size of the wind farm, in part because FLOWERS is only computing the velocity through each turbine at a single point instead

of an array of points on the rotor area (25 points per rotor in the conventional wake model).

We should note that the implementation of the Jensen numerical integration in FLORIS Version 2 is non-vectorized (i.e.185

calculations are mostly performed through for-loops instead of vector operations). Comparisons in computation time with a

8



Figure 3. Annually-averaged flow field comparison for three turbines aligned with the predominant wind direction with 6D spacing. The

freestream wind speed is a constant 8 m/s. The number of wind direction binsB used in (c) isB = 72 , and the number of Fourier coefficients

used to plot results in (b) is N = 37.

Figure 4. 40 test cases with random layouts and random wind roses to compare AEP more generally.
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Figure 5. Comparison of computational cost and relative difference in AEP between FLOWERS and Jensen for the randomized cases.

vectorized code such as PyWake would likely show a smaller discrepancy (Pedersen et al., 2019). However, the code implemen-

tation of FLOWERS is not fully vectorized either, so it is a fair comparison of FLOWERS to the Jensen numerical integration

to showcase the performance of our newly-developed model.

The discrepancy in AEP between the two methods is more pronounced in these randomized cases. The freestream wind speed190

is not held constant here as it was in the first example. More variations in U across different wind directions results in more

error between the two methods due to the approximations built into the FLOWERS formulation. The common characteristics

of the cases with percent difference greater than 20% are a freestream wind speed consistently less than 5 m/s and a small

number of predominant wind directions. The average difference between FLOWERS and the Jensen integration is 13%.

This difference in AEP between the two methods is not necessarily a fatal flaw. FLOWERS is likely not a reliable prediction195

of AEP for a wind farm, but it is difficult to expect a highly accurate and precise estimate of AEP from a low-fidelity wake model

anyway. However, as we will illustrate shortly, it is still possible to use the FLOWERS AEP in the layout optimization problem.

In fact, the FLOWERS AEP calculation is better suited for layout optimization problems than the numerical integration method.

More precise AEP estimates can always be generated as a final post-processing step after the layout optimization is complete.

3.3 Improving Computational Efficiency200

Before addressing the utility of the FLOWERS formulation in the layout optimization problem, we can explore how to further

improve the computational time. For the Jensen numerical integration method, a common approach to reduce the cost of

calculating AEP is to reduce the number of wind speed-direction bins, thereby reducing the number of simulations that must

be run. Figure 6a illustrates how the computational time of the AEP calculation is roughly proportional to the number of bins.

Each bin adds an identical set of function calls and operations to the summing process, so the cost scales linearly. The data205

presented here is for a 7x3 grid of turbines with 5D spacing in all directions and five wind roses randomly sampled from the

WIND Toolkit.
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Figure 6. The effect of the resolution of wind direction bins in the Jensen model (left) and number of Fourier modes in FLOWERS (right)

on cost (top) and accuracy (bottom) of the AEP calculations. Each colored line represents one of five sampled wind roses. AEP is computed

for a 7-by-3 grid of turbines with a spacing of 5D. Values are normalized in each plot by the highest-resolution data point. For context,

computation times are on the order of seconds.

The trade-off of sparse sampling of the wind rose is that the AEP from numerical integration is highly sensitive to the number

of bins chosen. The AEP varies by as much as 40% as we reduce the number of wind direction bins from 72 to 9. To reduce

the computational cost by a factor of 2, AEP fluctuates by about 2%; to reduce the cost by a factor of 5, AEP changes up to210

10%. The sensitivity manifests as both overestimates and underestimates of AEP, so it is not possible to assume a conservative

underestimate of AEP, for example.

The equivalent idea in the FLOWERS formulation is to reduce the number of Fourier series modes. Each term in the discrete

Fourier series is a single arithmetic expression, so the cost should also scale linearly with the number of terms. Figure 6b

illustrates that the computational time for FLOWERS is proportional to the number of Fourier modes included in the solution.215

The lowest-frequency modes are used. In contrast to the Jensen numerical integration method, the AEP for FLOWERS is less

sensitive to the number of Fourier modes. For all five wind roses, AEP remains virtually unchanged when using half of the

11



Table 1. Influence of number of Fourier modes in the FLOWERS solution for the 40 randomized AEP test cases.

FLOWERS Fourier Terms N = 37 N = 5

AEP Mean Difference 12.94% 12.93%

AEP Std. Difference 14.76% 14.72%

Mean Computation Time Ratio 22.4 142.1

maximum number of terms, and within 1% when using only five terms. The Fourier transform is well-suited to approximate the

wind speed and frequency data for each discrete wind direction and is a common tool to represent complex signals in a compact

format. Reducing the number of wind direction bins is less successful because the decrease in resolution is indiscriminate: data220

is aggregated in uniform bins and averaged without considering the important features of the signal. Another useful feature of

the Fourier expansion is that reducing the number of modes does not change the smoothness of the superimposed signal. A

single Fourier mode is still a continuous sinusoidal function. On the other hand, reducing the number of wind direction bins

directly causes a more discrete numerical integral. The more coarse the wind direction, speed, and frequency data is, the more

sensitive the AEP calculation becomes. This has significant implications for the quality and robustness of layout optimization225

solutions.

With better understanding of the low sensitivity of AEP accuracy to the number of Fourier terms in FLOWERS, we have the

opportunity to further reduce the computational cost. To hone in on the appropriate number of Fourier terms to use, we return

to the 40 randomized test cases from Section 3.2. Table 1 compares the percent difference in AEP and the ratio of computation

time between the Jensen numerical integration and FLOWERS with the maximum number of Fourier terms (N = 37) and a230

truncated Fourier series (N = 5). The mean and standard deviation of the AEP difference between FLOWERS and Jensen

remain virtually unchanged. Only the FLOWERS AEP is computed differently between these two cases, which indicates

that the FLOWERS AEP is insensitive to the number of Fourier modes included in the solution. The advantage is that the

FLOWERS solution with five Fourier terms is about 110 times faster to compute than the Jensen numerical integration.

We therefore recommend using this truncated FLOWERS solution. By using only one-eighth of the Fourier terms, there is a235

reduction in cost of roughly a factor of 6 with virtually no trade-off in accuracy. There is no reason to use the extended Fourier

series if it increases the computational cost of the FLOWERS solution with no benefit to accuracy.

4 Optimization Comparison

Consider 9 turbines placed within a square boundary of side length 12D. The wind is coming from the left, with a fixed speed

of 8 m/s. We compare two optimizations with different objective functions: one with the FLOWERS AEP, and the other with240

the Jensen numerical integration AEP. All other inputs and parameters in the optimization are identical: initial layout of the

wind plant, wind direction, speed, and frequency distribution, wake expansion coefficient, and convergence threshold. Figure 7
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Figure 7. The wind rose used for the layout optimization studies performed in Section 4. The resolution of the wind direction bins varies

from 1◦ (left) to 5◦ (center) to 40◦ (right). The wind speed is a constant 8 m/s.

shows this wind rose with three different resolutions: 1◦ , 5◦, and 40◦ wind direction bins. These different resolutions are used

in the following studies.

The AEP that drives the gradient-based optimization is different between both optimizers. However, we wish to compare the245

quality of the optimal solutions for both without confounding the differences in AEP discussed in Section 3. In this section,

we use the numerical integration method to compute the AEP produced by the initial and final layouts of both optimizers for a

straightforward comparison. The objective function of the FLOWERS optimizer still uses the FLOWERS AEP formulated in

Section 2.2, but the AEP that we are reporting here is computed in the same fashion as the Jensen numerical integration AEP.

The metric to compare the quality of optimal solutions is AEP gain:250

GAEP =
AEPopt−AEPinit

AEPinit
∗ 100%, (15)

where AEPinit is the AEP of the initial layout and AEPopt is the AEP of the final solution.

4.1 FLOWERS and Jensen

The first comparison is against the Jensen numerical integration model. 5◦ wind direction bins (i.e. B = 72) are used for the

Jensen model (see Figure 7b) and N = 5 Fourier terms are used for FLOWERS.255

Figure 8 shows the results of the optimization for a randomized initial layout of the wind plant. The pattern of turbine place-

ment is qualitatively different between the FLOWERS and Jensen optimizers. The Jensen optimization focuses on maximizing

the streamwise spacing of the turbines by placing all turbines on either the leading or lagging edge of the wind farm’s boundary.
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Figure 8. The optimal layouts for the FLOWERS and Jensen optimizers (B = 72). The FLOWERS solution required 31.9 s and achieved an

AEP gain of 14.3%. The Jensen solution required 851 s and achieved 12.9% AEP gain. The black dots denote the initial layout.

One reason why the Jensen optimizer favors this type of solution is that wake-added turbulence is included in the modeling

framework, so maximizing the streamwise spacing of the turbines improves the wake recovery for downstream turbines. We260

have neglected wake-added turbulence in the FLOWERS formulation to present the simplest form of this new model, but we

compare against the Jensen numerical integration that includes wake-added turbulence because we expect this effect to be

modeled in most wake modeling codes. On the other hand, the FLOWERS solution focuses on the spanwise spacing of the

turbines, placing them such that eight turbines are unaligned with respect to the predominant wind direction from the left. As

expected, the FLOWERS optimization is performed faster than Jensen by about a time factor of 26 (851 s versus 31.9 s). The265

FLOWERS solution actually achieves a more optimal AEP gain of 14.3% versus 12.9% for Jensen.

To investigate this result more generally, we consider nine additional multistart cases with randomized initial conditions

(ten in total). Figure 9 displays the computation time and AEP gain for these ten cases. The previous example from Figure

8 corresponds to Case 4 here. On average, FLOWERS is about 48 times faster than the Jensen optimizer. Also, FLOWERS

achieves an AEP gain that is on average 1.5% higher than Jensen.270

The superior performance of FLOWERS compared to the Jensen optimizer connects back to the smooth nature of the

formulation. The FLOWERS optimization space is smooth and continuous because of the Fourier transform and analytical

integration. On the other hand, the Jensen optimization space is coarse because of the discrete model and numerical integration.

The gradient-based optimizer thrives in the smoother optimization space of FLOWERS. More refined adjustments of the turbine

positions are possible and the optimizer is less likely to become stuck in local optimal solutions in the smooth landscape. In the275

14



Figure 9. A comparison of cost and performance for 10 cases with randomized initial conditions. Five Fourier modes are used for the

FLOWERS solution and 72 wind direction bins are used for the Jensen numerical integration. FLOWERS is on average about 48 times faster

than Jensen and achieves an AEP gain that is 1.5% higher.

discrete space of the Jensen optimization, it is more difficult for the optimizer to explore the optimization space with equivalent

precision and efficiency.

To test the effect of wind rose resolution on the optimization performance, we use B = 360 wind direction bins for the

Jensen numerical integration, as seen in Figure 7a); we maintain N = 5 Fourier terms for FLOWERS. Figure 10 displays the

computation time and AEP gain for these ten new cases. FLOWERS is now about 680 times faster than the Jensen optimization280

on average; the relative improvement in computation time is due to the Jensen numerical integration AEP calculation covering

five times more wind direction bins. The average AEP gain in FLOWERS is about 1.7% higher than that for Jensen. The

particular AEP gains that are achieved by each optimizer in this limited sample size of 10 cases are sensitive to the initial

layout of the wind farm. Regardless, the overall result is that there is a negligible change in the quality of the solution that the

Jensen optimizer achieves with a higher-resolution wind rose.285

We should note that the 10 randomized initial layouts tested here represent a limited sample size for a multistart study.

The results still allow for a comprehensive discussion of the differences between the FLOWERS and Jensen models. Future

work could expand on the scope of the multistart experiments to investigate whether FLOWERS converges to more consistent

solutions than Jensen, and also whether FLOWERS converges to a solution in fewer iterations than Jensen.
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Figure 10. A multistart study, now for the Jensen model with B = 360 wind direction bins. The Jensen optimization now takes about 680

times longer than FLOWERS and achieves an AEP gain that is 1.7% lower.

4.2 FLOWERS and Gauss290

Comparing FLOWERS to a smoother wake model, in this case the Gaussian wake model (Bastankhah and Porté-Agel, 2014):

U(x,y)

U∞
=

(
1−

√
1− CT

8(kx+ ε)2

)
exp

(
− y2

2(kx+ ε)2

)
, (16)

further highlights the characteristics of the FLOWERS method relative to the numerical integration approach. Instead of dis-

crete boundaries of the wake in the top-hat model, the Gaussian model is smooth in space. However, as a trade-off for the

improved detail of the Gaussian profile, the cost of a function evaluation is higher. We use a sum-of-squares wake deficit su-295

perposition for the Gaussian wakes. Every other parameter of the optimization study is the same as the previous experiment,

including 1◦ wind direction bins (i.e. B = 360).

The results of one of the optimization studies is shown in Figure 11. The Gauss optimal solution is smooth, without the

discrete boundaries of the Jensen model, and the layouts are qualitatively more similar to FLOWERS, with most turbines

placed in angled rows. The similarity of these solutions suggests that the optimization spaces are similar despite using different300

wake models and AEP calculations. The similarity is not merely qualitative: the AEP gain for FLOWERS is 7.3% and Gauss

is about 7.4%. The fact that the FLOWERS gain is 0.1% lower than that for Gauss is not necessarily a sign that the FLOWERS

optimization is subpar, but rather a byproduct of the many local optima. There are many possible layouts that satisfy the

spacing constraints and achieve similar AEP performance, so the solutions given here likely represent local optima, not a global
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Figure 11. The optimal layouts for the FLOWERS and Gauss optimizers (with B = 360 wind direction bins). The FLOWERS solution

required 50.2 s and achieved an AEP gain of 7.3%. The Gauss solution required 10,800 s and achieved 7.4% AEP gain. The black dots

denote the initial layout.

optimum. Since the two optimizations evaluate different objective functions and operate in different solution landscapes, they305

cannot be expected to arrive at identical solutions. Finding a global optimum in this unrealistic test case would require a stricter

convergence criterion. We note that a more realistic wind rose would likely not enable so many local optima in the solution

space, so this artifact should not be as pronounced in practice.

The trade-off for improved performance by using the Gauss numerical integration is in computational cost. The Gaussian

optimization took 10,800 s (3 hr), while the FLOWERS optimization only required 50.2 s. This is an improvement by a factor310

of 216 for FLOWERS.

Figure 12 displays the results for the 10 multistart cases. Figure 11 is Case 1 in these plots. On average, the Gauss optimiza-

tion takes 470 times longer than FLOWERS. The average AEP gain in FLOWERS is 0.5% higher than Gauss. The takeaway

from this small difference in AEP gain is that FLOWERS and Gauss produce comparable solutions, not that FLOWERS is

better at finding a more optimal solution. A stricter convergence criterion would force the optimizers to search longer for the315

global solution, which would likely cause these AEP gains to grow even more similar.

This experiment suggests that the smoothness of the Gaussian model compared with the Jensen model is the most likely

explanation for the improved performance. While the number of wind direction bins is unchanged, the flow field for each

simulation is smoother with the Gaussian model. When a turbine’s position is adjusted, there is no binary switch between

being within the wake or outside of it; this discrete change in wake velocity would cause the AEP to be sensitive to slight320
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Figure 12. Multistart experiment for FLOWERS against the Gauss model with B = 360 wind direction bins. FLOWERS is about 470 times

faster than Gauss on average, and the AEP gain between the two optimizers is within 0.5% on average.

perturbations in the turbine positions. On the other hand, in the Gaussian model, a small change in turbine position results in

a similarly small change in the wake deficit because of the smooth profile. This continuity produces a more smooth solution

space, which enables the optimizer to move along more subtle gradients and achieve more optimal solutions than the Jensen

optimizer.

While the quality of solutions between FLOWERS and the Gauss optimizer are comparable, there is no contest in terms325

of cost. The FLOWERS optimization is two orders of magnitude faster than the Gauss optimizer and can produce optimal

solutions with equivalent performance. Moreover, we are only comparing the results for a wind plant with nine turbines. As

illustrated in Figure 4a, the computational cost scales with the number of turbines more sharply with the numerical integration

approach. It is possible that this factor of 470 could grow to a factor of 1,000 or more for a larger wind farm.

We have demonstrated that the FLOWERS AEP is insensitive to the number of Fourier series terms, and have used the330

truncated series to achieve similar performance to the Gauss optimization. We also previously showed that the AEP calculated

from numerical integration is extremely sensitive to the resolution of the wind direction bins. For a fair and comprehensive

comparison, the Gauss optimization should be performed with a limited number of wind direction bins to mimic the reduction

in cost that was implemented in FLOWERS. To match N = 5 Fourier terms, B = 9 wind direction bins are now used in the

Gaussian optimization, as seen in Figure 7c. The results in this case are shown in Figure 13. The reduction in wind rose335

resolution brings the cost of the Gaussian optimization down significantly such that the FLOWERS optimizer is only about 5

times faster on average. However, the AEP gain of the optimal solutions for this Gaussian optimizer with a coarse wind rose
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Figure 13. Ten randomized cases for FLOWERS against the Gauss model with B = 9 wind direction bins. FLOWERS is only about 5 times

faster than Gauss now, on average. The average AEP gain for FLOWERS is about 12%, but only about 4.5% for Gauss.

is poor. The AEP gain for FLOWERS is 7.5% higher than Gauss on average, which is an improvement of a factor of 2.7. This

experiment proves that the Gaussian optimizer cannot achieve greater computational efficiency by manipulating the resolution

of the wind rose without substantially impacting the quality of its solutions.340

5 Potential Model Improvements

As we have demonstrated, FLOWERS is able to match the performance of conventional layout optimization methods despite

simplifications in its formulation. The discrepancies in AEP estimates between FLOWERS and the Jensen and Gauss numerical

integration did not inhibit its application to the optimization problem. However, we could enhance the accuracy of FLOWERS

by improving the following:345

– Power integral: We introduced a simplification to make the integration of turbine power tractable by computing AEP

as a function of U
3

rather than U3. We would reexamine the integration of Eq. 13 to avoid this simplification, which

introduces errors when wind speed varies across different wind directions.

– Coefficient of power: Cp is currently defined as a function of the average wake velocity, making it a constant. We aim to

incorporate Cp as a function of the wake velocity for each wind direction such that average power is computed exactly:350

P (U) = 1
2ρACp(U)U3.
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– Local flow conditions: We can define the wake velocity deficit relative to the local flow velocity rather than the

freestream, which will better capture the influence of upstream turbines and development of the flow as it moves through

the wind farm. This improvement will require an iterative approach and is particularly expected to improve results in

aligned cases such as the one discussed in Section 3.1.355

– Gaussian model: We currently integrate a classical top-hat wake deficit model. We expect that the AEP estimates would

be more accurate by integrating a Gaussian wake model instead.

6 Conclusions

The objective of this paper was to develop a novel analytical formulation of annually-averaged wake velocity to use in a layout

optimization problem and demonstrate its effect on reducing the computational cost of these studies. We derived the equations360

for the analytical integration of the top-hat wake deficit model. The wind speed and wind direction frequency distributions

were expressed as a Fourier series to facilitate the integration.

The annually-averaged wake velocity was used to compute AEP. We approximated the average power by using the average

wake speed cubed rather than an average of the cube of the wake speed, which introduces error when there are pronounced

wakes or the wind speed varies significantly across different wake directions. Also, the local wind speed’s effect on turbine365

power production and thrust was not accounted for. These simplifications introduced error that led to the AEP computed in

FLORIS differing from the Jensen numerical integration approach by about 8%.

Fortunately, these limitations in the accuracy of the FLOWERS AEP do not preclude its use in the optimization problem.

The FLOWERS optimizer built around the Jensen wake model finds optimal wind plant layouts with AEP comparable to an

optimizer that numerically integrates a Gaussian wake model. This finding is unexpected but promising because it implies that370

the mathematical formulation behind FLOWERS compensates for a more simplistic wake model to achieve similar results as a

more sophisticated wake model. The clear advantage of FLOWERS, then, is the robust layout optimization performance while

achieving a reduction in computational cost of two orders of magnitude. We believe that this improvement in computation time

will scale better with wind farms containing more than the nine turbines studied here.

This achievement could translate to the difference between running an optimization study in 10 minutes versus 5 days, or375

between running the study on a personal laptop versus a high-performance computer cluster. This technique could open the

door for other areas of research in layout optimization, including optimization under uncertainty, by making these studies more

accessible and less costly. Moreover, the new conceptualization of the wake velocity deficit could inspire brand new areas of

research in wake modeling and wind plant control and optimization.

This paper serves as a foundation for future work on the FLOWERS formulation. Since the motivation of this approach was380

to improve computational cost, one avenue to explore is further optimization of the FLOWERS code. Wind plant layout and

yaw steering co-design is a popular area of research, and another potential application for FLOWERS if yaw deflection models

could be included in the formulation. Future work will also focus on studying the effects of superposition methods and model
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uncertainty in the FLOWERS formulation. We also plan to validate the performance of the FLOWERS optimal solutions with

high-fidelity simulations.385
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