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Abstract. Wind plant wake impacts can be estimated with a number of simulation methodologies, each with its own fidelity

and sensitivity to model inputs. In turbine-free mesoscale simulations, hub-height wind speeds often significantly vary with

the choice of a planetary boundary layer (PBL) scheme. However, the sensitivity of wind plant wakes to a PBL scheme has

not been explored because, as of the Weather Research and Forecasting model v4.3.3, wake parameterizations were only

compatible with one PBL scheme. We couple the Fitch wind farm parameterization with the new NCAR 3DPBL scheme and5

compare the resulting wakes to those simulated with a widely used PBL scheme. We simulate a wind plant in pseudo-steady

states under idealized stable, neutral, and unstable conditions with matching hub-height wind speeds using two PBL schemes:

MYNN and the NCAR 3DPBL. For these idealized scenarios, average hub-height wind speed losses within the plant differ

between PBL schemes by between -0.20 m s−1 and 0.22 m s−1, and correspondingly, capacity factors range between 39.5–

53.8%. These simulations suggest that PBL schemes represent a meaningful source of modeled wind resource uncertainty;10

therefore, we recommend incorporating PBL variability into future wind plant planning sensitivity studies as well as wind

forecasting studies.
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1 Introduction20

Despite a large demand to build offshore wind turbines in the United States, the wind resource at many potential construction

sites suffers from a large degree of uncertainty. Wind resource assessments for new wind plants often involve gathering multi-

year measurements of hub-height winds (Brower et al., 2012). While this approach is common for onshore sites, hub-height

wind measurements are more challenging to collect offshore, and public offshore measurements are sparse within the United

States. While the Bureau of Offshore Energy Management (BOEM) is considering or has already allowed commercial develop-25

ment in 33 renewable energy areas (BOEM, 2020), to the best of the authors’ knowledge, public offshore yearlong hub-height

wind speed measurements are available today in the vicinity of 6 sites—4 due to deployments by the U.S. DOE (accessible

at https://a2e.energy.gov/data) and 2 due to deployments by the New York State Energy Research and Development Agency

(accessible at https://oswbuoysny.resourcepanorama.dnvgl.com). The U.S. is rapidly developing its offshore wind industry, re-

cently expanding its offshore wind generation goal to 30 GW by 2030 (White House, 2021). Thus, it is critical to be able to30

accurately and confidently characterize wind resource in the absence of high quality measurements for the rapidly developing

offshore wind industry in the United States.

Due to limited observations, offshore wind resource assessments in the United States rely more heavily on numerical weather

prediction (NWP) models. NWP-based wind resource assessments have been used to characterize wind resource in turbine-free

environments (simulating winds prior to wind plant construction) as well as turbine-including environments (simulating winds35

after wind plant construction). While NWP models provide useful predictions of wind resource, their estimates are also accom-

panied by a large degree of uncertainty. As such, uncertainty quantification of offshore wind resource has been established as a

key component of the U.S. offshore wind research agenda. Shaw et al. (2019) assert that uncertainty quantification represents

a critical area of offshore wind research, as “quantification and reduction of uncertainty represents a significant opportunity to

reduce costs”. This sentiment was also echoed in a wind energy workshop that brought together stakeholders from industry,40

academia, and the U.S. government (Haupt et al., 2020). Finally, Archer et al. (2014) underscored two major research needs for

coastal and offshore wind energy research in the United States—more offshore observations and uncertainty characterization,

in particular uncertainty characterization through ensembles of NWP simulations. Archer et al. (2014) also emphasized the

need for research on turbine wake losses. The research in our manuscript directly responds to the need for ensembles of NWP

simulations as well the need to quantify wake losses.45

Wind resource uncertainty in turbine-free NWP simulations stems from, in part, the large number of plausible model options

that can be used to drive the simulation. Hub-height wind speeds in turbine-free NWP simulations have been shown to be

significantly sensitive to a number of modeling options. Simulated wind resource has been shown to often be most sensitive

to the choice of planetary boundary layer (PBL) parameterization, and PBL schemes have also been shown to be sensitive to

other factors such as grid resolution (Storm and Basu, 2010; Carvalho et al., 2012; Yang et al., 2013; Carvalho et al., 2014;50

Draxl et al., 2014; Olsen et al., 2017; Yang et al., 2017; Fernández-González et al., 2018; Yang et al., 2019; Optis et al., 2020).

PBL schemes govern turbulent fluxes (typically just vertical turbulent fluxes) and mixing within the atmospheric boundary

layer. At present, 13 different PBL schemes are available within the Weather Research and Forecasting (WRF, Skamarock
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et al., 2021) model, and there is no single-best PBL scheme for wind resource assessment. As just one example, Draxl et al.

(2014) evaluated seven PBL schemes using measurements from a meteorological mast at the Høvsøre wind energy test site.55

They found that the optimal PBL scheme varies with stability: at this site, MYJ (Janjić, 1994) performed best under stable

conditions, ACM2 (Pleim, 2007) performed best under neutral conditions, and YSU (Hong et al., 2006) performed best under

unstable conditions. Wind atlases that characterize model uncertainty often employ ensembles of simulations where model

inputs, such as PBL scheme, are varied (Bodini et al., 2021a).

While the sensitivity of hub-height winds to PBL scheme has been explored in turbine-free NWP simulations, the resulting60

impacts on wake simulations have not been explored. To date, all published mesoscale WRF simulations with explicitly rep-

resented wind turbines have been conducted with the MYNN PBL scheme (Nakanishi and Niino, 2009; Olsen et al., 2017).

Thus, while PBL schemes have been shown to be key elements for uncertainty quantification in NWP-based wind resource

assessments in turbine-free environments, it is unknown if PBL schemes are similarly important in turbine-including environ-

ments. It is critical to accurately predict wake effects in order to accurately predict annual energy production. Lee and Fields65

(2021) summarize the large degree of uncertainty regarding the impact of wake-associated losses on annual energy production:

Some estimates predict average total wake losses as low as 6.1%, whereas others have predicted losses as high as 40%. The

uncertainty of individual wake-loss estimates has also been estimated to be 10%–40%. These losses and uncertainties incur

significant financial impact on the wind industry, potentially translating to millions of U.S. dollars of economic benefits (Lee

and Fields, 2021).70

While turbine-including NWP sensitivity studies have not examined the impact of PBL schemes on mesoscale wakes, they

have shown that NWP-modeled wakes can be sensitive to a number of other inputs. Turbine wakes are modeled in NWP

simulations with wind farm parameterizations (WFPs, for a review see Fischereit et al., 2021), such as the Fitch WFP (Fitch

et al., 2012), the Explicit Wake Parametrisation (EWP, Volker et al., 2015), and the hybrid WFP (Pan and Archer, 2018).

Wind resource in turbine-including simulations has been shown to be sensitive to the same model inputs that are important in75

turbine-free simulations, such as vertical and horizontal grid resolution, as well as the option to have the MYNN PBL scheme

advect TKE (Redfern et al., 2019; Tomaszewski and Lundquist, 2020; Archer et al., 2020; Siedersleben et al., 2020; Larsén and

Fischereit, 2021). We note that most if not all Fitch WFP simulations with TKE advection turned on prior to Archer et al. (2020)

were subject to a bug in the WRF code, and as
:
.
::
As

:
such, the results from these studies should be interpreted with caution

:
,
::
as

:
it
::
is

:::::::
possible

:::
that

::::
this

:::
bug

::::
may

::::
have

:::::::::
significant

:::::::
impacts. Modeled wake impacts have also been shown to be sensitive to inputs80

specifically associated with the WFP, such as the choice of WFP and the degree of explicitly added TKE in the Fitch WFP

(Fitch et al., 2012; Vanderwende et al., 2016; Siedersleben et al., 2020; Tomaszewski and Lundquist, 2020; Archer et al., 2020;

Pryor et al., 2020; Shepherd et al., 2020).

In this paper, we begin to address the question: How sensitive are modeled mesoscale wakes to the choice of PBL param-

eterization? Ideally, this question would be addressed by studying all 13 PBL schemes in WRF with the Fitch WFP insofar85

as that is possible. Here, as a first step, we compare two PBL schemes: MYNN (Nakanishi and Niino, 2009) and the recently

developed NCAR 3DPBL (Kosović et al., 2020; Juliano et al., 2022). We chose the latter as it has a prognostic equation for

TKE, which is important as the Fitch WFP modifies TKE fields. We make substantial modifications to the WRF code to enable
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the Fitch WFP to work with the NCAR 3DPBL, and then conduct a set of idealized numerical experiments based on the Fitch

et al. (2012) experiments. We simulate wakes in pseudo-steady idealized environments with MYNN and the NCAR 3DPBL90

under stable, neutral, and unstable conditions. We also examine the role of explicitly added TKE in this set of simulations. In

Section 2, we describe the two PBL schemes, the integration of the NCAR 3DPBL with the Fitch WFP in the WRF code, and

the setup of the simulations. In Section 3, we discuss the results of the simulations. In Section 4, we conclude and discuss the

implications of the idealized results for real-world wind resource assessments.

2 Methods95

2.1 MYNN and the NCAR 3DPBL

The simulations in this paper are carried out using WRF v4.3.0 with two PBL schemes: MYNN (Nakanishi and Niino, 2009;

Olson et al., 2019) and the NCAR 3DPBL (Kosović et al., 2020; Juliano et al., 2022). To avoid confusion regarding nomen-

clature of new turbulence models, we note that the NCAR 3DPBL is different from the 3DTKE PBL scheme (Zhang et al.,

2018). The WRF v4.3.0 code in this study was modified to include the NCAR 3DPBL code, which is being prepared for public100

release. For simplicity, we refer to the NCAR 3DPBL as simply “the 3DPBL.” Both MYNN and the 3DPBL share a common

origin—they are fundamentally rooted in the turbulence modeling of Mellor and Yamada (1974). Here, we use the level 2.5

MYNN and 3DPBL schemes, which both treat TKE as a prognostic variable, thus improving their utility for wind turbine

modeling, because generated TKE is advected by the PBL schemes. This behavior stands in contrast to other PBL schemes,

such as YSU, which does not treat TKE as a prognostic variable.105

MYNN and the 3DPBL treat turbulent mixing differently. MYNN computes the vertical turbulent mixing by calculating the

vertical turbulent stress divergence, and it allows the horizontal turbulent mixing to be handled externally with a Smagorinsky-

type approach (Skamarock et al., 2021, Sec. 4.2). In contrast, the 3DPBL directly accounts for horizontal turbulent mixing by

explicitly computing the turbulent flux divergences for momentum, heat, and moisture. The 3DPBL has been implemented into

WRF to allow for three different configurations following the original Mellor-Yamada developments: (i) a full 3D model, (ii)110

a quasi-3D model using the so-called PBL-approximation, and (iii) a 1D model using the PBL-approximation. In this analysis,

we employ the second option, as the full 3D parameterization is currently too computationally expensive for yearlong wind

resource assessments. When using the second option, the 3DPBL scheme handles both the vertical and horizontal turbulent

mixing by computing the 3D turbulent stress divergence, in addition to the 3D turbulent flux divergence of heat and moisture.

The vertical turbulent fluxes in the 3DPBL are calculated similarly to MYNN, and the horizontal turbulent fluxes are calcu-115

lated analytically following Mellor and Yamada (1982) after applying the PBL approximation (i.e., neglecting the horizontal

derivatives of mean quantities in addition to the vertical derivative of vertical velocity).

Aside from different approaches for horizontal mixing, the two PBL schemes also employ different master length scales and

closure constants. Both schemes employ one “master” length scale, although they calculate them differently. In the simulations

in this study, the 3DPBL master length scale follows Mellor and Yamada (1982), whereas the MYNN master length scale uses120

a different approach that simultaneously accounts for length scales that characterize buoyancy, the surface layer, and the PBL
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depth. The closure constants for the 3DPBL length scale come from Mellor and Yamada (1982), whereas the MYNN closure

constants were updated in Nakanishi and Niino (2009).

While the values of empirical constants are different, MYNN and the quasi-3DPBL use the same formulation to parameterize

turbulent momentum, heat, and moisture fluxes. For example, they parameterize the vertical flux of the u-component of wind125

speed as

〈uw〉=−LqSm
∂U

∂z
, (1)

where L is the master length scale, q is
√
2 TKE, Sm is a stability function, and U is zonal velocity (Mellor and Yamada,

1982).

2.2 Integration of the Fitch WFP with the 3DPBL130

To simulate wakes with the 3DPBL, we first integrated the Fitch WFP with the 3DPBL inside the WRF code. The Fitch WFP

modifies flow in two key manners (Fitch et al., 2012; Archer et al., 2020): by slowing winds

∂uk
∂t

=−1

2

AkCTUkuk
zk+1− zk

(2)

∂vk
∂t

=−1

2

AkCTUkvk
zk+1− zk

(3)

and by adding TKE135

∂TKEk

∂t
=

1

2

AkαCTKEU
3
k

zk+1− zk
. (4)

In the above equations, k is the vertical level that intersects the rotor, Ak is the area of the rotor on this vertical level, CT is

the thrust coefficient, Uk is the wind speed, uk is the zonal wind, vk is the meridional wind, and zk is the height. The turbulence

coefficient CTKE is calculated as the difference between the thrust coefficient CT and the power coefficient CP . The thrust

and power coefficients are functions of wind speed that are unique to a particular wind turbine, and their values are specified140

in the input file wind-turbine.tbl. The coefficient α was introduced by Archer et al. (2020) to empirically modify the amount of

explicit TKE addition and, in this study, we either set it to 0 or 1.

The major challenge in integrating the Fitch WFP and the 3DPBL is that the 3DPBL code is housed in the dynamics

(dyn_em/ ) part of the code, as opposed to the physics (phys/ ) part of the code where most other PBL schemes reside. As such,

the codebase was substantially modified to account for the user-selected PBL scheme. A call to the Fitch WFP’s dragforce145

subroutine was added to the end of dyn_em/module_first_rk_step_part2.F. When called for the 3DPBL, the velocity tendencies

and TKE tendencies are additionally scaled by the column-mass in order to match the identical scaling that happens to the
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Stability PBL Scheme Geostrophic Wind Speed [m s−1] Surface Heat Flux [W m−2] Spin Up Duration [days] Final ABL Height [m]

Stable MYNN 10 -15 6 250

Stable 3DPBL 10 -15 5.25 250

Neutral MYNN 10 0 4 550

Neutral MYNN 10 0 4 550

Unstable MYNN 9 20 2 600

Unstable 3DPBL 10 20 2 600

Table 1. A summary of boundary conditions and spinup times for the turbine-free idealized simulations.

phys/ -calculated tendencies earlier within dyn_em/module_first_rk_step_part2.F. Additionally, whereas the Fitch WFP code

modifies the MYNN TKE field directly (including a timestep factor of ∂t), the new code modifies the 3DPBL TKE tendency

field (omitting a factor of ∂t and letting the rest of the code carry out the time integration).150

2.3 Configuration of Simulations

We carry out a series of idealized simulations to study the effect of the PBL scheme on simulated wake dynamics in a simple

offshore environment. All simulation inputs can be found on Zenodo (https://doi.org/10.5281/zenodo.5565399). We use the

neutral idealized simulations of Fitch et al. (2012) as inspiration for our simulations, but we make a number of modifications.

All simulations use two domains, each 202-by-202 grid points in the horizontal. MYNN is always used in the outer domain,155

whereas the inner domain is either MYNN or the 3DPBL. The outer domain uses a horizontal grid spacing of 3 km and a

timestep of 9 seconds, whereas the inner domain uses a horizontal grid spacing of 1 km and a timestep of 3 seconds. The

vertical grid uses 81 cells, up to a height of 20 km. Vertical grid stretching is employed to provide finer resolution near the

surface, thereby allowing 28 vertical levels below a height of 300 m, following the recommendation of Tomaszewski and

Lundquist (2020) for nominally 10 m of resolution near the surface. All simulations have a roughness length of 0.0001 m,160

which is characteristic of offshore environments (Stull, 1988).

In order to eventually simplify wake comparisons, we force all turbine-free simulations in such a manner that average hub-

height wind speeds are roughly equal (∼9.35 m s−1) after they are spun up (Table 1). In principle, we could have matched

the geostrophic winds instead of the hub-height winds in the idealized simulations, but the resulting different hub-height wind

speeds would have made it more difficult to isolate the different turbulent recovery effect that comes with using the 3DPBL165

instead of MYNN.

Simulations for each stability case are initialized with a neutral temperature profile of 285 K within the boundary layer up to

500 m. The boundary layer is capped with a two-layer inversion: a strong inversion (5 K warming between 500 m and 600 m)

and a weaker inversion (3 K km−1 lapse rate above 600 m). Depending on the case, each simulation was forced with either 9 m

s−1 or 10 m s−1 geostrophic winds. Stable simulations are additionally forced with -15 W m−2 surface cooling, and unstable170
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simulations are forced with 20 W m−2 surface heating. These sensible heat flux values were chosen based on typical simulated

conditions at a planned offshore plant in the U.S. mid-Atlantic (Rybchuk, 2022), and are smaller than typical values over land.

After spin up, the boundary-layer height as determined through the NWF temperature profile (Fig. 2) is approximately 250 m

in the stable simulations, 550 m in the neutral simulations, and 600 m in the unstable simulations.

After spinning up turbine-free simulations, we run three cases of simulations for each of the stabilities and each of the PBL175

schemes for 24 hours. The first case is simply a continuation of the turbine-free simulations and is referred to as the no-wind-

farm (NWF) case. The second case (100TKE) starts after the respective NWF simulation has spun up and shares its boundary

conditions, but it includes a 10-by-10 grid of turbines based on the 12-MW International Energy Agency (IEA, Beiter et al.,

2020) reference offshore wind turbines placed in the center of the inner domain. The turbine hub-height is 138 m, and the rotor

diameter is 215 m. Cut-in speed is 3 m s−1, rated speed is 10.9 m s−1, and cut-out speed is 30 m s−1. Turbines are placed 2 km180

apart, which is close to the 1 nautical mile spacing used in the real simulations. In this case, 100% of explicit TKE is generated

by the Fitch WFP (α= 1). In the third case (0TKE), we explore the sensitivity to explicitly added TKE by duplicating the setup

of the second case, but turning off explicit TKE generation (α= 0).

3 Results

3.1 Turbine-Free Conditions185
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Figure 1. Hub-height wind speed at the center of each domain during spinup in the idealized turbine-free simulations. The last 24 hours of

each simulation is taken as the performance period for the NWF simulations.

We spin up the idealized turbine-free simulations so that hub-height wind speeds achieve a psedo-steady state as well as

a value of approximately 9.35 m s−1 (Fig. 1). As was observed in Fitch et al. (2012), inertial oscillations occur in neutral

conditions, but they sufficiently dampen out in our simulations after 4 days. Unstable simulations initially show hub-height

wind speed behavior that is similar to the neutral simulations. However, surface warming initiates thermal turbulence during
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Figure 2. Averaged wind speed profiles (a–c), TKE profiles (d–f), and temperature profiles (g–i) in different stabilities for the idealized

NWF runs. Profiles have been horizontally averaged over the extent of the plant and time averaged over the 24 hour performance period.

Hub-height values of wind speed and TKE for each PBL scheme are noted.

8



the first day of spinup, and after 24 hours of spinup, the hub-height wind speed behavior becomes stationary. Stable simulations190

show an initial hub-height wind speed spike due to the development of a low-level jet (LLJ, Fig. 2), but the wind speeds linearly

decay over time as the nose of the LLJ moves upward. The stable MYNN and 3DPBL simulations achieve the target wind speed

after 6 and 5.25 days respectively.

Having discussed the initial transient phase of the idealized simulations, it is also necessary to characterize the baseline wind

speeds and TKE values in the turbine-free simulations (NWF) before analyzing turbine impacts (Fig. 2). The differences and195

similarities in the wind and TKE profiles of the NWF simulations will dictate the comparison of the wake effects between the

PBL schemes in turbine-including simulations. In general, MYNN and the 3DPBL will predict differing wake effects because

of two primary factors: different predictions of turbine-free wind speed profiles as well as differing wake recovery behavior,

which is linked to parameterizations of turbulent fluxes (Gupta and Baidya Roy, 2021). Due to the experimental configuration

of our idealized simulations, the plant inflow wind speeds are similar, and thus we expect the largest wake differences to arise200

from differing turbulent recovery behavior.

During the performance phase, all simulations have similar average hub-height wind speeds: between 9.3 m s−1 and 9.4 m

s−1. The wind speed profiles for both PBL schemes match expected canonical behavior for each stability (Stull, 1988). Across

the rotor disk, the neutral and unstable wind speed profiles have similar values for both MYNN and the 3DPBL. However in

the stable simulations, wind speed profiles slightly differ between the two PBL schemes. The nose of the MYNN low-level205

jet achieves a wind speed of 11.6 m s−1 and sits at the top of the rotor disk. In contrast, the nose of the 3DPBL LLJ achieves

a wind speed of 12.3 m s−1 and sits about 40 m below the top of the rotor disk. Thus, we will later see that the height of

maximum wind speed deficits will differ between the two simulations (Fig. 4).

While MYNN and the 3DPBL produce near-identical TKE profiles in neutral conditions, their TKE profiles differ in stable

and unstable conditions. In stable conditions, the MYNN TKE profile linearly decays when moving from the surface to the210

capping inversion, whereas the 3DPBL profile shows an irregular shape that somewhat resembles the wind speed profile of

an LLJ. In unstable conditions, the TKE profiles are relatively constant over the height of the rotor disk, but the 3DPBL TKE

values are 2–3 times larger than the MYNN values. Contrary to what might be expected, we note that hub-height values of

TKE are weaker in the unstable MYNN simulations than in the neutral MYNN simulations.
::::
We

::::::::::
hypothesize

:::
that

:::::
these

::::
low

::::
TKE

:::::
values

:::::
occur

::::
due

::
to

:::
the

::::
very

:::::
weak

:::
heat

::::::
fluxes.215

3.2 Hub-Height Wind Speed Deficits

Wakes within the extent of the plant are sensitive to the choice of PBL scheme, presence of explicit TKE generation, and

stability (Fig. 3). We quantify wind speed deficits inside the plant by finding the daylong time-averaged hub-height wind

speeds within the plant in the turbine-including simulations (“WFP,” which is a generic stand-in for “100TKE” or “0TKE”)

relative to hub-height winds in the turbine-free simulations (“NWF”). We also calculate the percentage of wind speed loss with220

reference to the NWF winds inside the plant. Before discussing the impact of PBL scheme, we reiterate that previous work at

offshore wind farms demonstrates that stability impacts waking (Hansen et al., 2012), and our idealized wakes follow expected

9



25
0

25
50
75

y 
[k

m
]

Avg. Internal Wake
-1.34 m s 1, -14.1%

(a)

Stable, 100TKE MYNN
Avg. Internal Wake

-0.95 m s 1, -10.1%

(b)

Neutral, 100TKE MYNN
Avg. Internal Wake

-1.11 m s 1, -11.8%

(c)

Unstable, 100TKE MYNN
Farm
boundary
e-folding
contour
0.5 m s 1

deficit
1 m s 1

deficit

25
0

25
50
75

y 
[k

m
]

Avg. Internal Wake
-1.31 m s 1, -13.9%

(d)

Stable, 0TKE MYNN
Avg. Internal Wake

-1.27 m s 1, -13.5%

(e)

Neutral, 0TKE MYNN
Avg. Internal Wake

-1.19 m s 1, -12.7%

(f)

Unstable, 0TKE MYNN

25
0

25
50
75

y 
[k

m
]

Avg. Internal Wake
-1.54 m s 1, -16.3%

(g)

Stable, 100TKE 3DPBL
Avg. Internal Wake

-0.93 m s 1, -10.0%

(h)

Neutral, 100TKE 3DPBL
Avg. Internal Wake
-0.89 m s 1, -9.4%

(i)

Unstable, 100TKE 3DPBL

25 0 25 50 75
x [km]

25
0

25
50
75

y 
[k

m
]

Avg. Internal Wake
-1.17 m s 1, -12.4%

(j)

Stable, 0TKE 3DPBL

25 0 25 50 75
x [km]

Avg. Internal Wake
-1.16 m s 1, -12.5%

(k)

Neutral, 0TKE 3DPBL

25 0 25 50 75
x [km]

Avg. Internal Wake
-1.01 m s 1, -10.7%

(l)

Unstable, 0TKE 3DPBL

1.50

1.25

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

W
SP

D W
FP

 - 
W

SP
D N

W
F [

m
 s

1 ]

Figure 3. Hub-height wind speed deficits in varying stabilities (left-right) and PBL configurations (up-down). Average hub-height wind
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deficit contour is highlighted only for the stable simulations, as it obscures internal wakes for other stabilities. Wakes are rotated from the

U -geostrophic wind due to the combination of friction and the Coriolis force.
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trends: stable wakes are strongest (1.17–1.54 m s−1, 12.4–16.3%), followed by neutral wakes (0.93–1.27 m s−1, 10.0–13.5%),

followed by unstable wakes (0.89–1.19 m s−1, 9.4–12.7%).

Average wind speed deficits inside the plant can vary quite substantially between MYNN and the 3DPBL. Across all sim-225

ulations, MYNN predicts internal waking that differs from the 3DPBL by between -0.20 m s−1 / -2.2 percentage points [pp]

(in the stable 100TKE simulations) to +0.22 m s−1 / +2.4 pp (in the unstable 100TKE simulations). This large spread induces

significantly different predictions of power production (Sec. 3.6).

While these simulations show that wakes within the plant can substantially differ, they do not reveal any obvious patterns of

how they will differ across conditions. At times, the MYNN simulations produce stronger wakes internally than the 3DPBL,230

whereas MYNN wakes are weaker at other times. Sometimes, turning explicit TKE addition off decreases the internal wake

magnitude (e.g., stable conditions), whereas other times it increases internal wake strength (e.g., neutral and unstable condi-

tions). Sometimes MYNN internal wake strength changes more substantially when explicit TKE addition is turned off (e.g.,

neutral and unstable conditions), whereas 3DPBL internal wake strength changes more substantially at other times (e.g. stable

conditions). Thus, this variability within the idealized runs suggests that real-world case studies should be tailored to a specific235

region and turbine configuration.

In addition to characterizing wakes within the extent of the plant, we analyze wakes outside the plant. There is no singular

standard approach that is used to characterize wakes external to a plant (Fischereit et al., 2021), so we adopt three approaches:

by identifying the contours of the 1 m s−1 deficit, by identifying the contours of the 0.5 m s−1 deficit, and by identifying the

e-folding contour. We calculate the e-folding contour as 1/e times the average internal wake strength, or about 36% (Fitch240

et al., 2012), and as such, this uses a relative metric whereas the other contours use an absolute metric. We employ the 1 m s−1

contour to highlight regions of strong external waking and the 0.5 m s−1 contour to emphasize moderate external waking. We

only include the 1 m s−1 deficit contour in the stable simulations, as this contour obscures internal wakes in the neutral and

unstable simulations. We note that choosing one definition versus the other can lead to definitions of wake lengths that differ

by tens of kilometers.245

Wake behavior outside the plant varies just as much as it did inside the plant (Fig. 3). The most severe waking, demarcated by

the 1 m s−1 deficit contour, varies with stability as expected from previous work, with the strongest wakes in stable conditions.

The 1 m s−1 contours extend the furthest in stable conditions, whereas they travel at most about ten km downwind in neutral and

unstable conditions. We note that MYNN predicts wakes that are tens of km longer than the 3DPBL does in stable conditions.

The addition of explicit TKE consistently increases the wake length, regardless of what metric is used to define the boundary of250

the wake. This increase is seen most clearly in the neutral MYNN simulations (Fig. 3b,e), where wake length grows by dozens

of kilometers. All stable and all unstable simulations show a growth in wake lengths, roughly on the scale of about 10 km. We

also note that neither MYNN nor the 3DPBL show consistently longer wake lengths across all stabilities. Stability impacts on

moderate intensity wakes (either the 0.5 m s−1 contour or the e-folding contour) are more varied. For example, the e-folding

contour is smaller in the stable 3DPBL simulations than in the neutral 3DPBL or unstable 3DPBL simulations.255

We briefly digress from the discussion on wakes to discuss two effects that are secondary to the primary analysis of this

study: upwind blockage and flow acceleration. Upwind blockage (Schneemann et al., 2021; Sanchez Gomez et al., 2021)
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occurs in some of the idealized simulations. Blockage is strongest in the stable conditions, where 0.5 m s−1 deficits extend

5 km–10 km upwind of the plant. Under neutral conditions, blockage of up to 0.25 m s−1 extends 3 km–5 km upwind of

the plant. Blockage does not appear in the unstable simulations. In general, blockage here is a function of stability but not260

PBL scheme or TKE addition. Tangential flow accelerations, similar to the speed-ups seen by Nygaard and Hansen (2016),

can be observed adjacent to the wakes. The hub-height wind acceleration neighboring the wakes is also a function of stability

(strongest in stable conditions, weakest in unstable conditions), but it also varies with TKE addition (stronger acceleration

when TKE addition in turned on).

3.3 Vertical Structure of Wind Speed Deficits265

While hub-height winds are particularly important to quantify, it is also helpful to characterize wakes over the vertical extent

of the rotor disk. We calculate the wind speed deficit averaged across the y-extent (predominantly crosswind) of the plant for

each simulation (Fig. 4). Just as the top-down view (Fig. 3) of wind speed deficits suggested, the stable simulations produce the

strongest wind speed deficit profiles. Blockage is also visible upwind of the plant in stable conditions. In contrast, the neutral

and unstable simulations produce wind speed deficits that are relatively similar to one another. The stronger stable wind speed270

deficits occur, in part, because of the shallow capping inversion that sits just above the top of the rotor disk. The wakes in

the neutral and unstable simulations are able to mix with stronger ambient winds above the plant, thereby eroding the wake,

whereas this behavior is not possible in the stable simulations.

The side-view of wind speed deficits show that vertical mixing of wind speed deficits increases when explicit TKE generation

is turned on. This behavior consistently occurs across all simulations. The wind speed deficits above the wind plants are stronger275

in the neutral 100TKE simulations and in the unstable 100TKE simulations than in their counterparts with 0TKE. As a result,

the neutral and unstable 0TKE simulations have stronger maximum wind speed deficits within the rotor disk than their 100TKE

counterparts. For example, the neutral 100TKE MYNN simulation shows a maximum wind speed deficit of 1.125 m s−1 within

the rotor disk whereas the neutral 0TKE MYNN has a maximum deficit of 1.625 m s−1. While the shallow capping inversion

in the stable simulations obscures the effects of explicit TKE addition above the plant, the TKE effects can be seen below the280

plant. When explicit TKE addition is turned on in the stable simulations, flow acceleration occurs below the rotor disk, but this

acceleration does not occur when TKE addition is turned off. We note that acceleration under the rotor disk was observed in

Bodini et al. (2021b) but not in Archer et al. (2019). Correlating with the presence of flow acceleration below the rotor disk,

the stable 100TKE simulations show stronger wind speed deficits within the rotor disk than the stable 0TKE simulations.

Finally, the side-view of wind speed deficits also shows that the choice of PBL scheme can be important. The most pro-285

nounced differences between PBL schemes occur in stable conditions. For example, the wind speed deficit in the 0TKE 3DPBL

simulation stays stronger than 2 m s−1 for 50 km downwind of the plant, whereas the wake recovers more quickly in the 0TKE

MYNN simulation.
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Figure 4. Side view of horizontally averaged wind speed deficits in varying stability conditions (left-right) and PBL configurations (up-

down). Horizontal averaging was taken between the north-most and south-most turbines. The height of the ABL is conveyed with θ contours.
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Figure 5. (a) Side view of the difference in wind speed deficits in the stable 100TKE simulations. For example, Figure 5a was calculated

as the difference between the results in panels Figs. 4a–4g. (b) The u-tendency deficits in the 100TKE simulations are calculated using a

similar procedure involving tendencies. Potential temperature θ values that have been averaged over the y-extent of the plant are taken from

the MYNN simulations.

3.4 Difference in Momentum Tendencies

In large part, the two PBL schemes produce different wind speed deficits in their wakes because the schemes parameterize290

turbulent fluxes differently, as we visualize here. The u and v components of wind speed are modified by mechanisms such as

advection of the mean wind, the Coriolis force, and the divergence of the turbulent momentum fluxes (Stull, 1988, Eqn. 3.4.3c).

We expect all these terms, aside from the divergence of turbulent momentum fluxes, to be similar for both MYNN and the

3DPBL, as the NWF wind speeds are similar but two PBL schemes parameterize momentum fluxes uniquely. We calculate

the u-tendency due to the turbulent flux divergence as the vertical derivative of u′w′, neglecting the horizontal components295

of flux divergence because they are significantly smaller in the 3DPBL than u′w′, and they are not computed in the MYNN

parameterization. We also omit visualizations of v-tendency because they are substantially smaller than the u-tendency in
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these idealized simulations forced with a u geostrophic wind. We investigate the relationship of wind speeds and turbulent

fluxes between the two PBL schemes in the stable 100TKE simulations by comparing two fields in the wakes—the wind speed

deficits and the turbulent flux divergence u-tendency “deficits” (Fig. 5). The u-tendency deficits are defined as tendencies in300

the turbine-free simulations subtracted from tendencies in the turbine-including simulations.

The differences in tendency deficits between the two PBL schemes drive the differences in the wind speed wakes. As winds

advect primarily along the x-direction, wind speed magnitudes are modified by the tendency. For example, the u-tendency

is more negative for MYNN above the rotor disk. Correspondingly, the MYNN wind speed deficits in this region as well as

downwind of this region are more negative. The same pattern of behavior occurs in the upper half of the rotor disk, where the305

u-tendency for the 3DPBL is more negative and therefore the 3DPBL wind speed deficits are more negative. Thus, the modeled

wind speed deficits in the wake of a plant depend on how the PBL scheme parameterizes turbulent momentum fluxes.

3.5 Total TKE

Just as wind speed deficits are sensitive to the choice of PBL scheme, TKE associated with the wind plant also varies as a

function of PBL scheme, stability, and explicit TKE generation (Fig. 6). The WFP induces changes in TKE, and the changes310

are primarily constrained within the horizontal extent of the plant and tend to not advect far downwind. In contrast, the real

onshore WRF WFP simulations of Mangara et al. (2019), saw substantial TKE changes 20 km–30 km downwind. The 100TKE

simulations produce substantially more TKE than the 0TKE simulations, as would be expected. The 100TKE 3DPBL simula-

tions also consistently predict stronger levels of additional TKE than their MYNN counterparts. For example, the maximum

added TKE in the 100TKE stable simulations was 1.375 m2 s−2 for the 3DPBL and 0.750 m2 s−2 for MYNN.315

The behavior of the 0TKE simulations was more varied. In neutral conditions, both the 0TKE MYNN and 0TKE 3DPBL

simulations create a moderate amount of shear-generated TKE at the top of the rotor disk. However in unstable conditions, the

0TKE 3DPBL simulation shows shear-generated TKE whereas the 0TKE MYNN simulation does not. In stable conditions, the

0TKE simulations lack shear-generated TKE at the top of the rotor disk due to the low capping inversion. However, the stable

0TKE 3DPBL turbine-including simulation actually has less TKE than the turbine-free simulation. The LLJ in the turbine-free320

simulation exhibits strong wind speed shear, and the presence of the wind farm reduces that shear, leading to this behavior.

3.6 Power

Power production and power losses due to internal waking change with PBL scheme (Fig. 7). We calculate the capacity factor

for each turbine, the average capacity factor of the plant, and the average power deficit due to internal wakes with reference

to the NWF hub-height wind speed. Capacity factor is defined as the ratio of actual power output relative to the maximum325

possible power output. Across all simulations, the average capacity factor for the plant ranged between 39.5% and 53.8%.

Capacity factor losses due to internal wakes ranged between 16.7 pp and 31.6 pp.

Power production in the idealized simulation varies with the simulation parameters. As discussed earlier (Sec. 3.2), when

explicit TKE addition is turned off, hub-height wind speed deficits can either increase or decrease. Accordingly, turning off

explicit TKE generation can either grow or shrink the capacity factor. Turning off explicit TKE generation changes internal330
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Figure 6. Same as Fig. 4, but for TKE in varying stabilities (left-right) and PBL configurations (up-down). The height of the ABL is visualized

in the stable and neutral simulations with θ contours.

16



2
4
6
8

10
y-

po
sit

io
n

Avg. Cap. Fac.:
43.5%
Avg. Int. Wake:

27.6 p.p

(a)

Stable, 100TKE MYNN
Avg. Cap. Fac.:
44.8%
Avg. Int. Wake:

26.2 p.p

(b)

Neutral, 100TKE MYNN
Avg. Cap. Fac.:
41.8%
Avg. Int. Wake:

29.9 p.p

(c)

Unstable, 100TKE MYNN

2
4
6
8

10

y-
po

sit
io

n

Avg. Cap. Fac.:
46.1%
Avg. Int. Wake:

25.0 p.p

(d)

Stable, 0TKE MYNN
Avg. Cap. Fac.:
39.5%
Avg. Int. Wake:

31.4 p.p

(e)

Neutral, 0TKE MYNN
Avg. Cap. Fac.:
40.1%
Avg. Int. Wake:

31.6 p.p

(f)

Unstable, 0TKE MYNN

2
4
6
8

10

y-
po

sit
io

n

Avg. Cap. Fac.:
46.9%
Avg. Int. Wake:

23.6 p.p

(g)

Stable, 100TKE 3DPBL
Avg. Cap. Fac.:
48.7%
Avg. Int. Wake:

22.4 p.p

(h)

Neutral, 100TKE 3DPBL
Avg. Cap. Fac.:
51.4%
Avg. Int. Wake:

21.7 p.p

(i)

Unstable, 100TKE 3DPBL

2 4 6 8 10
x-position

2
4
6
8

10

y-
po

sit
io

n

Avg. Cap. Fac.:
53.8%
Avg. Int. Wake:

16.7 p.p

(j)

Stable, 0TKE 3DPBL

2 4 6 8 10
x-position

Avg. Cap. Fac.:
45.2%
Avg. Int. Wake:

26.0 p.p

(k)

Neutral, 0TKE 3DPBL

2 4 6 8 10
x-position

Avg. Cap. Fac.:
49.4%
Avg. Int. Wake:

23.7 p.p

(l)

Unstable, 0TKE 3DPBL

30

33

36

39

42

45

48

51

54

57

60

63

66

69

Ca
pa

cit
y 

Fa
ct

or
 [%

]

Figure 7. Heat maps of capacity factor for each turbine, based on the turbine’s position in the plant. The average capacity factor and internal

wake strength are noted for each simulation.
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wake losses to capacity factor by between -6.9 pp (in the stable 3DPBL) and 5.2 pp (in neutral MYNN). Changing from one

PBL scheme to another results in wake loss shifts of a similar magnitude—switching from MYNN to the 3DPBL changes

internal wake losses by between -3.4 pp (in stable 100TKE simulations) and -9.6 pp (in unstable 100TKE simulations). Thus,

these simulations emphasize the critical role of PBL scheme on power production.

In the end, these power calculations emphasize that the behavior of modeled power losses are complicated, even in a simple335

idealized environment. We stress that these idealized simulations have been carried out for one set of hub-height winds in one

part of the power curve under pseudo-steady conditions. To better predict the cumulative non-linear interactions of the effects

of these parameters on losses at a real-world location, it is critical to run real simulations.

4 Conclusions

In this analysis, we studied the sensitivity of NWP-modeled mesoscale wakes to two PBL schemes: the widely-used MYNN340

and the recently introduced NCAR 3DPBL. While prior studies have showed that NWP-modeled wind resource in turbine-

free simulations can significantly vary with PBL scheme, the same sensitivity has not yet been studied in simulations with

explicitly resolved turbines. We integrated the NCAR 3DPBL with the Fitch wind farm parameterization and then examined

modeled wake sensitivity through a series of simulations. We simulated pseudo-steady idealized stable, neutral, and unstable

environments with hub-height wind speeds of approximately 9.35 m s−1. In this context, we also examined wake sensitivity to345

the amount of explicitly added TKE from the Fitch wind farm parameterization.

We summarize key findings from this analysis.

– In the idealized simulations, both capacity factor and wake losses were substantially impacted by PBL scheme, the

presence or omission of explicit TKE addition, and the stability. Average capacity factors ranged between 39.5–53.8%

and wakes reduced the average capacity factors by 16.7–31.6 percentage points.350

– Similarly, wind speed deficits were significantly impacted by these factors in the idealized simulations. MYNN predicted

average wind speed deficits within the extent of the plant that differed from those in the 3DPBL by between -0.20 m

s−1 to 0.22 m s−1 (or -2.2 to 2.4 percentage points for relative wake magnitude). Additionally, MYNN predicted strong

external wakes that traveled dozens of km longer than the 3DPBL in stable conditions.

– While the magnitude of wind speed deficits typically varied with PBL scheme, an obvious pattern did not emerge.355

At times, MYNN predicted stronger deficits, whereas sometimes the 3DPBL had stronger deficits. In contrast, wakes

consistently grew longer when explicit TKE addition was turned on.

Through our study, begin to address the question “How sensitive are modeled mesoscale wakes to the choice of PBL pa-

rameterization?” We find that, indeed, modeled mesoscale wakes can be significantly sensitive to the choice of PBL scheme in

idealized simulations. This suggests that real mesoscale simulations of planned wind plants could also be significantly sensi-360

tive to the choice of PBL scheme. Indeed, preliminary offshore simulations in the U.S. mid-Atlantic show that MYNN and the
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3DPBL can predict month-long power production that differs by as much as 7.8% (Rybchuk, 2022). Due to the model sensi-

tivity discussed throughout this manuscript, we recommend that future wind energy planning studies that examine mesoscale

model sensitivity consider varying the PBL scheme, along with other model inputs that have been established in literature, such

as grid resolution, magnitude of explicit TKE addition, and the choice of wind farm parameterization (Fischereit et al., 2021).365

By better characterizing the uncertainty associated with NWP-modeled wind resource, wind plant developers will be able to

take on less risk when developing future wind plants.
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Kosović, B., Munoz, P. J., Juliano, T. W., Martilli, A., Eghdami, M., Barros, A. P., and Haupt, S. E.: Three-Dimensional Planetary

Boundary Layer Parameterization for High-Resolution Mesoscale Simulations, Journal of Physics: Conference Series, 1452, 012 080,

https://doi.org/10.1088/1742-6596/1452/1/012080, 2020.

Larsén, X. G. and Fischereit, J.: A Case Study of Wind Farm Effects Using Two Wake Parameterizations in the Weather Research

and Forecasting (WRF) Model (V3.7.1) in the Presence of Low-Level Jets, Geoscientific Model Development, 14, 3141–3158,450

https://doi.org/10.5194/gmd-14-3141-2021, 2021.

Lee, J. C. Y. and Fields, M. J.: An Overview of Wind-Energy-Production Prediction Bias, Losses, and Uncertainties, Wind Energy Science,

6, 311–365, https://doi.org/10.5194/wes-6-311-2021, 2021.

Mangara, R. J., Guo, Z., and Li, S.: Performance of the Wind Farm Parameterization Scheme Coupled with the Weather Research and

Forecasting Model under Multiple Resolution Regimes for Simulating an Onshore Wind Farm, Advances in Atmospheric Sciences, 36,455

119–132, https://doi.org/10.1007/s00376-018-8028-3, 2019.

Mellor, G. L. and Yamada, T.: A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers, Journal of the Atmospheric

Sciences, 31, 1791–1806, https://doi.org/10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2, 1974.

Mellor, G. L. and Yamada, T.: Development of a Turbulence Closure Model for Geophysical Fluid Problems, Reviews of Geophysics, 20,

851–875, https://doi.org/10.1029/RG020i004p00851, 1982.460

21

https://doi.org/10.5194/wes-6-1089-2021
https://doi.org/10.1002/we.512
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.2172/1762812
https://doi.org/10.1175/MWR3199.1
https://doi.org/10.5334/jors.148
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1175/1520-0493(1994)122%3C0927:TSMECM%3E2.0.CO;2
https://doi.org/10.1175/MWR-D-21-0164.1
https://doi.org/10.1088/1742-6596/1452/1/012080
https://doi.org/10.5194/gmd-14-3141-2021
https://doi.org/10.5194/wes-6-311-2021
https://doi.org/10.1007/s00376-018-8028-3
https://doi.org/10.1175/1520-0469(1974)031%3C1791:AHOTCM%3E2.0.CO;2
https://doi.org/10.1029/RG020i004p00851


Miles, A., jakirkham, Bussonnier, M., Moore, J., Fulton, A., Bourbeau, J., Onalan, T., Hamman, J., Patel, Z., Rocklin, M., de Andrade, E. S.,

Lee, G. R., Abernathey, R., Bennett, D., Durant, M., Schut, V., dussin, r., Barnes, C., Williams, B., Noyes, C., shikharsg, Jelenak, A.,

Banihirwe, A., Baddeley, D., Younkin, E., Sakkis, G., Hunt-Isaak, I., Funke, J., and Kelleher, J.: Zarr-Developers/Zarr-Python:, Zenodo,

https://doi.org/10.5281/zenodo.5579625, 2021.

Nakanishi, M. and Niino, H.: Development of an Improved Turbulence Closure Model for the Atmospheric Boundary Layer, Journal of the465

Meteorological Society of Japan. Ser. II, 87, 895–912, https://doi.org/10.2151/jmsj.87.895, 2009.

Nygaard, N. G. and Hansen, S. D.: Wake Effects between Two Neighbouring Wind Farms, Journal of Physics: Conference Series, 753,

032 020, https://doi.org/10.1088/1742-6596/753/3/032020, 2016.

Office, M.: Cartopy: A Cartographic Python Library with a Matplotlib Interface, 2010.

Olsen, B. T., Hahmann, A. N., Sempreviva, A. M., Badger, J., and Jørgensen, H. E.: An Intercomparison of Mesoscale Models at Simple470

Sites for Wind Energy Applications, Wind Energy Science, 2, 211–228, https://doi.org/10.5194/wes-2-211-2017, 2017.

Olson, J. B., Kenyon, J. S., Angevine, W. A., Brown, J. M., Pagowski, M., and Sušelj, K.: A Description of the MYNN-EDMF Scheme and

the Coupling to Other Components in WRF–ARW, https://doi.org/10.25923/N9WM-BE49, 2019.

Optis, M., Rybchuk, O., Bodini, N., Rossol, M., and Musial, W.: Offshore Wind Resource Assessment for the California Pacific Outer

Continental Shelf (2020), Tech. Rep. NREL/TP-5000-77642, National Renewable Energy Lab. (NREL), Golden, CO (United States),475

https://doi.org/10.2172/1677466, 2020.

Pan, Y. and Archer, C. L.: A Hybrid Wind-Farm Parametrization for Mesoscale and Climate Models, Boundary-Layer Meteorology, 168,

469–495, https://doi.org/10.1007/s10546-018-0351-9, 2018.

Pleim, J. E.: A Combined Local and Nonlocal Closure Model for the Atmospheric Boundary Layer. Part I: Model Description and Testing,

Journal of Applied Meteorology and Climatology, 46, 1383–1395, https://doi.org/10.1175/JAM2539.1, 2007.480

Pryor, S. C., Shepherd, T. J., Volker, P. J. H., Hahmann, A. N., and Barthelmie, R. J.: “Wind Theft” from Onshore Wind Turbine

Arrays: Sensitivity to Wind Farm Parameterization and Resolution, Journal of Applied Meteorology and Climatology, 59, 153–174,

https://doi.org/10.1175/JAMC-D-19-0235.1, 2020.

Redfern, S., Olson, J. B., Lundquist, J. K., and Clack, C. T. M.: Incorporation of the Rotor-Equivalent Wind Speed into the Weather Research

and Forecasting Model’s Wind Farm Parameterization, Monthly Weather Review, 147, 1029–1046, https://doi.org/10.1175/MWR-D-18-485

0194.1, 2019.

Rocklin, M.: Dask: Parallel Computation with Blocked Algorithms and Task Scheduling, in: Proceedings of the 14th Python in Science

Conference, vol. 130, p. 136, Citeseer, 2015.

Roubeyrie, L. and Celles, S.: Windrose: A Python Matplotlib, Numpy Library to Manage Wind and Pollution Data, Draw Windrose, Journal

of Open Source Software, 3, 268, https://doi.org/10.21105/joss.00268, 2018.490

Rybchuk, A.: Modeling the Impact of Energy Infrastructure on the Atmospheric Boundary Layer, Ph.D. thesis, 2022.

Sanchez Gomez, M., Lundquist, J. K., Mirocha, J. D., Arthur, R. S., and Muñoz-Esparza, D.: Quantifying Wind Plant Blockage under Stable

Atmospheric Conditions, Wind Energy Science Discussions, pp. 1–21, https://doi.org/10.5194/wes-2021-57, 2021.

Schneemann, J., Theuer, F., Rott, A., Dörenkämper, M., and Kühn, M.: Offshore Wind Farm Global Blockage Measured with Scanning

Lidar, Wind Energy Science, 6, 521–538, https://doi.org/10.5194/wes-6-521-2021, 2021.495

Shaw, W. J., Draxl, C., Mirocha, J. D., Muradyan, P., Ghate, V. P., Optis, M., and Lemke, A.: Workshop on Research Needs for Offshore

Wind Resource Characterization: Summary Report, Tech. rep., Pacific Northwest National Lab.(PNNL), Richland, WA (United States),

2019.

22

https://doi.org/10.5281/zenodo.5579625
https://doi.org/10.2151/jmsj.87.895
https://doi.org/10.1088/1742-6596/753/3/032020
https://doi.org/10.5194/wes-2-211-2017
https://doi.org/10.25923/N9WM-BE49
https://doi.org/10.2172/1677466
https://doi.org/10.1007/s10546-018-0351-9
https://doi.org/10.1175/JAM2539.1
https://doi.org/10.1175/JAMC-D-19-0235.1
https://doi.org/10.1175/MWR-D-18-0194.1
https://doi.org/10.1175/MWR-D-18-0194.1
https://doi.org/10.1175/MWR-D-18-0194.1
https://doi.org/10.21105/joss.00268
https://doi.org/10.5194/wes-2021-57
https://doi.org/10.5194/wes-6-521-2021


Shepherd, T. J., Barthelmie, R. J., and Pryor, S. C.: Sensitivity of Wind Turbine Array Downstream Effects to the Parameterization Used in

WRF, Journal of Applied Meteorology and Climatology, 59, 333–361, https://doi.org/10.1175/JAMC-D-19-0135.1, 2020.500

Siedersleben, S. K., Platis, A., Lundquist, J. K., Djath, B., Lampert, A., Bärfuss, K., Cañadillas, B., Schulz-Stellenfleth, J., Bange, J.,

Neumann, T., and Emeis, S.: Turbulent Kinetic Energy over Large Offshore Wind Farms Observed and Simulated by the Mesoscale

Model WRF (3.8.1), Geoscientific Model Development, 13, 249–268, https://doi.org/10.5194/gmd-13-249-2020, 2020.

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., and Liu, Z.: A Description of the Advanced Research WRF Model Version 4.3,

2021.505

Storm, B. and Basu, S.: The WRF Model Forecast-Derived Low-Level Wind Shear Climatology over the United States Great Plains, Energies,

3, 258–276, https://doi.org/10.3390/en3020258, 2010.

Stull, R. B.: An Introduction to Boundary Layer Meteorology, vol. 13, Springer Science & Business Media, 1988.

Tomaszewski, J. M. and Lundquist, J. K.: Simulated Wind Farm Wake Sensitivity to Configuration Choices in the Weather Research and

Forecasting Model Version 3.8.1, Geoscientific Model Development, 13, 2645–2662, https://doi.org/10.5194/gmd-13-2645-2020, 2020.510
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