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Abstract. Wind plant wake impacts can be estimated with a number of simulation methodologies, each with its own fidelity

and sensitivity to model inputs. In turbine-free mesoscale simulations, hub-height wind speeds often significantly vary with

the choice of a planetary boundary layer (PBL) scheme. However, the sensitivity of wind plant wakes to a PBL scheme has

not been explored because, as of the Weather Research and Forecasting model v4.3.3, wake parameterizations were only

compatible with one PBL scheme. We couple the Fitch wind farm parameterization with the new NCAR 3DPBL scheme and5

compare the resulting wakes to those simulated with a widely used PBL scheme. First, we
::
We

:
simulate a wind plant in pseudo-

steady states under idealized stable, neutral, and unstable conditions with matching hub-height wind speeds using two PBL

schemes: MYNN and the NCAR 3DPBL. For these idealized scenarios, average hub-height wind speed losses within the plant

differ between PBL schemes by ±0.24
:::::::
between

:::::
-0.20

:
m s−1

:::
and

::::
0.22

:::
m

:::
s−1, and correspondingly, capacity factors ranged

::::
range

:
between 39.5–51.2%. To demonstrate the importance of PBL scheme choice on a real-world scenario, we conduct a10

month-long case study with both PBL schemes centered on the Vineyard Wind 1 lease area in the mid-Atlantic United States.

Under stable and unstable conditions averaged across the month, MYNN predicts stronger waking inside the plant—by about

0.25 m s−1. However, due to stronger plant inflow wind speeds in MYNN, the 3DPBL generates 4.7%–7
:::
–53.8%less power than

MYNN in August 2020, depending on the turbine build-out scenario. Differences between PBL schemes can be even larger

for individual instances in time. .
:

These simulations suggest that PBL schemes represent a meaningful source of modeled15

wind resource uncertainty; therefore, we recommend incorporating PBL variability into future wind plant planning sensitivity

studies as well as wind forecasting studies.
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1 Introduction25

Despite a large demand to build offshore wind turbines in the United States, the wind resource at many potential construction

sites suffers from a large degree of uncertainty. Wind resource assessments for new wind plants often involve gathering multi-

year measurements of hub-height winds (Brower et al., 2012). While this approach is more common for onshore sites, hub-

height wind measurements are more challenging to collect offshore, and public offshore measurements are sparse within the

United States. While the Bureau of Offshore Energy Management (BOEM) is considering or has already allowed commercial30

development in 33 renewable energy areas (BOEM, 2020), to the best of the authors’ knowledge, public offshore yearlong

hub-height wind speed measurements are available today in the vicinity of 6 sites—4 due to deployments by the U.S. DOE

(accessible at https://a2e.energy.gov/data) and 2 due to deployments by the New York State Energy Research and Development

Agency (accessible at https://oswbuoysny.resourcepanorama.dnvgl.com). The U.S. is rapidly developing its offshore wind

industry, recently expanding its offshore wind generation goal to 30 GW by 2030 (White House, 2021). Thus, it is critical to35

be able to accurately and confidently characterize wind resource in the absence of high quality measurements for the rapidly

developing offshore wind industry in the United States.

Due to limited observations, offshore wind resource assessments in the United States rely more heavily on numerical weather

prediction (NWP) models. NWP-based wind resource assessments have been used to characterize wind resource in turbine-free

environments (simulating winds prior to wind plant construction) as well as turbine-including environments (simulating winds40

after wind plant construction). While NWP models provide useful predictions of wind resource, their estimates are also accom-

panied by a large degree of uncertainty. As such, uncertainty quantification of offshore wind resource has been established as a

key component of the U.S. offshore wind research agenda. Shaw et al. (2019) assert that uncertainty quantification represents

a critical area of offshore wind research, as “quantification and reduction of uncertainty represents a significant opportunity to

reduce costs”. This sentiment was also echoed in a wind energy workshop that brought together stakeholders from industry,45

academia, and the U.S. government (Haupt et al., 2020). Finally, Archer et al. (2014) underscored two major research needs for

coastal and offshore wind energy research in the United States—more offshore observations and uncertainty characterization,

in particular uncertainty characterization through ensembles of NWP simulations. Archer et al. (2014) also emphasized the

need for research on turbine wake losses. The research in our manuscript directly responds to the need for ensembles of NWP

simulations as well the need to quantify wake losses.50

Wind resource uncertainty in turbine-free NWP simulations stems from, in part, the large number of plausible model options

that can be used to drive the simulation. Hub-height wind speeds in turbine-free NWP simulations have been shown to be

significantly sensitive to a number of modeling options. Simulated wind resource has been shown to often be most sensitive to

the choice of plantary
:::::::
planetary boundary layer (PBL) parameterization, and PBL schemes have also been shown to be sensitive

to other factors such as grid resolution (Storm and Basu, 2010; Carvalho et al., 2012; Yang et al., 2013; Carvalho et al., 2014;55
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Draxl et al., 2014; Olsen et al., 2017; Yang et al., 2017; Fernández-González et al., 2018; Yang et al., 2019; Optis et al., 2020).

PBL schemes govern turbulent fluxes
::::::::
(typically

::::
just

::::::
vertical

::::::::
turbulent

::::::
fluxes)

:
and mixing within the atmospheric boundary

layer. At present, 13 different PBL schemes are available within the Weather Research and Forecasting (WRF, Skamarock

et al., 2021) model, and there is no single-best PBL scheme for wind resource assessment. As just one example, Draxl et al.

(2014) evaluated seven PBL schemes using measurements from a meteorological mast at the Høvsøre wind energy test site.60

They found that the optimal PBL scheme varies with stability: at this site, MYJ (Janjić, 1994) performed best under stable

conditions, ACM2 (Pleim, 2007) performed best under neutral conditions, and YSU (Hong et al., 2006) performed best under

unstable conditions. Wind atlases that characterize model uncertainty often employ ensembles of simulations where model

inputs, such as PBL scheme, are varied (Bodini et al., 2021a).

While the sensitivity of hub-height winds to PBL scheme has been explored in turbine-free NWP simulations, the resulting65

impacts on wake simulations have not been explored. To date, all published mesoscale WRF simulations with explicitly rep-

resented wind turbines have been conducted with the MYNN PBL scheme (Nakanishi and Niino, 2009; Olsen et al., 2017).

Thus, while PBL schemes have been shown to be key elements for uncertainty quantification in NWP-based wind resource

assessments in turbine-free environments, it is unknown if PBL schemes are similarly important in turbine-including environ-

ments. It is critical to accurately predict wake effects in order
::
to accurately predict annual energy production. Lee and Fields70

(2021) summarize the large degree of uncertainty regarding the impact of wake-associated losses on annual energy production:

Some estimates predict average total wake losses as low as 6.1%, whereas others have predicted losses as high as 40%. The

uncertainty of individual wake-loss estimates has also been estimated to be 10%–40%. These losses and uncertainties incur

significant financial impact on the wind industry, potentially translating to millions of U.S. dollars of economic benefits (Lee

and Fields, 2021).75

While turbine-including NWP sensitivity studies have not examined the impact of PBL schemes on mesoscale wakes, they

have shown that NWP-modeled wakes can be sensitive to a number of other inputs. Turbine wakes are modeled in NWP

simulations with wind farm parameterizations (WFPs, for a review see Fischereit et al., 2021), such as the Fitch WFP (Fitch

et al., 2012), the Explicit Wake Parametrisation (EWP, Volker et al., 2015), the Abkar WFP (Abkar and Porté-Agel, 2015), and

the Pan
:::
and

:::
the

:::::
hybrid

:
WFP (Pan and Archer, 2018). Wind resource in turbine-including simulations has been shown to be80

sensitive to the same model inputs that are important in turbine-free simulations, such as vertical and horizontal grid resolution,

as well as the option to have the MYNN PBL scheme advect TKE (Redfern et al., 2019; Tomaszewski and Lundquist, 2020;

Archer et al., 2020; Siedersleben et al., 2020; Larsén and Fischereit, 2021). We note that some
::::
most

::
if
:::
not

:::
all

:
Fitch WFP

simulations with TKE advection turned on prior to Archer et al. (2020) were subject to a bug in the WRF code, and as such,

the results from these studies should be interpreted with caution. Modeled wake impacts have also been shown to be sensitive85

to inputs specifically associated with the WFP, such as the choice of WFP and the degree of explicitly added TKE in the Fitch

WFP (Fitch et al., 2012; Vanderwende et al., 2016; Siedersleben et al., 2020; Tomaszewski and Lundquist, 2020; Archer et al.,

2020; Pryor et al., 2020; Shepherd et al., 2020).

In this paper, we
:::::
begin

::
to address the question: How sensitive are modeled mesoscale wakes to the choice of PBL param-

eterization? Specifically, we compare Fitch WFP simulations with both
::::::
Ideally,

:::
this

:::::::
question

::::::
would

::
be

:::::::::
addressed

::
by

::::::::
studying90
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::
all

::
13

:::::
PBL

:::::::
schemes

::
in

:::::
WRF

::::
with

::
the

:::::
Fitch

:::::
WFP

::::::
insofar

::
as

:::
that

::
is

:::::::
possible.

:::::
Here,

::
as

::
a

:::
first

::::
step,

:::
we

:::::::
compare

::::
two

::::
PBL

::::::::
schemes:

MYNN (Nakanishi and Niino, 2009) and the recently developed NCAR 3DPBL (Kosović et al., 2020; Juliano et al., 2021).

We
::::::::::::::::::::::::::::::::::
(Kosović et al., 2020; Juliano et al., 2022).

:::
We

:::::
chose

:::
the

:::::
latter

::
as

::
it

:::
has

:
a
:::::::::
prognostic

::::::::
equation

::
for

:::::
TKE,

::::::
which

:
is
:::::::::
important

::
as

:::
the

::::
Fitch

:::::
WFP

:::::::
modifies

:::::
TKE

:::::
fields.

:::
We

:
make substantial modifications to the WRF code to enable the Fitch WFP to work

with the NCAR 3DPBL, and then conduct two sets of numerical experiments. We are most interested in the sensitivity of95

modeled wakes in upcoming offshore U.S. wind plants introduced by switching from MYNN to the 3DPBL. As such, we

simulate a month-long case study centered on planned wind plants off the U. S. east coast. Prior to discussing this dynamic

and complicated environment, we first a
:::

set
:::
of

:::::::
idealized

:::::::::
numerical

::::::::::
experiments

:::::
based

:::
on

:::
the

:::::::::::::::
Fitch et al. (2012)

:::::::::::
experiments.

:::
We simulate wakes in pseudo-steady idealized environments

:::
with

:::::::
MYNN

::::
and

:::
the

::::::
NCAR

:::::::
3DPBL under stable, neutral, and

unstable conditions. We also examine the role of explicitly added TKE in this set of simulations. In Section 2, we describe the100

two PBL schemes, the integration of the NCAR 3DPBL with the Fitch WFP in the WRF code, and the setup of the simulations.

In Section 3, we discuss the results of the idealized simulations. In Section 4, we analyze the real simulations. In Section 5,

we conclude and present broader takeaways
::::::::
conclude

:::
and

::::::
discuss

:::
the

:::::::::::
implications

::
of

:::
the

::::::::
idealized

:::::
results

:::
for

:::::::::
real-world

:::::
wind

:::::::
resource

::::::::::
assessments.

2 Methods105

2.1 MYNN and the NCAR 3DPBL

The simulations in this paper are carried out using WRF v4.3.0 with two PBL schemes: MYNN (Nakanishi and Niino, 2009;

Olson et al., 2019) and the NCAR 3DPBL (Kosović et al., 2020; Juliano et al., 2021)
::::::::::::::::::::::::::::::::::
(Kosović et al., 2020; Juliano et al., 2022)

. To avoid confusion regarding nomenclature of new turbulence models, we note that the NCAR 3DPBL is different from the

3DTKE PBL scheme (Zhang et al., 2018). The WRF v4.3.0 code in this study was modified to include the NCAR 3DPBL110

code, which is being prepared for public release. For simplicity, we refer to the NCAR 3DPBL as simply “the 3DPBL.” Both

MYNN and the 3DPBL share a common origin—they are fundamentally rooted in the turbulence modeling of Mellor and

Yamada (1974). Here, we use the level 2.5 MYNN and 3DPBL schemes, which both treat TKE as a prognostic variable, thus

improving their utility for wind turbine modeling, because generated TKE is advected by the PBL schemes. This behavior

stands in contrast to other PBL schemes, such as YSU, which does not treat TKE as a prognostic variable.115

MYNN and the 3DPBL treat turbulent mixing differently. MYNN computes the vertical turbulent mixing by calculating the

vertical turbulent stress divergence, and it allows the horizontal turbulent mixing to be handled externally with a Smagorinsky-

type approach (Skamarock et al., 2021, Sec. 4.2). In contrast, the 3DPBL directly accounts for horizontal turbulent mixing

by explicitly computing the turbulent flux divergences for momentum, heat, and moisture. The 3DPBL has been implemented

into WRF to allow for three different configurations following the original Mellor-Yamada developments: (i) a full 3D model,120

(ii) a quasi-3D model using the so-called PBL-approximation, and (iii) a 1D model using the PBL-approximation. In this

analysis, we employ the second option, as the full 3D parameterization is currently too computationally expensive for the

month-long mid-Atlantic simulations
:::::::
yearlong

::::
wind

::::::::
resource

::::::::::
assessments. When using the second option, the 3DPBL scheme
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handles both the vertical and horizontal turbulent mixing by computing the 3D turbulent stress divergence, in addition to the 3D

turbulent flux divergence of heat and moisture. The vertical turbulent fluxes in the 3DPBL are calculated similarly to MYNN,125

and the horizontal turbulent fluxes are calculated analytically following Mellor and Yamada (1982) after applying the PBL

approximation (i.e., neglecting the horizontal derivatives of mean quantities in addition to the vertical derivative of vertical

velocity).

Aside from different approaches for horizontal mixing, the two PBL schemes also employ different master length scales and

closure constants. Both schemes employ one “master” length scale, although they calculate them differently. In the simulations130

in this study, the 3DPBL master length scale follows Mellor and Yamada (1982), whereas the MYNN master length scale uses

a different approach that simultaneously accounts for length scales that characterize buoyancy, the surface layer, and the PBL

depth. The closure constants for the 3DPBL length scale come from Mellor and Yamada (1982), whereas the MYNN closure

constants were updated in Nakanishi and Niino (2009). The MYNN updates focused on convective conditions and, as such, we

expect (and find) that the two PBL schemes behave most differently in convective conditions.135

While the values of empirical constants are different, MYNN and the quasi-3DPBL use the same formulation to parameterize

turbulent momentum, heat, and moisture fluxes. For example, they parameterize the vertical flux of the u-component of wind

speed as

〈uw〉=−LqSm
∂U

∂z
, (1)

where L is the master length scale, q is
√
2 TKE, Sm is a stability function, and U is zonal velocity (Mellor and Yamada,140

1982).

2.2 Integration of the Fitch WFP with the 3DPBL

To simulate wakes with the 3DPBL, we first integrated the Fitch WFP with the 3DPBL inside the WRF code. The Fitch WFP

modifies flow in two key manners (Fitch et al., 2012; Archer et al., 2020): by slowing winds

∂uk
∂t

=−1

2

AkCTUkuk
zk+1− zk

(2)145

∂vk
∂t

=−1

2

AkCTUkvk
zk+1− zk

(3)

and by adding TKE

∂TKEk

∂t
=

1

2

AkαCTKEU
3
k

zk+1− zk
. (4)

In the above equations, k is the vertical level that intersects the rotor, Ak is the area of the rotor on this vertical level, CT is

the thrust coefficient, Uk is the wind speed, uk is the zonal wind, vk is the meridional wind, and zk is the height. The turbulence150
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Stability Label
:::
PBL

::::::
Scheme

:
Geostrophic Wind Speed [m s−1] Surface Heat Flux [W m−2

::

−2] Spin Up Duration [days] Final ABL Height [m]

Stable NWF MYNN 10 -15 6 250

Stable NWF 3DPBL 10 -15 4.25
:::
5.25 250

Neutral NWF MYNN 10 0 4 550

Neutral NWF MYNN 10 0 4 550

Unstable NWF MYNN 9 20 2 600

Unstable NWF 3DPBL 10 20 2 600

Table 1. A summary of boundary conditions and spinup times for the turbine-free idealized simulations.

coefficient CTKE is calculated as the difference between the thrust coefficient CT and the power coefficient CP . The thrust

and power coefficients are functions of wind speed that are unique to a particular wind turbine, and their values are specified

in the input file wind-turbine.tbl. The coefficient α was introduced by Archer et al. (2020) to empirically modify the amount of

explicit TKE addition and, in this study, we either set it to 0 or 1.

The major challenge in integrating the Fitch WFP and the 3DPBL is that the 3DPBL code is housed in the dynamics155

(dyn_em/ ) part of the code, as opposed to the physics (phys/ ) part of the code where most other PBL schemes reside. As such,

the codebase was substantially modified to account for the user-selected PBL scheme. A call to the Fitch WFP’s dragforce

subroutine was added to the end of dyn_em/module_first_rk_step_part2.F. When called for the 3DPBL, the velocity tendencies

and TKE tendencies are additionally scaled by the column-mass in order to match the identical scaling that happens to the

phys/ -calculated tendencies earlier within dyn_em/module_first_rk_step_part2.F. Additionally, whereas the Fitch WFP code160

modifies the MYNN TKE field directly (including a timestep factor of ∂t), the new code modifies the 3DPBL TKE tendency

field (omitting a factor of ∂t and letting the rest of the code carry out the time integration).

2.3 Configuration of Idealized Simulations

First, we
::
We

:
carry out a series of idealized simulations to study the effect of the PBL scheme on simulated wake dynamics

in a simple offshore environment. All simulation inputs can be found on Zenodo (https://doi.org/10.5281/zenodo.5565399).165

We use the neutral idealized simulations of Fitch et al. (2012) as inspiration for our simulations, but we make a number of

modifications. All simulations use two domains, each 202-by-202 grid points in the horizontal. MYNN is always used in the

outer domain, whereas the inner domain is either MYNN or the 3DPBL. The outer domain uses a horizontal grid spacing of 3

km and a timestep of 9 seconds, whereas the inner domain uses a horizontal grid spacing of 1 km and a timestep of 3 seconds.

The vertical grid uses 81 cells, up to a height of 20 km. Vertical grid stretching is employed to provide finer resolution near170

the surface, thereby allowing 28 vertical levels below a height of 300 m, following the recommendation of Tomaszewski and

Lundquist (2020) for nominally 10 m of resolution near the surface. All simulations have a roughness length of 0.0001 m,

which is characteristic of offshore environments (Stull, 1988).
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In order to eventually simplify wake comparisons, we force all turbine-free simulations in such a manner that average hub-

height wind speeds are roughly equal (∼9.35 m s−1) after they are spun up (Table 1). In principle, we could have matched175

the geostrophic winds instead of the hub-height winds in the idealized simulations, but the resulting different hub-height wind

speeds would have made it more difficult to isolate the different turbulent recovery effect that comes with using the 3DPBL

instead of MYNN. Under ideal circumstances, the MYNN and 3DPBL simulations would all have the same geostrophic winds

and hub-height wind speeds. But this behavior is not always possible to achieve because different PBL schemes will inherently

produce different wind profiles. As such, in the idealized simulations we match hub-height wind speeds, but we explore the180

effects of matching large-scale forcing in the mid-Atlantic analysis. For a greater discussion of the spinup of the idealized

simulations, see Sec. 3.1.

Simulations for each stability case are initialized with a neutral temperature profile of 285 K within the boundary layer up to

500 m. The boundary layer is capped with a two-layer inversion: a strong inversion (5 K warming between 500 m and 600 m)

and a weaker inversion (3 K km−1 lapse rate above 600 m). Depending on the case, each simulation was forced with either 9 m185

s−1 or 10 m s−1 geostrophic winds. Stable simulations are additionally forced with -15 W m−2 surface cooling, and unstable

simulations are forced with 20 W m−2 surface heating. These sensible heat flux values were chosen based on typical simulated

conditions at Vineyard Wind (Sec.??)
:
a
:::::::
planned

:::::::
offshore

:::::
plant

::
in

:::
the

::::
U.S.

::::::::::
mid-Atlantic

:::::::::::::::
(Rybchuk, 2022), and are smaller than

typical values over land. After spin up, the boundary-layer height
:
as

::::::::::
determined

:::::::
through

:::
the

::::
NWF

::::::::::
temperature

::::::
profile

:::::
(Fig.

::
2)

is approximately 250 m in the stable simulations, 550 m in the neutral simulations, and 600 m in the unstable simulations.190

After spinning up turbine-free simulations, we run three cases of simulations for each of the stabilities and each of the PBL

schemes for 24 hours. The first case is simply a continuation of the turbine-free simulations and is referred to as the no-wind-

farm (NWF) case. The second case (100TKE) starts after the respective NWF simulation has spun up and shares its boundary

conditions, but it includes a 10-by-10 grid of turbines based on the 12-MW International Energy Agency (IEA, Beiter et al.,

2020) reference offshore wind turbines placed in the center of the inner domain. The turbine hub-height is 138 m, and the rotor195

diameter is 215 m. Cut-in speed is 3 m s−1, rated speed is 10.9 m s−1, and cut-out speed is 30 m s−1. Turbines are placed 2 km

apart, which is close to the 1 nautical mile spacing used in the real simulations. In this case, 100% of explicit TKE is generated

by the Fitch WFP (α= 1). In the third case (0TKE), we explore the sensitivity to explicitly added TKE by duplicating the setup

of the second case, but turning off explicit TKE generation (α= 0).

2.4 Configuration of Real Simulations200

(a) The inner and outer domain of the mid-Atlantic simulations. Lease areas are shown along the coastline of the inner domain.

An expanded view of the lease areas is available at BOEM (2020). (b) The turbine layout in the vicinity of Vineyard Wind 1.

This plant is enclosed by a gray boundary.

Label Short Description NWF No-wind-farm simulation LEASE A simulation that contains turbines in all discussed Lease

Areas VW-ONLY A simulation that contains turbines only at Vineyard Wind 1 A summary of different real simulation cases.205

Each of these cases was run with both MYNN and the 3DPBL.

7



Next, to address the question “Is it worthwhile for future offshore wake sensitivity studies to vary PBL scheme?”, we study

wake sensitivity centered on planned offshore wind plants off the U.S. east coast (Fig. ??). The domain is centered on the

mid-Atlantic, focused on waters off the coast of Maryland, Delaware, New Jersey, New York, Connecticut, Rhode Island,

and Massachusetts. We run three cases of real simulations for both of the PBL schemes (Table ??). The first case simulates210

a turbine-free atmosphere and is referred to as the NWF case. The second case simulates turbines in all of the lease areas

within the domain as defined by the Bureau of Offshore Energy Management (BOEM) on March 3, 2020 (BOEM, 2020)

. As such, 14 lease areas are included, ranging from US Wind Inc. in the south to the cluster of lease areas near Rhode

Island and Massachusetts in the north. This case is called LEASE. The third case is the same as the second case, but it

only simulates the Vineyard Wind 1 wind plant; it is referred to as VW-ONLY. This third case enables us to differentiate215

between two types of wakes, as proposed by the International Electrotechnical Commission (IEC) 61400-15 working group

(Fields and Sherwin, 2017):

1. Internal wakes: These are wake effects that come from within a plant. The wakes at Vineyard Wind 1 in VW-ONLY only

come from one farm. As such, we can isolate self-waking in VW-ONLY.

2. External wakes: These are wake effects that arrive from outside of a particular plant of interest. The wakes at Vineyard220

Wind 1 in LEASE come from the Vineyard Wind farm itself as well as the neighboring farms. We can subtract out the

internal waking from the VW-ONLY effects to quantify the impact of the neighbors.

We focus on Vineyard Wind because, at the time the simulations for this study were initiated, it was likely to be first 100+ MW

project in US offshore water.

We simulate winds for the month of August 2020. We chose this period because of its high electricity demand (Livingston and Lundquist, 2020)225

. We start the simulations on July 30, 2020, to allow for 48 hours of spin-up, and we omit this data from analysis. The domain

used in this study is identical to the one used by the 20-year NREL mid-Atlantic analysis available at NREL (2020). The outer

domain at 6-km grid spacing has 196 grid points in the west-east direction and 122 grid points in the south-north direction and

uses a timestep of 18 seconds. The inner domain of 2-km grid spacing has 466 grid points in the west-east direction and 259

in the south-north direction and uses a timestep of 6 seconds. We save data from the inner domain every 5 minutes. As with230

the idealized simulations, the outer domain for all simulations uses the MYNN PBL scheme, whereas the inner domain either

uses MYNN or the 3DPBL. TKE advection is turned on for all MYNN domains. All domains use Thompson microphysics

(Thompson et al., 2008), RRTMG for radiation (Iacono et al., 2008), Jiménez-modified Monin-Obukhov for the surface layer

scheme (Jiménez et al., 2012), and the unified Noah land-surface model (Tewari et al., 2004). Horizontal turbulent mixing is

carried out with a Smagorinsky-diffusion style approach in MYNN, whereas it is calculated from the horizontal turbulent flux235

divergence in the 3DPBL. ERA5 (Hersbach et al., 2020) provides atmospheric forcing, and OSTIA at 1/10◦ resolution provides

sea surface temperatures (Donlon et al., 2012).

We select turbines and turbine spacing that are consistent with current expected standards of offshore U.S. wind plants. The

mid-Atlantic simulations use the same 12-MW turbine that was used in the idealized simulations. This turbine is similar to

the 62 13-MW turbines that are slated for operation in Vineyard Wind 1 (Vineyard Wind, 2021). All modeled lease areas are240
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fully built out in order to study the maximum possible power production and wake strength. They are spaced 1 nautical mile

apart, which is the same spacing that will be used in Vineyard Wind 1. In total, 177 turbines are modeled in the VW-ONLY

simulations, and 1,418 turbines are modeled in the LEASE simulations. We note that the official layout of the Vineyard Wind

1 site was announced after our simulations were completed. The official layout will only include turbines in the northern half

of Vineyard Wind 1. As such, our study will overestimate the magnitude of internal waking at Vineyard Wind 1 in the years245

immediately after it is built. All wind plant simulations are run with α= 1. While validation of this parameter is limited, we

note that Larsén and Fischereit (2021) saw more accurate results in an offshore wake study with that value than the value of

α= 0.25 recommended by Archer et al. (2020).

3 Results: Idealized Simulations

3.1 Turbine-Free Conditions250
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Figure 1. Hub-height wind speed at the center of each domain during spinup in the idealized turbine-free simulations. The last 24 hours of

each simulation is taken as the performance period for the NWF simulations.

We spin up the idealized turbine-free simulations so that hub-height wind speeds achieve a psedo-steady state as well as

a value of approximately 9.35 m s−1 (Fig. 1). As was observed in Fitch et al. (2012), inertial oscillations occur in neutral

conditions, but they sufficiently dampen out in our simulations after 4 days. Unstable simulations initially show hub-height

wind speed behavior that is similar to the neutral simulations. However, surface warming initiates thermal turbulence during

the first day of spinup, and after 24 hours of spinup, the turbulent hub-height wind speed behavior becomes stationary. Stable255

simulations show an initial hub-height wind speed spike due to the development of a low-level jet (LLJ, Fig. 2), but the wind

speeds linearly decay over time as the nose of the LLJ moves upward. The stable MYNN and 3DPBL simulations achieve the

target wind speed after 6 and 4.25
:::
5.25

:
days respectively.

9



3 6 9 12
Wind Speed [m s 1]

0

200

400

600

800

He
ig

ht
 [m

]

HH:
9.32 m s 1

HH:
9.29 m s 1

(a)

Stable NWF

3 6 9 12
Wind Speed [m s 1]

HH:
9.31 m s 1

HH:
9.32 m s 1

(b)

Neutral NWF

3 6 9 12
Wind Speed [m s 1]

HH:
9.35 m s 1

HH:
9.41 m s 1

(c)

Unstable NWF

0.0 0.3 0.6 0.9
TKE [m2 s 2]

0

200

400

600

800

He
ig

ht
 [m

]

HH:
0.15 m2 s 2

HH:
0.3 m2 s 2

(d)

Stable NWF

0.0 0.3 0.6 0.9
TKE [m2 s 2]

HH:
0.21 m2 s 2

HH:
0.16 m2 s 2

(e)

Neutral NWF

0.0 0.3 0.6 0.9
TKE [m2 s 2]

HH:
0.08 m2 s 2

HH:
0.24 m2 s 2

(f)

Unstable NWF

260 280 300
Temperature [K]

0

200

400

600

800

He
ig

ht
 [m

]

(g)

Stable NWF

MYNN 3DPBL Rotor
disk

285 290
Temperature [K]

(h)

Neutral NWF

288 290 292
Temperature [K]

(i)

Unstable NWF

Figure 2. Averaged wind speed profiles (a–c), TKE profiles (d–f), and temperature profiles (g–i) in different stabilities for the idealized NWF

runs. Profiles have been horizontally averaged over the extent of the plant and time averaged over the 24 hour performance period. Hub-height

values of wind speed and TKE for each PBL scheme are noted.The sharp peaks in TKE at the lowest level of the 3DPBL simulations are tied

to the staggered representation of TKE in the new PBL scheme, and future versions of the 3DPBL will correct this issue.
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Having discussed the initial transient phase of the idealized simulations, it is also necessary to characterize the baseline wind

speeds and TKE values in the turbine-free simulations (NWF) before analyzing turbine impacts (Fig. 2). The differences and260

similarities in the wind and TKE profiles of the NWF simulations will dictate the comparison of the wake effects between the

PBL schemes in turbine-including simulations. In general, MYNN and the 3DPBL will predict differing wake effects because

of two primary factors: different predictions of turbine-free wind speed profiles as well as differing wake recovery behavior,

which is linked to parameterizations of turbulent fluxes (Gupta and Baidya Roy, 2021). Due to the experimental configuration

of our idealized simulations, the plant inflow wind speeds are similar, and thus we expect the largest wake differences to arise265

from differing turbulent recovery behavior.

During the performance phase, all simulations have similar average hub-height wind speeds: between 9.3 m s−1 and 9.4 m

s−1. The wind speed profiles for both PBL schemes match expected canonical behavior for each stability (Stull, 1988). Across

the rotor disk, the neutral and unstable wind speed profiles have similar values for both MYNN and the 3DPBL. However in

the stable simulations, wind speed profiles slightly differ between the two PBL schemes. The nose of the MYNN low-level jet270

achieves a wind speed of 11.6 m s−1 and sits at the top of the rotor disk. In contrast, the nose of the 3DPBL LLJ achieves a

wind speed of 12.2
::::
12.3 m s−1 and sits about 40 m below the top of the rotor disk. Thus, we will later see that the height of

maximum wind speed deficits will differ between the two simulations (Fig. 4).

While MYNN and the 3DPBL produce near-identical TKE profiles in neutral conditions, their TKE profiles differ in stable

and unstable conditions. In stable conditions, the MYNN TKE profile linearly decays when moving from the surface to the275

capping inversion, whereas the 3DPBL profile shows an irregular shape that somewhat resembles the wind speed profile of

an LLJ. In unstable conditions, the TKE profiles are relatively constant over the height of the rotor disk, but the 3DPBL TKE

values are 2–3 times larger than the MYNN values. Contrary to what might be expected, we note that hub-height values of

TKE are weaker in the unstable MYNN simulations than in the neutral MYNN simulations.

3.2 Hub-Height Wind Speed Deficits280

Internal wakes
:::::
Wakes

::::::
within

:::
the

::::::
extent

::
of

:::
the

:::::
plant

:
are sensitive to the choice of PBL scheme, presence of explicit TKE

generation, and stability (Fig. 3). We quantify internal wake strength
::::
wind

:::::
speed

::::::
deficits

:::::
inside

:::
the

::::
plant

:
by finding the daylong

time-averaged hub-height wind speeds within the plant in the turbine-including simulations (“WFP,” which is a generic stand-

in for “100TKE” or “0TKE”) relative to hub-height winds in the turbine-free simulations (“NWF”). We also calculate the

percentage of wind speed loss with reference to the NWF winds inside the plant. Before discussing the impact of PBL scheme,285

we reiterate that previous work at offshore wind farms demonstrates that stability impacts internal wakes
::::::
waking

:
(Hansen

et al., 2012), and our idealized wakes follow expected trends: stable wakes are strongest (1.19
::::
1.17–1.58

::
.54

:
m s−1, 12.5

::::
12.4–

16.6
:
.3%), followed by neutral wakes (0.94

::::
0.93–1.27 m s−1, 10.0–13.5%), followed by unstable wakes (0.87

:::
0.89–1.19 m s−1,

9.4–12.7%).

Average internal wakes
::::
wind

::::::
speed

::::::
deficits

:::::
inside

:::
the

:::::
plant

:
can vary quite substantially between MYNN and the 3DPBL.290

Across all simulations, MYNN predicts internal wakes that differ
::::::
waking

:::
that

::::::
differs from the 3DPBL by between -0.24

::::
-0.20

11



25
0

25
50
75

y 
[k

m
]

Avg. Internal Wake
-1.34 m s 1, -14.1%

(a)

Stable, 100TKE MYNN
Avg. Internal Wake

-0.95 m s 1, -10.1%

(b)

Neutral, 100TKE MYNN
Avg. Internal Wake

-1.11 m s 1, -11.8%

(c)

Unstable, 100TKE MYNN
Farm
boundary
e-folding
contour
0.5 m s 1

deficit
1 m s 1

deficit

25
0

25
50
75

y 
[k

m
]

Avg. Internal Wake
-1.31 m s 1, -13.9%

(d)

Stable, 0TKE MYNN
Avg. Internal Wake

-1.27 m s 1, -13.5%

(e)

Neutral, 0TKE MYNN
Avg. Internal Wake

-1.19 m s 1, -12.7%

(f)

Unstable, 0TKE MYNN

25
0

25
50
75

y 
[k

m
]

Avg. Internal Wake
-1.54 m s 1, -16.3%

(g)

Stable, 100TKE 3DPBL
Avg. Internal Wake

-0.93 m s 1, -10.0%

(h)

Neutral, 100TKE 3DPBL
Avg. Internal Wake
-0.89 m s 1, -9.4%

(i)

Unstable, 100TKE 3DPBL

25 0 25 50 75
x [km]

25
0

25
50
75

y 
[k

m
]

Avg. Internal Wake
-1.17 m s 1, -12.4%

(j)

Stable, 0TKE 3DPBL

25 0 25 50 75
x [km]

Avg. Internal Wake
-1.16 m s 1, -12.5%

(k)

Neutral, 0TKE 3DPBL

25 0 25 50 75
x [km]

Avg. Internal Wake
-1.01 m s 1, -10.7%

(l)

Unstable, 0TKE 3DPBL

1.50

1.25

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

W
SP

D W
FP

 - 
W

SP
D N

W
F [

m
 s

1 ]

Figure 3. Hub-height wind speed deficits in varying stabilities (left-right) and PBL configurations (up-down). Average hub-height wind

speed deficits inside the plant are noted—both in absolute magnitude as well as a percentage relative to the NWF winds. The 1 m s−1

deficit contour is highlighted only for the stable simulations, as it obscures internal wakes for other stabilities. Wakes are rotated from the

U -geostrophic wind due to the combination of friction and the Coriolis force.
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m s−1 / -2.5
:::
-2.2

:
percentage points [pp] (in the stable 100TKE simulations) to +0.24

::::
0.22 m s−1 / +2.4 pp (in the unstable

100TKE simulations). This large spread induces significantly different predictions of power production (Sec. 3.6).

While these simulations show that internal wakes
:::::
wakes

::::::
within

:::
the

:::::
plant can substantially differ, they do not reveal any

obvious patterns of how they will differ across conditions. At times, the MYNN simulations produce stronger internal wakes295

:::::
wakes

::::::::
internally

:
than the 3DPBL, whereas MYNN wakes are weaker at other times. Sometimes, turning explicit TKE addition

off decreases the internal wake magnitude (e.g., stable conditions), whereas other times it increases internal wake strength (e.g.,

neutral and unstable conditions). Sometimes MYNN internal wake strength changes more substantially when explicit TKE

addition is turned off (e.g., neutral and unstable conditions), whereas 3DPBL internal wake strength changes more substantially

at other times (e.g. stable conditions). Thus, this variability within the idealized runs suggests that real-world case studies should300

be run that are tailored to a specific region and turbine configuration.

In addition to characterizing internal wakes
::::
wakes

::::::
within

:::
the

::::::
extent

::
of

:::
the

::::
plant, we analyze external wakes

:::::
wakes

:::::::
outside

::
the

:::::
plant. There is no singular standard approach that is used to characterize external wakes

:::::
wakes

:::::::
external

::
to

:
a
:::::
plant (Fischereit

et al., 2021), so we adopt three approaches: by identifying the contours of the 1 m s−1 deficit, by identifying the contours of

the 0.5 m s−1 deficit, and by identifying the e-folding contour. We calculate the e-folding contour as 1/e times the average305

internal wake strength, or about 36% (Fitch et al., 2012), and as such, this uses a relative metric whereas the other contours use

an absolute metric. We employ the 1 m s−1 contour to highlight regions of strong external wakes
:::::
waking

:
and the 0.5 m s−1

contour to emphasize moderate external wakes
::::::
waking. We only include the 1 m s−1 deficit contour in the stable simulations,

as this contour obscures internal wakes in the neutral and unstable simulations. We note that choosing one definition versus the

other can lead to definitions of external wake lengths that differ by tens of kilometers.310

External wake behavior
:::::
Wake

:::::::
behavior

:::::::
outside

::
the

:::::
plant varies just as much as internal wake behavior

:
it
:::
did

:::::
inside

:::
the

:::::
plant

(Fig. 3). The most severe external waking, demarcated by the 1 m s−1 deficit contour, varies with stability as expected from

previous work, with the strongest wakes in stable conditions. The 1 m s−1 contours extend the furthest in stable conditions,

whereas they travel at most about ten km downwind in neutral in stable
:::
and

:::::::
unstable

:
conditions. We note that MYNN predicts

external wakes that are tens of km longer than the 3DPBL does in stable conditions. The addition of explicit TKE consistently315

increases the external wake length, regardless of what metric is used to define the external
:::::::
boundary

:::
of

:::
the wake. This increase

is seen most clearly in the neutral MYNN simulations (Fig. 3b,e), where external wake length grows by dozens of kilometers.

All stable and all unstable simulations show a growth in external wake lengths, roughly on the scale of about 10 km. We also

note that neither MYNN nor the 3DPBL show consistently longer external wake lengths across all stabilities. Stability impacts

on moderate intensity wakes (either the 0.5 m s−1 contour or the e-folding contour) are more varied. For example, the e-folding320

contour is smaller in the stable 3DPBL simulations than in the neutral 3DPBL or unstable 3DPBL simulations.

We briefly digress from the discussion on wakes to discuss two effects that are secondary to the primary analysis of this

study: upwind blockage and flow acceleration. Upwind blockage (Schneemann et al., 2021; Sanchez Gomez et al., 2021)

occurs in some of the idealized simulations. Blockage is strongest in the stable conditions, where 0.5 m s−1 deficits extend

5 km–10 km upwind of the plant. Under neutral conditions, blockage of up to 0.25 m s−1 extends 3 km–5 km upwind of325

the plant. Blockage does not appear in the unstable simulations. In general, blockage here is a function of stability but not
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PBL scheme or TKE addition. Tangential flow accelerations, similar to the speed-ups seen by Nygaard and Hansen (2016),

can be observed adjacent to the wakes. The hub-height wind acceleration neighboring the wakes is also a function of stability

(strongest in stable conditions, weakest in unstable conditions), but it also varies with TKE addition (stronger acceleration

when TKE addition in turned on).330

3.3 Vertical Structure of Wind Speed Deficits

While hub-height winds are particularly important to quantify, it is also helpful to characterize wakes over the vertical extent

of the rotor disk. We calculate the wind speed deficit averaged across the y-extent (predominantly crosswind) of the plant for

each simulation (Fig. 4). Just as the top-down view (Fig. 3) of wind speed deficits suggested, the stable simulations produce the

strongest wind speed deficit profiles. Blockage is also visible upwind of the plant in stable conditions. In contrast, the neutral335

and unstable simulations produce wind speed deficits that are relatively similar to one another. The stronger stable wind speed

deficits occur, in part, because of the shallow capping inversion that sits just above the top of the rotor disk. The wakes in

the neutral and unstable simulations are able to mix with stronger ambient winds above the plant, thereby eroding the wake,

whereas this behavior is not possible in the stable simulations.

The side-view of wind speed deficits show that vertical mixing of wind speed deficits increases when explicit TKE generation340

is turned on. This behavior consistently occurs across all simulations. The wind speed deficits above the wind plants are stronger

in the neutral 100TKE simulations and in the unstable 100TKE simulations than in their counterparts with 0TKE. As a result,

the neutral and unstable 0TKE simulations have stronger maximum wind speed deficits within the rotor disk than their 100TKE

counterparts. For example, the neutral 100TKE MYNN simulation shows a maximum wind speed deficit of 1.125 m s−1 within

the rotor disk whereas the neutral 0TKE MYNN has a maximum deficit of 1.625 m s−1. While the shallow capping inversion345

in the stable simulations obscures the effects of explicit TKE addition above the plant, the TKE effects can be seen below the

plant. When explicit TKE addition is turned on in the stable simulations, flow acceleration occurs below the rotor disk, but this

acceleration does not occur when TKE addition is turned off. We note that acceleration under the rotor disk was observed in

Bodini et al. (2021b) but not in Archer et al. (2019). Correlating with the presence of flow acceleration below the rotor disk,

the stable 100TKE simulations show stronger wind speed deficits within the rotor disk than the stable 0TKE simulations.350

Finally, the side-view of wind speed deficits also shows that the choice of PBL scheme can be important. The most pro-

nounced differences between PBL schemes occur in stable conditions. For example, the wind speed deficit in the 0TKE 3DPBL

simulation stays stronger than 2 m s−1 for 50 km downwind of the plant, whereas the wake recovers more quickly in the 0TKE

MYNN simulation.

3.4 Difference in Momentum Tendencies355

In large part, the two PBL schemes produce different wind speed deficits in their wakes because the schemes parameterize

turbulent fluxes differently, as we visualize here. The u and v components of wind speed are modified by mechanisms such as

advection of the mean wind, the Coriolis force, and the divergence of the turbulent momentum fluxes (Stull, 1988, Eqn. 3.4.3c).

We expect all these terms, aside from the divergence of turbulent momentum fluxes, to be similar for both MYNN and the
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Figure 4. Side view of horizontally averaged wind speed deficits in varying stability conditions (left-right) and PBL configurations (up-

down). Horizontal averaging was taken between the north-most and south-most turbines. The height of the ABL is conveyed with θ contours.
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Figure 5. (a) Side view of the difference in wind speed deficits in the stable 100TKE simulations. For example, Figure 5a was calculated as

panel
:::
the

:::::::
difference

:::::::
between

::
the

:::::
results

::
in
:::::
panels

:
Figs. 4a–4g. (b) The u-tendency deficits in the 100TKE simulations are calculated in

::::
using

a similar manner
:::::::
procedure

::::::::
involving

::::::::
tendencies. Potential temperature θ values that have been averaged over the y-extent of the plant are

taken from the MYNN simulations.

3DPBL, as the NWF wind speeds are similar but two PBL schemes parameterize momentum fluxes uniquely. We calculate360

the u-tendency due to the turbulent flux divergence as the vertical derivative of u′w′, neglecting the horizontal components

of flux divergence because they are significantly smaller in the 3DPBL than u′w′, and they are not computed in the MYNN

parameterization. We also omit visualizations of v-tendency because they are substantially smaller than the u-tendency in

these idealized simulations forced with a u geostrophic wind. We investigate the relationship of wind speeds and turbulent

fluxes between the two PBL schemes in the stable 100TKE simulations by comparing two fields in the wakes—the wind speed365

deficits and the turbulent flux divergence u-tendency “deficits” (Fig. 5). The u-tendency deficits are defined as tendencies in

the turbine-free simulations subtracted from tendencies in the turbine-including simulations.

The differences in tendency deficits between the two PBL schemes drive the differences in the wind speed wakes. As winds

advect primarily along the x-direction, wind speed magnitudes are modified by the tendency. For example, the u-tendency
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is more negative for MYNN above the rotor disk. Correspondingly, the MYNN wind speed deficits in this region as well as370

downwind of this region are more negative. The same pattern of behavior occurs in the upper half of the rotor disk, where the

u-tendency for the 3DPBL is more negative and therefore the 3DPBL wind speed deficits are more negative. Thus, the modeled

wind speed deficits in the wake of a plant depend on how the PBL scheme parameterizes turbulent momentum fluxes.

3.5 Total TKE

Just as wind speed deficits are sensitive to the choice of PBL scheme, TKE associated with the wind plant also varies as a375

function of PBL scheme, stability, and explicit TKE generation (Fig. 6). The WFP induces changes in TKE, and the changes

are primarily constrained within the horizontal extent of the plant and tend to not advect far downwind. In contrast, the real

onshore WRF WFP simulations of Mangara et al. (2019), saw substantial TKE changes 20 km–30 km downwind. The 100TKE

simulations produce substantially more TKE than the 0TKE simulations, as would be expected. The 100TKE 3DPBL simula-

tions also consistently predict stronger levels of additional TKE than their MYNN counterparts. For example, the maximum380

added TKE in the 100TKE stable simulations was 1.250
::::
1.375

:
m2 s−2 for the 3DPBL and 0.750 m2 s−2 for MYNN.

The behavior of the 0TKE simulations was more varied. In neutral conditions, both the 0TKE MYNN and 0TKE 3DPBL

simulations create a moderate amount of shear-generated TKE at the top of the rotor disk. However in unstable conditions, the

0TKE 3DPBL simulation shows shear-generated TKE whereas the 0TKE MYNN simulation does not. In stable conditions, the

0TKE simulations lack shear-generated TKE at the top of the rotor disk due to the low capping inversion. However, the stable385

0TKE 3DPBL turbine-including simulation actually has less TKE than the turbine-free simulation. The LLJ in the turbine-free

simulation exhibits strong wind speed shear, and the presence of the wind farm reduces that shear, leading to this behavior.

3.6 Power

Power production and power losses due to internal waking change with PBL scheme (Fig. 7). We calculate the capacity factor

for each turbine, the average capacity factor of the plant, and the average power deficit due to internal wakes with reference390

to the NWF hub-height wind speed. Capacity factor is defined as the ratio of actual power output relative to the maximum

possible power output. Across all simulations, the average capacity factor for the plant ranged between 39.5% and 51.2
::::
53.8%.

Capacity factor losses due to internal wakes ranged between 21.0
:::
16.7

:
pp and 31.6 pp.

Power production in the idealized simulation varies with the simulation parameters. As discussed earlier (Sec. 3.2), when

explicit TKE addition is turned off, hub-height wind speed deficits can either increase or decrease. Accordingly, turning off395

explicit TKE generation can either grow or shrink the capacity factor. Turning off explicit TKE generation changes internal

wake losses by between -7.4
::
to

:::::::
capacity

::::::
factor

::
by

::::::::
between

:::
-6.9

:
pp (in the stable 3DPBL) and 5.2 pp (in neutral MYNN).

Changing from one PBL scheme to another results in wake loss shifts of a similar magnitude—switching from MYNN to the

3DPBL changes internal wake losses by between -0.8
:::
-3.4

:
pp (in stable 100TKE simulations) and 8.9

:::
-9.6 pp (in unstable

0TKE
:::::::
100TKE

:
simulations). Thus, these simulations emphasize the critical role of PBL scheme on power production.400

In the end, these power calculations emphasize that the behavior of modeled power losses are complicated, even in a simple

idealized environment. We stress that these idealized simulations have been carried out for one set of hub-height winds in one
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Figure 6. Side view of horizontally averaged
::::
Same

::
as

:::
Fig.

::
4,
:::
but

::
for

:
TKE in varying stabilities (left-right) and PBL configurations (up-down).

The height of the ABL is visualized in the stable and neutral simulations with θ contours.
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Figure 7. Heat maps of capacity factor for each turbine, based on the turbine’s position in the plant. The average capacity factor and internal

wake strength are noted for each simulation.
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part of the power curve under pseudo-steady conditions. To better predict the cumulative non-linear interactions of the effects

of these parameters on losses at a real-world location, we simulate a month-long case study in the U.S. mid-Atlantic coast.
:
it

:
is
::::::
critical

::
to
::::
run

:::
real

::::::::::
simulations.

:
405

4 Results: Mid-Atlantic Case Study

In this section, we compare wind speed deficits in wakes produced with MYNN and the 3DPBL in August 2020 in the

mid-Atlantic. As described in Sec. ??, we run three categories of simulations—NWF, Vineyard Wind 1 only, and all the

lease areas. This set of simulationsallows us to differentiate between internal and external waking at the Vineyard Wind 1 site.

3.1 Turbine-Free Winds410

Before analyzing wake effects in the mid-Atlantic, we first examine winds in turbine-free simulations. Specifically, we calculate

average profiles at the middle of Vineyard Wind 1. We classify each 5-minute interval WRF output as stable, neutral, or

unstable. While a number of metrics can be used to classify atmospheric stability (e.g., bulk Richardson number, Obukhov

length), we use WRF-predicted surface heat fluxes at the Vineyard Wind 1 centroid to facilitate comparison to the idealized

simulations. We define stable conditions as having a heat flux less than -5 W m−2, unstable conditions as having a heat flux415

greater than 5 W m−2, and neutral conditions as in between. We designate these thresholds so they overlap with the stability

metrics used in the idealized simulations. We emphasize that offshore heat fluxes in this domain are significantly weaker than

typical heat fluxes observed on land. As such, while we refer to atmospheric states as “stable” and “unstable” in this offshore

environment, these states can resemble the onshore atmosphere under near-neutral stratification. MYNN and the 3DPBL spend

a similar percentage of the month under stable conditions (35% and 33%, respectively), whereas MYNN shows more frequent420

neutral conditions than the 3DPBL (50% versus 40%) and, conversely, MYNN shows less frequent unstable conditions than

the 3DPBL (15% versus 27%).

Averaged wind speed profiles at the Vineyard Wind 1 centroid for August 2020 simulations in (a) stable (surface heat flux <

- 5 W m−2), (b) neutral (-5 W m−2 < surface heat flux < 5 W m−2), and (c) unstable (surface heat flux > 5 W m−2) conditions.

Average hub-height wind speeds are noted.425

The average NWF wind speed profiles at Vineyard Wind 1 differ from the idealized wind speed profiles (Fig. ??). Whereas

the idealized simulations force the hub-height wind speeds to match, the mid-Atlantic simulations share large-scale forcing

but manifest different hub-height wind speeds due to the PBL schemes. Stable profiles at Vineyard Wind 1 have the fastest

wind speeds, and MYNN has a faster average hub-height wind speed than the 3DPBL (12.19 m s−1 versus 11.21 m s−1,

respectively). The unstable simulations have the second-fastest wind speeds, where MYNN hub-height wind speeds are 9.78430

m s−1 and 3DPBL hub-height wind speeds are 7.69 m s−1. Thus, simply based off the NWF profiles, we expect MYNN to

predict larger power output in stable and unstable conditions than the 3DPBL. The two PBL schemes produce similar weak

wind speed profiles in neutral conditions.
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Wind roses at the Vineyard Wind 1 centroid showing the distribution of wind speed (binned by power curve region) with

wind direction.435

As wind directions vary in these simulations, we also characterize the distribution of hub-height NWF wind directions

and wind speeds using a wind rose at the Vineyard Wind centroid (Fig. ??). Under stable and neutral conditions, winds are

predominantly out of the southwest, whereas under unstable conditions, they are out of the northeast and presumably influenced

by land, the island of Martha’s Vineyard. Thus, the wakes under unstable conditions extend to the southwest, opposite to those

under neutral and stable conditions, which extend to the northeast. In all three stability conditions, the distribution of wind440

directions is fairly narrow, which facilitates the appearance of wakes in time-averaged visualizations. MYNN shows a greater

prevalence of winds at rated power (Region III) under stable and unstable conditions. In neutral conditions, both MYNN and

3DPBL winds are predominantly in Region II; therefore, we expect a smaller wind resource (and larger wake effects on power

production) in this stability condition.

3.1 Average Hub-Height Wind Speed Deficits445

Averaged hub-height wind speed deficits in varying stabilities (left-right) and PBL schemes (up-down) at Vineyard Wind 1.

Rows 1 and 3 (a, b, c and g, h, i, respectively) visualize wind speed deficits relative to their respective NWF counterparts at

Vineyard Wind 1 only, whereas rows 2 (d, e, f) and 4 (j, k, l) show deficits resulting from all neighboring lease areas. Average

hub-height wind speed deficits inside Vineyard Wind 1 are noted. The wind speed deficit percentage is calculated with respect

to the NWF Vineyard Wind 1 average wind speed. The line segment used to quantify external wake length is shown in panels450

(a) and (g).

We calculate the average hub-height wind speed deficits by stability and turbine construction scenario in the mid-Atlantic

(Fig. ??). We time average the hub-height wind speeds in the NWF, VW-ONLY, and LEASE simulations, categorizing the

stability of each 5-min period based on heat fluxes at the centroid of the NWF Vineyard Wind simulations and using the same

timestamps for all three wind turbine cases for each PBL scheme. The distribution of wind direction is narrow in each stability455

and, as such, we do not additionally filter by wind direction in the wake analysis as might be done at a site with more variable

wind directions.

The mid-Atlantic simulations show that NWF wind speed plays a clear role in dictating internal wake strength (Fig.

??a–c,g–i). MYNN has faster NWF winds in stable and unstable conditions in the 3DPBL. Correspondingly, MYNN predicts

stronger internal wake strengths than the 3DPBL in these stabilities. Likewise, the two PBL schemes predict similar NWF wind460

speed profiles in neutral conditions, and as such, they predict similar internal wake losses. Thus, while the idealized simulations

showed that MYNN and the 3DPBL can generate different wakes when presented with the same hub-height wind speeds, the

realistic simulations demonstrate that, additionally, wakes will vary across PBL scheme simply because they predict different

hub-height wind speeds. When comparing the two sources of discrepancies (different momentum recovery parameterizations

versus different hub-height wind speeds), it appears that the differing hub-height wind speeds more strongly impact internal465

wakes in the mid-Atlantic.
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Stability also clearly impacts internal wake strength. For both PBL schemes, average NWF wind speed profiles are substantially

faster in unstable conditions than in neutral conditions. However, the unstable internal wakes are only 0.1–0.2 m s−1 stronger

in than under neutral conditions. Thus, wakes erode relatively more quickly in the more turbulent unstable conditions than in

neutral conditions, as demonstrated in the idealized simulations (Fig. 3).470

External wake propagation is particularly sensitive to stability and only weakly sensitive to the PBL scheme choice (Fig.

??d–f,j–l). For simplicity’s sake, we characterize external wake propagation in the mid-Atlantic with the 0.5 m s−1 contour. As

expected, external wakes propagate furthest under stable conditions, and the two PBL schemes predict different lengths. In the

stable VW-ONLY cases, they propagate 51 km east of the easternmost point in Vineyard Wind with MYNN and 38 km east

with the 3DPBL (Fig. ??a, g). In the LEASE cases, these external wakes grow in size, although a characteristic length is more475

difficult to quantify due to their irregular shape.

Additionally, we quantify the impact of external wakes on hub-height wind speed deficits by focusing on wind speed deficits

inside Vineyard Wind 1. We calculate the monthly averaged external wake effect as the average internal wake magnitude in the

VW-ONLY simulations subtracted from the perceived internal wake at Vineyard Wind in the LEASE simulations (e.g., Fig.

??a subtracted from Fig. ??d). Unsurprisingly, the largest external wake effects occur during stable conditions. MYNN has a480

stronger external wake effect (0.78 m s−1 or 6.4 pp) than the 3DPBL (0.56 m s−1 or 5 pp) in these conditions.

3.1 Impact on Power Production

The spatial distribution of average capacity factors at Vineyard Wind 1, binned by stability. Four colormaps are used due to

the spread of values by stability and PBL scheme—one for stable simulations, one for neutral simulations, one for unstable

MYNN simulations, and one for unstable 3DPBL simulations.485

Power production at Vineyard Wind 1 in the VW-ONLY simulations varies for each of the stability conditions (Fig. ??a–c,

g–i) and PBL schemes. We calculate monthly averaged capacity factors for each of the grid cells within the plant. While wakes

are strongest under stable conditions, power production is also largest under stable conditions due to the faster wind speeds.

Even though MYNN predicted stronger internal waking, MYNN simulations predict a higher capacity factor than the 3DPBL

(64.3% versus 59.7%). Thus, the power gain from the substantially stronger NWF MYNN wind speeds overcomes the power490

decrease from the marginally stronger wakes. Power production is smallest under neutral conditions where winds are weakest,

and the two PBL schemes predict similar capacity factors, owing to the similar NWF profiles. The largest discrepancy in

capacity factor occurs under unstable conditions. MYNN’s average unstable capacity factor (56.1%) is much larger than the

3DPBL’s (38.2%), correlating with MYNN’s faster NWF winds. This large discrepancy stems from the differences in wind

speed distributions (Fig. ??c, f).495

While the two PBL schemes can predict substantially different capacity factors, they predict similar power losses associated

with internal wakes. We calculate the expected unwaked power production in the idealized simulations by convolving the

time-varying hub-height wind speeds with the power curve, and we calculate internal wake power loss with reference to this

value. During stable conditions, MYNN predicts only slightly stronger losses than the 3DPBL (26.2 pp loss versus 24.9 pp

loss). During unstable conditions, we see the same general behavior—average MYNN losses are 12.4 pp and average 3DPBL500
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losses are 10.3 pp. Even though winds were much weaker overall under neutral conditions, we also see an approximate 1-pp

difference in power loss.

As was the case for internal internal losses, MYNN and the 3DPBL predict similar external wake losses (Fig. ??d–f, j–l).

Under neutral conditions, external wakes further decrease capacity factors by 2.0 pp regardless of PBL scheme. External wakes

in unstable conditions reduce MYNN’s average capacity factor by 3.3 pp and the 3DPBL’s average capacity factor by 3.6 pp.505

The two PBL schemes disagree most substantially in stable conditions, for which MYNN shows an 8.1 pp capacity factor

decrease whereas the 3DPBL only shows a 5.9 pp decrease. In summary, the different PBL schemes disagree on external wake

power losses by 0.3 pp–2.2 pp across the different stabilities.

Finally, we demonstrate the importance of PBL scheme choice by taking a macro-view of the mid-Atlantic simulations and

calculating average capacity factors across the entire month, irrespective of stability distributions. At Vineyard Wind 1, in510

the VW-ONLY simulations, MYNN’s month-long average capacity factor is 38.5%; the 3DPBL’s average capacity factor is

36.3%. When external waking is considered, MYNN shows a capacity factor of 36.0% and the 3DPBL shows a capacity factor

of 33.2% at Vineyard Wind 1. When all lease areas in the LEASE simulations are considered, the capacity factor is 36.0% for

MYNN and 33.2% for the 3DPBL. In summary, across all scenarios, the 3DPBL predicts capacity factors that are 1.6 pp–2.8

pp less than in MYNN—or about 4.7%–7.8% less total power generated.515

3.1 Time-Varying Wake Impacts and Power Production

(a) A week of hub-height NWF wind speeds at the Vineyard Wind 1 centroid. (b) Wind directions at the same location. (c)

Spatially averaged capacity factor at Vineyard Wind 1 in the VW-ONLY simulation. (d) Internal waking, as characterized

by differences in spatially averaged capacity factors between the NWF and VW-ONLY simulations. (e) External waking, as

characterized by differences in spatially averaged capacity factors between the VW-ONLY and LEASE simulations. Periods520

with significant external waking are highlighted in red in panels (b) and (e).

The key role that NWF wind speed plays on power production emerges clearly in time series analysis of NWF hub-height

winds, capacity factor, and wake effects for one week of the simulation (Fig. ??). In general, when NWF hub-height winds at the

Vineyard Wind 1 centroid are stronger for a given PBL scheme (Fig. ??a), that PBL scheme also produces more instantaneous

power (Fig.??c). This power production difference is particularly true when NWF wind speeds are in the vicinity of the rated525

wind speed (between Region II and Region III), as occurs on August 23. This pattern also persists when winds are weaker (as

they are between August 24–25), although it is less prominent because the wakes are also weaker. Differences in predicted

wind speed are less important when NWF winds exceed the rated speed (as on August 26), as internal wakes in the VW-ONLY

simulation do not reduce power output. Even then, external wakes can further weaken winds inside Vineyard Wind and reduce

power output, as they momentarily do on August 26. Regarding external wakes, even minor differences in NWF wind direction530

between PBL schemes (< 5◦, Fig. ??b) can produce instantaneous external wake effects that differ by a dozen pp or greater

(Fig. ??e), as occurs on August 23.

While faster wind speeds tend to lead to a larger capacity factor for a given PBL, faster wind speeds do not necessarily

cause stronger internal or external waking. During the first red-highlighted period of Fig. ??, MYNN has faster NWF wind
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speeds but weaker internal waking. This disparity could be explained by subtle differences in NWF wind direction, significant535

spatial variability of wind directions within Vineyard Wind 1 (rendering the single-point measurement of wind direction less

informative), or differences in mixing for each PBL scheme, among other factors.

In the end, these timeseries figures show that the two PBL schemes can predict capacity factors that differ by dozen of pp

in a given moment. Thus, when seeking to characterize power production uncertainty, it may be even more beneficial to vary

PBL schemes for short-term wind forecasts than for long-term wind resource assessments.540

4 Conclusions

In this analysis, we studied the sensitivity of NWP-modeled mesoscale wakes to two PBL schemes: the widely-used MYNN

and the recently introduced NCAR 3DPBL. While prior studies have showed that NWP-modeled wind resource in turbine-free

simulations can significantly vary with PBL scheme, the same sensitivity has not yet been studied in simulations with explicitly

resolved turbines. We integrated the NCAR 3DPBL with the Fitch wind farm parameterization and then examined modeled545

wake sensitivity in two contexts. First, we
:::::::
through

:
a
:::::
series

::
of

::::::::::
simulations.

:::
We simulated pseudo-steady idealized stable, neutral,

and unstable environments with hub-height wind speeds of approximately 9.35 m s−1. In this context, we also examined wake

sensitivity to the amount of explicitly added TKE from the Fitch wind farm parameterization. Second, we ran a month-long

case study in the mid-Atlantic United States, centered on the Vineyard Wind 1 wind plant.

We summarize key findings from this analysis.550

– The choice of PBL scheme had a significant impact on power production in the mid-Atlantic. Depending on turbine

layout, the 3DPBL predicts that 4.7%–7.8% less power would be generated in the mid-Atlantic relative to MYNN across

August 2020. MYNN predicts stronger power output, in large part, because it predicts stronger inflow winds.

– While the two PBL schemes produced substantially different capacity factors in the mid-Atlantic, they predicted relatively

similar power losses due to internal wakes, differing by only 1–2 percentage points. Average internal losses at Vineyard555

Wind 1 were about 25.5 ± 0.6 percentage points under stable conditions, 10 ± 0.5 percentage points under neutral

conditions, and 11± 1 percentage point under unstable conditions. Average losses due to external wakes showed slightly

more variability between PBL schemes but, in the end, they further reduced average capacity factors at Vineyard Wind 1

by about 6–8 percentage points under stable conditions, 2 percentage points under neutral conditions, and 3–4 percentage

points under unstable conditions.560

– Correspondingly, wind speed deficits in the mid-Atlantic were similar but distinct across PBL schemes. When characterizing

wind speed losses as a percentage of turbine-free winds, the two schemes agreed well. Internal wake losses differed by at

most 0.6 percentage points, whereas external wake losses differed by 2.0 percentage points at most. When characterizing

wind speed losses in using absolute wind speeds, these differences were larger.
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– In the idealized simulations, both capacity factor and wake losses were substantially impacted by PBL scheme, the pres-565

ence or omission of explicit TKE addition, and the stability. Average capacity factors ranged between 39.5–51.2
::::
–53.8%

and wakes reduced the average capacity factors by 21.0
::::
16.7–31.6 percentage points.

– Similarly, wind speed deficits were significantly impacted by these factors in the idealized simulations. MYNN pre-

dicted internal wakes
::::::
average

:::::
wind

:::::
speed

::::::
deficits

::::::
within

:::
the

:::::
extent

::
of

:::
the

:::::
plant that differed from those in the 3DPBL by

between -0.24
::::
-0.20 m s−1 to 0.24

:::
0.22

:
m s−1 (or -2.5

:::
-2.2

:
to 2.4 percentage points

::
for

:::::::
relative

::::
wake

:::::::::
magnitude). Addi-570

tionally, MYNN predicted strong external wakes that traveled dozens of km longer than the 3DPBL in stable conditions.

–
:::::
While

:::
the

:::::::::
magnitude

:::
of

:::::
wind

:::::
speed

::::::
deficits

::::::::
typically

::::::
varied

::::
with

:::::
PBL

:::::::
scheme,

:::
an

:::::::
obvious

::::::
pattern

:::
did

::::
not

:::::::
emerge.

::
At

:::::
times,

:::::::
MYNN

::::::::
predicted

::::::::
stronger

::::::
deficits,

::::::::
whereas

:::::::::
sometimes

:::
the

:::::::
3DPBL

:::
had

:::::::
stronger

:::::::
deficits.

:::
In

:::::::
contrast,

::::::
wakes

::::::::::
consistently

::::
grew

::::::
longer

::::
when

:::::::
explicit

::::
TKE

:::::::
addition

::::
was

::::::
turned

:::
on.

Through our study, we set out
:::::
begin to address the question “How sensitive are modeled mesoscale wakes to the choice575

of PBL parameterization?” We find that, indeed, modeled mesoscale wakes can be significantly sensitive to the choice of

PBL scheme . Due to this sensitivity
::
in

:::::::
idealized

:::::::::::
simulations.

::::
This

:::::::
suggests

::::
that

:::
real

:::::::::
mesoscale

::::::::::
simulations

::
of

:::::::
planned

:::::
wind

:::::
plants

:::::
could

::::
also

::
be

::::::::::
significantly

::::::::
sensitive

::
to

:::
the

::::::
choice

::
of

::::
PBL

:::::::
scheme.

:::::::
Indeed,

::::::::::
preliminary

:::::::
offshore

::::::::::
simulations

::
in

:::
the

::::
U.S.

::::::::::
mid-Atlantic

:::::
show

::::
that

:::::::
MYNN

:::
and

:::
the

:::::::
3DPBL

::::
can

::::::
predict

::::::::::
month-long

:::::
power

::::::::::
production

:::
that

::::::
differs

:::
by

::
as

::::::
much

::
as

:::::
7.8%

::::::::::::::
(Rybchuk, 2022).

::::
Due

::
to

:::
the

::::::
model

::::::::
sensitivity

:::::::::
discussed

:::::::::
throughout

:::
this

::::::::::
manuscript, we recommend that future wind energy580

planning studies that examine mesoscale model sensitivity consider varying the PBL scheme, along with other model inputs

that have been established in literature, such as grid resolution, magnitude of explicit TKE addition, and the choice of wind

farm parameterization (Fischereit et al., 2021). By better characterizing the uncertainty associated with NWP-modeled wind

resource, wind plant developers will be able to take on less risk when developing future wind plants.
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