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Abstract. Present verification of the fatigue life margins on wind turbine structures utilizes damage equivalent load (DEL)

computations over limited time duration. In this article, a procedure to determine long term fatigue damage and remaining life

is presented as a combination of stochastic extrapolation of the 10-minute DEL to determine its probability of exceedance and

through computationally fast synthesis of DELs using level-crossings of a Gaussian process. Both the synthesis of DELs and

long-term stochastic extrapolation are validated using measured loads from a wind farm. The extrapolation for the blade root5

flap and tower base fore-aft damage equivalent moment is presented using a three-parameter Weibull distribution, whereby

the long term damage equivalent load levels are forecast for both simulated and measured values. The damage equivalent load

magnitude at a selected target probability of exceedance provides an indicator of the integrity of the structure for the next year.

The extrapolated damage equivalent load over a year is validated using measured multi-year damage equivalent loads from a

turbine in the Lillgrund wind farm, which is subject to wakes. The simulation of damage equivalent loads using the method10

of level crossings of a Gaussian process is shown to be able to reconstruct the damage equivalent load for both blade root and

tower base moments. The prediction of the tower base fore-aft DEL is demonstrated to be feasible when using the Vanmarcke

correction for very-narrow band processes. The combined method of fast damage equivalent load computations and stochastic

extrapolation to the next year, allows a quick and accurate forecasting of structural integrity of operational wind turbines.

1 Introduction15

The fatigue damage on wind turbine structures is strongly influenced by the stochastic inflow to the turbine, which is mainly

composed of wind turbulence and spatial variations such as shear and veer . [Dimitrov et al. (2017)]. For offshore substructures,

the irregular ocean waves also results in dynamic loads leading to fatigue damage. The Palmgren-Miners rule [Miner et al.

(1945)] is the standard approach followed in the design of wind turbines by which it is ensured that the linear damage sum over

an intended lifetime is lower than unity after considering required safety margins. Since the Miner damage variable is not a20

physically measurable quantity, a substitute for damage is used, which is the Damage Equivalent Load (DEL). This is the load

level at a particular number of cycles, which results in the same damage as the original summation of a multitude of different

load cycles with different amplitudes. Damage equivalent load provides a measurable quantity from an operating turbine that

can be compared with results from simulations made in the design phase, whereas the Miner’s damage is an abstract quantity
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of ratio of number of cycles, that is difficult to quantify. Therefore verification of fatigue life on wind farms is usually made25

using DELs and not damage.

The conventional wind turbine fatigue design process considers a set of aeroelastic load simulation results under normal

operation, transients and stand-still under normal turbulence conditions, whereby the load cycles determined over a short

period of time at each mean wind speed are assumed to repeat continually over its full expected lifetime. However, it is

seldom accurate to consider that the load cycle amplitudes and cycle counts seen in simulations of a few hours
:::::::::
(depending

:::
on30

::::::
number

::
of

:::::::::
turbulence

::::::
seeds) can be taken to repeat over 25 years, a typical wind farm lifetime. The IEC 61400-1 standard [IEC

(2019)] does informally recommend a stochastic extrapolation process to determine the amplitude and cycle count of the largest

amplitude loads as part of the fatigue design process. Indeed, when load measurements are processed in wind farms, there can

be a
::::::::::::::::::
Moriarty et al. (2004)

:::
used

:::::::::::
extrapolation

::
of

::::
load

:::::::::
amplitudes

::
to
:::::::::
determine

:::
the

::::
long

::::
term

::::::
fatigue

:::::::
damage

::::::::
equivalent

:::::
load,

::
in

:
a
::::::
manner

::::::
similar

:::
to

::::::
extreme

::::
load

::::::::::::
extrapolation.

:::::
Since

:::
the

::::
load

::::::::
amplitude

::
is

:::::::::::
extrapolated,

:::
the

:::::::::
probability

::
of

:::
the

::::
load

:::::::::
amplitude35

:::
and

::::::
number

::
of

::::::
cycles

::
is

:::::::::
conditional

::
on

:::
the

::::
joint

::::::::::
distribution

::
of

:::::::::
turbulence

:::
and

:::::
mean

::::
wind

:::::
speed.

::::::::
However

:::
the

::::
DEL

::
is

:::::::::
insensitive

::
to

::::::
isolated

:::::::
changes

:::
in

::::
load

:::::::::
amplitudes

:::
for

:::::
fixed

::::
wind

::::::::::
turbulence,

:::
and

::::::::
therefore

:::::::::::
extrapolation

:::::
using

:::
the

::::
load

::::::::::
amplitudes

::::
may

::
be

::::::::::
conservative

:::
as

::::
such

:
a
:::::::
process

::::
also

::::
takes

::::
into

:::::::
account

:::::::
isolated

::::::::
amplitude

::::::::
extremes

::::::
within

:::::::::
10-minute.

:::::
Load

::::::::::::
measurements

::::
from

::::
wind

::::::
farms

::::
show

::
a wide variation in damage equivalent loads, much more than seen in the conventional design process

:::
due

::
to

::::::
varying

::::::
inflow

:::::::::
turbulence. The question then needs to be addressed as to whether larger damage equivalent loads seen in40

measurements as compared to simulated values encountered in the design process using limited load simulations is indicative

of reduced structural reliability and decreased lifetime.

To better quantify fatigue life over long time, it is needed to perform stochastic extrapolation of the short-term DELs to

determine the probability of the DEL magnitude over the long term and thereby determine the life of the structure.
::
In

:::
the

::::::
present

:::::
work,

:::
the

:::::::::
aggregated

:::::
DEL

:::::
itself

::
is

::::::::::
extrapolated

::
as

::
a
::::::::
stochastic

::::::::
variable

:::
and

:::::
taken

::
to

:::
be

::::
fully

:::::::::
correlated

::
to

:::
the

:::::
wind45

:::::::::
turbulence.

::::
The

::::
DEL

:::::
being

:::
an

:::::::::
aggregated

::::::::
quantity

::
is

:::
not

:::::::
affected

:::
by

::::::
isolated

::::::::
changes

::
in

::::
load

:::::::::
amplitudes

:::::
over

::::::::::
10-minutes,

:::
but

::
the

:::::::
change

::
in

::::
DEL

::::
that

::
is

::::::::
modelled

:
is
::::

due
::
to

::::::
change

::
in

:::::::::
turbulence

::
at

::
a

:::::
given

::::
mean

:::::
wind

::::::
speed.

::::::::
Therefore,

:::
the

::::::::::
probability

:::::::::
distribution

::
of

:::::
DEL

::
is

:::::::::
conditional

::::
only

:::
on

:::
the

::::
mean

:::::
wind

:::::
speed,

:::
as

:
is
:::
the

::::
case

::::
with

:::::
wind

:::::::::
turbulence.

:
Extrapolation of extreme

loads [Natarajan and Verelst (2012)] is mandated by the IEC 61400-1 to determine the 50-year ultimate design load level, but

there is no mandatory requirement presently to extrapolate fatigue DEL. The DEL is an aggregated quantity over a period of50

10-minutes or higher. Since it is an aggregation, the value of the damage equivalent load
:::::
which is relatively stable and may not

change significantly for isolated load excursions within a time series resulting from the randomness of a stationary process.

However
:
, the real conditions on the wind farm has varying wind turbulence intensities for a given mean wind speed, thus

resulting in varying damage equivalent loads. The resulting DEL values from different 10-minute simulations over different

wind turbulence at a given mean wind speed can be extrapolated, so that the probability of exceeding a target damage equivalent55

load level over a long term period can be determined. This is more accurate and realistic method than the conventional process

used today of assuming the same load cycles over a limited set of load simulations are prevalent for the entire life of the turbine.

The fatigue damage as expressed in terms of the DEL is strongly dependent on the wakes within wind farms [Gallinos et al.

(2016)], due to strong correlation of several load components with the wind turbulence in the wake. This implies that varying
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atmospheric conditions such as the wind direction, stability can influence the wake turbulence and thereby also change the60

DELs on the turbine of interest. Therefore the DEL magnitude is conditional on the turbulence in the inflow. However, since

the turbulence in
::::
Since

:::
the

:::::::::
turbulence

::
in
:
wakes is a function of a multitude of variables such as the turbine position, the wind

direction, upstream turbine thrust, upstream turbine yaw etc., it is not readily feasible to quantify the cumulative distribution

function (CDF) of the wake turbulence. Herein, a novel approach is put forward to determine the return period of the DEL

magnitudes conditional on the mean wind speed, wherein the variation in the DEL is considered to directly correlate to the65

variation in the wake turbulence. It is also common that many wind farms may possess a wind turbine that is instrumented with

load sensors and from which
:::
only

:
the 10-minute load statistics is archived. This usually implies the 10-minute mean, standard

deviation, maximum and minimum are available. The damage equivalent load
::::
DEL is often not stored,

:
as its computation

requires rainflow counting or similar procedures to be available on the turbine computer, which is often not the case. In such

situationson a number of wind farms, it is essential that the DEL can be computed from the measured standard deviations of70

the loads. This is not a prevalent practise, but is straight forward to map the std. deviation of loads to the DEL, if the underlying

stochastic process is assumed to be Gaussian or Poisson. In the following sections, the one year DEL at the blade root and tower

base of wind turbines in a farm is predicted using both stochastic extrapolation of the measured DEL and through synthesis of

the DELs using the measured loads std. deviations over limited intervals. The method of synthesis of DELs using 10-minute

statistics also allows the computation of DELs without the need of detailed turbine information present, such as required for an75

aeroelastic model. This allows the wind farm owner to simulate DELs quickly without access to detailed turbine information

that is possessed only by the wind turbine manufacturer.

Some authors refer extrapolation to imply the prediction of DELs for a future time interval based on measured DELs and

wind conditions in the past [Hübler et al. (2018b), Hübler et al. (2018a)]. In the present work, extrapolation of DEL is defined

as a stochastic methodology to determine the return period of increasing DEL magnitudes outside the domain of present80

results. Continuous monitoring and assessment of the turbine structural life is crucial
:
, since the costs of unplanned downtime

and repairs outweigh the cost of monitoring; also, early correction of wind farm operation ensures safety of structures for their

intended lifetime and for life extension. Wind farm operational correction can be carried out by derating upstream wind turbines

to reduce the wake turbulence generated by those turbines and thus lower loads on the downstream wind turbines [Dimitrov

and Natarajan (2021), Munters and Meyers (2018)]. In the next sections, the ability to use measured or simulated ten-minute85

load statistics to directly quantify DELs and the use of the stochastic extrapolation methodology to forecast the return-period

of DELs is explained, which leads to a criteria to determine if the measured DELs on a wind turbine are within design limits.

2 Methodology

Given load cycles over 10-minute intervals as obtained through rainflow counting of the output time series of aeroelastic

simulations, the annual 10-minute damage equivalent load at a given mean wind speed bin is conventionally computed as90

Leq|v =

6Nv

∑n
i=1(niL

m
i )

Neq

∑n
i=1(niL

m
i )

Neq
:::::::::::

 1
m

(1)
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where Nv is the number of hours in a year at the mean wind speed,
:::
Neq::

is
:::
the

::::::::
equivalent

:::::::
number

::
of

::::::
cycles,

:
v, ni is the number

of load cycles of amplitude Li and m is exponent of the SN curve of the material. The load time series used to compute ni and

Li in Eq. (1) are conventionally results from rainflow counting of very limited aeroelastic simulations performed under condi-

tions important for fatigue damage. The duration of the load time series over all mean wind speeds and operational conditions95

simulated is seldom over a few days and the same load cycles are assumed equivalent prevalent for the lifetime of the wind

turbine. In practise, a load measurement campaign will provide a wide scatter in DELs [Barber et al. (2016)], so that it may be

difficult to ascertain based on the limited simulations, as to what is the design DEL value that is to be considered for assuring

that the magnitude of the measured DELs are within acceptable limits to ensure structural integrity.

While frequency domain DEL computation methods such as the Dirlik’s method [Ragan and Manuel (2007)] have been used100

by some, these methods require the knowledge of the load spectrum and may not always be the best choice for design valida-

tion due to erroneous spectra. On the other hand, level-crossing methods need not always require availability of the process

spectrum. If the 10-minute statistics of the standard deviation, maxima and minima of loads are available, then assuming the

load amplitude can be expressed as a Gaussian process, the probability of crossing an amplitude level, Li follows a Rayleigh

distribution [
:::::::::::::::
Meirovitch (2001)], that is105

pdf(Li) =
Li
σ2
L

e
− L2

i
2σ2
L (2)

where

Li = giσL (3)

where gi is the number of standard deviations, σL away from the mean µL.
:
The number of load cycles with amplitude greater

than Li (upcrossings) is given by [
::::::::::::::
Meirovitch (2001)]110

NciNci
:::

= νe
− L2

i
2σ2
L (4)

where ν is the mean crossing frequency, which here will be assumed to be the first rotational frequency (P) of the rotor for the

blade flap loads and the first natural frequency for the tower base in the loading direction of interest. Based on the Rayleigh

distribution decay rate, a load amplitude bin can be determined which provides one load cycle in that amplitude bin, that is

the number of upcrossings of level Li minus upcrossings of Li + ∆Li is unity. Equation 3 and 4 assume a Gaussian process115

with a single mean crossing-frequency of interest. For broadband Gaussian processes or Poisson processes, the methods of

Cramer-Leadbetter [Cramer and Leadbetter (1967)] can be used, which have also been proven for extreme value analysis

[Madsen et al. (1986)]. However for highly damped structures, the
::::::
energy

::
in

:::
the stochastic response is

:::::::::::
representative

::
of

:
a very

narrow-band process and in such cases, equation
:::
Eq.

:
4 can overly magnify the rate of level crossings. Vanmarcke [Vanmarcke

(1975)] prescribed a correction factor to accurately determine the level crossings of very narrow-band processes, which states120

that the rate of crossings of such a process is

Nvi = νve
− L2

i
2σ2
L (5)
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where

νv = ν(
:

1− e−
√
2π(1−α2)0.6Li/σL

1− e
−

L2
i

2σ2
L

) (6)

α is the Vanmarcke bandwidth parameter, which for a very narrow band process will approach unity.
:::
The

:::::::::
Vanmarcke

:::::::::
correction125

:::::::
regulates

:::
the

::::
peak

::::::::
crossings

:::
of

:::::::
different

::::
load

:::::
levels

:::
by

::::::::::
conditioning

:::::
them

::
on

:::
the

:::::::::
bandwidth

:::::::::
parameter

::
α.

:::::
Thus

:::
this

:::::::::
correction

:::
can

::
be

:::::::
directly

::::::
applied

:::
for

:::
the

::::::::::
computation

:::
of

:::::
DELs

::
of

::::::::
processes

::::
with

:::::::
different

:::::::::::
bandwidths.

For a Gaussian process with a known std, .
:
deviation, Eq. (1) can also be written as

Leq|v =

6Nvσ
m
L

∑n
i=1(nig

m
i )

Neq

∑n
i=1(nig

m
i )

Neq
:::::::::::

 1
m

(7)

We assume gi is a standardized random normal variable between [-min
:::
min,max] recorded loads, that provides a unit cycle for130

each amplitude level. Equation 7 in combination with Eq. 4-6 allows very fast computation of the damage equivalent load over

a time interval of relevance, without the need for aeroelastic load simulations. The only needed inputs are the 10-minute mean,

std. deviation, minimum, maximum load levels and the dynamic frequency of interest. This also implies that the DEL values

over several input wind conditions (wind turbulence, mean wind speed) can be determined over long time, without limiting the

DEL to only a few 10-minute computations per mean wind speed as is the practise today.135

2.1 Extrapolation of Fatigue

The DEL values show a wide scatter based on the varying inflow turbulence due to wake conditions and other contributions

at any given mean wind speed. While the knowledge of the 10-minute load statistics will enable the ready reconstruction

of the DEL as per the previous section, it is also essential to determine the probability of exceedance of a DEL magnitude,

that is, to determine the magnitude of the DEL that can possess a one-year return period or a 10-year return period. The140

DEL is a stochastic variable that is dependent on wind turbulence, wind direction etc.
:

and herein it is assumed that the DEL

follows a Weibull distribution with three parameters. [
:::::::::::::::
Hoole et al. (2019)]

::::::
showed

::::
that

:::
the

::::::::::
3-parameter

:::::::
Weibull

::::::::::
distribution

:::
was

:::::
more

:::::::
accurate

::
in

::::::::
modeling

::::::
fatigue

:::
life

::
as

:::::::::
compared

::
to

:::
two

:::::::::
parameter

::::::::::
distributions.

:
Extrapolation of the tail of the Weibull

distribution will provide the long-term DEL values and the corresponding return period for those values. The cumulative

distribution function (CDF) of the DEL magnitudes over different 10-minute intervals may be determined using their median145

rank [Hoole et al. (2019)], from which a 3-parameter Weibull distribution can be fit, whereby the probability of a damage

equivalent load magnitude d, is given as:

F (d) = 1− e(−(d−γ)/α))
β−((d−γ)/α)β

:::::::::
(8)

The fitting of the CDF to the DEL may be implemented using the median rankas computed from
::::::::::
3-parameter

:::::::
Weibull

:::::::::
distribution

::
is
:::

fit
::
to

:::
the

:::::::
median

:::::
rank,

::::::
which

:::
can

:::
be

::::::::
computed

::::::
using DEL values from aeroelastic simulations, field mea-150

surements or as obtained with the Gaussian process approach described in the previous subsection. The median rank is fit to
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Figure 1. Blade root flap damage equivalent moment extrapolation at 10 m/s for low wind turbulence

measured or simulated DEL using the empirical relationship for Weibull distributions:

mR(Li) =
i

N + 1
(9)

where i is the sorted rank of the load Li and N is the number of DEL values used in the fitting process.

Extrapolation of the fitted CDF is made to a minimum of a one year return period, whereby the DEL magnitude with a155

one-year return period is identified. This provides a readily implementable technique to compute the DEL for a long duration

of at least one year
:::::::
one-year without requiring to simulate the full period. It also provides a robust DEL value over long time,

rather than applying the conventional methodology used in practise (IEC 61400-1 2019) of simulating loads for a minimal

duration and assuming the same load cycles are applicable for the full lifetime.

The results from stochastic extrapolation of simulated blade root flap damage equivalent moment, obtained from limited160

aeroelastic simulations is shown in Fig. 1. The extrapolation in Fig. 1 uses Eq. (8) and (9) at a mean wind speed of 10 m/s

using simulated blade root moments under normal turbulence inflow. Figure 1 shows that the extrapolation is stable even for

very low probabilities of exceedance and
::
of

:::
the

:::::::::
probability

:::
of

:::::::::
exceedance

::
is
::::::::::::
monotonically

::::::::
reducing

::
up

::
to
::::
very

::::
low

::::::
values

::
of
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Figure 2. Layout of the Lillgrund wind farm

:::::
10−15

:::
and

::::
this

:::::::::::
methodology can therefore be used to extrapolate DELs across different mean wind speeds and wind turbulence

levels
::
to

::::
their

:::::::::
asymptotic

:::::
target

:::::::::
probability

:::
of

:::::::::
exceedance.165

2.2 Measurement Data

Loads and SCADA measurements from
:
a
:::
2.3

::::
MW

::::
wind

::::::
turbine

::::::
within the Lillgrund offshore wind farm [Dimitrov and Natara-

jan (2021)] are used in the validation of the methodology described in the above subsections. The blade root and tower base

loads on a fully instrumented turbine (C-08) that is the middle turbine in the bottom row shown in Fig. 2 are used in this

process. Depending on the wind direction, varying inflow turbulence is experienced by this turbine due to the wake effects
:
,170

::::::::
equivalent

::
to

::::::
added

::::::::
turbulence. This results in a wide scatter in damage equivalent moments at any given mean wind speedcan

be seen, an example of which is shown in Fig. 3.

Simulated DEL using the conventional methods
::::
tools

:::::::
depicted

::
in

:::::
Fig.4

:
does not provide such a variation as seen in Fig.

3 due to limited 10-minute samples and therefore the stochastic models in Eqs. (4)-(6) are used to replicate this
:::::
needed

:::
to

:::::::
replicate

:::
the variation in DEL

::::
seen

::
in

::::::::::::
measurements. Extrapolation to a one year probability of exceedance is made using both175

a small subset of the measured DELs and using stochastic simulation set. The one year extrapolated DEL value
:::::
values for both

the tower base and blade root are validated with the measured DEL
:::::
DELs over a year.
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3 Fatigue from Gaussian Process Analysis

The blade root flap moment and the tower base fore-aft moment are the main focus points, as these two moments are strongly

driven by wind turbulence and wake effects. The life consumption of the blade and support structure within a wind farm is180

highly dependent on these load components. For the blade root flap moment, the primary frequency of interest for fatigue

damage is the rotor rotational speed
:
, or the ’p’ frequency. While the blade flap moments also contain multiples of p, such as 2p,

3p etc., these are of much lower energy content and the primary energy content is the p frequency. For the support structure,

the primary excitation frequency is usually the first natural frequency of the structure. It is assumed that the turbines
::::::
turbine

designs have been made as to not result in resonant excitation. While the tower fore-aft moment spectra has a peak at its natural185

frequency, it is assumed that this is not caused by excitation from rotor harmonics, such as 3P.

Under the above conditions of turbine operation, the blade root flap damage equivalent moment is narrow band Gaussian

and the tower base fore-aft damage equivalent moment is
::::::::
equivalent

::
to

::
a very narrow-band Gaussian

::::::
process. The reason for

the very-narrow band assumption
::
for

:
the tower base fore-aft DEL

:::::::
moment is due to the strong aerodynamic damping of the

support structure during turbine operation. This implies that Eq.(4) can be used to compute the DEL cycles for the blade root190

flap moment and Eq. (5) and (6) may be used to compute DEL cycles for the tower fore-aft moment. Finally Eq. (7) is used

to compute the DELs. To validate the above assumptions, the computed DELs are compared for each 10-minute period for a

variety of wind/wake conditions over a year with the respective measured DELs.

Further time-domain aeroelastic simulations using the HAWC2 software [Larsen and Hansen (2012)] are also made to

compute the blade root and tower base damage equivalent moments
:
of

:::
the

:::
2.3

::::
MW

:::::
wind

::::::
turbine. The DELs obtained from all195

three methods, that is, Gaussian process analysis, aeroelastic simulations and field measurements are extrapolated to determine

the one-year DEL value. Based on this extrapolation, a criteria is established in the following sections that allows lifetime

assessment of blades and towers.

4 Results

4.1 Extrapolation with Measured Loads and comparisons with Aeroelastic Simulation Results200

Figure 3 describes the measured blade root flap damage equivalent moments and tower base fore-aft damage equivalent mo-

ments over a one-year period normalized by a characteristic value and as a function of mean wind speed for turbine C-08.

The large spread in the measured DELs is due to the varying turbulence from the wake as a function of wind direction.
:::
The

::::::
turbine

::::
loads

:::
are

::::
also

::::::::
simulated

:::::
using

:::
the

::::::::
properties

:::
of

::
the

:::
2.3

:::::
MW

::::
wind

::::::
turbine

::
in

:::
the

::::::::
HAWC2

:::::::::
aeroelastic

:::
tool

::::
with

:::
the

:::::
DTU

::::::::
controller.

:
Figure 4 depicts the normalized Blade root flap and tower base fore-aft DELs using the results from limited number205

of aeroelastic load simulations over all IEC 61400-1 turbulence classes and with different
::
12 random seeds of wind turbulence

at each mean wind speed. The results in Fig.
:::::
Figure

:
4 show

:::::
shows a typical number of simulation based results as made in the

final turbine design and type certification.
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(a) Blade Root (b) Tower Base

Figure 3. Measured 10-minute blade root flap and tower base fore-aft damage equivalent moments on the C-08 turbine.
::::::::
Coefficient

::
of

::::::
variation

:::::
(CoV)

:::
of

::::
blade

:::
root

::::
flap

::::
DELs

:::::
below

::::
rated

::::
wind

:::::
speed

::
=

:::
0.49

:::
and

:::::
above

::::
rated

:::::
wind

::::
speed

::
is

::::
0.17.

::::
CoV

::
of

:::::
tower

:::
base

:::
FA

:::::
DELs

::::
below

::::
rated

::::
wind

:::::
speed

:
=
::::

0.47
:::
and

:::::
above

::::
rated

::::
wind

::::
speed

::
is
::::
0.29

(a) Blade Root (b) Tower Base

Figure 4. Simulated 10-minute Blade root flap damage equivalent moment and Tower base fore-aft damage equivalent moment over different

mean wind speeds and turbulence
:
.
::::
CoV

::
of

::::
blade

:::
root

:::
flap

:::::
DELs

:::::
below

::::
rated

::::
wind

:::::
speed

:
=
::::
0.31

:::
and

::::
above

:::::
rated

::::
wind

::::
speed

::
is

::::
0.22.

::::
CoV

::
of

::::
tower

::::
base

::
FA

:::::
DELs

:::::
below

::::
rated

::::
wind

::::
speed

::
=
:::
0.31

::::
and

::::
above

::::
rated

::::
wind

:::::
speed

::
is

:::
0.23

Due to the limited number of load simulations at each mean wind speed, the spread seen in the
::::
The

:::::
scatter

::::::::
observed

::
in

::::
Fig.

:
4
::
is

:::
due

::
to
:::

the
::::::::

different
::::
IEC

::::
class

:::::::::
turbulence

:::::
levels

::::
used

:::
in

:::
the

:::::::::
simulation

:::::
along

::::
with

:::
the

::::::::::
randomness

::
of

:::
the

:::::::::
turbulence

:::::
seed,210

::::
while

:::
the

::::::
scatter

::
in

:::::
DELs

::
in

::::
Fig.

:
3
::
is
::::
due

::
to

:::
the

::::::::
significant

:::::::::
difference

::
in

:::::::::
turbulence

:::
due

::
to

::::::::
different

::::
wake

::::::::
situations

::
at
::::::::
different

9



::::
mean

:::::
wind

::::::
speeds

:::
and

:::::
wind

::::::::
direction.

:::::::::
Therefore

::::
there

::
is

:
a
:::::::::::

significantly
::::::
greater

::::::::
variation

::
in

:::::
DELs

::
in

:::
the

::::::::
measured

:::::::
signals

::
in

:::
Fig.

::
3

:::::
versus

:::
the

::::::::
simulated

:
DELs in Fig. 4 is much lower than in Fig. 3 and

::
for

::::
most

:::
of

:::
the

::::
wind

::::::
speeds.

:::
In

:::::
Figure

::
3,

:::::
there

:::
are

::::
much

::::::
fewer

::::::::::::
measurements

:::::::
obtained

::
at

:::
the

::::::
higher

:::::
mean

::::
wind

::::::
speeds

::::::
above

::
14

::::
m/s

::
as

::::::::
compared

:::
to

:::::
lower

:::::
mean

::::
wind

:::::::
speeds.

::::::
Further

::
at

:::::
higher

:::::
mean

:::::
wind

::::::
speeds,

:::
the

:::::
wake

:::::
effects

::
in
:::
the

::::::::::::
measurements

:::
are

:::::::
reduced

:::
due

:::
to

::
the

:::::
lower

:::::
thrust

:::
on

:::
the

::::::::
upstream215

::::
wind

::::::
turbine

::::
and

:::::::
therefore

:::
the

::::::::
variation

::
in

:::::::::
turbulence

::::
seen

::
by

:::
the

:::::::::::
measurement

::::::
turbine

::
is
:::::::
smaller

::
at

:::::
higher

:::::
mean

::::
wind

:::::::
speeds.

:::::::
However

:
the magnitude variation of the DELs is lower in Fig. 4. However the loads simulations

:::
load

::::::::::
simulations

::
in

::::
Fig.

::
4

included wind inflow with the highest IEC turbulence class ’A’ and therefore is supposed to represent a safe upper load level.

The question arises as to whether the measured DEL magnitudes on the actual turbine imply that the structures on the turbine

are close to their intended fatigue lifetime or if their reliability is sufficiently intact to enable continued operation for further220

years. This question can be answered only if the probability of exceedance of the DEL magnitudes are assessed, for which

the process of extrapolation is used, whereby the one-year DEL magnitudes between simulated values and measured values

can be .
::::
The

:::::
wind

::::::
turbine

::::::::
structure

:
is
::::::::

designed
::
to

:::::
meet

:
a
:::::
target

::::::
annual

::::::::::
probability

::
of

::::::
failure

::
in

::::::
fatigue

::::
and

::::
since

:::
the

:::::
DEL

::
is

:::::::::::
representative

::
of

:::
the

:::::::
damage

::::::::
suffered,

::
the

::::::::::
probability

::
of

::::::::::
exceedance

::
of

:::
the

::::
DEL

::::::::::
magnitudes

::::
over

:
a
::::::::
one-year

:::::
return

::::::
period

:::
are

compared.225

The stochastic extrapolation of the DELs using the 3-parameter Weibull distribution is validated using the measured blade

root flap moment. A small sample of 10-minute measured blade root flap DELs over all turbulence levels is used to fit

the Weibull distribution parameters that quantify the probability of exceedance of the DEL magnitudes
:::::
DEL.

:::
The

:::::::::
measured

::::::::
turbulence

::::::::
variation

::
at
:::::

each
:::::
mean

:::::
wind

:::::
speed

::
is
:::::::

divided
::::
into

:::
50

::::
bins

:::
and

::::
one

:::::::::
10-minute

:::::
DEL

::
is

:::::
taken

:::::
from

::::
each

:::
bin

:::
to

:::::::
compute

:::
the

::::::
median

:::::
rank.

:::
The

:::::::::::
3-parameter

::::::
Weibull

::::::::::
distribution

::
is

::::
then

::
fit

::
to

:::
the

::::::::
resulting

::::::
median

::::
rank

::::::
subset. This stochastic230

fit is then extrapolated to a one-year probability of exceedance and compared with the
:::::
global median rank of the one-year

measured DELs to validate the approach. The results are shown in Fig. 5 for two different mean wind speeds, wherein it can

be seen that the tail of the extrapolated fitted distribution corresponding to the one-year exceedance probability matches the

median rank of the measured DELs very well. This process can therefore be replicated at all mean wind speeds and over all

turbulence to determine DEL magnitudes with multi-year return periods. The resulting DEL magnitude probability can be235

weighted with the probability of mean wind speed to determine the DEL over all mean wind speeds.

Figure
:::
The

:::::::
method

::::::::
proposed

::
is
:::::::::

applicable
::::

for
:::
any

:::::::
number

:::
of

:::::
DELs

:::::
from

:::::::
different

:::::
load

::::::::::
components

::::
that

:::
are

::::::::
strongly

::::::::
dependent

:::
on

:::::
wind

:::::::::
turbulence.

::::::
While

:::
the

:::::::::
influence

::
of

:::
the

::::
tail

:::::
region

:::
is

::::::
greater

:::
for

:::::
larger

::::::::
material

:::::::::
exponents

::::
such

:::
as

:::
for

::::::
blades,

:
it
::
is

:::
not

::::::::::
insignificant

:::
for

::::
steel

:::::::
towers.

:::
The

:::::::::
long-term

::::
DEL

:::::::::
magnitude

::::::
should

::
be

::::::::
bounded

::::
with

:::::::
increase

::
in

::::
time,

::::
and

:::
the

:::
tail

::
of

:::
the

::::
DEL

::::::
should

:::
be

::::::::
accurately

:::::::::::
represented,

:::::
which

::
is

:::::
what

:
is
::::::

shown
::
to
:::
be

:::
the

::::
case

::
in

::::::
Figure

::
5.

:::
As

:::
can

::
be

:::::
seen,

:::
the

::::
rate240

::
of

:::::::
increase

::
of

:::::
DEL

::::::
reduces

:::::::::::
significantly

::::
with

::::::::
reduction

::
in
::::

the
:::::::::
probability

::
of

::::::::::
exceedance

::::
and

::::::::::::
asymptotically

::::::::::
approaches

:::
the

::::::::
empirical

:::::::::
distribution

:::::
from

:::
the

::::::::
measured

:::::
DELs.

::::
This

:::::::
implies

:::
that

:::
the

:::::::
desired

:::::
annual

:::
or

::::::::
long-term

:::::::::
probability

::
of

::::::
failure

:::
can

:::
be

::::::
actively

:::::::::
measured.

:::::
Based

::
on

::::
the

:::::::::
validations

::::::
shown

::
in

:::
Fig.

:::
5,

:::
Fig.

:
6 displays the long-term extrapolated values for the blade root flap damage

equivalent moment and tower base damage equivalent moment
::
to

::::
very

:::
low

:::::::::::
probabilities

::
of

::::::::::
exceedance, from which the DEL245

magnitude corresponding to the one-year
::::::
desired exceedance probability can be determined. A 3-parameter Weibull distribution
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(a) 7 m/s (b) 10 m/s

Figure 5. Validation of the stochastic extrapolation method with the measured one-year median rank of the DEL

is fitted to the probability of exceedance of the DEL magnitude using a few sample measurement values and the resulting

stochastic distribution is extrapolated and compared with the median rank of the measured DELs in Fig. 6. It can be seen that

extrapolation using the 3-parameter Weibull distribution provides a good representation of the measured 1-year DEL for both

the blade root and tower base over various mean wind speeds.250

The same extrapolation can also be performed using only the simulated DEL values for the same two load sensors and

the results are shown in Fig. 7. The simulated DELs cover all IEC turbulence classes and these are representative of the

turbulence levels experienced by the actual turbine. However the simulated results use the 90% quantile of turbulence, whereas

the measured turbulence covers a range of quantiles. Consequently, it can be compared if the extrapolation using the simulated

DELs in Fig. 7 has a higher one-year DEL magnitude at the one-year probability of exceedance than the measured one-year255

DEL magnitudes over different mean wind speeds. The weighted probability of the DEL with the annual probability of mean

wind speeds can be quantified to enable a definite conclusion on a target annual DEL magnitude, above which the turbine

structure can be said to possess a diminished annual reliability level.

It should be noted that while the process of verification of the structural integrity in fatigue is presented, the quantification

of the structural reliability or remaining life of the specific operational turbine is not made herein, since the actual design loads260

of the specific turbine used in its design is not available.

4.2 Extrapolation with Gaussian Process Analysis (GPA)

Since aeroelastic simulation is time consuming and therefore provides limited DEL results, the methods for narrow-band

and very narrow band processes as explained in previous sections are used to directly simulate one-year of DELs for the C-

08 wind turbine blade root and tower base. The 10-minute measured load mean and standard deviations
:::::::
statistics

:
are used to265
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(a) Blade Root (b) Tower Base

Figure 6. Comparison of the 10-minute extrapolated blade root flap bending damage equivalent moments and the extrapolated tower base

fore-aft damage equivalent moment using measurements.
:::
For

::::
blade

::::
root,

:::::::::
extrapolated

::::::
curves

::::
begin

::
at

:::
the

::
far

:::
left

:::::
(5m/s

:
-
:::::
lowest

:::::
DEL)

:::
and

::::
move

::
to

::::
right

:::
with

::::::::
increasing

::::
mean

::::
wind

:::::
speed

::::
until

::
11

:::
m/s

::::::
(highest

:::::
DEL)

:::
and

:::
then

::::::
moving

:::
left

::::
again

::::
with

::::::::
increasing

::::
mean

::::
wind

:::::
speed.

:::
For

::::
tower

::::
base,

:::::::::
extrapolated

::::::
curves

::::
begin

::
at

::
the

::::::
middle

::
at

:
5
:::
m/s

:::
and

::::
move

::
to
:::
the

::::
right

::::::
(highest

:::::
DEL)

:::
until

::
8

:::
m/s,

:::::
before

::::::
moving

::
to

:::
the

::
left

:::::
again

.

(a) Blade Root (b) Tower Base

Figure 7. Comparison of the 10-minute extrapolated blade root flap bending damage equivalent moments and the extrapolated tower base

fore-aft damage equivalent moment using simulations.

determine the DEL values. A
:::::
Using

::::
load

:::::
levels

::::::
within

::
the

:::::::::
measured

::::::::
minimum

:::
and

:::::::::
maximum

:::
load

:::::
level

:::
and

:::::
using

:::
the

::::::::
measured

::::::::
10-minute

::::
std.

::::::::
deviation

::
as

:::
σL,

::
a one-year DEL simulation

::
is

:::::
made using Eq. (4-7),

::::::
which requires only a few seconds on a

12



standard laptop computer. Many load measurement statistics often do not possess DEL magnitudes and under such conditions
:
,

the DEL magnitudes can be re-created using Eq. (4-7). If measured 10-minute load statistics is unavailable, then the aeroelastic

simulations can be used to determine a range of mean and std. deviations relevant for the 10-minute load magnitudes as a270

function of mean wind speed and wind turbulence.

(a) 7 m/s wind speed (b) 10 m/s wind speed

Figure 8. Comparison of the 10-minute blade root flap bending damage equivalent moments between the Gaussian process method and

measurement data on the C-08 turbine.

Figure 8 compares the resulting blade root flap damage equivalent moment from the GPA with the measured DELs at

two different mean wind speeds. The results in Fig. 8 show that for all the different wind turbulence variations with various

wake angles, the simple Gaussian process analysis provides a similar quantification of the true DEL as seen in measurements.

For these blade root flap DELs, Eq.(4) is used directly without the Vanmarcke correction to obtain the number of crossings275

of different levels. However if the same method is used (i.e. without the Vanmarcke correction), for the tower base fore-aft

damage equivalent moment, then as seen in Fig. 9
::
9a, the tower base fore-aft DELs are greatly amplified in comparison to the

measured DELs.
:::
The

::::::
power

::::::::
spectrum

::
of

:::
the

::::::
tower

::::
base

:::
FA

:::::::
moment

::
is

:::::::::
compared

::::
with

:::
the

:::::
blade

::::
root

::::
flap

::
in

::::
Fig.

:::
9B,

:::::
from

:::::
which

::
it

:::
can

::
be

::::
seen

::::
that

:::
the

:::
first

:::::
peak

:::
for

:::
the

:::::
tower

:::::::
moment

:::
has

:
a
:::::
much

:::::::
smaller

::::::
energy

:::
rise

:::::::
relative

::
to

::
its

:::::::
starting

:::::
point,

::::
than

::
the

::::::::::::
corresponding

::::
first

::::
peak

:::
in

:::
the

:::::
blade

:::::::
moment,

::::::
which

:::
has

::
an

::::::
energy

:::::
jump

::
of

:::::
about

::
a

:::
100

:::
on

:::
the

::::
PSD

:::::
scale.

:
This is due to280

the significant aerodynamic damping, that is not considered in Eq. (4).
::::::::
Therefore

:::
the

:::::::::
bandwidth

::
of

:::
the

::::::::
spectrum

:::::
needs

::
to

:::
be

:::::::
provided

::
in

:::
the

:::::::::
expression

:::
for

::::
level

:::::::::
crossings,

:::::
which

::
is

::::::
exactly

:::::
what

::
the

::::::::::
Vanmarcke

:::::::::
correction

::::::
applies.

:

The Vanmarcke correction in the limit that α−> 1 provides the
::::::::
equivalent

:
bandwidth for a highly damped system

:::
and

:::::
herein

::
α

::
is

:::::
taken

::
as

::::
0.99

::
to

:::::
model

:::
the

:::::
peak

::::::::
crossings

::
of

:::
the

:::::
tower

::::
base

:::::::
moment. Figure 10 provides the same comparison for

the tower base fore-aft damage equivalent moment, with the Vanmarcke correction and now a very good match between the285

DELs computed with this methodology and the measured DELs is seen.
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(a) DEL comparison (b) Power spectrum comparison

Figure 9.
::
a) Comparison of the 10-minute Tower base fore-aft damage equivalent moment with measurements at 7 m/s using the Gaussian

process method without Vanmarcke correction
:
.
::
b)

:::::::::
Comparison

::
of

:::
the

:::::
power

:::::::
spectrum

::
of

::
the

:::::
tower

:::
base

:::::::
moment

::::::
showing

:::
the

::::
small

:::::::
increase

:
in
::::::
energy

::
in

::
its

:::
first

::::
peak

:::
with

:::
the

:::::::::::
corresponding

::::
much

:::::
larger

::::
peak

::
in

::
the

:::::
blade

:::
root

:::
flap

::::::
moment

(a) 7 m/s wind speed (b) 15 m/s wind speed

Figure 10. Comparison of the 10-minute tower base fore-aft bending damage equivalent moments between the Gaussian process method and

measurement data on the C-08 turbine.

The
:::::::
validation

:::
of

::
the

:::::::::
simulated

:::::
DELs

::::
with

:::
the

:::::::::::
measurements

::::::
shown

::
in

::::
Fig.

:
8
:::
and

::::
Fig.

::
10

::::
over

:
a
::::
year

::
is

::::::::
sufficient

::::::::::
justification

::
for

::::::::::
considering

::::
that

:::
the

:::
the

:::::::::
underlying

::::::::
stochastic

:::::::
process

::
is

::::::::
Gaussian.

::::
The matching comparisons in Figs. 8 and 10 imply that

the results from the GPA can be sampled to also perform a stochastic extrapolation of the DEL magnitudes to obtain a one-

year DEL value or even to higher return periods. Considering the computation speed of the Gaussian process analysis, it is290

14



also possible to directly simulate multi-year damage equivalent moments. Figure 11 displays the extrapolated one year DEL

values for the blade root and tower base with the GPA as compared to measurements using a few samples used to fit
:::
and the

3-parameter Weibull CDF. Since under normal measurements , the
:
,
:::::
where

::
it
::::
can

::
be

::::
seen

::::
that

:::
the

:::::::::::
extrapolation

:::::
using

:::::
GPA

:::::
shows

::::::
similar

::::::
trends

::
as

:::::
using

::
a

:::::::::
parametric

:::::::
Weibull

:::
fits

::
to

::::
data.

::::
The

::::::::
empirical

:::::
DEL

:::::
using

::::::::::::
measurements

:::::::
reaches

:
a
::::
one

::::
year

:::::::::
probability

::
of

::::::::::
exceedance

::
up

::
to

:::
10

::::
m/s,

::::::
beyond

::::::
which

:::
the

::::::::::::
measurements

::::
have

:::::
lesser

::::
data.

:::::
Since

:::
the

:
results of GPA tally well295

with measured DELs for the blade and tower, this method can also be used to detect anomalous wind turbine operation, wherein

::::
such

::
as

::
if DEL values that are significantly away from the predictions by GPA are measured. This can happen, for example if

there is tower resonance with the rotor rotational speed,
:
or if there is

:
a shut-down of the turbine under high turbulence or other

uncommon events.

(a) Blade Root (b) Tower base

Figure 11. Comparison of the 10-minute extrapolated blade root flap damage equivalent moment and tower base fore-aft damage equivalent

moment using the Gaussian process method and measurement data on the C-08 turbine
::::::
between

::::
7m/s

::
to

::::
13m/s.

:::::
Blade:

::::::::::
Measurement

:::::::
one-year

:::
DEL

::
-
::::::
between

:::
1.9

::
to

:::
2.3,

::::::
Weibull

::::
CDF

:
a
:::::::
one-year

:::::
DEL-

::::::
between

:
2
::
to
:::
2.7,

::::
GPA

:
-
:::::::
one-year

::::
DEL

:::::::
between

::
1.9

::
to
:::
3.1.

:::::
Tower

:
-
:::::::::::

Measurement

::::::
one-year

::::
DEL

:
-
:::::::
between

::
3.3

::
to
:::
4.4,

:::::::
Weibull

:::
CDF

::
a
::::::
one-year

:::::
DEL-

::::::
between

:::
2.9

::
to

:::
4.4,

::::
GPA

:
-
:::::::
one-year

::::
DEL

::::::
between

:::
2.8

::
to

:::
4.4.

Based on this method, the extrapolated simulated DEL magnitudes (also using simulated std. deviations) should display300

higher DEL values for the same probability of exceedance as compared to the extrapolated measured DEL values, in which case

the structural integrity of the turbine structure is not compromised. This allows a direct quantification of the life consumption

of the turbine structures in a farm if the certification design loads of the turbines in question are available, so that the relative

difference in the DEL magnitudes with the actual inflow conditions is obtained. Without such an extrapolation, the probability

of obtaining DEL magnitudes higher than the design DEL magnitudes is not known and therefore the extrapolation of DEL is305

a necessary procedure.
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5 Conclusions

Methodologies for computing DELs over multiple years and determining the probability of exceedance of DEL magntiudes

:::::::::
magnitudes

:
were developed and validated using measurements from the Lillgrund wind farm. The synthesis of DELs using

available mean and standard deviation of the loads was presented and validated for the blade root flap moment and tower base310

fore-aft moment. This provides a fast methodology to simulate the DELs for long duration without loss of accuracy. Different

approaches for narrow-band processes (blade flap) and very narrow-band processes (tower base fore-aft) were delineated and

shown to also be useable
:::::
usable as data sets for stochastic extrapolation to determine probabilities of exceedance. A suitable

indicator to verify structural integrity of the turbine structure was proposed as the magnitude of the DEL at the one-year

probability of exceedance, based on past measurements and compared to the corresponding DEL magnitude in the design315

basis. The process of structural integrity verification was shown and quantified through the comparison of extrapolated DELs

from measurements obtained from a single turbine with the corresponding extrapolated DEL magnitudes using simulation

results. The capability to synthesize DELs from 10-minute load statistics also allows ease of storage of multi-year data, without

the need for time-series analysis. The combined methods of synthesis of DELs and stochastic extrapolation allow forecasting

damage into the future and can be used as a decision making tool to implement wind farm control methods that either reduce320

loads or increase power production, based on the need.
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