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Abstract.

The Weather Research and Forecasting (WRF) model offers a multitude of physics parameterizations to study and analyze

the different atmospheric processes and dynamics that are observed in the Earth’s atmosphere. However, the suitability of a

WRF model setup is known to be highly sensitive to the type of weather phenomena and the type and combination of physics

parameterizations. A multi-event sensitivity analysis is conducted to identify general trends and suitable WRF physics setups5

for three extreme weather events identified to be potentially harmful for the operation and maintenance of wind farms located

in the Belgian offshore concession zone. The events considered are Storm Ciara on 10 February 2020, a low-pressure system

on 24 December 2020, and a trough passage on 27 June 2020. 12 WRF simulations per event are performed to study the effect

of the update interval of lateral boundary conditions and different combinations of physics parameterizations (PBL, cumulus,

and microphysics). Specifically, the update interval of ERA5 lateral boundary conditions is varied between hourly and 3-10

hourly. Physics parameterizations are varied between three PBL schemes (MYNN, scale-aware Shin-Hong, and scale-aware

Zhang), four cumulus schemes (Kain-Fritsch, Grell-Dévényi, scale-aware Grell-Freitas, and multi-scale Kain-Fritsch), and

three microphysics schemes (WSM5, Thompson, and Morrison). The simulated wind direction and wind speed are compared

qualitatively and quantitatively (using MAE) to operational SCADA data. Overall, a definitive best-case setup common to all

three events is not identified in this study. For wind direction and wind speed, the best-case setups are identified to employ15

scale-aware PBL schemes. These are most often driven by hourly update intervals of lateral boundary conditions as opposed to

3-hourly, although it is only in the case of storm Ciara that significant differences are observed. Scale-aware cumulus schemes

are identified to produce better results when combined with scale-aware PBL schemes, specifically for Storm Ciara and the

trough passage cases. However, for the low-pressure system case this trend is not observed. No clear trend in utilizing higher-

order microphysics parameterization considering the combinations of WRF setups in this study is found in all cases. Overall,20

the combination of PBL, cumulus, and microphysics schemes is found to be highly sensitive to the type of extreme weather

event. Qualitatively, precipitation fields are found to be highly sensitive to model setup and the type of weather phenomena.
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1 Introduction

Extreme weather phenomena such as low-level jets, fast changes in wind direction, extreme wind shear (Kalverla et al., 2017;

Aird et al., 2021), wind ramps (Gallego-Castillo et al., 2015), and storms (Solari, 2020) are capable of causing severe dynamic25

loading on wind turbines (Negro et al., 2014; AbuGazia et al., 2020; Chi et al., 2020). Furthermore, precipitation associated

with these phenomena can lead to early blade degradation through leading-edge erosion (Law and Koutsos, 2020). As such,

these extreme weather events (EWEs) play a significant role in wind turbine operational lifetime and must be considered

at the design stage to ensure safe estimates of ultimate and fatigue loading. Such events may also cause sudden changes in

power production leading to grid imbalance and economic losses. Therefore, accurate modeling and forecasting of such EWEs30

are crucial for the operation of onshore and offshore wind farms. Typically, numerical weather prediction (NWP) models are

utilized to identify, study, and analyze such extreme weather phenomena. Recent developments in NWP models pave the way

towards high resolution weather forecasts, thus enabling operational use for wind energy applications (Dudhia, 2014; Bauer

et al., 2015). This study utilizes the public domain Weather Research and Forecasting - Advanced Research WRF (WRF-ARW)

model developed by the National Center for Atmospheric Research (Skamarock et al., 2019; Powers et al., 2017). The WRF35

model represents a multitude of atmospheric processes and dynamics such as the distribution of fluxes within the planetary

boundary layer (PBL), the determination of cloud ensembles and compensating subsidence for convective cumulus systems,

and the evolution of hydrometeor species. Therein, an array of physics parameterizations and model parameters are available

to adequately represent a local weather system. Nonetheless, WRF simulations are found to be highly sensitive to the type and

combination of physics schemes, the location and the type of weather event, and the lateral boundary conditions (LBCs).40

Sensitivity analyses are typically conducted to identify the optimal combination of physics schemes for a specific location

(e.g., Efstathiou et al. 2013; Santos-Alamillos et al. 2013; Kala et al. 2015). This type of investigation has not been performed

for the Belgian North Sea. Furthermore, to the authors’ best knowledge, no previous studies have looked at potentially harmful

EWEs from a wind farm perspective as experienced by the machines themselves. Therefore, this sensitivity analysis aims to

address this gap in research. The analysis presented in this paper assesses the impact of a wide range of physics parameteriza-45

tions for PBL, cumulus and microphysics, and length of the update interval of LBCs on the simulated wind direction and wind

speed.

WRF physics parameterizations for the PBL, cumulus, and microphysics comprise a multitude of large-scale and sub-

grid scale modeling techniques. For the PBL and cumulus, these are primarily divided into scale-aware and non-scale-aware

parameterizations. The scale-aware parameterizations aim to better represent convective and turbulent fluxes at the so-called50

gray-zone resolutions, i.e., for refined horizontal grid spacings which are on the verge of allowing partial resolution of these

fluxes rather than fully parameterizing them (Wyngaard, 2004; Hong and Dudhia, 2012). The following paragraphs briefly

discuss the state-of-the-art physics parameterizations of the PBL, cumulus, and microphysics.

Concerning the parameterization of boundary-layer turbulence, traditional PBL schemes rely on the assumption of horizontal

homogeneity to redistribute surface fluxes vertically within the atmospheric boundary layer. However, for horizontal grid55

spacings of around 1 km or finer, 3D atmospheric turbulence becomes partially resolved, violating this basic assumption
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employed by classical 1D PBL schemes. The gray-zone modeling challenge for PBL turbulence has led to the development of

scale-aware PBL schemes which partially resolve turbulent mixing at gray-zone resolutions as a function of the grid spacing.

This work considers three PBL parameterizations: the non-scale-aware 1D Mellor-Yamada-Nakanishi-Niino (MYNN) scheme,

the scale-aware 1D Shin-Hong (SH) scheme, and the scale-aware 3D Zhang scheme. The MYNN PBL scheme (Nakanishi and60

Niino, 2006) is a 1D turbulence kinetic energy prediction scheme that solves for a vertical eddy viscosity profile in a grid

column. The SH PBL scheme (Shin and Hong, 2015) is a scale-aware 1D diagnostic non-local scheme representing non-local

transport by large eddies in the atmospheric boundary layer. The SH PBL scheme modifies the YSU PBL scheme (Hong et al.,

2006) for sub-kilometer transition scales by reducing the strength of the non-local term with decreasing horizontal grid spacing,

assuming gradual resolution of the largest eddies. The Zhang 3D PBL scheme (Zhang et al., 2018) extends the 3D turbulent65

kinetic energy based closure by Deardorff (Deardorff, 1980) to gray-zone resolutions, using partitioning functions derived from

a reference large eddy simulation. While the SH PBL scheme has been found to outperform conventional PBL formulations

for desert convective boundary layers (Xu et al., 2018) and for the western Great Plains of the United States (Doubrawa and

Muñoz-Esparza, 2020), its interaction with cumulus and microphysics options is yet to be tested for extreme weather in coastal

environments featuring strong interaction between PBL and convective cumulus processes.70

The cumulus parameterizations represent the ensemble effects of convective clouds with statistical effects of moist convec-

tion and convective rainfall within a grid column. Cumulus schemes are further divided into mass-flux type and adjustment

type. The mass-flux type schemes aim to minimize the convective available potential energy within a grid column by converting

it into compensating subsidence, a combination of vertical advection, moisture, and temperature. The current work considers

the Kain-Fritsch (KF), the multi-scale Kain-Fritsch (msKF), the Grell-Dévényi 3D ensemble (GD-3D), and the scale-aware75

Grell-Freitas (GF) cumulus schemes, to evaluate the performance of WRF across the convective gray-zone. The KF cumulus

scheme (Kain, 2004) is a commonly used 1D mass-flux type scheme that considers deep and shallow convection. The scheme

includes hydrometeor detrainments from clouds, rain, ice, and snow. The scheme is designed to run at a horizontal grid spacing

of 25 km and coarser. The msKF cumulus scheme (Zheng et al., 2016) updates the KF cumulus scheme to convective gray-zone

resolutions at horizontal grid spacings of 10 km and coarser. The GD-3D cumulus scheme (Grell and Dévényi, 2002) relies on80

combining ensemble and data assimilation techniques to represent the local convection and provides adjustable parameters for

further calibration of the scheme. The GF cumulus scheme (Grell and Freitas, 2014) is an adjustment type parameterization that

redistributes compensating subsidence derived from GD-3D to neighboring grid cells using a Gaussian distribution function

and adapts the scale-aware cloud representations from Arakawa et al. (2011). The GF cumulus scheme is designed and tested

for horizontal grid spacings of 5 km and coarser. A study by Jeworrek et al. (2019) highlights the importance of choosing an85

appropriate cumulus parameterization to accurately represent precipitation, particularly in the convective gray-zone.

Microphysics parameterizations emulate the processes of moisture removal from the atmosphere by modeling hydrometeor

distributions based on thermodynamic and kinematic fields defined in WRF. These schemes determine the spatial distribution of

precipitation and the 3D distribution of hydrometeor mass and latent heat. The most commonly used microphysics schemes are

the so-called bulk schemes. These constitute a mathematical distribution of hydrometeor number concentration versus particle90

size using either a negative exponential or a gamma distribution. Bulk type microphysics parameterizations are further divided
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by order of complexity and number of tunable parameters, which define the moments and intercepts used by the aforementioned

distributions. The microphysics schemes considered for this sensitivity analysis are the WRF Single-Moment five-class scheme

(WSM5) (Hong et al., 2004) representing five classes of hydrometeor species, the Thompson single-moment (except ice) six-

class scheme (Thompson et al., 2008), and the Morrison double-moment six-class scheme (Morrison et al., 2009). In this95

respect, Hong and Lim (2006) illustrated the advantages in including a greater number of hydrometeor species in microphysical

representations to better predict precipitation fields. Similar results were observed in a recent study by Jeworrek et al. (2019),

calling for microphysics parameterizations with greater fidelity in hydrometeor representation. The study finds that higher-

order microphysics schemes, such as Morrison and Thompson, in combination with scale-aware cumulus parameterizations,

such as multi-scale KF and GF schemes, accurately reproduce precipitation.100

In the context of offshore wind energy applications, various sensitivity studies have been conducted with the aim of deter-

mining a universal best-case WRF setup for assessing the local weather systems (Hahmann et al., 2015; Giannakopoulou and

Nhili, 2014; Carvalho et al., 2012). Therein, the literature presents equivocal findings from a multitude of sensitivity analyses

conducted at various locations around the planet, illustrating a strong dependence of WRF simulations to the type and combi-

nation of physics parameterizations, the initial and LBCs, the horizontal and vertical grid spacing, and the location and type of105

weather phenomenon. For instance, comparing wind power production to observational data, Hahmann et al. (2015) study the

long-term sensitivity of simulated WRF offshore climatology evaluated against wind LiDAR observations, indicating a strong

sensitivity to PBL parameterizations and the spin-up period, and an insensitivity to global reanalysis and vertical grid spacing

considered in the WRF model. Similarly, Carvalho et al. (2014) indicate a close dependency on PBL and surface layer parame-

terizations studying different physics combinations, that may lead to increased accuracy depending on the prognostic variables110

of interest. Cunden et al. (2018) performed a sensitivity analysis considering different combinations of non-scale-aware PBL,

cumulus, and microphysics parameterizations (despite kilometer-range grid spacing) for the island of Mauritius under clear

and extreme weather. The study was able to identify a best-case WRF setup suitable for accurately simulating both cases. In

contrast, the study by Islam et al. (2015) for the Haiyan tropical cyclone over the west Pacific Ocean did not identity a suitable

combination of WRF physics to best reproduce the extreme weather event. Similarly, for the European continent, studies by115

García-Díez et al. (2013), Stergiou et al. (2017), and Mooney et al. (2013) have conducted long-term sensitivity analyses indi-

cating a wide array of possible combinations of physics parameterizations depending on the type of weather phenomenon, the

season, and the time period to simulate within the diurnal cycle.

The optimal selection of WRF physics parameterizations remains an important and open challenge to accurately simulate

weather phenomena. The current study quantifies the sensitivity of WRF simulation results to physics parameterizations and120

model setup to identify best suitable combinations for modeling three EWEs detected from SCADA data collected at the

Belgian offshore wind farms. This multi-variant multi-event sensitivity analysis considers 12 physics combinations comprising

three PBL schemes, four cumulus schemes, three microphysics schemes, and hourly versus 3-hourly update intervals of LBCs.

The remainder of this article is structured as follows. Firstly, a description of EWEs is introduced in Sect. 2. Next, the numerical

methodology and modeling setup are introduced in Sect. 3. The simulation results and discussions are presented in Sect. 4.125

Lastly, conclusions and future prospects are presented in Sect. 5.
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2 Description of the events

The selection of the events in this study is motivated by the occurrence of fast changes in wind direction accompanied by

severe yaw misalignment leading to significant power loss as observed by a Belgian offshore wind farm in the North Sea.

The methodology utilized to identify these events modifies the approach defined by Hannesdóttir and Kelly (2019) to include130

yaw misalignment. The wavelet analysis considers a minimum threshold to identify anomalous changes in wind direction

accompanied by severe yaw misalignment experienced by several wind turbines. Severe yaw misalignment potentially has

adverse effects on the operational lifetime and fatigue loading of a wind turbine (Wan et al., 2015; Bakhshi and Sandborn,

2016; Laino and Hansen, 1998; Damiani et al., 2018), highlighting its importance and relevance in this study. The SCADA

analysis for the identification of these events includes confidential error codes and data that are protected under a non-disclosure135

agreement, therefore no further details can be provided herein.

Three case studies are considered in this sensitivity analysis, namely, Storm Ciara on 10 February 2020, a low-pressure

system on 24 December 2020, and a trough passage on 27 June 2020. The radar data presented herein is not publicly available,

but was retrieved through a bilateral agreement with the Royal Meteorological Institute of Belgium (RMI-B). A brief synopsis

of these events is presented in the following sub-sections.140

2.1 Case study 1: Storm Ciara

Storm Ciara was one of the first extratropical cyclones to hit the European continent in the year 2020, occurring on 10 February

2020 over the Belgian North Sea. Storm Ciara originated in the Atlantic Ocean, moving from the North American continent

(starting 3 February 2020) to the European continent (16 February 2020). Storm Ciara swept across the majority of western

Europe including the United Kingdom and Norway, bringing in heavy precipitation and strong winds with a maximum recorded145

wind gust of 219 km h−1 at Cap Corse, Corsica, France1. Over Belgium, the RMI-B2 reported wind gusts of up to 115 km h−1

in Ostend, located at the Belgian coast, with heavy precipitation accompanied by strong winds and thunderstorms.

During the early hours of Storm Ciara on 10 February 2020, an offshore wind farm recorded fast changes in wind direction

accompanied by severe yaw misalignment and concentrated rainfall. An RMI-B radar snapshot at 04:40 UTC is presented in

Fig. 1a, illustrating the presence of a bow-echo moving from the British Isles to Belgium, an indication of a possible micro-150

burst phenomenon (Fujita, 1978). Synoptic maps by the Royal Netherlands Meteorological Institute (RNMI3) presented in Fig.

2a indicate a trough passage during this period. Further, precipitation data from a wind profiler located within the wind farm

highlights fast changes in wind direction accompanied by sudden precipitation during the period of interest at 04:40 UTC,

presented in Fig. 3.

1https://www.meteo-paris.com/actualites/retro-meteo-2020-les-evenements-climatiques-marquants-en-france, website consulted on 21 April 2022.
2https://www.meteo.be/nl/info/nieuwsoverzicht/storm-ciara, website consulted on 21 April 2022.
3https://www.knmi.nl/nederland-nu/klimatologie/daggegevens/weerkaarten, website consulted on 21 April 2022.
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(a) (b) (c)

Figure 1. Observed precipitation rate in mm h−1 provided by a C-band Doppler radar located in Jabbeke on the Belgian coast. The star in

the plots represents the offshore wind farm of interest. For the meteorological events: (a) Storm Ciara on 10 February 2020 at 04:40 UTC.

(b) Low-pressure system on 24 December 2020 at 02:00 UTC. (c) Trough passage on 27 June 2020 at 15:30 UTC.

(a) (b) (c)

Figure 2. Synoptic maps provided by RNMI. (a) Storm Ciara on 10 February 2020 at 06:00 UTC. (b) Low-pressure system on 24 December

2020 at 00:00 UTC. (c) Trough passage on 27 June 2020 at 18:00 UTC.

2.2 Case study 2: Low-pressure system155

On 24 December 2020, the Belgian offshore wind farms observed heavy precipitation accompanied by fast changes in wind

direction. Synoptic maps presented in Fig. 2b indicate the presence of a low-pressure system over the English Channel and
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Figure 3. Precipitation observed by the offshore wind farm plotted against 10-min averaged wind direction (SCADA data). The highlighted

the period of interest, in green, at 04:40 UTC is observed to accompany sudden precipitation.

Normandy. Radar observations from the RMI-B indicate large precipitation cells over the Belgian North Sea, presented in Fig.

1b. SCADA data records fast changes in wind direction of 100◦ at 02:00 UTC accompanied by severe yaw misalignment and

precipitation.160

2.3 Case study 3: Trough passage

On 27 June 2020, the Belgian offshore wind farms experienced fast changes in wind direction and sudden precipitation during

the afternoon hours around 15:30 UTC. The synoptic maps provided by the RNMI indicate the presence of a low-pressure sys-

tem over the British Isles, with a trough passage across the Belgian North Sea, presented in Fig. 2c. Radar observation provided

by the RMI-B indicate the presence of precipitation cells over the offshore wind farms, presented in Fig. 1c. The operational165

SCADA data records fast changes in wind direction of 60◦ during this hour accompanied by severe yaw misalignment and

precipitation.

3 Model setup, methodology and performance metrics

This sensitivity study considers the WRF model version 4.2.2 to simulate the case studies described in Sect. 2. The following

sections describe the part of the WRF model setup common to all simulations, individual run setups used in the sensitivity170

study, and performance evaluation metrics for comparison to observational data. This evaluation uses operational wind farm

SCADA data for its quantitative analysis of wind direction and wind speed. Additionally, radar data from RMI-B allows for a

qualitative perspective on precipitation. By combining these observational datasets, the premise of this study provides a unique

opportunity to investigate EWEs as experienced by an offshore wind farm to determine suitable WRF setups in the specific

context of wind energy applications.175
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3.1 Common model setup

The common model parameters considered for all WRF simulations are summarized in Table 1. The baseline horizontal grid

spacing of the parent domain d01 is 27 km, while the one-way nested domains are sequentially refined by a factor of three,

resulting in horizontal grid spacings of 9, 3, and 1 km for d02, d03, and d04 respectively. In the vertical direction, 57 terrain-

following model levels are considered with a model top pressure at 1000 Pa. The vertical velocity damping option based on180

the Courant–Friedrichs–Lewy condition as implemented in WRF is also turned on. A time step of 20 s is considered for parent

domain d01, while the time step of nested domains is sequentially refined by a factor of three. The initial and LBCs are derived

from ERA5 reanalysis (Hersbach et al., 2020). WRF simulations were initialized with a spin-up period of 24 hours for all case

studies. In addition, an evaluation period of 21 hours from 00:00 to 21:00 UTC on 10 February 2020 is considered for Storm

Ciara. For the low-pressure system and trough passage, an evaluation period of 6 h from 00:00 to 06:00 UTC on 24 December185

2020 and 6 h from 12:00 to 18:00 UTC on 27 June 2020 are considered, respectively. The simulations have been performed

as a continuous run including spin-up and evaluation periods. Therein, the selected evaluation periods adequately capture the

time periods of interest for respective case studies as described in Sect. 2. The one-way nested domain configuration common

to all simulations in this study is presented in Fig. 4.

The Rapid Radiative Transfer Model (RRTMG) (Iacono et al., 2008) for longwave and shortwave radiation physics is used190

by all simulations. Similarly, the land–surface interactions are defined by the unified Noah land surface model (Tewari et al.,

2004). The PBL, cumulus, and microphysics schemes are varied amongst the mentioned options as described in Table 1.

Figure 4. WRF nested domain configuration (one-way nesting) considered common to all simulation runs in this study.
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Table 1. WRF model setup and common parameters for all simulation runs. The varied model settings and physics parameterizations are

highlighted in italics. Scale-aware physics parameterizations are underlined.

Numerical setup

Nested domains (one-way nesting) 4

Horizontal grid spacing 27 km (d01), 9 km (d02), 3 km (d03), 1 km (d04)

Terrain following vertical levels 57

Model top pressure 1000 Pa

Time-steps for domain configuration 20 s (d01), 6.67 s (d02), 2.22 s (d03), 0.74 s (d04)

Spin-up period 24 h

Lateral & boundary conditions ERA5 reanalysis

Evaluation time, additional to spin up 21 h (Storm Ciara) and 6 h (Low-pressure system and trough passage)

Boundary update interval 1h / 3h

Physics parametrizations

Radiation RRTMG radiative

Land surface unified Noah land-surface

PBL MYNN / Shin-Hong / Zhang

Microphysics WSM5 / Thompson / Morrison

Cumulus KF / GD-3D / msKF / GF

3.2 Individual run setups

In order to sufficiently categorize and distinguish the key features of different WRF physics parameterizations and options

available, a combination of different simulation pairs as described in Table 2 is considered. A total of 12 WRF simulations195

are categorized into different simulation pairs (A – J) assigned to variations of the update interval of the LBCs, and the PBL,

cumulus, and microphysics schemes. For each of the varied parameters, at least two different simulation pairs are considered.

For example, simulation pairs A and B are assigned to the variation in update interval of the LBCs. More specifically, the

simulation pairs considered are as follows. The sensitivity to hourly and 3-hourly update intervals of LBCs are assessed in

simulation pairs A and B. Further, the sensitivity to scale-aware (SH and Zhang) and non-scale-aware (MYNN) PBL schemes200

is evaluated in pairs C, D, and E. The sensitivity to scale-aware (msKF and GF) and non-scale-aware (KF and GD-3D) cumulus

parameterizations is evaluated in pairs F, G, and H. Given the convection-permitting resolutions of 3 km and 1 km for d03 and

d04 respectively, the non-scale-aware KF model is explicitly turned off in these domains in simulation runs 2, 3, 5, and 64.

For the scale-aware cumulus models, this explicit deactivation is omitted, as they were specifically designed for operation on

the verge of convection-permitting resolutions (Grell and Freitas, 2014; Zheng et al., 2016; Huang et al., 2020). The impact of205

microphysics schemes WSM5, Thompson, and Morrison is illustrated through pairs I and J. Each simulation pair justifies to

serve as independent sets of simulations to judge the influence of a varied WRF parameter.

4It was verified that this approach resulted in better reproduction of precipitation cells and lower error metrics
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Table 2. WRF simulation runs and respective simulation pairs considered for each of the varied parameter in this sensitivity analysis.

Simulation

run#

ERA5 LBCs

updates

PBL

scheme

Cumulus

scheme

Microphysics

scheme

Update

interval

pairs

PBL

pairs

Cumulus

pairs

Microphysics

pairs

1 3 h MYNN msKF WSM5 A

2 3 h SH KF WSM5 B

3 1 h MYNN KF Thompson C

4 1 h MYNN msKF WSM5 A D

5 1 h SH KF WSM5 B F
I

6 1 h SH KF Thompson C G

7 1 h SH msKF WSM5 D F

J8 1 h SH msKF Thompson G

9 1 h SH msKF Morrison

H10 1h SH GD-3D Morrison

11 1 h SH GF Morrison
E

12 1 h Zhang GF Morrison

13 Ensemble average

3.3 Performance metrics and observations

The simulated wind direction and horizontal wind speed are evaluated against 10 minute averaged SCADA data from the

southwestern front row of an offshore wind farm located in the Belgian North Sea. Model accuracy is assessed using a standard210

mean absolute error (MAE) for wind direction and wind speed. To recover a single performance metric, a so-called normalized

Euclidean distance (NED) is defined by NED =
√

MAE2
WDn +MAE2

WSn , with MAEWDn the normalized MAE of wind

direction, and MAEWSn the normalized MAE of horizontal wind speed. Normalization is performed with the mean over all

simulations.

Precipitation fields are qualitatively compared between WRF simulations. The simulated radar reflectivity is converted to215

precipitation rate using the Marshall and Palmer relation (Marshall and Palmer, 1948).

This study also evaluates the performance of an ensemble average compared to single deterministic simulation runs. The

ensemble average is defined as the mean of all simulation runs considered for a given case study. In this study, ensemble mem-

bers are initialized with identical initial conditions from ERA5 reanalysis. Subsequently, variability in the ensemble average

is only caused by the variation in update interval of LBCs and physics parameterizations. Therein, the current definition of220

ensemble average differs from traditional ensemble forecasts, where variations in initial conditions are also considered, e.g.,

Wilks (2019).
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4 Results and Discussion

The following Sect. 4.1, 4.2, and 4.3 present results and discussions for the overall trend in simulation results evaluated against

SCADA data for Storm Ciara, the low-pressure system, and the trough passage cases, respectively. The MAE and NED are225

presented in performance evaluation tables under each case study. The table sequence is organized in the order of increasing

complexity of the combination of physics parameterizations and shorter update interval, starting with the longer update interval

of LBCs and non-scale-aware physics parameterizations, to scale-aware physics parameterizations with the shorter update

intervals of LBCs. Cells are colored based on a set of 5 categories between red and green. Categories are defined to cover

20% of the range between smallest and largest values for the considered metric. In this way, results are categorized into best230

(green, with errors in the 20% lowest range), good (light green), average (yellow), poor (light red), and worst (dark red). In

addition to this high-level assessment of setups, Sect. 4.4, 4.5, and 4.6 discuss simulation pairs addressing the influence of

specific combinations of physics parameterizations and update interval of LBCs. The simulated wind direction and wind speed

are quantitatively evaluated against SCADA data. Finally, Sect. 4.7 provides a synthesis of the observations in this study.

4.1 Case: Storm Ciara235

The MAE of wind direction, horizontal wind speed, and the NED for the Storm Ciara runs is presented in Table 3. Overall, for

simulation runs 2 through 12, relatively lower MAE values for wind direction and wind speed are observed, with a maximum

of 9.26◦ and 2.72 m s−1 respectively. Using NED as the evaluation metric, the best-case setup is determined to be simulation

run 7, with a NED value very similar to the ensemble average (< 1 % difference). Run 7 uses the scale-aware SH PBL scheme

coupled with the scale-aware msKF cumulus scheme, single moment five-class WSM5 microphysics scheme, and hourly ERA5240

lateral boundary condition updates. In a general sense, simulation runs 7 through 10 observe the lowest overall NED. These

simulation runs consider scale-aware PBL and cumulus parameterizations coupled with hourly update intervals of LBCs. A

qualitative analysis of wind direction and wind speed timeseries for all simulation runs highlighting the ensemble average and

the best-case setup is presented in Fig. 5. Compared to the SCADA reference data, the changes in wind direction are captured

reasonably well by all runs, with the ensemble average capturing the general transience of wind direction better than the best-245

case setup. However, accurately capturing the variability on wind speed is found to be more challenging, as shown by the large

spread among different modeling setups in the afternoon and evening hours.

4.2 Case: Low-pressure system

The summary of the performance evaluation metrics for the low-pressure system is presented in Table 4. The best-case setup

is found to be simulation run 2, comprising scale-aware SH PBL coupled with non-scale-aware KF cumulus, WSM5 micro-250

physics, and hourly ERA5 reanalysis data as LBCs. Unlike the case of Storm Ciara, no trend in better results for simulation

runs combining scale-aware PBL, scale-aware cumulus, and higher-order microphysics is found (i.e., simulation runs 6 through

10 in Table 4). The overall trend in wind speed MAE results shows simulations using the MYNN PBL scheme, i.e., runs 1, 3,

and 4, to perform poorly. Similar to the case of Storm Ciara, the best-case results are found to be very similar to the ensemble
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Table 3. Performance metrics MAE and NED for wind direction and wind speed from all WRF simulations evaluated against SCADA data

for the case of Storm Ciara. The best-case setup considering NED is simulation run 7. The minimum metric specific values are underlined.

Simulation

run#

ERA LBCs

updates

PBL

scheme

Cumulus

scheme

Microphysics

scheme

Wind direction

MAE (degrees)

Wind speed

MAE (m s−1)

NED

(-)

1 3 h MYNN msKF WSM5 10.46 3.88 2.08

2 3 h SH KF WSM5 8.48 2.57 1.51

3 1 h MYNN KF Thompson 9.26 2.72 1.63

4 1 h MYNN msKF WSM5 8.61 2.54 1.51

5 1 h SH KF WSM5 7.68 2.47 1.41

6 1 h SH KF Thompson 8.37 2.51 1.48

7 1 h SH msKF WSM5 6.59 1.78 1.11

8 1 h SH msKF Thompson 6.69 1.89 1.15

9 1 h SH msKF Morrison 7.17 1.89 1.20

10 1 h SH GD-3D Morrison 5.59 2.25 1.17

11 1 h SH GF Morrison 7.17 2.67 1.43

12 1 h Zhang GF Morrison 8.69 1.84 1.34

13 Ensemble average 5.88 2.04 1.12

(a) (b)

Figure 5. Timeseries plots wind direction and wind speed plotted along with the ensemble average and best-case setup simulation run 7 for

the case of Storm Ciara. The minimum and maximum envelope of ensemble members is highlighted in light red. (a) Wind direction. (b)

Wind speed.

average, with a relative difference in NED of 3.2 %. However, it must be noted that the ensemble average tends to damp out255

the fast changes in wind direction, as plotted in Fig. 6 along with the best-case setup. A qualitative analysis on the timeseries

indicates that all simulation runs capture the fast change in wind direction for the period of interest. However, these often

exhibit a time lag compared to SCADA data.
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Table 4. Performance metrics MAE and NED for wind direction and wind speed from all WRF simulations evaluated against SCADA

data for the low-pressure system case. The best-case setup considering NED is simulation run 2. The minimum metric specific values are

underlined.

Simulation

run#

ERA LBCs

updates

PBL

scheme

Cumulus

scheme

Microphysics

scheme

Wind direction

MAE (degrees)

Wind speed

MAE (m s−1)

NED

(-)

1 3 h MYNN msKF WSM5 12.58 3.96 1.66

2 3 h SH KF WSM5 10.43 1.77 0.94

3 1 h MYNN KF Thompson 13.17 4.28 1.78

4 1 h MYNN msKF WSM5 12.47 4.40 1.79

5 1 h SH KF WSM5 13.60 2.19 1.20

6 1 h SH KF Thompson 21.92 1.95 1.62

7 1 h SH msKF WSM5 16.92 2.16 1.37

8 1 h SH msKF Thompson 15.74 2.30 1.34

9 1 h SH msKF Morrison 19.81 3.12 1.73

10 1 h SH GD-3D Morrison 15.97 2.32 1.35

11 1 h SH GF Morrison 12.11 2.64 1.25

12 1 h Zhang GF Morrison 15.54 2.15 1.29

13 Ensemble average 10.65 1.85 0.97

(a) (b)

Figure 6. Timeseries plots wind direction and wind speed plotted along with the ensemble average and best-case setup simulation run 2 for

the low-pressure system case. The minimum and maximum envelope of ensemble members is highlighted in light red. (a) Wind direction.

(b) Wind speed.

4.3 Case: Trough passage

The performance evaluation metrics for the trough passage are presented in Table 5. Overall, the considered WRF setups are260

found to be highly sensitive to the combinations and type of physics parameterizations. Overall, MAE values are found to be

higher than for the other two cases, indicating that accurately predicting wind direction and wind speed is more challenging
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for this particular event. No clear trend in any combinations of the sequence of simulation runs is found, in contrast to Storm

Ciara and the low-pressure system. Interestingly, the best-case setup for the low-pressure system case performed the worst

for the trough passage case. Considering NED as the evaluation metric, the best-case setup is observed to be run 12 by a265

significant margin. Run 12 uses the scale-aware Zhang 3D PBL scheme, the scale-aware GF cumulus scheme coupled with

Morrison microphysics and hourly ERA5 LBCs updates. Simulation timeseries including the ensemble average and best-case

setup are presented in Fig. 7. Qualitatively, simulation runs 1 through 11 underpredict the fast changes in wind direction for

the evaluation period, whereas wind speeds are underpredicted by all runs. Due to the joint poor performance and persistent

offsets compared to SCADA data for all simulations except run 12, the ensemble average does not yield any better match to270

the data.

Table 5. Performance metrics MAE and NED for wind direction and wind speed from all WRF simulations evaluated against SCADA data

for the case of the trough passage. The best-case setup considering NED is simulation run 12. The minimum metric specific values are

underlined.

Simulation

run#

ERA LBCs

updates

PBL

scheme

Cumulus

scheme

Microphysics

scheme

Wind direction

MAE (degrees)

Wind speed

MAE (m s−1)

NED

(-)

1 3 h MYNN msKF WSM5 15.12 4.22 1.39

2 3 h SH KF WSM5 19.27 5.27 1.75

3 1 h MYNN KF Thompson 16.04 3.47 1.32

4 1 h MYNN msKF WSM5 11.64 4.46 1.28

5 1 h SH KF WSM5 17.95 4.51 1.57

6 1 h SH KF Thompson 19.84 4.60 1.68

7 1 h SH msKF WSM5 15.05 5.31 1.57

8 1 h SH msKF Thompson 16.34 5.02 1.58

9 1 h SH msKF Morrison 10.97 3.78 1.13

10 1 h SH GD-3D Morrison 17.73 4.57 1.57

11 1 h SH GF Morrison 15.03 3.87 1.33

12 1 h Zhang GF Morrison 7.43 3.11 0.87

13 Ensemble average 14.77 4.34 1.39

4.4 Update interval of lateral boundary conditions: Simulation pairs A and B

The effect of varying the update interval of ERA5 LBCs between hourly and 3-hourly is investigated in this section. Simulation

pairs A and B represent four WRF setups for each case study. Figure 8 shows the results for simulation pair A. Error bars

indicate one standard error of the sample mean. Starting with wind direction (Fig. 8a), hourly update intervals of ERA5 LBCs275

are observed to perform better for Storm Ciara and the trough passage. For the low-pressure system, lower MAE is observed

for hourly reanalysis data however, these values lie well within the standard error bars, therefore leading to inconclusive overall

results. For wind speed (Fig. 8b), a significant improvement on MAE is observed when hourly reanalysis data is used for Storm

Ciara, with a 34 % reduction compared to 3-hourly data. In contrast, for the low-pressure system and the trough passage, 3-

hourly reanalysis data produces lower MAE, however these values lie within the standard error. Overall, for simulation pair A,280
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(a) (b)

Figure 7. Timeseries plots wind direction and wind speed plotted along with the ensemble average and best-case setup simulation run 12 for

the case of trough passage. The minimum and maximum envelope of ensemble members is highlighted in light red. (a) Wind direction. (b)

Wind speed.

a distinction in better performance for hourly reanalysis is observed for Storm Ciara, however no significant benefit is observed

for the other two cases.

(a) (b)

Figure 8. Performance evaluation for simulation pair A considering change in update interval of LBCs, as described in Table 2. Error bars

indicate one standard error of the sample mean. (a) MAE comparison for wind direction. (b) MAE comparison for wind speed.

Similarly, Fig. 9 shows the results for simulation pair B. The MAE comparison for wind direction is presented in Fig.

9a, indicating statistically inconclusive results for all cases. Similarly, MAE results for wind speeds are presented in Fig. 9b,
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indicating inconclusive results for Storm Ciara and the low-pressure system, yet a better performance with hourly reanalysis285

data in the case of the trough passage.

To summarize the overall inferences from both simulation pairs, hourly updates of LBCs do not systematically lead to higher

accuracy, although improvements are observed for certain combination of events and wind variables. Therefore, more frequent

updates of LBCs may prove advantageous when trying to capture certain fast transient weather events.

(a) (b)

Figure 9. Performance evaluation for simulation pair B considering change in update interval of LBCs, as described in Table 2. Error bars

indicate one standard error of the sample mean. (a) MAE comparison for wind direction. (b) MAE comparison for wind speed.

4.5 Planetary boundary layer: Simulation pairs C, D, and E290

In this section, the influence of using classical non-scale-aware PBL schemes versus scale-aware PBL schemes is elaborated

in simulation pairs C, D, and E. More specifically, the standard MYNN scheme is compared to the scale-aware 1D SH and

scale-aware 3D Zhang PBL schemes. Simulation pairs C and D compare the influence of MYNN and SH PBL schemes and

simulation pair E compares SH and Zhang PBL schemes.

Figure 10 presents the consolidated results for simulation pair C. First, considering wind direction MAE (Fig. 10a), the SH295

PBL scheme performs better for the case of Storm Ciara. In contrast, for the low-pressure system and the trough passage, the

MYNN PBL scheme shows better performance. Considering wind speed (Fig. 10b), no conclusive set of inferences are drawn

for the case of Storm Ciara, as the lower MAE by SH lies within the range of the standard error. For the low-pressure system,

the SH PBL scheme outperforms the MYNN scheme in terms of wind speed, reversing the trend found for wind direction. For

the trough passage, MYNN wind speeds outperform SH. Overall, for the simulation pair C, no clear conclusions can be drawn300

for Storm Ciara and the low-pressure system cases. In contrast, better performance by the MYNN PBL scheme is observed for

the trough passage.
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(a) (b)

Figure 10. Performance evaluation for simulation pair C considering a change in PBL scheme, as described in Table 2. Error bars indicate

one standard error of the sample mean. (a) MAE comparison for wind direction. (b) MAE comparison for wind speed.

Figure 11 illustrates MAEs for simulation pair D. Starting with wind direction (Fig. 11a), a clear advantage in utilizing SH

PBL is observed for the case of Storm Ciara. However, this distinction is not observed for the low-pressure system. The MYNN

PBL scheme performs better than the SH PBL scheme for the trough passage. This trend is found similar to simulation pair305

C. Considering wind speeds (Fig. 11b), SH outperforms MYNN by a significant margin for the case of Storm Ciara. A similar

distinction is observed for the low-pressure system. However, similar to pair C, for the trough passage this trend is reversed.

Overall, for the simulation pairs C and D, a distinctly better performance by the SH PBL scheme is observed for the case

of Storm Ciara. However, little to no conclusions can be drawn for the low-pressure system. For the trough passage, better

performance is observed for MYNN PBL scheme.310

To further distinguish between scale-aware PBL schemes of different complexity, Figure 12 presents results for simulation

pair E, comparing the SH and the Zhang PBL schemes. The wind direction MAE results (Fig. 12a) show an advantage in

using SH for the case of Storm Ciara. However, this distinction is not statistically significant for the low-pressure system.

The Zhang PBL scheme outperforms the SH PBL scheme by a significant margin for the trough passage. Considering wind

speed (Fig. 12b), the Zhang scheme outperforms the SH scheme for Storm Ciara and the trough passage. However, this trend315

is not statistically significant for the low-pressure system case. The trough passage observes better performance by the Zhang

PBL scheme. Overall, for simulation pair E, no clear distinction in better performance for both wind direction and wind speed

combined is observed for SH or Zhang PBL schemes for Storm Ciara and the low-pressure system cases. However, for the case

of the trough passage, a clear advantage in using the Zhang PBL scheme is observed.

A qualitative comparison of timeseries for the low-pressure system and trough passage cases is presented in Fig. 13b,320

indicating better performance by the Zhang PBL scheme to capture the transience in wind direction. However, this qualitative

advantage is not observed in the case of Storm Ciara (not further plotted here).
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(a) (b)

Figure 11. Performance evaluation for simulation pair D considering a change in PBL scheme, as described in Table 2. Error bars indicate

one standard error of the sample mean. (a) MAE comparison for wind direction. (b) MAE comparison for wind speed.

(a) (b)

Figure 12. Performance evaluation for simulation pair E considering a change in PBL scheme, as described in Table 2. Error bars indicate

one standard error of the sample mean. (a) MAE comparison for wind direction. (b) MAE comparison for wind speed.

The current results indicate a high sensitivity in wind direction and wind speed relative to the choice in PBL scheme. A

single PBL scheme is not found to outperform the others for all three case studies. The simulation results indicate a possible

dependency of PBL schemes to cumulus and microphysics parameterizations, which has also been reported in literature by325

Hong and Dudhia (2012), Choi and Han (2020), and Chen et al. (2021).
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(a) (b)

Figure 13. Comparison of timeseries considering a change in PBL scheme for simulation pair E. (a) Wind direction plots for low-pressure

system case. (b) Wind direction plots for trough passage case.

4.6 Cumulus and Microphysics: Simulation pairs F, G, H, I, and J

This section presents and discusses the results for cumulus simulation pairs F, G, and H, as well as microphysics simulation

pairs I and J. As these two types of physics schemes both relate to the modeling of precipitation in WRF, they are considered

jointly in this section. A set of eight WRF simulations is considered, covering a combination of four cumulus schemes (KF,330

GD-3D, msKF, and GF; the latter two being scale-aware) and three microphysics schemes (WSM5, Thompson, and Morrison;

in increasing order of modeling complexity).

Figure 14 depicts simulation results for pair F, which uses the SH PBL scheme coupled with the WSM5 microphysics

parameterization while varying the cumulus scheme between KF and msKF. Figure 14 presents the results for MAE of wind

direction and wind speed for all three test cases. Starting with wind direction (Fig. 14a), the msKF simulation produces better335

results for the case of Storm Ciara. However, for the low-pressure system case, KF produces lower MAE which lies within

the standard error bars, disallowing statistically significant conclusions. Similarly, for the trough passage, the msKF scheme

results in a negligible reduction in MAE. Therefore, conclusions can only be drawn in the case of Storm Ciara, indicating

better performance with the msKF scheme on wind direction. Focusing on wind speed (Fig. 14b), again better results for msKF

cumulus scheme are observed for the case of Storm Ciara. For the low-pressure system case both schemes produce similar MAE340

values. For the trough passage, KF performs better than msKF, reversing the trend found for wind direction. Summarizing, for

simulation pair F, the case of Storm Ciara is more accurately predicted by the msKF cumulus scheme in comparison to the KF

scheme. For the low-pressure system and trough passage cases, comparative results are inconclusive.

The results for simulation pair G are presented in Fig. 15. Pair G applies the SH PBL scheme coupled with the Thompson

microphysics parameterization, while varying the cumulus scheme between KF and msKF. Overall, the current combination345

of physics schemes produce similar MAE on wind direction and wind speed compared to simulation pair F. For Storm Ciara,

msKF produces lower MAE in wind direction and wind speed. For the low-pressure system, no clear trend in performance is
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observed. For the trough passage, lower wind direction MAE is observed for msKF and lower wind speed MAE is observed

for KF. Consolidating results for simulation pairs F and G, for the case of Storm Ciara, a clear improvement is observed when

using the scale-aware msKF cumulus scheme, however no conclusive statements can be made for the low-pressure system and350

trough passage cases.

Figure 16 shows results for simulation pair H, which applies the SH PBL scheme coupled with the Morrison microphysics,

while varying the cumulus scheme between msKF, GD-3D, and GF. Starting with wind direction (Fig. 16a), Storm Ciara is

much better captured by the GD-3D cumulus scheme. For the low-pressure system, no such trend in better performance is

observed. For the trough passage, msKF outperforms both GD-3D and GF schemes. Considering wind speed (Fig. 16b), msKF355

performs better than GD-3D and GF for Storm Ciara. For the low-pressure system, GD-3D is found to be the best performer.

For the trough passage, msKF and GF both perform better than GD-3D. However, no distinction is found between msKF and

GF schemes. Summarizing, the overall inferences for the simulation pair H are found to be statistically inconclusive and highly

sensitive, thus one cannot conclude that a specific cumulus parameterization systematically outperforms the others.

(a) (b)

Figure 14. Performance evaluation for simulation pair F considering a change in cumulus scheme, as described in Table 2. Error bars indicate

one standard error of the sample mean. (a) MAE comparison for wind direction. (b) MAE comparison for wind speed.

Simulation pairs I and J focus on the impact of microphysics schemes. Starting with pair I, results are presented in Fig.360

17. Pair I uses scale-aware SH PBL coupled with non-scale-aware KF cumulus schemes and varies the microphysics scheme

between WSM5 and Thompson. Overall, no distinction in better performance by either microphysics scheme considering MAE

of wind direction and wind speed is observed (Fig. 17a & 17b). For Storm Ciara and the trough passage EWEs, wind speed

and wind direction MAE are found to be insensitive to the variation in microphysics schemes. However, this trend is not clear

for the case of the low-pressure system, where the Thompson scheme is found to produce different MAE of wind direction,365

with significantly larger error margins (Fig. 17a & 17b). However, when comparing the combination of cumulus schemes to

microphysics setups, more specifically, the combination of WSM5 + KF to Thompson + KF/msKF (Fig. 14a and Fig. 15a),
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(a) (b)

Figure 15. Performance evaluation for simulation pair G considering a change in cumulus scheme, as described in Table 2. Error bars indicate

one standard error of the sample mean. (a) MAE comparison for wind direction. (b) MAE comparison for wind speed.

(a) (b)

Figure 16. Performance evaluation for simulation pair G considering a change in cumulus scheme, as described in Table 2. Error bars indicate

one standard error of the sample mean. (a) MAE comparison for wind direction. (b) MAE comparison for wind speed.

lower MAE of wind direction are observed for Thompson microphysics when combined with the scale-aware msKF cumulus

scheme. However, this trend is reversed for WSM5 + msKF cumulus schemes. This appears to highlight case-to-case variability

in skill and the importance of the combination of cumulus and microphysics schemes.370

Results for simulation pair J, which applies SH PBL with msKF cumulus schemes and varies WSM5, Thompson and

Morrison microphysics schemes, are presented in Fig. 18. Considering MAE of wind direction (Fig. 18a), for the case of Storm

Ciara and low-pressure system, a clear distinction in the performance of different microphysics schemes is not observed. For
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the case of trough passage, Morrison microphysics perform better by comparison. For wind speed MAE (Fig. 18b), Storm Ciara

shows similar results as for wind direction. For the low-pressure system, WSM5 and Thompson produce better wind speed than375

Morrison. For the trough passage, Morrison outperforms WSM5 and Thompson microphysics. Overall, for simulation pair J,

Storm Ciara shows an insensitivity to the variation of microphysics schemes. For the low-pressure system, no clear trend in

better performance is observed, whereas a clear advantage in using the more complex Morrison scheme is observed in the

trough passage case.

(a) (b)

Figure 17. Performance evaluation for simulation pair I considering change in microphysics schemes, as described in Table 2. Error bars

indicate one standard error of the sample mean. (a) MAE comparison for wind direction. (b) MAE comparison for wind speed.

(a) (b)

Figure 18. Performance evaluation for simulation pair J considering change in microphysics schemes, as described in Table 2. Error bars

indicate one standard error of the sample mean. (a) MAE comparison for wind direction. (b) MAE comparison for wind speed.
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4.7 Discussion380

The previous sections investigated the individual influence of varying a single physics parameterization in the modeling chain

on the accuracy of the match between WRF simulation results and observational data when subject to three EWE case studies.

A clear trend in improved performance with higher model complexity common to all case studies is not found.

When looking at the update interval of LBCs, the qualitative differences in hourly and 3-hourly update intervals are found to

be marginal. The quantitative indicators show a unanimous improvement for the case of Storm Ciara (see Fig. 8 & 9). However,385

for the low-pressure system and the trough passage this distinction is not so evident.

The variation in PBL scheme results in highly sensitive metrics for all three case studies. For the case of Storm Ciara, a

clear advantage in using scale-aware SH PBL in comparison to non-scale-aware MYNN PBL is observed (see Figs. 10 & 11).

However, this trend is not evident for the case of the low-pressure system and the trough passage. When comparing scale-aware

schemes of different fidelity, more specifically Zhang PBL and SH PBL, a promising trend is observed in which the higher390

complexity Zhang PBL leads to a better match with SCADA data for the trough passage case (Fig. 13). However, this trend is

not found for Storm Ciara and the low-pressure system. Furthermore, considering wind speeds, the Zhang PBL run is either

the best setup (cold front) or results in MAE very close to the best setup (Storm Ciara and low-pressure system). In contrast,

the Zhang PBL setup results in higher wind direction errors for Storm Ciara and the low-pressure system cases.

Regarding the cumulus and microphysics simulation pairs, the combination of cumulus and microphysics is observed to395

have more impact on MAE of wind direction in comparison to variation in stand-alone cumulus or microphysics schemes. This

is highlighted by Storm Ciara and the low-pressure system, where the change in microphysics schemes in combination with

msKF cumulus results in marginal changes in MAE (see Fig. 18). However, when comparing the combinations of lower-order

microphysics with scale-aware and non-scale-aware cumulus schemes for wind direction, i.e., WSM5/Thompson + KF/msKF,

results indicate an overall reduction in MAE for Thompson + msKF (see Fig. 14a & 15a). These results potentially indicates400

scale-aware cumulus schemes to be more compatible with higher-order microphysics schemes. The performance of cumulus

and microphysics schemes is found to be strongly dependent on the type of weather phenomenon.

Precipitation results were qualitatively compared to each other and to the radar images from RMI-B (Fig. 1). It was found

that all WRF simulation precipitation results are highly sensitive to the combination of physics schemes and type of EWE,

yet no conclusions on modeling fidelity could be drawn from this analysis, and hence further discussion is omitted here.405

As an example, a sample of results for the case of Storm Ciara is presented in Fig. 19, illustrating the completely different

precipitation fields produced by different model setups. A direct quantitative comparison of simulated reflectivity and observed

raw radar fields using, e.g., tools for comparing gridded observations such as MODE (Newman et al., 2022), is impeded by

the lack of filtering and post-processing information on the raw radar observation data. Therefore, a quantitative assessment of

precipitation modeling is out of scope of the current paper and left for future work.410

Finally, the ensemble average (as defined in Sect. 3.3) is observed to rank very similar to the best-case model setup (see Table

3 & 4) for the cases of Storm Ciara and the low-pressure system. However, the fast changes in wind direction are dampened
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(a) (b) (c)

Figure 19. Contours of WRF precipitation rate in mm h−1 for the case of Storm Ciara on 10 February 2020 at 04:40 UTC. The plots are

presented for cumulus simulation pair H for domain d04. The star in the plots represents the offshore wind farm of interest. (a) Simulation

run 9: 1h SH msKF Morrison, on 10 February 2020 at 04:40 UTC (b) Simulation run 10: 1h SH GD-3D Morrison, on 10 February 2020 at

04:40 UTC (c) Simulation run 11: 1h SH GF Morrison, on 10 February 2020 at 04:40 UTC.

by the ensemble averaging (see Fig. 5 & 6). For the trough passage, the ensemble averaging performs poorly compared to the

best-case setup by a significant margin (Table 5), caused by a persistent offset by all but the best-case setup.

5 Conclusions and recommendations415

The complexity in determining an optimal combination of physics setup for the operational use of the WRF model in the frame

of wind energy applications over the Belgian North Sea is analyzed in this study. A multi-event sensitivity analysis for WRF

NWP model is performed considering three extreme weather events: Storm Ciara on 10 February 2020, a low-pressure system

on 24 December 2020 and a trough passage on 27 June 2020. These events have been identified to be potentially harmful for

the operation of offshore wind farms. The events resulted in fast changes in wind direction leading to severe yaw misalignment420

of the turbines, with the potential to result in significant off-design turbine load cases and variability in power production.

This sensitivity analysis utilizes operational wind farm data (SCADA) for evaluating WRF simulated wind direction and wind

speed results. Qualitatively, precipitation results are found to be highly sensitive to model setup and type of EWE. No clear

tendency towards better accuracy with increased complexity of parameterizations is found. This sensitivity study analyses the

impact of the update interval of the LBCs and sub-grid scale modeling techniques used for the PBL, cumulus, and microphysics425

parameterizations.

The results of this sensitivity analysis indicate WRF simulations to be highly sensitive to the type of event and the combina-

tion of physics parameterizations. Starting with the variation in update interval of LBCs, overall better performance for hourly
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update interval of LBCs is observed for the case of Storm Ciara. However, for the low-pressure system and trough passage

cases no such trend is observed. In general, WRF simulations comprising scale-aware PBL physics schemes appear to perform430

better in comparison to non-scale-aware physics schemes, as the best-case setups for all three events feature scale-aware PBL

schemes. Concerning cumulus and microphysics parameterizations, the suitable combination of cumulus and microphysics is

observed to be highly dependent and sensitive to the type of weather phenomenon. The combination of schemes is observed to

have more impact than a stand-alone variation for either of these events.

Overall, in view of modeling local wind direction and wind speed at the location of the farms, three independent best-case435

setups are identified for the three case studies. A single best WRF model setup for both wind direction and wind speed for all

three case studies is not found. The results indicate little consistency across the three EWEs for different parameterizations.

For the case of Storm Ciara, the best-case setup is identified to combine the scale-aware SH PBL scheme coupled with the

scale-aware msKF cumulus parameterization and five-class single moment WSM5 microphysics. For the low-pressure system,

the best-case setup combines, scale-aware SH PBL, non-scale-aware KF cumulus, and WSM5 microphysics schemes. For the440

trough passage, the best-case setup is identified to combine scale-aware Zhang 3D PBL, scale-aware GF cumulus, and six-

class double moment Morrison microphysics schemes. The best-case setups for all cases utilize hourly reanalysis dataset as

the LBCs and scale-aware PBL schemes. Overall, the inconsistency across different EWEs found in the current work suggests

that a general best model configuration for the Belgian North Sea does not exist, and that best practices are highly dependent

on the weather regime under consideration. However, it is important to note that this conclusion is based on a limited sample445

of EWEs over a single observation point at the offshore wind farm. To further justify and generalize this conclusion, a much

larger sample considering more weather events, more observations, and more model configurations is warranted.

An interesting area of further research would be to perform similar sensitivity studies at finer sub-kilometer resolutions

including recent advancements such as 3D scale-aware PBL schemes (Zhang et al., 2018; Senel et al., 2020). Furthermore,

expanding the sensitivity analysis to include events such as a dunkelflaute (Li et al., 2021) and wind ramps (Gallego-Castillo450

et al., 2015) will allow a broader assessment of EWE modeling relevant to wind energy. Also, a quantitative assessment of

ground-level precipitation modeling with local precipitation measurements from disdrometers and tipping buckets is of general

interest to assess, e.g., the risk of leading edge erosion of wind turbine blades (Law and Koutsos, 2020).
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