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Abstract.

The Weather Research and Forecasting (WRF) model offers a multitude of physics parameterizations to study and analyze

the different atmospheric processes and dynamics that are observed in the Earth’s atmosphere. However, the suitability of a

WRF model setup is known to be highly sensitive to the type of weather phenomena and the type and combination of physics

parameterizations. A multi-event sensitivity analysis is conducted to identify general trends and suitable WRF physics setups5

for 3
::::
three

:
extreme weather events identified to be potentially harmful for the operation and maintenance of wind farms located

in the Belgian offshore concession zone. The events considered are Storm Ciara on 10 February 2020, a low-pressure system

on 24 December 2020, and a trough passage on 27 June 2020. 12 WRF simulations per event are performed to study the effect

of the update interval of lateral boundary conditions and different combinations of physics parameterizations (PBL, cumulus,

and microphysics). Specifically, the update interval of ERA5 lateral boundary conditions is varied between hourly and 3-10

hourly. Physics parameterizations are varied between 3
::::
three PBL schemes (MYNN, scale-aware Shin-Hong, and scale-aware

Zhang), 4
::::
four cumulus schemes (Kain-Fritsch, Grell-Dévényi, scale-aware Grell-Freitas, and multi-scale Kain-Fritsch), and 3

::::
three

:
microphysics schemes (WSM5, Thompson, and Morrison). The simulated wind direction and wind speed are compared

qualitatively and quantitatively (using MAE) to operational SCADA data. Overall, a definitive best-case setup common to all

three events is not identified in this study. For wind direction and wind speed, the best-case setups are identified to employ15

scale-aware PBL schemes. These are most often driven by hourly update intervals of lateral boundary conditions as opposed to

3-hourly, although it is only in the case of storm Ciara that significant differences are observed. Scale-aware cumulus schemes

are identified to produce better results when combined with scale-aware PBL schemes, specifically for Storm Ciara and the

trough passage cases. However, for the low-pressure system case this trend is not observed. No clear trend in utilizing higher-

order microphysics parameterization considering the combinations of WRF setups in this study is found in all cases. Overall,20

the combination of PBL, cumulus, and microphysics schemes is found to be highly sensitive to the type of extreme weather

event. Qualitatively, precipitation fields are found to be highly sensitive to model setup and the type of weather phenomena.
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1 Introduction

Extreme weather phenomena such as low-level jets, fast changes in wind direction, extreme wind shear (Kalverla et al., 2017;

Aird et al., 2021), wind ramps (Gallego-Castillo et al., 2015), and storms (Solari, 2020) are capable of causing severe dynamic25

loading on wind turbines (Negro et al., 2014; AbuGazia et al., 2020; Chi et al., 2020). Furthermore, precipitation associated with

these phenomena can lead to early blade degradation through leading-edge erosion (Law and Koutsos, 2020). As such, these

Extreme Weather Events (EWE
::::::
extreme

:::::::
weather

::::::
events

:::::::
(EWEs) play a significant role in wind turbine operational lifetime

and must be considered at the design stage to ensure safe estimates of ultimate and fatigue loading. Such events may also

cause sudden changes in power production leading to grid imbalance and economic losses. Therefore, accurate modeling30

and forecasting of such EWE
:::::
EWEs are crucial for the operation of onshore and offshore wind farms. Typically, Numerical

Weather Prediction
::::::::
numerical

:::::::
weather

:::::::::
prediction

:
(NWP) models are utilized to identify, study, and analyze such extreme

weather phenomena. Recent developments in NWP models pave the way towards high resolution weather forecasts, thus

enabling operational use for wind energy applications (Dudhia, 2014; Bauer et al., 2015). This study utilizes the public domain

Weather Research and Forecasting - Advanced Research WRF (WRF-ARW) model developed by the National Center for35

Atmospheric Research (Skamarock et al., 2019; Powers et al., 2017). The WRF model represents a multitude of atmospheric

processes and dynamics such as the distribution of fluxes within the Planetary Boundary Layer
::::::::
planetary

::::::::
boundary

:::::
layer

(PBL), the determination of cloud ensembles and compensating subsidence for convective cumulus systems, and the evolution

of hydrometeor species. Therein, an array of physics parameterizations and model parameters are available to adequately

represent a local weather system. Nonetheless, WRF simulations are found to be highly sensitive to the type and combination40

of physics schemes, the location and the type of weather event, and the Lateral Boundary Conditions (LBC
:::::
lateral

::::::::
boundary

::::::::
conditions

::::::
(LBCs).

Sensitivity analyses are typically conducted to identify the optimal combination of physics schemes for a specific location

(see, e.g., Efstathiou et al. 2013; Santos-Alamillos et al. 2013; Kala et al. 2015). This type of investigation has not been per-

formed for the Belgian North Sea. Furthermore, to the authors’ best knowledge, no previous studies have looked at potentially45

harmful EWE
:::::
EWEs from a wind farm perspective as experienced by the machines themselves. Therefore, this sensitivity anal-

ysis aims to address this gap in research. The analysis presented in this paper assesses the impact of a wide range of physics

parameterizations for PBL, cumulus and microphysics, and length of the update interval of LBC
::::
LBCs

:
on the simulated wind

direction and wind speed.

WRF physics parameterizations for
::
the

:
PBL, cumulus, and microphysics comprise a multitude of large-scale and sub-50

grid scale modeling techniques. For
::
the

:
PBL and cumulus, these are primarily divided into scale-aware and non-scale-aware

parameterizations. The scale-aware parameterizations aim to better represent convective and turbulent fluxes at the so-called

gray-zone resolutions, i.e., for refined horizontal grid spacings which are on the verge of allowing partial resolution of these

fluxes rather than fully parameterizing them (Wyngaard, 2004; Hong and Dudhia, 2012). The following paragraphs briefly

discuss the state-of-the-art physics parameterizations of
::
the

:
PBL, cumulus, and microphysics.55
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Concerning the parameterization of boundary-layer turbulence, traditional PBL schemes rely on the assumption of horizontal

homogeneity to redistribute surface fluxes vertically within the atmospheric boundary layer. However, for horizontal grid

spacings of around 1 km or finer, three-dimensional
::
3D

:
atmospheric turbulence becomes partially resolved, violating this

basic assumption employed by classical 1D PBL schemes. The gray-zone modeling challenge for PBL turbulence has led to

the development of scale-aware PBL schemes which partially resolve turbulent mixing at gray-zone resolutions as a function60

of the grid spacing. This work considers 3
::::
three PBL parameterizations: the non-scale-aware 1D Mellor-Yamada-Nakanishi-

Niino (MYNN) scheme, the scale-aware 1D Shin-Hong (SH) scheme, and the scale-aware 3D Zhang scheme. The MYNN

PBL scheme (Nakanishi and Niino, 2006) is a 1D turbulence kinetic energy prediction scheme that solves for a vertical eddy

viscosity profile in a grid column. The SH PBL scheme (Shin and Hong, 2015) is a scale-aware 1D diagnostic non-local

scheme representing non-local transport by large eddies in the atmospheric boundary layer. The SH PBL scheme modifies the65

YSU PBL scheme (Hong et al., 2006) for sub-kilometer transition scales by reducing the strength of the non-local term with

decreasing horizontal grid spacing, assuming gradual resolution of the largest eddies. The Zhang 3D PBL scheme (Zhang et al.,

2018) extends the 3D turbulent kinetic energy based closure by Deardorff (Deardorff, 1980) to gray-zone resolutions, using

partitioning functions derived from a reference large eddy simulation. While the SH PBL scheme has been found to outperform

conventional PBL formulations for desert convective boundary layers (Xu et al., 2018) and for the western Great Plains of the70

United States (Doubrawa and Muñoz-Esparza, 2020), its interaction with cumulus and microphysics options is yet to be tested

for extreme weather in coastal environments featuring strong interaction between PBL and convective cumulus processes.

The cumulus parameterizations represent the ensemble effects of convective clouds with statistical effects of moist convec-

tion and convective rainfall within a grid column. Cumulus schemes are further divided into mass-flux type and adjustment

type. The mass-flux type schemes aim to minimize the convective available potential energy within a grid column by translating75

::::::::
converting

:
it into compensating subsidence, a combination of vertical advection, moisture, and temperature. The current work

considers the Kain-Fritsch (KF), the multi-scale Kain-Fritsch (msKF), the Grell-Dévényi 3D ensemble (GD-3D), and the

scale-aware Grell-Freitas (GF) cumulus schemes, to evaluate the performance of WRF across the convective gray-zone. The

KF cumulus scheme (Kain, 2004) is a commonly used 1D mass-flux type scheme that considers deep and shallow convection.

The scheme includes hydrometeor detrainments from clouds, rain, ice, and snow. The scheme is designed to run at a horizon-80

tal grid spacing of 25 km and coarser. The msKF cumulus scheme (Zheng et al., 2016) updates the KF cumulus scheme to

convective gray-zone resolutions at horizontal grid spacings of 10 km and coarser. The GD-3D cumulus scheme (Grell and

Dévényi, 2002) relies on combining ensemble and data assimilation techniques to represent the local convection and provides

adjustable parameters for further calibration of the scheme. The GF cumulus scheme (Grell and Freitas, 2014) is an adjust-

ment type parameterization that redistributes compensating subsidence derived from GD-3D to neighboring grid cells using a85

Gaussian distribution function and adapts the scale-aware cloud representations from Arakawa et al. (2011). The GF cumulus

scheme is designed and tested for horizontal grid spacings of 5 km and coarser. A study by Jeworrek et al. (2019) highlights

the importance of choosing an appropriate cumulus parameterization to accurately represent precipitation, particularly in the

convective gray-zone.
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Microphysics parameterizations emulate the processes of moisture removal from the atmosphere by modeling hydrometeor90

distributions based on thermodynamic and kinematic fields defined in WRF. These schemes determine the spatial distribution

of precipitation and vertical
::
the

:::
3D

:
distribution of hydrometeor mass and latent heat. The most commonly used microphysics

schemes are the so-called bulk schemes. These constitute a mathematical distribution of hydrometeor number concentration

versus particle size using either a negative exponential or a gamma distribution. Bulk type microphysics parameterizations are

further divided by order of complexity and number of tunable parameters, which define the moments and intercepts used by the95

aforementioned distributions. The microphysics schemes considered for this sensitivity analysis are the WRF Single-Moment

5-class
:::::::
five-class

:
scheme (WSM5) (Hong et al., 2004) representing 5

:::
five classes of hydrometeor species, the Thompson single-

moment (except ice) 6-class
:::::::
six-class scheme (Thompson et al., 2008), and the Morrison double-moment 6-class

:::::::
six-class

scheme (Morrison et al., 2009). In this respect, Hong and Lim (2006) illustrated the advantages in including a greater number

of hydrometeor species in microphysical representations to better predict precipitation fields. Similar results were observed100

in a recent study by Jeworrek et al. (2019), calling for microphysics parameterizations with greater fidelity in hydrometeor

representation. The study finds that higher-order microphysics schemes, such as Morrison and Thompson, in combination with

scale-aware cumulus parameterizations, such as multi-scale KF and GF schemes, accurately reproduce precipitation.

In the context of offshore wind energy applications, various sensitivity studies have been conducted with the aim of deter-

mining a universal best-case WRF setup for assessing the local weather systems (Hahmann et al., 2015; Giannakopoulou and105

Nhili, 2014; Carvalho et al., 2012). Therein, the literature presents equivocal findings from a multitude of sensitivity analyses

conducted at various locations around the planet, illustrating a strong dependence of WRF simulations to the type and combi-

nation of physics parameterizations, the initial and LBC
::::
LBCs, the horizontal and vertical grid spacing, and the location and

type of weather phenomenon. For instance, comparing wind power production to observational data, Hahmann et al. (2015)

study the long-term sensitivity of simulated WRF offshore climatology evaluated against wind LiDAR observations, indicating110

a strong sensitivity to PBL parameterizations and the spin-up period, and an insensitivity to global reanalysis and vertical grid

spacing considered in the WRF model. Similarly, Carvalho et al. (2014) indicate a close dependency on PBL and surface layer

parameterizations studying different physics combinations, that may lead to increased accuracy depending on the prognostic

variables of interest. Cunden et al. (2018) performed a sensitivity analysis considering different combinations of non-scale-

aware PBL, cumulus, and microphysics parameterizations (despite kilometer-range grid spacing) for the island of Mauritius115

under clear and extreme weather. The study was able to identify a best-case WRF setup suitable for accurately simulating both

cases. In contrast, the study by Islam et al. (2015) for the Haiyan tropical cyclone over the west Pacific Ocean did not identity a

suitable combination of WRF physics to best reproduce the extreme weather event. Similarly, for the European continent, stud-

ies by García-Díez et al. (2013), Stergiou et al. (2017), and Mooney et al. (2013) have conducted long-term sensitivity analyses

indicating a wide array of possible combinations of physics parameterizations depending on the type of weather phenomenon,120

the season, and the time period to simulate within the diurnal cycle.

The optimal selection of WRF physics parameterizations remains an important and open challenge to accurately simulate

weather phenomena. The current study quantifies the sensitivity of WRF simulation results to physics parameterizations and

model setup to identify best suitable combinations for modeling 3 EWE
::::
three

:::::
EWEs

:
detected from SCADA data collected at the
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Belgian offshore wind farms. This multi-variant multi-event sensitivity analysis considers 12 physics combinations comprising125

3
::::
three PBL schemes, 4

:::
four cumulus schemes, 3

::::
three

:
microphysics schemes, and hourly versus 3-hourly update intervals of

LBC
:::::
LBCs. The remainder of this article is structured as follows. Firstly, a description of EWE

:::::
EWEs

:
is introduced in Section

::::
Sect. 2. Next, the numerical methodology and modeling setup are introduced in Sect. 3. The simulation results and discussions

are presented in Sect. 4. Lastly, conclusions and future prospects are presented in Sect. 5.

2 Description of the events130

The selection of the events in this study is motivated by the occurrence of fast changes in wind direction accompanied by

severe yaw misalignment leading to significant power loss as observed by a Belgian offshore wind farm in the North Sea.

The methodology utilized to identify these events modifies the approach defined by Hannesdóttir and Kelly (2019) to include

yaw misalignment. The wavelet analysis considers a minimum threshold to identify anomalous changes in wind direction

accompanied by severe yaw misalignment experienced by several wind turbines. Severe yaw misalignment potentially has135

adverse effects on the operational lifetime and fatigue loading of a wind turbine (Wan et al., 2015; Bakhshi and Sandborn,

2016; Laino and Hansen, 1998; Damiani et al., 2018), highlighting its importance and relevance in this study. The SCADA

analysis for the identification of these events includes confidential error codes and data that are protected under a non-disclosure

agreement, therefore no further details can be provided herein.

Three case studies are considered in this sensitivity analysis, namely, Storm Ciara on 10 February 2020, a low-pressure140

system on 24 December 2020, and a trough passage on 27 June 2020. The radar data presented therein
:::::
herein is not publicly

available, but was retrieved through a bilateral agreement with the Royal Meteorological Institute of Belgium (RMI-B). A brief

synopsis of these events is presented in the following sub-sections.

2.1 Case study 1: Storm Ciara

Storm Ciara is
:::
was

:
one of the first extratropical cyclones to hit the European continent in the year 2020, occurring on 10145

February 2020 over the Belgian North Sea. Storm Ciara originated in the Atlantic Ocean, moving from the North American

continent (starting 3 February 2020) to the European continent (16 February 2020). Storm Ciara swept across the majority of

western Europe including the United Kingdom and Norway, bringing in heavy precipitation and strong winds with a maximum

recorded wind gust of 219 km h−1 at Cap Corse, Corsica, France1. Over Belgium, the RMI-B2 reported wind gusts of up to

115 km h−1 in Ostend, located at the Belgian coast, with heavy precipitation accompanied by strong winds and thunderstorms.150

During the early hours of Storm Ciara on 10 February 2020, an offshore wind farm recorded fast changes in wind direction

accompanied by severe yaw misalignment and concentrated rainfall. An RMI-B radar snapshot at 04:40 UTC is presented in

Fig. 1a, illustrating the presence of a bow-echo moving from the British isles
::::
Isles

:
to Belgium, an indication of a possible

micro-burst phenomenon (Fujita, 1978). Synoptic maps by the Royal Netherlands Meteorological Institute (RNMI3) presented

1https://www.meteo-paris.com/actualites/retro-meteo-2020-les-evenements-climatiques-marquants-en-france, website consulted on 21 April 2022.
2https://www.meteo.be/nl/info/nieuwsoverzicht/storm-ciara, website consulted on 21 April 2022.
3https://www.knmi.nl/nederland-nu/klimatologie/daggegevens/weerkaarten, website consulted on 21 April 2022.
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(a) (b) (c)

Figure 1. Observed precipitation rate in mm h−1 provided by a C-band Doppler radar located in Jabbeke on the Belgian coast. The star in

the plots represents the offshore wind farm of interest. For the meteorological events: (a) Storm Ciara on 10 February 2020 at 04:40 UTC.

(b) Low-pressure system on 24 December 2020 at 02:00 UTC. (c) Trough passage on 27 June 2020 at 15:30 UTC.

(a) (b) (c)

Figure 2. Synoptic maps provided by RNMI. (a) Storm Ciara on 10 February 2020 at 06:00 UTC. (b) Low-pressure system on 24 December

2020 at 00:00 UTC. (c) Trough passage on 27 June 2020 at 18:00 UTC.

in Fig. 2a indicate a trough passage during this period. Further, precipitation data from a wind profiler located within the wind155

farm highlights fast changes in wind direction accompanied by sudden precipitation during the period of interest at 04:40 UTC,

presented in Fig. 3.
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Figure 3. Precipitation observed by the offshore wind farm plotted against 10-min averaged wind direction (SCADA data). The highlighted

the period of interest, in green, at 04:40 UTC is observed to accompany sudden precipitation.

2.2 Case study 2: Low-pressure system

On 24 December 2020, the Belgian offshore wind farms observed heavy precipitation accompanied by fast changes in wind

direction. Synoptic maps presented in Fig. 2b indicate the presence of a low-pressure system over the North Sea
::::::
English

:::::::
Channel160

:::
and

:::::::::
Normandy. Radar observations from the RMI-B indicate large precipitation cells over the Belgian North Sea, presented in

Fig. 1b. SCADA data records fast changes in wind direction of 100◦ at 02:00 UTC accompanied by severe yaw misalignment

and precipitation.

2.3 Case study 3: Trough passage

On 27 June 2020, the Belgian offshore wind farms experienced fast changes in wind direction and sudden precipitation during165

the afternoon hours around 15:30 UTC. The synoptic maps provided by the RNMI indicate the presence of a low-pressure sys-

tem over the British Isles, with a trough passage across the Belgian North Sea, presented in Fig. 2c. Radar observation provided

by the RMI-B indicate the presence of precipitation cells over the offshore wind farms, presented in Fig. 1c. The operational

SCADA data records fast changes in wind direction of 60◦ during this hour accompanied by severe yaw misalignment and

precipitation.170

3 Model setup, methodology and performance metrics

This sensitivity study considers the WRF model version 4.2.2 to simulate the case studies described in Sect. 2. The following

sections describe the part of the WRF model setup common to all simulations, individual run setups used in the sensitivity

study, and performance evaluation metrics for comparison to observational data. This evaluation uses operational wind farm

SCADA data for its quantitative analysis of wind direction and wind speed. Additionally, radar data from RMI-B allows for a175
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qualitative perspective on precipitation. By combining these observational datasets, the premise of this study provides a unique

opportunity to investigate EWE
:::::
EWEs

:
as experienced by an offshore wind farm to determine suitable WRF setups in the

specific context of wind energy applications.

3.1 Common model setup

The common model parameters considered for all WRF simulations are summarized in Table 1. The baseline horizontal grid180

spacing of the parent domain d01 is 27 km, while the 1-way
:::::::
one-way nested domains are sequentially refined by a factor of

3
::::
three, resulting in horizontal grid spacings of 9, 3, and 1 km for d02, d03, and d04 respectively. In the vertical direction, 57

terrain following pressure
:::::::::::::
terrain-following

::::::
model

:
levels are considered with a model top pressure at 1000 Pa. The vertical

velocity damping option based on the Courant–Friedrichs–Lewy condition as implemented in WRF is also turned on. A time

step of 20 s is considered for parent domain d01, while the time step of nested domains is sequentially refined by a factor of 3.185

::::
three.

:
The initial and LBC

::::
LBCs

:
are derived from ERA5 reanalysis (Hersbach et al., 2020). WRF simulations were initialized

with a spin-up period of 24 hours for all case studies. In addition, an evaluation period of 21 hours from 00:00 to 21:00 UTC

on 10 February 2020 is considered for Storm Ciara. For the low-pressure system and trough passage, an evaluation period

of 6 h from 00:00 to 06:00 UTC on 24 December 2020 and 6 h from 12:00 to 18:00 UTC on 27 June 2020 are considered,

respectively. The simulations have been performed as a continuous run including spin-up and evaluation periods. Therein, the190

selected evaluation periods adequately capture the time periods of interest for respective case studies as described in Sect. 2.

The one-way nested domain configuration common to all simulations in this study is presented in Fig. 4.

The Rapid Radiative Transfer Model (RRTMG) (Iacono et al., 2008) for longwave and shortwave radiation physics is used

by all simulations. Similarly, the land–surface interactions are defined by the unified Noah land surface model (Tewari et al.,

2004). The PBL, cumulus, and microphysics schemes are varied amongst the mentioned options as described in Table 1.195

3.2 Individual run setups

In order to sufficiently categorize and distinguish the key features of different WRF physics parameterizations and options

available, a combination of different simulation pairs as described in Table 2 are
:
is considered. A total of 12 WRF simulations

are categorized into different simulation pairs (A – J) assigned to variations of
:::
the

:
update interval of LBC,

::
the

::::::
LBCs,

::::
and

::
the

:
PBL, cumulus, and microphysics schemes. For each of the varied parameters, at least 2

:::
two different simulation pairs are200

considered. For example, simulation pairs A and B are assigned to the variation in update interval of the LBC
::::
LBCs. More

specifically, the simulation pairs considered are as follows. The sensitivity to hourly and 3-hourly update intervals of LBC

:::::
LBCs are assessed in simulation pairs A and B. Further, the sensitivity to scale-aware (SH and Zhang) and non-scale-aware

(MYNN) PBL schemes is evaluated in pairs C, D, and E. The sensitivity to scale-aware (msKF and GF) and non-scale-aware

(KF and GD-3D) cumulus parameterizations is evaluated in pairs F, G, and H. Given the convection-permitting resolutions of 3205

km and 1 km for d03 and d04 respectively, the non-scale-aware KF model is explicitly turned off in these domains in simulation

runs 2, 3, 5, and 64. For the scale-aware cumulus models, this explicit deactivation is omitted, as they were specifically designed
4It was verified that this approach resulted in better reproduction of precipitation cells and lower error metrics
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Table 1. WRF model setup and common parameters for all simulation runs. The varied
::::
model

:::::::
settings

:::
and

:
physics parameters

:::::::::::::
parameterizations are highlighted in italics. Scale-aware physics parameterizations are underlined.

Numerical setup

Nested domains (1-way
::::::
one-way nesting) 4

Horizontal grid spacing 27 km (d01)× ,
:
9 km (d02)× ,

:
3 km (d03)× , 1 km (d04)

Terrain following vertical levels 57

Model top pressure 1000 Pa

Time-steps for domain configuration 20 s (d01), 6.67 s (d02), 2.22 s (d03), 0.74 s (d04)

Spin-up period 24 h

Lateral & boundary conditions ERA5 reanalysis

Evaluation time, additional to spin up 21 h (Storm Ciara) and 6 h (Low-pressure system and trough passage)

Boundary update interval 1h / 3h

Physics parametrizations

Radiation RRTMG radiative

Land surface unified Noah land-surface

PBL MYNN / Shin-Hong / Zhang

Microphysics WSM5 / Thompson / Morrison

Cumulus KF / GD-3D / msKF / GF

Figure 4. WRF and WRF Post-processing System (WPS) nested domain configuration (1-way
::::::
one-way

:
nesting) considered common to all

simulation runs in this study.
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for operation on the verge of convection-permitting resolutions (Grell and Freitas, 2014; Zheng et al., 2016; Huang et al., 2020).

The impact of microphysics schemes WSM5, Thompson, and Morrison is illustrated through pairs I and J. Each simulation

pair justifies to serve as independent sets of simulations to judge the influence of a varied WRF parameter.210

Table 2. WRF simulation runs and respective simulation pairs considered for each of the varied parameter in this sensitivity analysis.

Simulation

run#

ERA5 LBCs

updates

PBL

scheme

Cumulus

scheme

Microphysics

scheme

Update

interval

pairs

PBL

pairs

Cumulus

pairs

Microphysics

pairs

1 3 h MYNN msKF WSM5 A

2 3 h SH KF WSM5 B

3 1 h MYNN KF Thompson C

4 1 h MYNN msKF WSM5 A D

5 1 h SH KF WSM5 B F
I

6 1 h SH KF Thompson C G

7 1 h SH msKF WSM5 D F

J8 1 h SH msKF Thompson G

9 1 h SH msKF Morrison

H10 1h SH GD-3D Morrison

11 1 h SH GF Morrison
E

12 1 h Zhang GF Morrison

13 Ensemble average

3.3 Performance metrics and observations

The simulated wind direction and horizontal wind speed are evaluated against 10 minute averaged SCADA data from the

southwestern front row of an offshore wind farm located in the Belgian North Sea. Model accuracy is assessed using a standard

Mean Absolute Error
::::
mean

:::::::
absolute

::::
error

:
(MAE) for wind direction and wind speed. To recover a single performance metric,

MAE of wind direction and wind speed are normalized to the so-called Normalized Euclidean Distance
:::::::::
normalized

:::::::::
Euclidean215

:::::::
distance (NED), given by NED =

√
MAE2

WDn +MAE2
WSn . NED is defined as the resultant of

:::::
square

::::
root

::
of

:::
the

::::
sum

:::
of

::::::
squares

::
of

:
normalized mean absolute error of wind direction MAEWDn and normalized mean absolute error of horizontal

wind speed MAEWSn for all simulation runs. Normalization is performed with the mean over all simulations.

Precipitation fields are qualitatively compared between WRF simulations. The simulated radar reflectivity is converted to

precipitation rate using the Marshall and Palmer relation (Marshall and Palmer, 1948).220

This study also evaluates the performance of an ensemble average compared to single deterministic simulation runs. The

ensemble average is defined as the mean of all simulation runs considered for a given case study. In this study, ensemble mem-

bers are initialized with identical initial conditions from ERA5 reanalysis. Subsequently, variability in the ensemble average

is only caused by the variation in update interval of LBC
:::::
LBCs and physics parameterizations. Therein, the current definition
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of ensemble average differs from traditional ensemble forecasts, where variations in initial conditions are also considered, see,225

e.g., Wilks (2019).

4 Results and Discussion

The following sections
:::
Sect.

:
4.1, 4.2, and 4.3 present results and discussions for the overall trend in simulation results evaluated

against SCADA data for Storm Ciara, the low-pressure system, and the trough passage cases, respectively. The MAE and NED

are presented in performance evaluation tables under each case study. The table sequence is organized in the order of increasing230

complexity of the combination of physics parameterizations and shorter update interval, starting with the longer update interval

of LBC
:::::
LBCs and non-scale-aware physics parameterizations, to scale-aware physics parameterizations with the shorter update

intervals of LBC
:::::
LBCs. Cells are colored based on a set of 5 categories between red and green. Categories are defined to cover

20% of the range between smallest and largest values for the considered metric. In this way, results are categorized into best

(green, with errors in the 20% lowest range), good (light green), average (yellow), poor (light red), and worst (dark red). In235

addition to this high-level assessment of setups, sections
::::
Sect. 4.4, 4.5, and 4.6 discuss simulation pairs addressing the influence

of specific combinations of physics parameterizations and update interval of LBC
:::::
LBCs. The simulated wind direction and wind

speed are quantitatively evaluated against SCADA data. Finally, Sect. 4.7 provides a synthesis of the observations in this study.

4.1 Case: Storm Ciara

The MAE of wind direction, horizontal wind speed, and the NED for the Storm Ciara runs is presented in Table 3. Overall, for240

simulation runs 2 through 12, relatively lower MAE values for wind direction and wind speed are observed, with a maximum

of 9.26◦ and 2.72 m s−1 respectively. Using NED as the evaluation metric, the best-case setup is determined to be simulation

run 7, with a NED value very similar to the ensemble average (< 1 % difference). Run 7 uses the scale-aware SH PBL scheme

coupled with the scale-aware msKF cumulus scheme, single moment 5-class
::::::::
five-class

:
WSM5 microphysics scheme, and

hourly ERA5 lateral boundary condition updates. In a general sense, simulation runs 7 through 10 observe the lowest overall245

NED. These simulation runs consider scale-aware PBL and cumulus parameterizations coupled with hourly update intervals of

LBC
:::::
LBCs. A qualitative analysis of wind direction and wind speed timeseries for all simulation runs highlighting the ensemble

average and the best-case setup is presented in Fig. 5. Compared to the SCADA reference data, the changes in wind direction

are captured reasonably well by all runs, with the ensemble average capturing the general transience of wind direction better

than the best-case setup. However, accurately capturing the variability on wind speed is found to be more challenging, as shown250

by the large spread among different modeling setups in the afternoon and evening hours.

4.2 Case: Low-pressure system

The summary of the performance evaluation metrics for the low-pressure system is presented in Table 4. The best-case setup

is found to be simulation run 2, comprising scale-aware SH PBL coupled with non-scale-aware KF cumulus, WSM5 micro-

physics, and hourly ERA5 reanalysis data as LBC
:::::
LBCs. Unlike the case of Storm Ciara, no trend in better results for simulation255
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Table 3. Performance metrics MAE and NED for wind direction and wind speed from all WRF simulations evaluated against SCADA data

for the case of Storm Ciara. The best-case setup considering NED is simulation run 7. The minimum metric specific values are underlined.

Simulation

run#

ERA LBCs

updates

PBL

scheme

Cumulus

scheme

Microphysics

scheme

Wind direction

MAE (degrees)

Wind speed

MAE (m s−1)

NED

(-)

1 3 h MYNN msKF WSM5 10.46 3.88 2.08

2 3 h SH KF WSM5 8.48 2.57 1.51

3 1 h MYNN KF Thompson 9.26 2.72 1.63

4 1 h MYNN msKF WSM5 8.61 2.54 1.51

5 1 h SH KF WSM5 7.68 2.47 1.41

6 1 h SH KF Thompson 8.37 2.51 1.48

7 1 h SH msKF WSM5 6.59 1.78 1.11

8 1 h SH msKF Thompson 6.69 1.89 1.15

9 1 h SH msKF Morrison 7.17 1.89 1.20

10 1 h SH GD-3D Morrison 5.59 2.25 1.17

11 1 h SH GF Morrison 7.17 2.67 1.43

12 1 h Zhang GF Morrison 8.69 1.84 1.34

13 Ensemble average 5.88 2.04 1.12

(a) (b)

Figure 5. Timeseries plots wind direction and wind speed plotted along with the ensemble average and best-case setup simulation run 7 for

the case of Storm Ciara.
::

The
::::::::

minimum
:::
and

::::::::
maximum

:::::::
envelope

::
of

:::::::
ensemble

::::::::
members

:
is
:::::::::

highlighted
::
in
::::
light

:::
red.

:
(a) Wind direction. (b)

Wind speed.

runs combining scale-aware PBL, scale-aware cumulus, and higher-order microphysics is found (i.e., simulation runs 6 through

10 in Table 4). The overall trend in wind speed MAE results shows simulations using the MYNN PBL scheme, i.e., runs 1, 3,

and 4, to perform poorly. Similar to the case of Storm Ciara, the best-case results are found to be very similar to the ensemble

average, with a relative difference in NED of 3.2 %. However, it must be noted that the ensemble average tends to damp out

the fast changes in wind direction, as plotted in Fig. 6 along with the best-case setup. A qualitative analysis on the timeseries260
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indicates that all simulation runs capture the fast change in wind direction for the period of interest. However, these often

exhibit a time lag compared to SCADA data.

Table 4. Performance metrics MAE and NED for wind direction and wind speed from all WRF simulations evaluated against SCADA

data for the low-pressure system case. The best-case setup considering NED is simulation run 2. The minimum metric specific values are

underlined.

Simulation

run#

ERA LBCs

updates

PBL

scheme

Cumulus

scheme

Microphysics

scheme

Wind direction

MAE (degrees)

Wind speed

MAE (m s−1)

NED

(-)

1 3 h MYNN msKF WSM5 12.58 3.96 1.66

2 3 h SH KF WSM5 10.43 1.77 0.94

3 1 h MYNN KF Thompson 13.17 4.28 1.78

4 1 h MYNN msKF WSM5 12.47 4.40 1.79

5 1 h SH KF WSM5 13.60 2.19 1.20

6 1 h SH KF Thompson 21.92 1.95 1.62

7 1 h SH msKF WSM5 16.92 2.16 1.37

8 1 h SH msKF Thompson 15.74 2.30 1.34

9 1 h SH msKF Morrison 19.81 3.12 1.73

10 1 h SH GD-3D Morrison 15.97 2.32 1.35

11 1 h SH GF Morrison 12.11 2.64 1.25

12 1 h Zhang GF Morrison 15.54 2.15 1.29

13 Ensemble average 10.65 1.85 0.97

(a) (b)

Figure 6. Timeseries plots wind direction and wind speed plotted along with the ensemble average and best-case setup simulation run 2 for

the low-pressure system case.
:::
The

:::::::
minimum

::::
and

:::::::
maximum

:::::::
envelope

::
of
::::::::

ensemble
:::::::
members

::
is

::::::::
highlighted

::
in
::::
light

:::
red.

:
(a) Wind direction.

(b) Wind speed.
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4.3 Case: Trough passage

The performance evaluation metrics for the trough passage are presented in Table 5. Overall, the considered WRF setups are

found to be highly sensitive to the combinations and type of physics parameterizations. Overall, MAE values are found to be265

higher than for the other two cases, indicating that accurately predicting wind direction and wind speed is more challenging

for this particular event. No clear trend in any combinations of the sequence of simulation runs is found, in contrast to Storm

Ciara and the low-pressure system. Interestingly, considering
::
the

::::::::
best-case

:::::
setup

:::
for

:::
the

:::::::::::
low-pressure

::::::
system

::::
case

:::::::::
performed

::
the

:::::
worst

:::
for

:::
the

::::::
trough

:::::::
passage

::::
case.

:::::::::::
Considering NED as the evaluation metric, the best-case setup is observed to be run 12

by a significant margin. Run 12 uses the scale-aware Zhang 3D PBL scheme, the scale-aware GF cumulus scheme coupled270

with Morrison microphysics and hourly ERA5 LBC
::::
LBCs

:
updates. Simulation timeseries including the ensemble average

and best-case setup are presented in Fig. 7. Qualitatively, simulation runs 1 through 11 underpredict the
:::
fast

:::::::
changes

::
in

:
wind

direction for the evaluation period, whereas wind speeds are underpredicted by all runs. Due to the joint poor performance and

persistent offsets compared to SCADA data for all simulations except run 12, the ensemble average does not yield any better

match to the data.275

Table 5. Performance metrics MAE and NED for wind direction and wind speed from all WRF simulations evaluated against SCADA data

for the case of the trough passage. The best-case setup considering NED is simulation run 12. The minimum metric specific values are

underlined.

Simulation

run#

ERA LBCs

updates

PBL

scheme

Cumulus

scheme

Microphysics

scheme

Wind direction

MAE (degrees)

Wind speed

MAE (m s−1)

NED

(-)

1 3 h MYNN msKF WSM5 15.12 4.22 1.39

2 3 h SH KF WSM5 19.27 5.27 1.75

3 1 h MYNN KF Thompson 16.04 3.47 1.32

4 1 h MYNN msKF WSM5 11.64 4.46 1.28

5 1 h SH KF WSM5 17.95 4.51 1.57

6 1 h SH KF Thompson 19.84 4.60 1.68

7 1 h SH msKF WSM5 15.05 5.31 1.57

8 1 h SH msKF Thompson 16.34 5.02 1.58

9 1 h SH msKF Morrison 10.97 3.78 1.13

10 1 h SH GD-3D Morrison 17.73 4.57 1.57

11 1 h SH GF Morrison 15.03 3.87 1.33

12 1 h Zhang GF Morrison 7.43 3.11 0.87

13 Ensemble average 14.77 4.34 1.39

4.4 Update interval of lateral boundary conditions: Simulation pairs A and B

The effect of varying the update interval of ERA5 LBC
::::
LBCs

:
between hourly and 3-hourly is investigated in this section.

Simulation pairs A and B represent 4
:::
four

:
WRF setups for each case study. Figure 8 shows the results for simulation pair

A. Errorbars
::::
Error

::::
bars indicate one standard error of the sample mean. Starting with wind direction (Fig. 8a), hourly update
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(a) (b)

Figure 7. Timeseries plots wind direction and wind speed plotted along with the ensemble average and best-case setup simulation run 2
::
12

for the case of trough passage.
::
The

::::::::
minimum

:::
and

::::::::
maximum

:::::::
envelope

::
of

:::::::
ensemble

:::::::
members

::
is

:::::::::
highlighted

:
in
::::

light
:::
red.

:
(a) Wind direction.

(b) Wind speed.

intervals of ERA5 LBC
:::::
LBCs are observed to perform better for Storm Ciara and the trough passage. For the low-pressure280

system, lower MAE is observed for hourly reanalysis data however, these values lie well within the standard error bars, therefore

leading to inconclusive overall observations
:::::
results. For wind speed (Fig. 8b), a significant improvement on MAE is observed

when hourly reanalysis data is used for Storm Ciara, with a 34 % reduction compared to 3-hourly data. In contrast, for the

low-pressure system and the trough passage, 3-hourly reanalysis data produces lower MAE, however these values lie within

the standard error. Overall, for simulation pair A, a distinction in better performance for hourly reanalysis is observed for Storm285

Ciara, however no significant benefit is observed for the other two cases.

Similarly, Fig. 9 shows the results for simulation pair B. The MAE comparison for wind direction is presented in Fig.

9a, indicating statistically inconclusive results for all cases. Similarly, MAE results for wind speeds are presented in Fig. 9b,

indicating inconclusive results for Storm Ciara and the low-pressure system, yet a better performance with hourly reanalysis

data in the case of the trough passage.290

To summarize the overall inferences from both simulation pairs, hourly updates of LBC
::::
LBCs

:
do not systematically lead to

higher accuracy, although improvements are observed for certain combination of events and wind variables. Therefore, more

frequent updates of LBC
:::::
LBCs may prove advantageous when trying to capture certain fast transient weather events.

4.5 Planetary boundary layer: Simulation pairs C, D, and E

In this section, the influence of using classical non-scale-aware PBL schemes versus scale-aware PBL schemes is elaborated295

in simulation pairs C, D, and E. More specifically, the standard MYNN scheme is compared to the scale-aware 1D SH and

scale-aware 3D Zhang PBL schemes. Simulation pairs C and D compare the influence of MYNN and SH PBL schemes and

simulation pair E compares SH and Zhang PBL schemes.
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(a) (b)

Figure 8. Performance evaluation for simulation pair A considering change in update interval of LBC
::::
LBCs, as described in Table 2.

::::
Error

:::
bars

::::::
indicate

:::
one

:::::::
standard

::::
error

::
of

::
the

::::::
sample

:::::
mean. (a) MAE comparison for wind direction. (b) MAE comparison for wind speed.

(a) (b)

Figure 9. Performance evaluation for simulation pair B considering change in update interval of LBC
::::
LBCs, as described in Table 2.

::::
Error

:::
bars

::::::
indicate

:::
one

:::::::
standard

::::
error

::
of

::
the

::::::
sample

:::::
mean. (a) MAE comparison for wind direction. (b) MAE comparison for wind speed.

Figure 10 presents the consolidated results for simulation pair C. First, considering wind direction MAE (Fig. 10a), the SH

PBL scheme performs better for the case of Storm Ciara. In contrast, for the low-pressure system and the trough passage, the300

MYNN PBL scheme shows better performance. Considering wind speed (Fig. 10b), no conclusive set of inferences are drawn

for the case of Storm Ciara, as the lower MAE by SH lies within the range of the standard error. For the low-pressure system,

the SH PBL scheme outperforms the MYNN scheme in terms of wind speed, reversing the trend found for wind direction. For

the trough passage, MYNN wind speeds outperform SH. Overall, for the simulation pair C, no clear conclusions can be drawn
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for Storm Ciara and the low-pressure system cases. In contrast, better performance by the MYNN PBL scheme is observed for305

the trough passage.

(a) (b)

Figure 10. Performance evaluation for simulation pair C considering a change in PBL scheme, as described in Table 2.
::::
Error

::::
bars

::::::
indicate

:::
one

::::::
standard

::::
error

::
of

:::
the

:::::
sample

:::::
mean. (a) MAE comparison for wind direction. (b) MAE comparison for wind speed.

Figure 11 illustrates MAEs for simulation pair D. Starting with wind direction (Fig. 11a), a clear advantage in utilizing SH

PBL is observed for the case of Storm Ciara. However, this distinction is not observed for the low-pressure system. The MYNN

PBL scheme performs better than the SH PBL scheme for the trough passage. This trend is found similar to simulation pair

C. Considering wind speeds (Fig. 11b), SH outperforms MYNN by a significant margin for the case of Storm Ciara. A similar310

distinction is observed for the low-pressure system. However, similar to pair C, for the trough passage this trend is reversed.

Overall, for the simulation pairs C and D, a distinctly better performance by the SH PBL scheme is observed for the case

of Storm Ciara. However, little to no conclusions can be drawn for the low-pressure system. For the trough passage, better

performance is observed for MYNN PBL scheme.

To further distinguish between scale-aware PBL schemes of different complexity, Figure 12 presents results for simulation315

pair E, comparing the SH and the Zhang PBL schemes. The wind direction MAE results (Fig. 12a) show an advantage in

using SH for the case of Storm Ciara. However, this distinction is not statistically significant for the low-pressure system.

The Zhang PBL scheme outperforms the SH PBL scheme by a significant margin for the trough passage. Considering wind

speed (Fig. 12b), the Zhang scheme outperforms the SH scheme for Storm Ciara and the trough passage. However, this trend

is not statistically significant for the low-pressure system case. The trough passage observes better performance by the Zhang320

PBL scheme. Overall, for simulation pair E, no clear distinction in better performance for both wind direction and wind speed

combined is observed for SH or Zhang PBL schemes for Storm Ciara and the low-pressure system cases. However, for the case

of the trough passage, a clear advantage in using the Zhang PBL scheme is observed.
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(a) (b)

Figure 11. Performance evaluation for simulation pair D considering a change in PBL scheme, as described in Table 2.
::::
Error

::::
bars

::::::
indicate

:::
one

::::::
standard

::::
error

::
of

:::
the

:::::
sample

:::::
mean. (a) MAE comparison for wind direction. (b) MAE comparison for wind speed.

A qualitative comparison of timeseries for the low-pressure system and trough passage cases is presented in Fig. 13b,

indicating better performance by the Zhang PBL scheme to capture the transience in wind direction. However, this qualitative325

advantage is not observed in the case of Storm Ciara (not further plotted here).

(a) (b)

Figure 12. Performance evaluation for simulation pair E considering a change in PBL scheme, as described in Table 2.
::::
Error

::::
bars

::::::
indicate

:::
one

::::::
standard

::::
error

::
of

:::
the

:::::
sample

:::::
mean. (a) MAE comparison for wind direction. (b) MAE comparison for wind speed.

The current results indicate a high sensitivity in wind direction and wind speed relative to the choice in PBL scheme. A

single PBL scheme is not found to outperform the others for all 3
::::
three case studies. The simulation results indicate a possible
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dependency of PBL schemes to cumulus and microphysics parameterizations, which has also been reported in literature by

Hong and Dudhia (2012), Choi and Han (2020), and Chen et al. (2021).330

(a) (b)

Figure 13. Comparison of timeseries considering a change in PBL scheme for simulation pair E. (a) Wind direction plots for low-pressure

system case. (b) Wind direction plots for trough passage case.

4.6 Cumulus and Microphysics: Simulation pairs F, G, H, I, and J

This section presents and discusses the results for cumulus simulation pairs F, G, and H, as well as microphysics simulation

pairs I and J. As these two types of physics schemes both relate to the modeling of precipitation in WRF, they are considered

jointly in this section. A set of 8
::::
eight

:
WRF simulations is considered, covering a combination of 4

:::
four

:
cumulus schemes

(KF, GD-3D, msKF, and GF; the latter two being scale-aware) and 3
::::
three

:
microphysics schemes (WSM5, Thompson, and335

Morrison; in increasing order of modeling complexity).

Figure 14 depicts simulation results for pair F, which uses the SH PBL scheme coupled with the WSM5 microphysics

parameterization while varying the cumulus scheme between KF and msKF. Figure 14 presents the results for MAE of wind

direction and wind speed for all three test cases. Starting with wind direction (Fig. 14a), the msKF simulation produces better

results for the case of Storm Ciara. However, for the low-pressure system case, KF produces lower MAE which lies within340

the standard error bars, disallowing statistically significant conclusions. Similarly, for the trough passage, the msKF scheme

results in a negligible reduction in MAE. Therefore, conclusions can only be drawn in the case of Storm Ciara, indicating

better performance with the msKF scheme on wind direction. Focusing on wind speed (Fig. 14b), again better results for msKF

cumulus scheme are observed for the case of Storm Ciara. For the low-pressure system case both schemes produce similar MAE

values. For the trough passage, KF performs better than msKF, reversing the trend found for wind direction. Summarizing, for345

simulation pair F, the case of Storm Ciara is more accurately predicted by the msKF cumulus scheme in comparison to the KF

scheme. For the low-pressure system and trough passage cases, comparative results are inconclusive.
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The results for simulation pair G are presented in Fig. 15. Pair G applies the SH PBL scheme coupled with the Thompson

microphysics parameterization, while varying the cumulus scheme between KF and msKF. Overall, the current combination

of physics schemes produce similar MAE on wind direction and wind speed compared to simulation pair F. For Storm Ciara,350

msKF produces lower MAE in wind direction and wind speed. For the low-pressure system, no clear trend in performance is

observed. For the trough passage, lower wind direction MAE is observed for msKF and lower wind speed MAE is observed

for KF. Consolidating results for simulation pairs F and G, for the case of Storm Ciara, a clear improvement is observed when

using the scale-aware msKF cumulus scheme, however no conclusive statements can be made for the low-pressure system and

trough passage cases.355

Figure 16 shows results for simulation pair H, which applies the SH PBL scheme coupled with the Morrison microphysics,

while varying the cumulus scheme between msKF, GD-3D, and GF. Starting with wind direction (Fig. 16a), Storm Ciara is

much better captured by the GD-3D cumulus scheme. For the low-pressure system, no such trend in better performance is

observed. For the trough passage, msKF outperforms both GD-3D and GF schemes. Considering wind speed (Fig. 16b), msKF

performs better than GD-3D and GF for Storm Ciara. For the low-pressure system, GD-3D is found to be the best performer.360

For the trough passage, msKF and GF both perform better than GD-3D. However, no distinction is found between msKF and

GF schemes. Summarizing, the overall inferences for the simulation pair H are found to be statistically inconclusive and highly

sensitive, thus one cannot conclude that a specific cumulus parameterization systematically outperforms the others.

(a) (b)

Figure 14. Performance evaluation for simulation pair F considering a change in cumulus scheme, as described in Table 2.
::::
Error

::::
bars

::::::
indicate

:::
one

::::::
standard

::::
error

::
of

:::
the

:::::
sample

:::::
mean. (a) MAE comparison for wind direction. (b) MAE comparison for wind speed.

Simulation pairs I and J focus on the impact of microphysics schemes. Starting with pair I, results are presented in Fig.

17. Pair I uses scale-aware SH PBL coupled with non-scale-aware KF cumulus schemes and varies the microphysics scheme365

between WSM5 and Thompson. Overall, no distinction in better performance by either microphysics schemes
::::::
scheme

:
consid-

ering MAE of wind direction and wind speed is observed (Fig. 17a & 17b). For Storm Ciara and the trough passage EWE
:::::
EWEs,
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(a) (b)

Figure 15. Performance evaluation for simulation pair G considering a change in cumulus scheme, as described in Table 2.
::::
Error

::::
bars

::::::
indicate

:::
one

::::::
standard

::::
error

::
of

:::
the

:::::
sample

:::::
mean. (a) MAE comparison for wind direction. (b) MAE comparison for wind speed.

(a) (b)

Figure 16. Performance evaluation for simulation pair G considering a change in cumulus scheme, as described in Table 2.
::::
Error

::::
bars

::::::
indicate

:::
one

::::::
standard

::::
error

::
of

:::
the

:::::
sample

:::::
mean. (a) MAE comparison for wind direction. (b) MAE comparison for wind speed.

wind speed and wind direction MAE are found to be insensitive to the variation in microphysics schemes. However, this trend

is not clear for the case of the low-pressure system, where the Thompson scheme is found to produce different MAE of wind

direction, with significantly larger error margins (Fig. 17a & 17b). However, when comparing the combination of cumulus370

schemes to microphysics setups, more specifically, the combination of WSM5 + KF to Thompson + KF/msKF (Fig. 14a and

Fig. 15a), lower MAE of wind direction are observed for Thompson microphysics when combined with the scale-aware msKF
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cumulus scheme. However, this trend is reversed for WSM5 + msKF cumulus schemes. This appears to highlighting
::::::::
highlight

::::::::::
case-to-case

::::::::
variability

::
in
::::
skill

::::
and the importance of a suitable

::
the

:
combination of cumulus and microphysics schemes.

Results for simulation pair J, which applies SH PBL with msKF cumulus schemes and varies WSM5, Thompson and375

Morrison microphysics schemes, are presented in Fig. 18. Considering MAE of wind direction (Fig. 18a), for the case of Storm

Ciara and low-pressure system, a clear distinction in the performance of different microphysics schemes is not observed. For the

case of trough passage, Morrison microphysics perform better in
::
by comparison. For wind speed MAE (Fig. 18b), Storm Ciara

shows similar results as for wind direction. For the low-pressure system, WSM5 and Thompson produce better wind speed

than Morrison. For the trough passage, Morrison outperforms WSM5 and Thompson microphysics. Overall, for simulation380

pair J, Storm Ciara shows an insensitivity to the variation of microphysics schemes. For the low-pressure system, no clear trend

in better performance is observed, whereas a clear advantage in using the more complex Morrison scheme is observed in the

trough passage case.

(a) (b)

Figure 17. Performance evaluation for simulation pair I considering change in microphysics schemes, as described in Table 2.
::::
Error

::::
bars

::::::
indicate

:::
one

::::::
standard

::::
error

::
of

:::
the

:::::
sample

:::::
mean.

:
(a) MAE comparison for wind direction. (b) MAE comparison for wind speed.

4.7 Discussion

The previous sections investigated the individual influence of varying a single physics parameterization in the modeling chain385

on the accuracy of the match between WRF simulation results and observational data when subject to 3 unique
::::
three

:::::
EWE

case studies. A clear trend in improved performance with higher model complexity common to all case studies is not found.

When looking at the update interval of LBC
:::::
LBCs, the qualitative differences in hourly and 3-hourly update intervals are

found to be marginal. The quantitative indicators show a unanimous improvement for the case of Storm Ciara . (see Fig. 8 &

9). However, for the low-pressure system and the trough passage this distinction is not so evident.390
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(a) (b)

Figure 18. Performance evaluation for simulation pair J considering change in microphysics schemes, as described in Table 2.
::::
Error

::::
bars

::::::
indicate

:::
one

::::::
standard

::::
error

::
of

:::
the

:::::
sample

:::::
mean.

:
(a) MAE comparison for wind direction. (b) MAE comparison for wind speed.

The variation in PBL scheme results in highly sensitive metrics for all 3
::::
three

:
case studies. For the case of Storm Ciara, a

clear advantage in using scale-aware SH PBL in comparison to non-scale-aware MYNN PBL is observed (see Figs. 10 & 11).

However, this trend is not evident for the case of the low-pressure system and the trough passage. When comparing scale-aware

schemes of different fidelity, more specifically Zhang PBL and SH PBL, a promising trend is observed in which the higher

complexity Zhang PBL leads to a better match with SCADA data for the trough passage case (Fig. 13). However, this trend is395

not observed
:::::
found for Storm Ciara and the low-pressure system. Furthermore, considering wind speeds, the Zhang PBL run

is either the best setup (cold front) or results in MAE very close to the best setup (Storm Ciara and low-pressure system). In

contrast, the Zhang PBL setup results in higher wind direction errors for Storm Ciara and the low-pressure system cases.

Regarding the cumulus and microphysics simulation pairs, the combination of cumulus and microphysics is observed to

have more impact on MAE of wind direction in comparison to variation in stand-alone cumulus or microphysics schemes. This400

is highlighted by Storm Ciara and the low-pressure system, where the change in microphysics schemes in combination with

msKF cumulus results in marginal changes in MAE (see Fig. 18). However, when comparing the combinations of lower order

:::::::::
lower-order

:
microphysics with scale-aware and non-scale-aware cumulus schemes for wind direction, i.e., WSM5/Thompson

+ KF/msKF, results indicate an overall reduction in MAE for Thompson + msKF (see Fig. 14a & 15a). This observation
:::::
These

:::::
results

:
potentially indicates scale-aware cumulus schemes to be more compatible with higher-order microphysics schemes. The405

performance of cumulus and microphysics schemes is found to be strongly dependent on the type of weather phenomenon.

A qualitative perspective on precipitation indicates all WRF simulations to be highly sensitive to the combination of physics

schemes and type of EWE. The qualitative analysis yielded little to no conclusions on the precipitation modeling fidelity of

the considered WRF physics setups in this study. As an example, the results for the case of Storm Ciara are presented in Fig.

19.
::::::::
Indicating

:::
the

:::::::::
variability

::
in

:::::
WRF

::::::::::
simulations. A direct quantitative comparison of simulated reflectivity and observed raw410
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radar fields using, e.g., tools for comparing gridded observations such as MODE (Newman et al., 2022),
:
is impeded by the lack

of filtering and post-processing information on the latter raw
:::
raw

:::::
radar

::::::::::
observation data. Therefore, a quantitative assessment

of precipitation modeling is out of scope of the current paper and left for future work.

(a) Contours of WRF precipitation rate in

mm h−1 for the case of Storm Ciara on 10

February 2020 at 04:40 UTC. The plots are

presented for cumulus simulation pair H for

domain d04. The star in the plots represents

the offshore wind farm of interest. (b) (c)

Figure 19.
:::::::
Contours

::
of

:::::
WRF

:::::::::
precipitation

:::
rate

::
in
::::
mm

:::
h−1

:::
for

:::
the

:::
case

::
of

:::::
Storm

:::::
Ciara

::
on

::
10

:::::::
February

::::
2020

::
at
:::::
04:40

:::::
UTC.

:::
The

::::
plots

:::
are

:::::::
presented

:::
for

::::::
cumulus

::::::::
simulation

::::
pair

:
H
:::
for

::::::
domain

::::
d04.

:::
The

:::
star

::
in

:::
the

::::
plots

:::::::
represents

:::
the

:::::::
offshore

::::
wind

::::
farm

::
of

::::::
interest.

::
(a)

:::::::::
Simulation

::
run

::
9:
:::
1h

::
SH

:::::
msKF

::::::::
Morrison,

::
on

::
10

:::::::
February

:::::
2020

:
at
:::::
04:40

::::
UTC

:::
(b)

::::::::
Simulation

:::
run

:::
10:

::
1h

:::
SH

::::::
GD-3D

:::::::
Morrison,

:::
on

::
10

:::::::
February

::::
2020

::
at

::::
04:40

::::
UTC

:::
(c)

::::::::
Simulation

:::
run

:::
11:

::
1h

:::
SH

::
GF

::::::::
Morrison,

::
on

::
10

:::::::
February

::::
2020

::
at
:::::
04:40

::::
UTC.

:

Finally, the ensemble average (as defined in Sect. 3.3) is observed to rank very similar to the best-case model setup (see Table

3 & 4) for the cases of Storm Ciara and the low-pressure system. However, the fast changes in wind direction are dampened415

by the ensemble averaging (see Fig. 5 & 6). For the trough passage, the ensemble averaging performs poorly compared to the

best-case setup by a significant margin (Table 5), caused by a persistent offset by all but the best-case setup.

5 Conclusions and recommendations

The complexity in determining an optimal combination of physics setup for the operational use of the WRF model in the frame

of wind energy applications over the Belgian North Sea is analyzed in this study. A multi-event sensitivity analysis for WRF420

NWP model is performed considering three extreme weather events: Storm Ciara on 10 February 2020, a low-pressure system
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on 24 December 2020 and a trough passage on 27 June 2020. These events have been identified to be potentially harmful for

the operation of offshore wind farms. The events resulted in fast changes in wind direction leading to severe yaw misalignment

of the turbines, with the potential to result in significant off-design turbine load cases and variability in power production. This

sensitivity analysis utilizes operational wind farm data (SCADA) for evaluating WRF simulated wind direction and wind speed425

results. In addition, the simulated precipitation is qualitatively compared to radar data from RMI-B.
::::::::::
Qualitatively

:::::::::::
precipitation

:::::
results

:::
are

::::::
found

::
to

:::
be

:::::
highly

::::::::
sensitive

::
to
::::::

model
:::::
setup

::::
and

::::
type

::
of

::::::
EWE.

:::
No

:::::
clear

:::::::
tendency

:::::::
towards

::::::
better

:::::::
accuracy

:::::
with

::::::::
increased

:::::::::
complexity

::
of

:::::::::::::::
parameterizations

::
is

::::::
found. This sensitivity study analyses the impact of

::
the

:
update interval of LBC

::
the

::::::
LBCs and sub-grid scale modeling techniques used for

:::
the PBL, cumulus, and microphysics parameterizations.

The results of this sensitivity analysis indicate WRF simulations to be highly sensitive to the type of event and the com-430

bination of physics parameterizations. Starting with the variation in update interval of LBC
::::
LBCs, overall better performance

for hourly update interval of LBC
:::::
LBCs is observed for the case of Storm Ciara. However, for the low-pressure system and

trough passage cases no such trend is observed. In general, WRF simulations comprising scale-aware PBL physics schemes

appear to perform better in comparison to non-scale-aware physics schemes, as the best-case setups for all three events fea-

ture scale-aware PBL schemes. Concerning cumulus and microphysics parameterizations, the suitable combination of cumulus435

and microphysics is observed to be highly dependent and sensitive to the type of weather phenomenon. The combination of

schemes is observed to have more impact than a stand-alone variation for either of these events.

Overall, in view of modeling local wind direction and wind speed at the location of the farms, three independent best-case

setups are identified for the three case studies. A single best WRF model setup for both wind direction and wind speed for all

three case studies is not found.
:::
The

::::::
results

:::::::
indicate

::::
little

::::::::::
consistency

::::::
across

:::
the

::::
three

::::::
EWEs

:::
for

:::::::
different

::::::::::::::::
parameterizations.440

For the case of Storm Ciara, the best-case setup is identified to combine
::
the

:
scale-aware SH PBL scheme coupled with

:::
the

scale-aware msKF cumulus parameterization and 5-class
:::::::
five-class

:
single moment WSM5 microphysics. For the low-pressure

system, the best-case setup combines, scale-aware SH PBL, non-scale-aware KF cumulus, and WSM5 microphysics schemes.

For the trough passage, the best-case setup is identified to combine, scale-aware Zhang 3D PBL, scale-aware GF cumulus, and

6-class
:::::::
six-class

:
double moment Morrison microphysics schemes. The best-case setups for all cases utilize hourly reanalysis445

dataset as the LBC
::::
LBCs

:
and scale-aware PBL schemes.

::::
This

:::::::
pointing

::
to

:::
the

:::::
need

::
for

:::::
more

::::::
robust

:::::::
statistics

::::
and

:::::
much

:::::
larger

::::::
sample

::::
sizes

:::
of

::::::
physics

:::::::::::::::
parameterizations

::::
and

:::::::::
evaluation

:::::
period

::
to
:::::

draw
:::::
more

::::::::
confident

::::::::::
conclusions

:::
on

:::
the

::::::::
best-case

:::::
setup

:::::
under

:::::::
different

::::::
EWEs.

An interesting area of further research would be to perform similar sensitivity studies at finer sub-kilometer resolutions

including recent advancements such as three-dimensional
:::
3D scale-aware PBL schemes (Zhang et al., 2018; Senel et al.,450

2020). Furthermore, expanding the sensitivity analysis to include events such as a dunkelflaute (Li et al., 2021) and wind

ramps (Gallego-Castillo et al., 2015) will allow a broader assessment of EWE modeling relevant to wind energy. Also, a

quantitative assessment of ground-level precipitation modeling with local precipitation measurements from disdrometers and

tipping buckets is of general interest to assess, e.g., the risk of leading edge erosion of wind turbine blades (Law and Koutsos,

2020).455
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